WO2023127481A1 - 球状表面処理シリカエアロゲル及びその製造方法 - Google Patents

球状表面処理シリカエアロゲル及びその製造方法 Download PDF

Info

Publication number
WO2023127481A1
WO2023127481A1 PCT/JP2022/045806 JP2022045806W WO2023127481A1 WO 2023127481 A1 WO2023127481 A1 WO 2023127481A1 JP 2022045806 W JP2022045806 W JP 2022045806W WO 2023127481 A1 WO2023127481 A1 WO 2023127481A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica airgel
spherical
group
reactive functional
spherical surface
Prior art date
Application number
PCT/JP2022/045806
Other languages
English (en)
French (fr)
Inventor
優華 今
大樹 加藤
剛 浜坂
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2023127481A1 publication Critical patent/WO2023127481A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/16Preparation of silica xerogels

Definitions

  • the present invention relates to a spherical surface-treated silica airgel having reactive functional groups on its surface, and a method for producing the same.
  • Porous silica utilizes the affinity between silanol groups present on the silica surface or substances introduced via chemical bonding to the silica surface and other molecules, for example, column packing, metal adsorption. It is used as an immobilizing agent for agents, amino acids, peptides, proteins or nucleic acids.
  • porous silica in which a substance (ligand) that exhibits specific affinity with a specific molecule is bound (immobilized) to its surface, interacts specifically with biomolecules such as peptides, proteins, or nucleic acids.
  • biomolecules such as peptides, proteins, or nucleic acids.
  • a technique for immobilizing ligands on porous silica surfaces involves first introducing reactive functional groups onto the porous silica surface through chemical bonding, and then immobilizing the introduced reactive functional groups and ligands by covalent bonding. It is common to For example, in Patent Document 1, silanol groups on the surface of porous silica are reacted with a surface treatment agent having an epoxy group to introduce epoxy groups, then reacted with diamine to introduce amino groups, and further amino groups and ligands are introduced. are bound by a covalent bond.
  • the performance as a column packing material depends not only on the type and amount of the ligand, but also on the physical properties of the porous silica. known to do. In general, the larger the specific surface area of the porous silica, the greater the contact area with the molecules to be separated, thereby improving the holding power. Furthermore, it is preferred that the particles are spherical as this allows the construction of a uniform packed bed.
  • the porous silica for immobilizing the ligand must have a large specific surface area and pore volume, be spherical, and have the reactivity necessary for immobilizing the ligand. It is preferable to use porous silica having functional groups on its surface.
  • porous silica having functional groups on its surface.
  • currently existing porous silicas do not adequately meet these requirements.
  • the porous silica (silica gel) used in Patent Document 1 has a specific surface area of 74 m 2 /g, which cannot be said to have a large specific surface area.
  • Spherical silica airgel is known as spherical porous silica having a large specific surface area and pore volume.
  • a W/O emulsion is used as a dispersion of a gelled body, and then the dispersion is separated into two layers of an O phase and a W phase to obtain a dispersion in which the gelled body is dispersed in the W phase.
  • the silanol groups on the surface of the metal oxide (silica) are reacted with a silylating agent to give a hydrophobic treatment, and by suppressing drying shrinkage, the dispersion medium in the gel is removed by drying under supercritical conditions. It is possible to produce a spherical metal oxide powder having a specific surface area of 400 m 2 /g or more, a pore volume of 2 mL/g or more, and a circularity of 0.8 or more.
  • a W/O type emulsion is used as a dispersion liquid of a gelled body, and then after solvent substitution of water in the gelled body, silanol groups on the surface of spherical silica airgel are replaced with hydrocarbon groups and the like.
  • a surface treatment agent having a hydrophobic group to give a hydrophobic treatment and suppressing drying shrinkage
  • the dispersion medium in the gel is not dried and removed under supercritical conditions, and the specific surface area is 400 m 2 /g or more.
  • a spherical silica airgel having a pore volume of 3 mL/g or more and a circularity of 0.8 or more can be easily produced.
  • Hydrophobized spherical silica airgel is used as a heat-insulating agent and cosmetic additive by utilizing physical properties such as a large specific surface area and a large pore volume.
  • an object of the present invention is to provide porous silica that has a large specific surface area and pore volume, is spherical, and has a reactive functional group on its surface.
  • the inventors of the present invention have made extensive studies to solve the above problems.
  • the surface is dried by performing a surface treatment with a surface treatment agent having a reactive functional group. It was found that a spherical surface-treated silica airgel having a large specific surface area and pore volume, a spherical shape, and a reactive functional group can be produced while suppressing shrinkage.
  • the specific surface area by the BET method is 300 to 1000 m 2 /g
  • the pore volume and pore radius peaks by the BJH method are 1 to 8 mL/g and 1 to 30 nm, respectively
  • Coulter In the particle size distribution measured by the counter method, the volume-based cumulative 50% diameter (D50) value is 1 to 200 ⁇ m, the average circularity obtained by the image analysis method is 0.8 or more, and at least one reaction It is a spherical surface-treated silica airgel having functional groups on the surface.
  • Another aspect of the present invention is (1) a step of preparing an aqueous silica sol; (2) dispersing the aqueous silica sol in a hydrophobic solvent to form a W/O emulsion; (3) gelling the silica sol to convert the W/O emulsion into a gel dispersion; (4) replacing water in the gelled body with an organic solvent; (5) a step of treating the gelled body with a surface treatment agent having a reactive functional group; (6) A method for producing the spherical surface-treated silica airgel, comprising steps of removing the substituted organic solvent in the above order.
  • another aspect of the present invention is (a) preparing an aqueous silica sol; (b) dispersing the aqueous silica sol in a hydrophobic solvent to form a W/O emulsion; (c) gelling the silica sol to convert the W/O emulsion into a gel dispersion; (d) separating the dispersion of the gelled material into two layers of an O phase and a W phase; (e) recovering the W phase; (f) a step of treating the gelled body in the W phase with a hydrophobizing agent; (g) recovering the gelled body from the W phase to obtain spherical silica airgel powder; (h) A method for producing the spherical surface-treated silica airgel, comprising the steps of treating the spherical silica airgel powder with a surface treatment agent having a reactive functional group in the above order.
  • Another aspect of the present invention is (A) A method for producing a spherical surface-treated silica airgel, comprising a step of treating a hydrophobized spherical silica airgel powder with a surface treatment agent having a reactive functional group.
  • the spherical surface-treated silica airgel according to one aspect of the present invention has reactive functional groups on the surface necessary for ligand immobilization, so it can be widely used for separation, analysis, and purification of biomolecules such as peptides, proteins, or nucleic acids. It has a large specific surface area and a large pore volume, and is spherical, so it can be used as a column packing material that has a good retention force, a low back pressure during liquid passage, and can construct a uniform packed bed.
  • the specific surface area and pore volume are reduced while drying shrinkage is suppressed by performing surface treatment with a surface treatment agent having a reactive functional group.
  • Spherical surface-treated silica aerogels can be produced that are large, spherical, and have reactive functional groups.
  • the forms shown below are examples of the present invention, and the present invention is not limited to these forms.
  • the notation "A to B" with respect to the numerical range means “A or more and B or less”. If a unit is attached only to the numerical value B in such notation, the unit is applied to the numerical value A as well.
  • spherical silica aerogel is a spherical porous silica in which the solvent contained in wet silica gel is dried while maintaining a solid network and replaced with air, and the porosity is 70% or more. is.
  • those surface-treated with a surface treatment agent are referred to as spherical surface-treated silica aerogels.
  • the "specific surface area by the BET method” means that the sample to be measured is dried at a temperature of 150 ° C. for 1 hour or more under a vacuum of 1 kPa or less, and then adsorbed only on the adsorption side of nitrogen at liquid nitrogen temperature. It means a value obtained by measuring an isotherm and analyzing the adsorption isotherm by the BET method.
  • the pressure range used for the analysis at that time is a relative pressure range of 0.1 to 0.25.
  • the "pore volume by the BJH method” means that the adsorption isotherm on the adsorption side obtained in the same manner as described above is obtained by the BJH method (Barrett, EP; Joyner, LG; Halenda, P.P., J.Am Chem.Soc.1951, 73, 373.) means a pore volume derived from pores having a pore radius of 1 nm or more and 100 nm or less obtained by analysis.
  • the "peak of the pore radius by the BJH method” is obtained by analyzing the adsorption isotherm on the adsorption side obtained in the same manner as described above by the BJH method. It means the value of the pore radius at which the pore distribution curve (volume distribution curve) plotted with the pore radius on the horizontal axis has the maximum peak value.
  • the spherical surface-treated silica airgel according to one aspect of the present invention has a specific surface area by the BET method of 300 to 1000 m 2 /g, preferably 300 to 900 m 2 /g, particularly preferably 300 to 800 m 2 /g. g range.
  • a specific surface area by the BET method 300 to 1000 m 2 /g, preferably 300 to 900 m 2 /g, particularly preferably 300 to 800 m 2 /g. g range.
  • the larger the specific surface area the greater the retention force due to the increase in the contact area with the molecule to be separated (Giaquinto, A.; Liu, Z.; Bach, A.; Kazakevich, Y., Anal. Chem. 2008, 80, 6358-6364.).
  • the particle diameter of the primary particles constituting the porous structure (network structure) of the independent particles (secondary particles) of the spherical surface-treated silica airgel becomes small, and the spherical surface-treated silica airgel Since the size is not sufficient to form a pore structure of 1, the pores are collapsed as a result, making it difficult to manufacture.
  • the spherical surface-treated silica airgel according to one aspect of the present invention has a pore volume measured by the BJH method of 1 to 8 mL/g, preferably 1 to 6 mL/g.
  • it exceeds 8 mL/g the strength of the secondary particles is lowered, and the particles are crushed in the column when the liquid is passed through. Therefore, the above range is preferable.
  • the spherical surface-treated silica airgel according to one aspect of the present invention preferably has a pore radius peak of 1 to 30 nm according to the BJH method when the specific surface area and pore volume are within the above preferred ranges. is in the range of 5-20 nm.
  • the optimum pore radius varies depending on the size of the molecule to be separated, so it may be determined for each molecule to be separated in consideration of the balance between the specific surface area and pore volume.
  • the “volume-based cumulative 50% diameter (D50) value” in the “particle size distribution measured by the Coulter counter method” means that 30 mg of the sample to be measured is dispersed in 40 mL of ethanol, and is dispersed at 70 W for 10 minutes. It is the volume-based cumulative 50% diameter (D50) obtained by crushing with an ultrasonic crusher and measuring by the Coulter counter method.
  • the spherical surface-treated silica airgel according to one aspect of the present invention has a D50 value in the range of 1 to 200 ⁇ m.
  • a packing material having a particle size of 1 ⁇ m to 20 ⁇ m is preferably used. 200 ⁇ m fillers are preferably used. If the particle diameter is less than 1 ⁇ m, an increase in back pressure becomes a problem. is preferably
  • the "average circularity determined by image analysis” means that 2000 or more spherical surface-treated silica airgel particles are observed at a magnification of 1000 times by secondary electron detection using a scanning electron microscope (SEM). It is the arithmetic mean value of the circularity obtained by image analysis of the SEM image obtained.
  • the “circularity” of each spherical surface-treated silica airgel particle is a value obtained by the following formula (1).
  • C 4 ⁇ S/L 2 (1)
  • C represents circularity.
  • S represents the area (projected area) occupied by the spherical surface-treated silica airgel particles in the image.
  • L represents the length (perimeter) of the outer peripheral portion of the spherical surface-treated silica airgel particles in the image.
  • a secondary particle is regarded as one particle, and a particle group forming aggregated particles is counted as one particle.
  • Individual independent particles that constitute the spherical surface-treated silica airgel according to one aspect of the present invention have an average circularity of 0.8 or more.
  • the average circularity is greater than 0.8 and closer to 1, the individual particles constituting the spherical surface-treated silica airgel will have a shape closer to a true sphere, the number of agglomerated particles will be reduced, and a uniform packed bed can be constructed.
  • the proportion of aggregated particles can be expressed by the degree of aggregation.
  • the degree of agglomeration was measured by weighing 300 mg of spherical surface-treated silica airgel in a 50 mL sample bottle, dispersing it in 30 mL of ethanol, and setting it in an ultrasonic crusher filled with water so that it was equal to the liquid surface of ethanol. After crushing for 10 minutes, the aggregates are fractionated through a sieve with an opening of 106 ⁇ m, and the ethanol is distilled off in a dryer at 150 ° C. The mass percentage of the aggregates in 300 mg of the entire spherical surface-treated silica airgel. value.
  • the spherical surface-treated silica airgel according to one aspect of the present invention preferably has an aggregation degree of less than 5%.
  • a uniform packing phase can be constructed if the degree of aggregation is less than 5%.
  • the spherical surface-treated silica airgel according to one aspect of the present invention has at least one reactive functional group on its surface.
  • the term "reactive functional group” refers to a functional group that can form a chemical bond with a different chemical species while accompanying the transfer of electrons, primary amino group, secondary amino group , a thiol group, a hydroxy group, an epoxy group, an isocyanate group, a formyl group, a carboxyl group, an ester group, an amide group, a sulfonate group, and a vinyl group.
  • the ester group is a functional group represented by the chemical formula --COO--Y, where Y is an organic group in which the element bonded to the oxygen atom is a carbon atom, a nitrogen atom or a sulfur atom.
  • the ester group includes acid anhydrides and active esters.
  • active esters can include active esters activated by N-hydroxysuccinimide.
  • "having a reactive functional group on the surface” means a state in which the reactive functional group is introduced to the spherical silica airgel surface through chemical bonding.
  • a method of introducing a new molecular chain through chemical bonding is called surface treatment, and the reactive functional group may be present at any position, either at the terminal or inside the molecular chain to be introduced.
  • a plurality of such groups may be present in the molecular chain.
  • the number of reactive functional groups introduced on the surface may be one or plural, and the number of reactive functional groups introduced on the surface is not limited. Moreover, it may be introduced into the pores as well as the outermost surface of the spherical silica airgel.
  • the spherical surface-treated silica airgel according to one aspect of the present invention is (1) a step of preparing an aqueous silica sol; (2) dispersing the aqueous silica sol in a hydrophobic solvent to form a W/O emulsion; (3) gelling the silica sol to convert the W/O emulsion into a gel dispersion; (4) replacing water in the gelled body with an organic solvent; (5) a step of treating the gelled body with a surface treatment agent having a reactive functional group; (6) It can be produced by performing the steps of removing the substituted organic solvent in the above order.
  • the steps (1) to (3) may be performed according to known methods described in Patent Documents 2 and 3 to produce a gelled dispersion.
  • the step (4) is a step of replacing water in the gelled body with an organic solvent in order to smoothly proceed the surface treatment in the step (5).
  • the gelled body and the liquid component in the gelled body dispersion are separated by filtration using a suction filter or the like, and the gelled body is washed with water and then washed with an organic solvent to remove water in the gelled body. It may be substituted with an organic solvent.
  • the organic solvent preferably has an affinity for both the gelled product and the surface treatment agent having a reactive functional group used in the step (5) (hereinafter also simply referred to as the surface treatment agent).
  • the agent does not interfere with the formation of a chemical bond between the body and the surface treatment agent, and that it does not cause a chemical reaction with the reactive functional group to be introduced.
  • the organic solvent include acetone, methanol, ethanol, isopropyl alcohol, and the like. Among these, ethanol can be preferably used.
  • the step (5) is a step of treating the gelled product with a surface treatment agent having a reactive functional group in order to introduce the reactive functional group onto the surface of the spherical silica airgel.
  • the surface treatment can be carried out by adding a surface treatment agent having a reactive functional group to the dispersion of the organic solvent and the gelled material used in the step (4) and stirring the mixture for a certain period of time.
  • the reactive functional group in the surface treatment agent having a reactive functional group is synonymous with the reactive functional group on the surface of the spherical surface-treated silica airgel described above.
  • Examples of the surface treatment agent having a reactive functional group include compounds represented by formula (2).
  • the surface treatment agent having a reactive functional group used in the present invention is a compound represented by formula 2. is not limited to
  • n represents an integer of 1 to 3
  • R represents a reactive functional group or a substituent having a reactive functional group in part of the structure
  • X is a Si atom in the reaction with a compound having a hydroxy group represents a group (leaving group) that can be separated from the molecule by cleaving the bond with .
  • n 2 or more, multiple R's may be the same or different.
  • n is 2 or less, a plurality of Xs may be the same or different.
  • Substituents having a reactive functional group in part of the structure represented by R have one reactive functional group at either end or inside the molecular chain composed of hydrocarbons or hydrocarbons containing heteroatoms. or a substituent having a plurality of substituents.
  • the number of atoms constituting the molecular chain is not limited, and it may have a branched structure in the middle.
  • the type of reactive functional group present in the substituent is also not limited.
  • Examples of the leaving group represented by X include halogen atoms such as chlorine and bromine, alkoxy groups such as methoxy and ethoxy groups, groups represented by —NH—SiR 3 , and groups represented by —OSiR 3 (R is the formula ( (synonymous with R in 2)) and the like can be exemplified.
  • surface treatment agents having reactive functional groups include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3 -mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxy Propylmethyldiethoxysilane, 3-isocyanatopropyltriethoxysilane, tris-(trimethoxysilylpropyl)isocyanurate, 3-trimethoxysilylpropylsuccinic anhydride, vinyltrimethoxysilane, vinyltriethoxysilane, parastyryltrimethoxy Examples include silane
  • the conditions for the above surface treatment depend on the type of surface treatment agent having a reactive functional group, but when aminopropyltrimethoxysilane is used, the treatment temperature is 50° C. and the temperature is maintained for about 3 hours or more. be able to.
  • the amount of the surface treatment agent having a reactive functional group is preferably 1 part by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the dry mass of the gelled body, but is limited to the above range. not a thing
  • one type of surface treatment agent may be used, or a plurality of surface treatment agents may be used.
  • the surface treatment agent is a surface treatment agent having a reactive functional group.
  • each of them may be a surface treatment agent having a reactive functional group, or may contain a surface treatment agent having no reactive functional group.
  • Surface treatment using multiple surface treatment agents can be performed by adding the first type of surface treatment agent, treating for a certain period of time, and then adding the second and subsequent surface treatment agents.
  • the reaction solvent may be changed by the same operation as in step (4), or the surface treatment agent may be added directly without changing.
  • Surface treatment using multiple surface treatment agents is effective when introducing multiple types of reactive functional groups to the surface or when preventing drying shrinkage. Dry shrinkage is suppressed even in surface treatment using one type of surface treatment agent, and it is effective in producing a spherical surface-treated silica airgel having a large specific surface area and pore volume, a spherical shape, and a reactive functional group. target.
  • the surface treatment agent having a reactive functional group is sterically bulky, steric hindrance occurs when the silanol groups present on the surface of the gelled body and the surface treatment agent form chemical bonds, and some silanol groups may remain.
  • the remaining silanol group is treated with a hydrophobizing agent to make the remaining silanol group hydrophobic such as a hydrocarbon group. Drying shrinkage can be further prevented by converting to a functional group and inactivating it. Hydrophobization treatment for the purpose of inactivating this residual silanol is generally called endcapping. Endcapping may be performed using a hydrophobizing agent having a hydrophobic functional group.
  • hydrophobizing agents used for endcapping include dimethyldichlorosilane, trimethylchlorosilane, methyldichlorosilane, methyltrichlorosilane, trimethylmethoxysilane, methyltrimethoxysilane, trimethylsilylimidazole, hexamethyldisilazane, and hexamethyldichlorosilane.
  • Alkylchlorosilanes such as siloxanes, alkylmethoxysilanes, alkylsilazanes, alkylsiloxanes, and the like can be mentioned.
  • the step (6) is a step of removing the organic solvent used in the step (5).
  • the surface-treated gelled product and the liquid component may be separated by filtration using a suction filter or the like, and washed with an organic solvent.
  • the organic solvent is preferably one that can wash the surface treatment agent, and one that does not cause a chemical reaction with the introduced reactive functional group.
  • the organic solvent include acetone, methanol, ethanol, isopropyl alcohol, and the like. Among these, ethanol can be preferably used.
  • a spherical surface-treated silica airgel By drying the surface-treated gel obtained by filtration in a dryer for 12 hours or longer, a spherical surface-treated silica airgel can be obtained.
  • the drying temperature is preferably higher than the boiling point of the solvent and lower than the decomposition temperature of the surface treatment, and the pressure is preferably normal pressure (101.33 kPa) to reduced pressure.
  • the spherical surface-treated silica airgel according to one aspect of the present invention can be obtained by going through the steps (1) to (6). According to the first production method by the wet method, it is possible to produce a spherical surface-treated silica airgel having better physical properties than the spherical surface-treated silica airgel produced by the dry method described below.
  • the spherical surface-treated silica airgel according to one aspect of the present invention is (a) preparing an aqueous silica sol; (b) dispersing the aqueous silica sol in a hydrophobic solvent to form a W/O emulsion; (c) gelling the silica sol to convert the W/O emulsion into a gel dispersion; (d) separating the dispersion of the gelled material into two layers of an O phase and a W phase; (e) recovering the W phase; (f) a step of treating the gelled body in the W phase with a hydrophobizing agent; (g) recovering the gelled body from the W phase to obtain spherical silica airgel powder; (h) It can also be produced by performing the steps of treating the spherical silica airgel powder with a surface treatment agent having a reactive functional group in the above order.
  • the steps (a) to (f) may be performed according to the production method described in known documents such as Patent Document 2 or Patent Document 3 to obtain a hydrophobized gelled body.
  • Patent Document 2 an aqueous silica sol is used as an aqueous phase, an O/W/O type or W/O type emulsion is used as a dispersion of a gelled body ((a) to (d)), and then the W phase is separated. , is recovered (e), and the silanol groups of the gelled body in the W phase are reacted with a surface treatment agent having a hydrophobic functional group such as a hydrocarbon group to give a hydrophobic treatment (f).
  • a surface treatment agent having a hydrophobic functional group such as a hydrocarbon group
  • hydrophobized gel with a polar organic solvent is extracted and dried to obtain hydrophobized spherical silica airgel powder (g).
  • a W/O type emulsion having an aqueous silica sol as the water phase is made into a gel dispersion ((a) to (d))
  • the W phase is separated and recovered (e )
  • the water in the gel is replaced with a solvent having a low surface tension
  • the silanol groups of the gel are reacted with a surface treatment agent having a hydrophobic functional group such as a hydrocarbon group to perform a hydrophobic treatment.
  • a surface treatment agent having a hydrophobic functional group such as a hydrocarbon group to perform a hydrophobic treatment.
  • the hydrophobized gelled body is dried to obtain a hydrophobized spherical airgel powder (g).
  • the step (g) is a step of recovering the hydrophobized gelled body obtained in the step (f) from the W phase and obtaining spherical silica airgel powder from the gelled body.
  • the gelled body is recovered from the W phase by, for example, filtering the gelled body from the liquid component in the gelled body dispersion with a suction filter or the like to recover the gelled body.
  • a hydrophobized spherical airgel powder can be obtained.
  • the drying temperature is preferably equal to or higher than the boiling point of the solvent, and the drying pressure is preferably normal pressure or reduced pressure. Drying is usually carried out at 100° C. or higher (for example, 150° C.).
  • the upper limit of the drying temperature in the step (g) is not particularly limited.
  • the spherical silica airgel powder may be obtained by firing the gelled body, or firing the hydrophobized spherical silica airgel powder obtained by drying the gelled body. .
  • calcination it is possible to prepare a spherical silica airgel powder having an increased amount of silanol groups on the surface compared to before calcination.
  • the surface of the hydrophobized spherical silica airgel powder is covered with hydrophobic functional groups, and almost no silanol groups existed on the surface before the hydrophobization treatment. Therefore, there is a limit to the amount of reactive functional groups that can be introduced by direct treatment with a surface treatment agent having reactive functional groups.
  • the hydrophobized spherical silica airgel powder is calcined to remove the hydrophobic functional groups and increase the amount of silanol groups on the surface compared to before calcination. It is preferable to prepare a spherical silica airgel powder, and treat the resulting spherical silica airgel powder having an increased amount of silanol groups with a surface treatment agent having a reactive functional group.
  • Firing is carried out by placing the gelled body or the hydrophobized spherical silica airgel powder obtained by drying the gelled body in a heat-resistant container and using an electric furnace or the like at an arbitrary temperature for 1 hour or more. It can be carried out by heating. If the temperature is too low, the hydrophobic functional groups will not be sufficiently removed, so the baking temperature is preferably higher than the temperature at which the hydrophobic functional groups are removed. The temperature at which the hydrophobic functional group is removed is measured by increasing the temperature of the spherical silica airgel powder from 30 ° C. to 1000 ° C. with a thermogravimetric differential thermal analyzer (TG-DTA), and the effect of adsorbed water is not seen. In the range of 100° C.
  • TG-DTA thermogravimetric differential thermal analyzer
  • the temperature should be equal to or higher than the temperature at which a thermal weight loss of 2% or more is observed.
  • Such firing temperature is preferably 300° C. or higher, more preferably 500° C. or higher, from the viewpoint of sufficiently removing the hydrophobic functional groups.
  • the temperature is preferably 900° C. or lower, more preferably 700° C. or lower.
  • the spherical silica airgel powder having a silanol group obtained in the step (g) is treated with a surface treatment agent having a reactive functional group. It is a process to process with.
  • the surface treatment includes a wet treatment in which a spherical silica airgel powder having silanol groups and a surface treatment agent having a reactive functional group are mixed in an organic solvent, and a reactive treatment with a spherical silica airgel powder having silanol groups without a solvent.
  • the wet treatment is as described in step (5) of the first manufacturing method by the wet method.
  • the dry treatment can be carried out without a solvent by adding a surface treatment agent having a reactive functional group to the spherical silica airgel powder having a silanol group obtained in step (g) and mixing for a certain period of time.
  • Surface treatment conditions in dry treatment depend on the type of surface treatment agent having a reactive functional group. It can be carried out.
  • the amount of the surface treatment agent having a reactive functional group is preferably 40 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the dry mass of the gelled body, but is limited to the above range. not a thing
  • the types of surface treatment agents with reactive functional groups that can be used in dry treatment are the same as the surface treatment agents with reactive functional groups that can be used in wet treatment. Also, in the dry treatment, surface treatment using a plurality of surface treatment agents can be performed in the same manner as in the wet treatment.
  • the spherical surface-treated silica airgel according to one aspect of the present invention can be obtained through the above steps (a) to (h).
  • the second manufacturing method by the dry method is simpler than the first manufacturing method by the wet method described above.
  • the spherical surface-treated silica airgel according to one aspect of the present invention is (A) It can also be produced by performing a step of treating a hydrophobized spherical silica airgel powder with a surface treatment agent having a reactive functional group.
  • the step (A) is as described for the step (h) of the second manufacturing method by the dry method.
  • the spherical surface-treated silica airgel according to one aspect of the present invention can be obtained through the step (A).
  • step (A) after firing the hydrophobized spherical silica airgel powder, it may be treated with a surface treatment agent having a reactive functional group.
  • the hydrophobized spherical silica airgel powder is calcined to remove the hydrophobic functional groups, prepare a spherical silica airgel powder with an increased amount of silanol groups on the surface compared to before calcination, and obtain the silanol
  • the method for firing the hydrophobized spherical silica airgel powder is as described in step (g) of the second manufacturing method by the dry method.
  • the hydrophobized spherical silica airgel powder used in step (A) has a specific surface area of 300 to 1000 m 2 /g by the BET method, and a pore volume and a pore radius peak of 1 to 1 by the BJH method. 8 mL / g, 1 to 30 nm, the volume-based cumulative 50% diameter (D50) value in the particle size distribution measured by the Coulter counter method is 1 to 200 ⁇ m, and the average circularity obtained by the image analysis method is 0.8. It is preferable that it is above.
  • the method for preparing the hydrophobized spherical silica airgel powder having such properties is not particularly limited.
  • the hydrophobized spherical silica airgel powder having the properties described above can be obtained by the production method described in known documents such as Patent Document 2 or Patent Document 3.
  • a hydrophobized spherical silica airgel powder prepared by a conventional method as described in Patent Documents 2 and 3 is used to obtain a reactive functional group. Spherical surface-treated silica aerogels can be produced. Therefore, the third manufacturing method by the dry method is simpler than the first manufacturing method by the wet method and the second manufacturing method by the dry method.
  • the spherical surface-treated silica airgel is also obtained by performing the steps (5) and (6) on the spherical silica airgel produced by a known method such as supercritical drying. be able to.
  • a known method such as supercritical drying.
  • a spherical silica airgel powder having silanol groups can be obtained.
  • the treatment conditions for the treatment by the supercritical drying method are not particularly limited, and conditions that allow the solvent in the gelled body to be completely replaced with supercritical carbon dioxide can be appropriately adopted. Such treatment conditions are, for example, 40° C., 9 MPa, treatment time of 6 hours, and repeated replacement five times while renewing the supercritical carbon dioxide.
  • a desired reactive functional group can also be introduced by converting the reactive functional group introduced to the silica airgel surface by surface treatment.
  • a well-known method can be appropriately used for the conversion of this reactive functional group.
  • the epoxy group can be converted to an amino group by producing a silica gel having an epoxy group as a reactive functional group by surface treatment, and using the method of reacting the epoxy group with a diamine described in Patent Document 1.
  • a technique for converting an amino group to a formyl group [Yang, G.; Wu, J.; Xu, G.; Yang, L.; , Colloids and Surfaces B: Biointerfaces, 2010, 78, 351-356.
  • the amount of reactive functional groups introduced by surface treatment is a value calculated from the carbon content (C content), nitrogen content (N content), and sulfur content (S content) measured by elemental analysis.
  • the C content, N content and S content are measured by oxidizing at a temperature of 1150° C. while flowing oxygen and helium and quantifying the amounts of carbon dioxide, nitrogen oxides and sulfur oxides generated.
  • the amount of the reactive functional group is calculated as the amount of element/(the number of elements contained in one molecule of the reactive functional group).
  • the amount of reactive functional groups introduced by converting the reactive functional groups introduced on the surface of the spherical surface-treated silica airgel is different from the elemental amount of the spherical surface-treated silica airgel before conversion and the elemental amount after conversion. Calculated by comparing
  • the amount of the introduced reactive functional group can also be quantified by the amount of the compound that reacts with the reactive functional group using the reactivity of the reactive functional group.
  • the amount of epoxy groups is determined by measuring the amount of epoxy groups per unit mass ( ⁇ mol/g) of the spherical surface-treated silica aerosol based on JIS-K-7236 (Method for Determining Epoxy Equivalent of Epoxy Resin).
  • the amount of reactive functional groups can be controlled by the amount of surface treatment agent used in step (5), and is preferably 0.5 mmol/g or more. However, when used as a column packing material, the amount of reactive functional groups may be determined in consideration of the degree of affinity with molecules to be separated, and is not limited to the above range.
  • the spherical surface-treated silica airgel according to one aspect of the present invention has a reactive functional group on the surface, as known in Patent Document 1, a ligand is immobilized via the reactive functional group, and a peptide, protein or nucleic acid is produced. It can be widely used for the separation, analysis, and purification of biomolecules such as In addition, since it has a large specific surface area and pore volume and is spherical, it has a good retention force for biomolecules and a low back pressure during liquid flow, and can be used as a column packing material capable of constructing a uniform packed bed.
  • It can also be used as a metal adsorbent, an immobilizing agent for amino acids, peptides, proteins or nucleic acids, which was previously used for porous silica gel with reactive functional groups. Furthermore, it can also be used as a heat insulating agent and as an additive for cosmetics, which has been the use of conventional spherical silica airgel.
  • the volume-based cumulative 50% diameter (D50) was measured using a Multisizer 3 manufactured by BECKMAN COULTER according to the above definition.
  • the crushing treatment by the ultrasonic crusher was performed using 1510J-DTH (output 70 W) manufactured by BRANSONIC.
  • the average circularity was measured using Hitachi High-Technologies S-5500 (acceleration voltage 3.0 V, secondary electron detection) according to the above definition.
  • the degree of cohesion was measured according to the definition above.
  • the crushing treatment by the ultrasonic crusher was performed using 1510J-DTH (output 70 W) manufactured by BRANSONIC.
  • the functional group content was calculated from the C content, N content, or epoxy group content according to the above definition.
  • the C value and N value were measured using a fully automatic elemental analyzer (vario MICRO cube manufactured by Elementar) at a temperature of 1150°C while flowing oxygen and helium.
  • Epoxy groups were measured based on JIS-K-7236 (How to determine the epoxy equivalent of epoxy resin) according to the above definition.
  • step (2) 140 g of this silica sol was taken, 130 g of heptane and 1.5 g of sorbitan monooleate were added, and stirred for 1.5 minutes at 5600 rpm/min using a homogenizer (manufactured by IKA, T25BS1) to form a W/O emulsion. was formed (step (2)).
  • the resulting emulsion was gelled at 70° C. for 1 hour while stirring with a stirring blade (step (3)).
  • 77 g of isopropyl alcohol and 60 g of ion-exchanged water were added, and the O phase and W phase were separated while stirring with a stirring blade.
  • 4.8 g of 0.5 mol/L sodium hydroxide aqueous solution was added.
  • the gelled body was aged at 70° C. over 1 hour. This slurry solution was filtered, and the resulting cake was washed with ion-exchanged water and ethanol in this order to obtain a gelled body in a state in which ethanol permeated (step (4)).
  • Example 2 The production of the gelled body was carried out in the same manner as in Example 1.
  • the gelled product was dispersed in 100 g of ethanol, and while stirring with a stirring blade, aminopropyltrimethoxysilane (4.9 g, 2.5 mmol/g) was gradually added, and the mixture was heated at 50°C. Stirred for 2 hours and 20 minutes. Then, for the purpose of end capping, methyltrimethoxysilane (3.7 g, 2.5 mmol/g) was gradually added and stirred at 50° C. for 40 minutes. This slurry was filtered, and the resulting cake was washed with ethanol and then dried by heating at 150° C.
  • Example 3 In the surface treatment step, except that the reagent used for endcapping was 1,1,1,1,3,3,3,3-hexamethyldisilazane (HMDS, 2.2 g, 2.5 mmol/g), By performing the same operation as in Example 2, a spherical surface-treated silica airgel having an amino group as a reactive functional group and end-capped with HMDS was obtained. Table 1 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel. In addition, the amount of functional groups was calculated from the amount of N.
  • HMDS 1,1,1,1,3,3,3,3-hexamethyldisilazane
  • Example 4 In the process of producing the gelled body, the method of forming the W/O emulsion was changed from the homogenizer (5600 rpm/min, 1.5 min) to the stirring blade (600 rpm/min, 10 min), and the gelation time was changed to 1 hour. By performing the same operation as in Example 2 except that the time was extended to 2.5 hours, a large particle size spherical surface having an amino group as a reactive functional group and end capped with methyltrimethoxysilane was obtained. A treated silica airgel was obtained. Table 1 shows the results of evaluation of the physical properties of the obtained large particle size spherical surface-treated silica airgel. In addition, the amount of functional groups was calculated from the amount of N.
  • Example 5 In the surface treatment step, the same operation as in Example 2 was performed except that 3-glycidoxypropyltrimethoxysilane (6.4 g, 2.5 mmol/g) was used instead of aminopropyltrimethoxysilane. , a spherical surface-treated silica aerogel having an epoxy group as a reactive functional group and end-capped with methyltrimethoxysilane was obtained. Table 1 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel. In addition, the amount of functional groups was calculated from the amount of epoxy groups.
  • Example 6 1 g of silica airgel having an amino group as a reactive functional group obtained in Example 2 and end-capped with methyltrimethoxysilane was dispersed in 11 g of ion-exchanged water, and stirred with a stirrer to add 10% glutar. An aqueous aldehyde solution (6.2 g, 15 mmol/g) was slowly added and stirred at room temperature for 24 hours. The slurry was filtered, and the resulting cake was washed with ion-exchanged water and dried under vacuum by heating at 150° C. for 12 hours or more to obtain a spherical surface-treated silica airgel having formyl groups.
  • Table 1 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel.
  • the amount of functional groups was calculated by comparing the amount of C in the spherical surface-treated silica airgel before conversion and the amount of C after conversion.
  • Example 7 1 g of silica airgel obtained in Example 2, which has an amino group as a reactive functional group and is end-capped with methyltrimethoxysilane, is dispersed in 22 g of tetrahydrofuran and stirred with a stirrer while adding succinic anhydride (1 .5 g, 15 mmol/g) was slowly added and stirred at room temperature for 24 hours. The slurry was filtered, and the obtained cake was washed with ethanol and ion-exchanged water, and then dried by heating at 150°C for 12 hours or more under vacuum drying to obtain a spherical surface-treated silica airgel having carboxyl groups.
  • Table 1 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel.
  • the amount of functional groups was calculated by comparing the amount of C in the spherical surface-treated silica airgel before conversion and the amount of C after conversion.
  • Example 8 0.3 g of silica airgel obtained in Example 7, having a carboxyl group as a reactive functional group and end-capped with methyltrimethoxysilane, was dispersed in 5 g of isopropanol and stirred with a stirrer while adding N-hydroxy Succinimide (210 mg, 0.62 mmol/g (1 equivalent with respect to carboxyl group weight)), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDAC HCl, 350 mg, 0.62 mmol/ g) was slowly added and stirred at room temperature for 24 hours.
  • N-hydroxy Succinimide 210 mg, 0.62 mmol/g (1 equivalent with respect to carboxyl group weight
  • EDAC HCl 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
  • a surface-treated silica airgel was obtained.
  • Table 1 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel.
  • the functional group content was calculated by comparing the C content and N content of the spherical surface-treated silica airgel before conversion with the C content and N content after conversion.
  • Example 1 In the process of producing the gelled body described in Example 1, the slurry solution was filtered, and the resulting cake was washed with ion-exchanged water and ethanol. By heat-drying at 150° C. for 12 hours or more under drying conditions, a porous silica that had not undergone a surface treatment and had shrunk due to drying was obtained. Table 1 shows the physical property evaluation results of the obtained porous silica. The resulting porous silica had a high percentage of agglomerated particles and an average circularity clearly below 0.8. Moreover, some of the aggregated particles had a particle diameter exceeding 1 mm from observation with the naked eye, and it was difficult to measure the particle diameter by the Coulter counter method.
  • Comparative Example 2 The porous silica obtained in Comparative Example 1 was subjected to the same surface treatment step as in Example 2 to produce porous silica in which a reactive functional group was introduced into the dried-shrink porous silica. .
  • Table 1 shows the results of evaluation of physical properties of the obtained porous silica having reactive functional groups.
  • the amount of functional groups was calculated from the amount of N.
  • the resulting porous silica had a high percentage of agglomerated particles and an average circularity clearly below 0.8.
  • some of the aggregated particles had a particle diameter exceeding 1 mm from observation with the naked eye, and it was difficult to measure the particle diameter by the Coulter counter method.
  • ⁇ Evaluation results> In Examples 1 to 8, desired spherical surface-treated silica airgel having an average circularity of 0.8 or more and having at least one reactive functional group on the surface was produced. All of these spherical surface-treated silica aerogels have specific surface areas in the range of 300 to 1000 m 2 /g by the BET method, and peak pore volumes and pore radii by the BJH method of 1 to 8 mL/g and 1 to 30 nm, respectively. In the particle size distribution measured by the Coulter counter method, the volume-based cumulative 50% diameter (D50) value was in the range of 1 to 200 ⁇ m.
  • D50 volume-based cumulative 50% diameter
  • Comparative Example 1 which was not surface-treated, or in Comparative Example 2, in which the porous gel obtained in Comparative Example 1 was subjected to surface treatment using a surface treatment agent having a reactive functional group, aggregated particles ratio was high, the average circularity was less than 0.8, and the pore volume was 1 mL/g or less.
  • the temperature at which the functional groups are removed was determined by Thermo plus EVO (TG 8120) manufactured by Rigaku Co., Ltd. according to the above definition.
  • the specific surface area by the BET method, the pore volume by the BJH method, and the pore radius peak by the BJH method were measured using BELSORP-mini manufactured by Bell Japan Co., Ltd. according to the above definitions.
  • the volume-based cumulative 50% diameter (D50) was measured using a Multisizer 3 manufactured by BECKMAN COULTER according to the above definition.
  • the crushing treatment by the ultrasonic crusher was performed using 1510J-DTH (output 70 W) manufactured by BRANSONIC.
  • the average circularity was measured using Hitachi High-Technologies S-5500 (acceleration voltage 3.0 V, secondary electron detection) according to the above definition.
  • Cohesion measurements were made according to the definition given above.
  • the crushing treatment by the ultrasonic crusher was performed using 1510J-DTH (output 70 W) manufactured by BRANSONIC.
  • the amount of functional groups was calculated from the amount of C or N according to the above definition.
  • the C value and N value were measured using a fully automatic elemental analyzer (vario MICRO cube manufactured by Elementar) at a temperature of 1150° C. while flowing oxygen and helium.
  • step (b) 140 g of this silica sol was taken, 130 g of heptane and 1.5 g of sorbitan monooleate were added, and the mixture was stirred for 2.5 minutes at 13000 rpm/min using a homogenizer (manufactured by IKA, T25BS1) to form a W/O emulsion. was formed (step (b)).
  • the resulting emulsion was gelled at 70° C. for 1 hour while stirring with a stirring blade (step (c)).
  • 77 g of isopropyl alcohol and 60 g of ion-exchanged water were added, and the O phase and W phase were separated while stirring with a stirring blade (step (d)).
  • step (f) A silylation treatment was performed by adding 22 g of 35% hydrochloric acid and 16 g of hexamethyldisiloxane to the gelled product and maintaining the mixture at 70° C. for 12 hours while stirring. After the silylation treatment, 16 g of a 48% sodium hydroxide aqueous solution was added while stirring with a stirring blade to carry out neutralization treatment. Subsequently, 100 g of heptane was added to extract the gelled product, which was washed twice with 100 g of deionized water.
  • step (g)) The obtained gelled product after silylation was filtered with a suction filter. The gelled body was dried under vacuum pressure and heated at 150° C. for 16 hours or more to obtain a hydrophobized spherical silica airgel powder.
  • step (h)) 3-Glycidoxypropyltrimethoxysilane (4.0 g, 2.5 mmol/g) was added to the hydrophobized spherical silica airgel powder (7 g), stirred until uniform, and dried using a dryer. Heated at 150° C. for 1 hour. Subsequently, by heating and drying at 150° C. for 3 hours under vacuum pressure, a spherical surface-treated silica airgel having an epoxy group as a reactive functional group was obtained.
  • Table 2 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel. The amount of functional groups was calculated by comparing the amount of C in the hydrophobized spherical silica airgel with the amount of C after the surface treatment.
  • Example 10 (Production of gelled body (steps (a) to (d))) By performing the same operation as in Example 9, a gelled body was obtained.
  • step (g)) The obtained gelled product after silylation was filtered with a suction filter. The gelled body was dried under vacuum pressure and heated at 150° C. for 16 hours or more to obtain a hydrophobized spherical silica airgel powder. Subsequently, the hydrophobized spherical silica airgel powder (20 g) was placed in a crucible, heated to 200 ° C. using a firing furnace, heated at 200 ° C. for 1 hour, and then allowed to cool naturally. A spherical silica airgel powder having silanol groups was obtained.
  • step (h)) 3-Glycidoxypropyltrimethoxysilane (2.9 g, 2.5 mmol/g) was added to the above spherical silica airgel powder (5 g) having silanol groups, and the mixture was stirred until uniform. °C for 1 hour. Subsequently, by heating and drying at 150° C. for 3 hours under vacuum pressure, a spherical surface-treated silica airgel having an epoxy group as a reactive functional group was obtained. Table 2 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel. The amount of functional groups was calculated by comparing the amount of C in the spherical silica airgel after firing and the amount of C after surface treatment.
  • Example 11 (Production of gelled body (steps (a) to (d))) By performing the same operation as in Example 9, a gelled body was obtained.
  • step (g)) The obtained gelled product after silylation was filtered with a suction filter. The gelled body was dried under vacuum pressure and heated at 150° C. for 16 hours or more to obtain a hydrophobized spherical silica airgel powder. Subsequently, the hydrophobized spherical silica airgel powder (10 mg) was analyzed by a thermogravimetric differential thermal analyzer (TG-DTA), and the weight loss rate in the range from 400 ° C. to 420 ° C. was 3.4%. Therefore, it was confirmed that the functional group was removed at around 410°C.
  • TG-DTA thermogravimetric differential thermal analyzer
  • hydrophobized spherical silica airgel powder (20 g) was placed in a crucible, heated to 400 ° C. using a firing furnace, heated at 400 ° C. for 1 hour, and then allowed to cool naturally to remove silanol groups.
  • step (h)) 3-Glycidoxypropyltrimethoxysilane (6.9 g, 2.5 mmol/g) was added to the above spherical silica airgel powder (12 g) having silanol groups, and the mixture was stirred until uniform. °C for 1 hour. Subsequently, by heating and drying at 150° C. for 3 hours under vacuum pressure, a spherical surface-treated silica airgel having an epoxy group as a reactive functional group was obtained. Table 2 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel. The amount of functional groups was calculated by comparing the amount of C in the spherical silica airgel after firing and the amount of C after surface treatment.
  • Example 12 (Production of gelled body (steps (a) to (d))) By performing the same operation as in Example 9, a gelled body was obtained.
  • step (g)) The obtained gelled product after silylation was filtered with a suction filter. The gelled body was dried under vacuum pressure and heated at 150° C. for 16 hours or more to obtain a hydrophobized spherical silica airgel powder. Subsequently, the hydrophobized spherical silica airgel powder (20 g) was placed in a crucible, heated to 600 ° C. using a firing furnace, heated at 600 ° C. for 1 hour, and then allowed to cool naturally. A spherical silica airgel powder having silanol groups was obtained.
  • step (h)) 3-Glycidoxypropyltrimethoxysilane (4.1 g, 2.5 mmol/g) was added to the above spherical silica airgel powder (7 g) having silanol groups, and the mixture was stirred until uniform. °C for 1 hour. Subsequently, by heating and drying at 150° C. for 3 hours under vacuum pressure, a spherical surface-treated silica airgel having an epoxy group as a reactive functional group was obtained. Table 2 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel. The amount of functional groups was calculated by comparing the amount of C in the spherical silica airgel after firing and the amount of C after surface treatment.
  • Example 13 (Production of gelled body (steps (a) to (d))) By performing the same operation as in Example 9, a gelled body was obtained.
  • step (g)) The obtained gelled product after silylation was filtered with a suction filter. The gelled body was dried under vacuum pressure and heated at 150° C. for 16 hours or more to obtain a hydrophobized spherical silica airgel powder. Subsequently, the hydrophobized spherical silica airgel powder (20 g) was placed in a crucible, heated to 800 ° C. using a firing furnace, heated at 800 ° C. for 1 hour, and then allowed to cool naturally. A spherical silica airgel powder having silanol groups was obtained.
  • step (h)) 3-Glycidoxypropyltrimethoxysilane (5.1 g, 2.5 mmol/g) was added to the spherical calcined silica airgel powder (8.7 g) having the silanol group, and the mixture was stirred until uniform, and the dryer was removed. and heated at 150° C. for 1 hour. Subsequently, by heating and drying at 150° C. for 3 hours under vacuum pressure, a spherical surface-treated silica airgel having an epoxy group as a reactive functional group was obtained. Table 2 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel. The amount of functional groups was calculated by comparing the amount of C in the spherical silica airgel after firing and the amount of C after surface treatment.
  • Example 14 (Production of gelled body (steps (a) to (d))) By performing the same operation as in Example 9, a gelled body was obtained.
  • step (h)) Aminopropyltrimethoxysilane (6.5 g, 2.5 mmol/g) was added to the above spherical silica airgel powder (15 g) having silanol groups, and the mixture was stirred until uniform, and dried at 150° C. for 1 hour. heated. Subsequently, it was dried by heating at 150° C. for 3 hours under vacuum pressure to obtain a spherical surface-treated silica airgel having an amino group as a reactive functional group.
  • Table 2 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel. The amount of functional groups was calculated from the amount of N measured by elemental analysis.
  • Example 15 1 g of spherical silica airgel having an amino group as a reactive functional group obtained in Example 14 was dispersed in 11 g of ion-exchanged water, and while stirring with a stirrer, a 10% glutaraldehyde aqueous solution (6.2 g, 15 mmol/g) was added. It was added slowly and stirred at room temperature for 24 hours. The slurry was filtered, and the obtained cake was washed with ion-exchanged water and then dried by heating at 150° C. for 12 hours or more under vacuum drying to obtain a spherical surface-treated silica airgel having formyl groups.
  • Table 2 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel.
  • the amount of functional groups was calculated by comparing the amount of C in the spherical surface-treated silica airgel before conversion and the amount of C after conversion.
  • Example 16 1 g of spherical silica airgel having an amino group as a reactive functional group obtained in Example 14 was dispersed in 22 g of tetrahydrofuran, and while stirring with a stirrer, succinic anhydride (1.5 g, 15 mmol/g) was gradually added. and stirred at room temperature for 24 hours. The slurry was filtered, and the obtained cake was washed with ethanol and ion-exchanged water, and then dried by heating at 150°C for 12 hours or more under vacuum drying to obtain a spherical surface-treated silica airgel having carboxyl groups.
  • Table 2 shows the physical property evaluation results of the obtained spherical surface-treated silica airgel. The amount of functional groups was calculated by comparing the amount of C in the spherical surface-treated silica airgel before conversion and the amount of C after conversion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

BET法による比表面積が300~1000m2/gであり、BJH法による細孔容積及び細孔半径のピークが各々1~8mL/g、1~30nmであり、コールターカウンター法により測定された粒度分布において体積基準累計50%径(D50)値が1~200μmであり、画像解析法により求めた平均円形度が0.8以上であって、かつ少なくとも1種の反応性官能基を表面に有する、球状表面処理シリカエアロゲルである。

Description

球状表面処理シリカエアロゲル及びその製造方法
 本発明は、反応性官能基を表面に有する球状表面処理シリカエアロゲル、及びその製造方法に関する。
 多孔質シリカは、シリカ表面に存在するシラノール基、又はシリカ表面に化学的な結合を介して導入した物質と、他の分子との親和性を利用することで、例えば、カラム充填剤、金属吸着剤、アミノ酸、ペプチド、タンパク質または核酸の固定化剤として使用されている。
 中でも、特定の分子との特異的な親和性を示す物質(リガンド)を表面に結合させた(固定化した)多孔質シリカは、ペプチド、タンパク質または核酸といった生体分子と特異的に相互作用をすることが知られており、特に液体クロマトグラフィー用のカラム充填剤として、生体分子の分離、分析、及び精製に広く用いられている。
 リガンドを多孔質シリカ表面に固定化する手法は、まず多孔質シリカ表面に化学的な結合を介して反応性官能基を導入し、次に導入した反応性官能基とリガンドとを共有結合により固定化するのが一般的である。例えば、特許文献1では、多孔質シリカ表面のシラノール基を、エポキシ基を有する表面処理剤と反応させてエポキシ基を導入し、次いでジアミンと反応させてアミノ基を導入し、さらにアミノ基とリガンドとを共有結合により結合させている。
 液体クロマトグラフィー用のカラム充填剤として、リガンドを表面に固定化した多孔質シリカを利用する際、カラム充填剤としての性能は、リガンドの種類や量のみならず、多孔質シリカの物性に大きく依存することが知られている。一般に、多孔質シリカの比表面積が大きいほど、分離対象分子との接触面積の増大により保持力が向上し、また多孔質シリカの細孔容積が大きいほど、通液時の背圧が低下する。さらに、均一な充填床を構築できることから、粒子は球状であることが好ましい。したがって、生体分子の分離、分析、及び精製に広く用いるためには、リガンドを固定化する多孔質シリカとして、比表面積及び細孔容積が大きく、球状で、かつリガンドの固定化に必要な反応性官能基を表面に有する多孔質シリカを用いることが好ましい。しかしながら、現在存在する多孔質シリカは、これらの要件を十分に満たしていない。例えば特許文献1で用いられている多孔質シリカ(シリカゲル)の比表面積は74m/gであり、比表面積が大きいとは言えない。
 比表面積及び細孔容積が大きく、かつ球状な多孔質シリカとして、球状シリカエアロゲルが知られている。特許文献2によれば、W/O型エマルションをゲル化体の分散液とし、次いで分散液をO相とW相の2層に分離させ、ゲル化体がW相に分散した分散液を得た後、金属酸化物(シリカ)表面のシラノール基を、シリル化剤と反応させて疎水化処理を施し、乾燥収縮を抑制することで、ゲル中の分散媒を超臨界条件により乾燥除去することなく、比表面積が400m/g以上、細孔容積が2mL/g以上であり、かつ円形度が0.8以上の球状金属酸化物粉末が製造できる。
 また、特許文献3によれば、W/O型エマルションをゲル化体の分散液とし、次いでゲル化体中の水分を溶媒置換した後、球状シリカエアロゲル表面のシラノール基を、炭化水素基等の疎水基を有する表面処理剤と反応させて疎水化処理を施し、乾燥収縮を抑制することで、ゲル中の分散媒を超臨界条件により乾燥除去することなく、比表面積が400m/g以上、細孔容積が3mL/g以上であり、かつ円形度が0.8以上の球状シリカエアロゲルが簡便に製造できる。疎水化処理された球状シリカエアロゲルは、比表面積及び細孔容積が大きい物性を利用して、断熱性付与剤や、化粧品用添加剤として用いられている。
 特許文献2又は3に記載の製造方法に倣えば、比表面積及び細孔容積が大きく、球状なシリカエアロゲルが液体クロマトグラフィー用のカラム充填剤として簡便に製造できることが期待される。しかし、液体クロマトグラフィー用のカラム充填剤として、生体分子の分離、分析、及び精製に広く用いるためには、球状シリカエアロゲルの表面のシラノール基を足掛かりにして、リガンドの固定化に必要な反応性官能基を導入する必要がある。このため、表面のシラノール基を、疎水基を有する表面処理剤と反応させて疎水化処理を施す特許文献2及び3に記載の球状シリカエアロゲルを用いることができない。
日本国特開2011-001336号公報 日本国特開2014-88307号公報 国際公開第2012/057086号公報
 上述の通り、液体クロマトグラフィー用のカラム充填剤として、保持力、通液時の背圧、均一な充填相の構築という観点で従来の多孔質シリカの性能を上回り、生体分子の分離、分析、及び精製に広く用いることができるカラム充填剤を提供するためには、比表面積及び細孔容積が大きく、球状で、かつ反応性官能基を有する多孔質シリカの出現が望まれている。
 そこで本発明は、比表面積及び細孔容積が大きく、球状で、かつ反応性官能基を表面に有する多孔質シリカを提供することを目的とする。
 本発明者らは上記課題を解決するため鋭意検討を重ねてきた。その結果、特許文献2又は3に記載の球状シリカエアロゲル製造法の、表面のシラノール基に疎水化処理を施す工程に代えて、反応性官能基を有する表面処理剤による表面処理を行うことで乾燥収縮を抑えたまま、比表面積、細孔容積が大きく、球状で、かつ反応性官能基を有する球状表面処理シリカエアロゲルが製造できることを見出した。
 すなわち本発明の一態様は、BET法による比表面積が300~1000m/gであり、BJH法による細孔容積及び細孔半径のピークが各々1~8mL/g、1~30nmであり、コールターカウンター法により測定された粒度分布において体積基準累計50%径(D50)値が1~200μmであり、画像解析法により求めた平均円形度が0.8以上であって、かつ少なくとも1種の反応性官能基を表面に有する、球状表面処理シリカエアロゲルである。
 また、他の本発明の一態様は、
 (1)水性シリカゾルを調製する工程、
 (2)該水性シリカゾルを疎水性溶媒中に分散させてW/O型エマルションを形成させる工程、
 (3)前記シリカゾルをゲル化させて、前記W/O型エマルションをゲル化体の分散液へと変換する工程、
 (4)前記ゲル化体中の水分を、有機溶媒に置換する工程、
 (5)前記ゲル化体を、反応性官能基を有する表面処理剤で処理する工程、及び、
 (6)前記置換した有機溶媒を除去する工程
を上記順に有する、前記球状表面処理シリカエアロゲルの製造方法、である。
 また、他の本発明の一態様は、
 (a)水性シリカゾルを調製する工程、
 (b)該水性シリカゾルを疎水性溶媒中に分散させてW/O型エマルションを形成させる工程、
 (c)前記シリカゾルをゲル化させて、前記W/O型エマルションをゲル化体の分散液へと変換する工程、
 (d)前記ゲル化体の分散液を、O相とW相の2層に分離させる工程、
 (e)前記W相を回収する工程、
 (f)前記W相中の前記ゲル化体を疎水化剤で処理する工程、
 (g)前記W相から前記ゲル化体を回収し、球状シリカエアロゲル粉体を得る工程、及び、
 (h)前記球状シリカエアロゲル粉体を、反応性官能基を有する表面処理剤で処理する工程
を上記順に有する、前記球状表面処理シリカエアロゲルの製造方法、である。
 また、他の本発明の一態様は、
 (A)疎水化処理された球状シリカエアロゲル粉体を、反応性官能基を有する表面処理剤で処理する工程を含む、前記球状表面処理シリカエアロゲルの製造方法、である。
 本発明の一態様に係る球状表面処理シリカエアロゲルは、リガンドの固定化に必要な反応性官能基を表面に有するため、ペプチド、タンパク質または核酸といった生体分子の分離、分析、及び精製に広く用いることができ、かつ比表面積及び細孔容積が大きく、球状であるため、保持力が良好で、通液時の背圧が低く、均一な充填床を構築可能なカラム充填剤として利用できる。
 また、本発明の一態様に係る球状表面処理シリカエアロゲルの製造方法によれば、反応性官能基を有する表面処理剤による表面処理を行うことで乾燥収縮を抑えたまま、比表面積及び細孔容積が大きく、球状で、かつ反応性官能基を有する球状表面処理シリカエアロゲルを製造できる。
 以下に示す形態は本発明の例示であり、本発明がこれらの形態に限定されるものではない。また、特に断らない限り、数値範囲について「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。
 一般的に球状シリカエアロゲルとは、湿潤シリカゲル中に含まれる溶媒を、固体ネットワークを保ったまま乾燥させ、空気に置換した多孔質シリカのうち、球形状のものであり、空隙率が70%以上である。本発明において、球状シリカエアロゲルのうち表面処理剤により表面処理が施されているものを球状表面処理シリカエアロゲルと称する。
 本発明において、「BET法による比表面積」とは、測定対象のサンプルを、1kPa以下の真空下において150℃の温度で1時間以上乾燥させ、その後、液体窒素温度における窒素の吸着側のみの吸着等温線を測定し、該吸着等温線をBET法により解析して求めた値を意味する。その際の解析に用いる圧力範囲は、相対圧0.1~0.25の範囲である。「BJH法による細孔容積」とは、上記同様に取得した吸着側の吸着等温線をBJH法(Barrett,E.P.;Joyner,L.G.;Halenda,P.P.,J.Am.Chem.Soc.1951,73,373.)により解析して得られる細孔半径1nm以上100nm以下の細孔に由来する細孔容積を意味する。「BJH法による細孔半径のピーク」とは、上記同様に取得した吸着側の吸着等温線をBJH法によって解析して得られる、細孔半径の対数による累積細孔容積の微分を縦軸にとり細孔半径を横軸にとってプロットした細孔分布曲線(体積分布曲線)が最大のピーク値をとる細孔半径の値を意味する。
 本発明の一態様に係る球状表面処理シリカエアロゲルは、BET法による比表面積が300~1000m/gであり、好ましくは、300~900m/gであり、特に好ましくは、300~800m/gの範囲である。カラム充填剤として利用する際、比表面積が大きいほど、分離対象分子との接触面積の増大により保持力が向上する(Giaquinto,A.;Liu,Z.;Bach,A.;Kazakevich,Y.,Anal.Chem.2008,80,6358-6364.)。しかしながら、1000m/gを超えて大きくなると、球状表面処理シリカエアロゲルの独立粒子(二次粒子)の多孔質構造(網目構造)を構成する一次粒子の粒子径が小さくなり、球状表面処理シリカエアロゲルの細孔構造を形成するのに十分なサイズに満たず、結果的に細孔がつぶれてしまうため、製造が困難となる。
 また、本発明の一態様に係る球状表面処理シリカエアロゲルは、BJH法による細孔容積が1~8mL/gであり、好ましくは1~6mL/gの範囲である。カラム充填剤として利用する際、細孔容積が大きい、すなわち空隙率が高いほど、Carman-Kozenyの式を用いて算出されるとおり、通液時の背圧が低下する。しかしながら、8mL/gを超えて大きくなると、二次粒子の強度が低下し、通液時にカラム内で粒子が潰れてしまうため、上記範囲内であることが好ましい。
 本発明の一態様に係る球状表面処理シリカエアロゲルは、比表面積と細孔容積とが上記の好適な範囲内の場合には、上記BJH法による細孔半径のピークが1~30nmであり、好ましくは5~20nmの範囲である。カラム充填剤として利用する際、細孔半径は、分離対象分子のサイズによって最適な値が異なるため、比表面積、細孔容積との兼ね合いを考慮して、分離対象分子ごとに決定すればよい。
 また、本発明において、「コールターカウンター法により測定された粒度分布」における「体積基準累計50%径(D50)値」とは、測定対象のサンプル30mgをエタノール40mL中に分散させ、70W、10分間超音波破砕装置により破砕処理を施したのち、コールターカウンター法により測定し、得られた体積基準の累計50%径(D50)である。本発明の一態様に係る球状表面処理シリカエアロゲルは、D50値が1~200μmの範囲である。カラム充填剤として利用する際、粒子径が1μm~20μmの充填剤が好適に使用されるが、生体分子のような、分子量の大きな分子の分離、分析、及び精製には、粒子径が20μm~200μmの充填剤が好適に使用される。粒子径が1μm未満であると、背圧の上昇が問題となり、また粒子径が200μmを超えて大きくなると、粒子内での分子拡散の移動距離が長くなり分離性能が低下するため、上記範囲内であることが好ましい。
 また、本発明において、「画像解析法により求めた平均円形度」とは、2000個以上の球状表面処理シリカエアロゲル粒子について走査電子顕微鏡(SEM)を用いて二次電子検出により倍率1000倍で観察したSEM像を画像解析して得られる円形度の相加平均値である。各球状表面処理シリカエアロゲル粒子について「円形度」とは、下記式(1)により求められる値である。
 C=4πS/L (1)
 式(1)において、Cは円形度を表す。Sは当該球状表面処理シリカエアロゲル粒子が画像中に占める面積(投影面積)を表す。Lは画像中における当該球状表面処理シリカエアロゲル粒子の外周部の長さ(周囲長)を表す。二次粒子を1粒子として捉え、また凝集粒子を形成している粒子群は1粒子として計数する。
 本発明の一態様に係る球状表面処理シリカエアロゲルを構成する個々の独立粒子は、その平均円形度が0.8以上である。平均円形度が0.8より大きくなって1に近くなるほど、当該球状表面処理シリカエアロゲルを構成する個々の粒子は真球に近い形状となり、凝集粒子も少なくなり、均一な充填床を構築できる。
 凝集粒子の割合は、凝集度により表すことができる。凝集度は、球状表面処理シリカエアロゲル300mgを50mL容量のサンプル瓶に計量し、エタノール30mL中に分散させ、エタノールの液面と等しくなるように水を張った超音波破砕装置に設置して70Wで10分間破砕処理を施したのち、目開き106μmのふるいにかけて凝集体を分画し、150℃の乾燥機でエタノールを留去して得られる凝集体の全球状表面処理シリカエアロゲル300mgに占める質量パーセント値である。本発明の一態様に係る球状表面処理シリカエアロゲルは、凝集度が5%未満であることが好ましい。カラム充填剤として利用する際、凝集度が5%未満であると、均一な充填相を構築できる。
 本発明の一態様に係る球状表面処理シリカエアロゲルは、少なくとも1種の反応性官能基を表面に有する。
 本発明において、「反応性官能基」とは、異なる化学種との間で電子の授受を伴いながら化学結合を形成することができる官能基のことを指し、1級アミノ基、2級アミノ基、チオール基、ヒドロキシ基、エポキシ基、イソシアネート基、ホルミル基、カルボキシル基、エステル基、アミド基、スルホン酸エステル基、ビニル基からなる群より選ばれる官能基に代表される。なお、本発明においてエステル基とは、化学式-COO-Yで表される官能基であり、Yは酸素原子に結合する元素が炭素原子、窒素原子または硫黄原子である有機基である。本発明においてエステル基には、酸無水物、活性エステルを含む。例えば活性エステルとしては、N-ヒドロキシコハク酸イミドにより活性化された活性エステルを挙げることができる。
 本発明において、「反応性官能基を表面に有する」とは、反応性官能基が、球状シリカエアロゲル表面に化学的な結合を介して導入された状態である。化学的な結合を介して新たな分子鎖を導入する手法を表面処理とよび、反応性官能基は、導入される分子鎖の末端、内部、いずれの位置に存在していてもよく、一つの分子鎖に複数存在していてもよい。また、表面に導入された反応性官能基の種類は1種類でも複数種類でもよく、また表面に導入された反応性官能基の数も限定されない。また、球状シリカエアロゲルの最表面だけでなく、細孔内に導入されていてもよい。
 (第1の製造方法:湿式法)
 本発明の一態様に係る球状表面処理シリカエアロゲルは、
 (1)水性シリカゾルを調製する工程、
 (2)該水性シリカゾルを疎水性溶媒中に分散させてW/O型エマルションを形成させる工程、
 (3)前記シリカゾルをゲル化させて、前記W/O型エマルションをゲル化体の分散液へと変換する工程、
 (4)前記ゲル化体中の水分を、有機溶媒に置換する工程、
 (5)前記ゲル化体を、反応性官能基を有する表面処理剤で処理する工程、及び、
 (6)前記置換した有機溶媒を除去する工程
を上記順に行うことで製造することができる。このうち(1)~(3)の工程は、特許文献2、3などに記載の公知の方法に従って行い、ゲル化体の分散液を製造すればよい。
 (4)の工程は、(5)の工程において表面処理を円滑に進行させるために、ゲル化体中の水分を有機溶媒に置換する工程である。例えば、ゲル化体の分散液中のゲル化体と液体成分を吸引濾過機等により濾別し、ゲル化体を水で洗浄したのちに有機溶媒で洗浄することによってゲル化体中の水分を有機溶媒に置換すればよい。有機溶媒は、ゲル化体と(5)の工程で用いる反応性官能基を有する表面処理剤(以下、単に表面処理剤とも称す。)とのいずれとも親和性を有するものが好ましく、またゲル化体と表面処理剤が化学的な結合を形成するのを妨げないものが好ましく、かつ導入する反応性官能基と化学反応を起こさないものが好ましい。この有機溶媒としては、アセトン、メタノール、エタノール、イソプロピルアルコール等が挙げられる。このうち、エタノールを好適に用いることができる。
 (5)の工程は、反応性官能基を球状シリカエアロゲル表面に導入するために、ゲル化体を、反応性官能基を有する表面処理剤で処理する工程である。表面処理は、(4)の工程において用いた有機溶媒とゲル化体との分散液に、反応性官能基を有する表面処理剤を加え、一定時間攪拌することにより行うことができる。
 反応性官能基を有する表面処理剤における反応性官能基とは、上記した球状表面処理シリカエアロゲルが表面に有する反応性官能基と同義である。反応性官能基を有する表面処理剤は、式(2)で示される化合物を一例として挙げることができるが、本発明で使用する、反応性官能基を有する表面処理剤が式2で示される化合物に限定されるものではない。
 RSiX(4-n) (2)
 式2において、nは1~3の整数を表し、Rは反応性官能基または構造の一部に反応性官能基を有する置換基を表し、Xはヒドロキシ基を有する化合物との反応においてSi原子との結合が開裂して分子から脱離可能な基(脱離基)を表す。nが2以上のとき複数のRは同一でも異なっていてもよい。また、nが2以下のとき複数のXは同一でも異なっていてもよい。
 Rで示される構造の一部に反応性官能基を有する置換基は、炭化水素またはヘテロ原子を含む炭化水素から成る分子鎖の末端、内部、いずれかの位置に、反応性官能基を1つまたは複数有する置換基である。分子鎖を構成する原子の個数は限定されず、また途中に分岐構造を有していてもよい。置換基に存在する反応性官能基の種類も限定されない。
 Xで示される脱離基としては、塩素、臭素等のハロゲン原子、メトキシ基、エトキシ基等のアルコキシ基、-NH-SiRで示される基、-OSiRで示される基(Rは式(2)におけるRと同義である)等を例示できる。
 反応性官能基を有する表面処理剤を具体的に例示すると、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-トリメトキシシリルプロピルコハク酸無水物、ビニルトリメトキシシラン、ビニルトリエトキシシラン、パラスチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシランなどが挙げられるが、上記に示される化合物に限定されるものではない。これらは市販のものが容易に入手可能であり、また、所望の物を、公知の手段により合成することも可能である。
 上記の表面処理の条件は、反応性官能基を有する表面処理剤の種類によるが、アミノプロピルトリメトキシシランを用いる場合には、処理温度を50℃とすると、3時間程度以上保持することで行うことができる。また、反応性官能基を有する表面処理剤の量は、ゲル化体の乾燥質量100質量部に対して1質量部以上200質量部以下の量が好適であるが、上記の範囲に限定されるものではない。表面処理は、1種類の表面処理剤を用いてもよく、複数の表面処理剤を用いてもよい。1種類の表面処理剤を用いる場合、その表面処理剤は、反応性官能基を有する表面処理剤である。一方、複数の表面処理剤を用いる場合、いずれも反応性官能基を有する表面処理剤であってもよく、反応性官能基を有さない表面処理剤を含んでもよい。
 複数の表面処理剤を用いた表面処理は、1種類目の表面処理剤を加えて一定時間処理を施したのちに、2種類目以降の表面処理剤を加えることで実施できる。反応溶媒は、(4)の工程と同様の操作により変更してもよく、また変更せずに直接表面処理剤を加えてもよい。
 複数の表面処理剤を用いた表面処理は、複数の種類の反応性官能基を表面に導入する際、または乾燥収縮を防止する際に有効である。1種類の表面処理剤を用いた表面処理においても、乾燥収縮は抑制され、比表面積、細孔容積が大きく、球状で、かつ反応性官能基を有する球状表面処理シリカエアロゲルを製造するのに効果的である。しかしながら、反応性官能基を有する表面処理剤が立体的に嵩高い場合、ゲル化体の表面に存在するシラノール基と表面処理剤が化学的な結合を形成する際に立体障害が生じ、一部のシラノール基が残存することがある。ゆえに、反応性官能基を有する表面処理剤により表面処理を行って所望の反応性官能基を導入した後、疎水化剤による疎水化処理を施すことにより、残存シラノール基を炭化水素基等の疎水性官能基に変換して不活性化することで、乾燥収縮をより一層防ぐことができる。この残存シラノールの不活性化を目的とした疎水化処理は、一般に、エンドキャッピングと称される。エンドキャッピングは、疎水性官能基を有する疎水化剤を用いて行えばよい。
 エンドキャッピングに用いられる疎水化剤を具体的に例示すると、ジメチルジクロロシラン、トリメチルクロロシラン、メチルジクロロシラン、メチルトリクロロシラン、トリメチルメトキシシラン、メチルトリメトキシシラン、トリメチルシリルイミダゾール、ヘキサメチルジシラザン、ヘキサメチルジシロキサン等のアルキルクロロシラン、アルキルメトキシシラン、アルキルシラザン、アルキルシロキサンなどが挙げられる。
 (6)の工程は、(5)の工程で用いた有機溶媒を除去する工程である。例えば、表面処理されたゲル化体と液体成分を吸引濾過機等により濾別し、有機溶媒で洗浄すればよい。有機溶媒は、表面処理剤を洗浄できるものが好ましく、かつ導入した反応性官能基と化学反応を起こさないものが好ましい。この有機溶媒としては、アセトン、メタノール、エタノール、イソプロピルアルコール等が挙げられる。このうち、エタノールを好適に用いることができる。
 濾別により得られた、表面処理されたゲル化体を乾燥機内で12時間以上乾燥することで、球状表面処理シリカエアロゲルを得ることができる。乾燥する際の温度は、溶媒の沸点以上で、表面処理の分解温度以下であることが好ましく、圧力は常圧(101.33kPa)ないし減圧下で行うことが好ましい。
 湿式法による第1の製造方法においては、上記(1)~(6)の工程を経ることにより、本発明の一態様に係る球状表面処理シリカエアロゲルを得ることができる。湿式法による第1の製造方法によれば、後述する乾式法による製造方法によって製造した球状表面処理シリカエアロゲルよりも物性が優れた球状表面処理シリカエアロゲルを製造することができる。
 (第2の製造方法:乾式法)
 本発明の一態様に係る球状表面処理シリカエアロゲルは、
 (a)水性シリカゾルを調製する工程、
 (b)該水性シリカゾルを疎水性溶媒中に分散させてW/O型エマルションを形成させる工程、
 (c)前記シリカゾルをゲル化させて、前記W/O型エマルションをゲル化体の分散液へと変換する工程、
 (d)前記ゲル化体の分散液を、O相とW相の2層に分離させる工程、
 (e)前記W相を回収する工程、
 (f)前記W相中の前記ゲル化体を疎水化剤で処理する工程、
 (g)前記W相から前記ゲル化体を回収し、球状シリカエアロゲル粉体を得る工程、及び、
 (h)前記球状シリカエアロゲル粉体を、反応性官能基を有する表面処理剤で処理する工程
を上記順に行うことでも製造することができる。
 このうち(a)~(f)の工程は、特許文献2又は特許文献3等の公知文献に記載の製造方法に従って行い、疎水化処理されたゲル化体を得ればよい。特許文献2に従えば、水性シリカゾルを水相とする、O/W/O型またはW/O型エマルションをゲル化体の分散液とし((a)~(d))、次いでW相を分離、回収し(e)、W相中のゲル化体のシラノール基を、炭化水素基等の疎水性の官能基を有する表面処理剤と反応させて疎水化処理を施した後(f)、疎水性有機溶媒で疎水化処理したゲル化体を抽出、乾燥して、疎水化処理された球状シリカエアロゲル粉体が得られる(g)。また、特許文献3に従えば、水性シリカゾルを水相とするW/O型エマルションをゲル化体の分散液とした後((a)~(d))、W相を分離、回収し(e)、次いでゲル化体中の水分を表面張力の小さい溶媒に置換した後、ゲル化体のシラノール基を炭化水素基等の疎水性の官能基を有する表面処理剤と反応させて疎水化処理を施し(f)、最後に疎水化処理したゲル化体を乾燥して、疎水化処理された球状エアロゲル粉体が得られる(g)。
 (g)の工程は、(f)の工程で得た疎水化処理したゲル化体をW相から回収し、ゲル化体から球状シリカエアロゲル粉体を得る工程である。W相からの上記ゲル化体の回収は、例えば、ゲル化体の分散液中のゲル化体と液体成分とを吸引濾過機等により濾別してゲル化体を回収する。回収した疎水化処理されたゲル化体を乾燥機内で1時間以上乾燥することで、疎水化処理された球状エアロゲル粉体を得ることができる。乾燥する際の温度は、溶媒の沸点以上であることが好ましく、圧力は常圧ないし減圧下で行うことが好ましい。通常、100℃以上(例えば、150℃)で乾燥を行う。(g)の工程における乾燥温度の上限値は特に限定されない。
 (g)の工程では、ゲル化体を焼成する、または、ゲル化体を乾燥させて得た疎水化処理された球状シリカエアロゲル粉体を焼成することによって球状シリカエアロゲル粉体を得てもよい。焼成によって、焼成前よりも表面のシラノール基の量を増加させた球状シリカエアロゲル粉体を調製することができる。疎水化処理された球状シリカエアロゲル粉体は、表面が疎水性の官能基で覆われており、疎水化処理前に表面に存在していたシラノール基はほとんど存在しない。このため、反応性官能基を有する表面処理剤で直接処理を施して導入できる、反応性官能基量には限度がある。より多くの反応性官能基を導入するためには、疎水化処理された球状シリカエアロゲル粉体を焼成して疎水性の官能基を除去し、焼成前よりも表面のシラノール基の量を増加させた球状シリカエアロゲル粉体を調製し、得られたシラノール基の量を増加させた球状シリカエアロゲル粉体に対して反応性官能基を有する表面処理剤で処理することが好ましい。
 焼成は、ゲル化体、または、当該ゲル化体を乾燥させて得た疎水化処理された球状シリカエアロゲル粉体を、耐熱の容器に入れ、電気炉等を用いて任意の温度で1時間以上加熱することで実施できる。焼成温度は、温度が低すぎると疎水性の官能基が十分に除去されないため、疎水性の官能基が除去される温度以上で実施するが好ましい。疎水性の官能基が除去される温度は、熱重量示差熱分析装置(TG-DTA)により球状シリカエアロゲル粉体を30℃から1000℃まで昇温測定した際、吸着水の影響が見られない100℃から1000℃の範囲において、2%以上の熱重量減少が見られた温度以上とする。そのような焼成温度は、疎水性の官能基を十分に除去する観点から、300℃以上であることが好ましく、500℃以上であることがより好ましい。また、球状シリカエアロゲルの細孔の崩壊を防ぐ観点から、900℃以下であることが好ましく、700℃以下であることがより好ましい。
 (h)の工程は、反応性官能基を球状シリカエアロゲル表面に導入するために、(g)の工程で得たシラノール基を有する球状シリカエアロゲル粉体を、反応性官能基を有する表面処理剤で処理する工程である。表面処理は、有機溶媒中でシラノール基を有する球状シリカエアロゲル粉体と反応性官能基を有する表面処理剤とを混合する湿式処理と、無溶媒でシラノール基を有する球状シリカエアロゲル粉体と反応性官能基を有する表面処理剤とを混合する乾式処理があり、いずれの方法を用いてもよい。
 湿式処理については、湿式法による第1の製造方法の(5)の工程について説明した通りである。乾式処理は、無溶媒で、(g)の工程において得たシラノール基を有する球状シリカエアロゲル粉体に反応性官能基を有する表面処理剤を加え、一定時間混合することにより行うことができる。乾式処理における表面処理の条件は、反応性官能基を有する表面処理剤の種類によるが、アミノプロピルトリメトキシシランを用いる場合には、処理温度を150℃とすると、1時間程度以上保持することで行うことができる。また、反応性官能基を有する表面処理剤の量は、ゲル化体の乾燥質量100質量部に対して40質量部以上60質量部以下の量が好適であるが、上記の範囲に限定されるものではない。
 乾式処理において用いることができる反応性官能基を有する表面処理剤の種類は、湿式処理において用いることができる反応性官能基を有する表面処理剤と同じである。また、乾式処理においても、湿式処理と同様に複数の表面処理剤を用いた表面処理を行うことができる。
 乾式法による第2の製造方法においては、上記(a)~(h)の工程を経ることにより、本発明の一態様に係る球状表面処理シリカエアロゲルを得ることができる。乾式法による第2の製造方法は、上述した湿式法による第1の製造方法と比較して、より簡便である。
 (第3の製造方法:乾式法)
 また、乾式法の別の製造方法(第3の製造方法)において、本発明の一態様に係る球状表面処理シリカエアロゲルは、
 (A)疎水化処理された球状シリカエアロゲル粉体を、反応性官能基を有する表面処理剤で処理する工程
を行うことでも製造することができる。
 (A)の工程は、乾式法による第2の製造方法の(h)の工程について説明した通りである。乾式法による第3の製造方法においては、上記(A)の工程を経ることにより、本発明の一態様に係る球状表面処理シリカエアロゲルを得ることができる。
 (A)の工程では、疎水化処理された球状シリカエアロゲル粉体を焼成した後に、反応性官能基を有する表面処理剤で処理してもよい。疎水化処理された球状シリカエアロゲル粉体を焼成して疎水性の官能基を除去し、焼成前よりも表面のシラノール基の量を増加させた球状シリカエアロゲル粉体を調製し、得られたシラノール基の量を増加させた球状シリカエアロゲル粉体に対して反応性官能基を有する表面処理剤で処理することで、より多くの反応性官能基を導入することができる。疎水化処理された球状シリカエアロゲル粉体の焼成方法については、乾式法による第2の製造方法の(g)の工程について説明した通りである。
 (A)の工程で用いる疎水化処理された球状シリカエアロゲル粉体は、BET法による比表面積が300~1000m/gであり、BJH法による細孔容積及び細孔半径のピークが各々1~8mL/g、1~30nmであり、コールターカウンター法により測定された粒度分布において体積基準累計50%径(D50)値が1~200μmであり、画像解析法により求めた平均円形度が0.8以上であることが好ましい。このような性質を有する疎水化処理された球状シリカエアロゲル粉体を調製する方法は特に限定されない。例えば、特許文献2又は特許文献3等の公知文献に記載の製造方法によって、上記性質を有する疎水化処理された球状シリカエアロゲル粉体を得ることができる。
 乾式法による第3の製造方法によれば、特許文献2及び3に記載されるような従来の方法によって調製された疎水化処理された球状シリカエアロゲル粉体を用いて、反応性官能基を有する球状表面処理シリカエアロゲルを製造することができる。そのため、乾式法による第3の製造方法は、上述した湿式法による第1の製造方法及び乾式法による第2の製造方法と比較して、より簡便である。
 (製造方法に関する付記事項)
 湿式法による第1の製造方法において、球状表面処理シリカエアロゲルは、超臨界乾燥等公知の方法により製造された球状シリカエアロゲルに対して(5)および(6)の工程を実施することによっても得ることができる。球状シリカエアロゲルを、有機溶媒中に分散させ、(5)の工程で用いた表面処理剤で表面処理することで、上記(1)~(6)の工程により製造した球状表面処理シリカエアロゲルと同様の物性の球状表面処理シリカエアロゲルを得ることができる。
 また、乾式法による第2の製造方法において、(e)の工程において得たゲル化体に対して上記(f)~(g)の工程を行う代わりに超臨界乾燥法による処理を行うことによって、シラノール基を有する球状シリカエアロゲル粉体を得ることができる。超臨界乾燥法による処理の処理条件は特に限定されず、ゲル化体中の溶媒が超臨界二酸化炭素によって完全に置換され得る条件を適宜採用することができる。そのような処理条件は、例えば、40℃、9MPaにおいて処理時間6時間で、超臨界二酸化炭素を更新しながら5回繰り返し置換を行うものである。
 また、表面処理によりシリカエアロゲル表面に導入された反応性官能基を変換することによっても、所望の反応性官能基を導入することができる。この反応性官能基の変換は、公知の手法を適宜用いることができる。例えば、表面処理により反応性官能基としてエポキシ基を有するシリカゲルを製造し、特許文献1に記載のエポキシ基をジアミンと反応させる手法を用いることで、エポキシ基をアミノ基に変換することができる。そのほかにも、アミノ基をホルミル基に変換する手法[Yang,G.;Wu,J.;Xu,G.;Yang,L.,Colloids and Surfaces B:Biointerfaces,2010,78,351-356.]、アミノ基をカルボキシル基に変換する手法およびカルボキシル基をエステル基に変換する手法[Jarrett,H.Q.,Journal of Chromatography,1987,405,179-189.]などを適用して反応性官能基を変換することができる。
 表面処理により導入した反応性官能基の量は、元素分析により測定した炭素含有量(C量)、窒素含有量(N量)、硫黄含有量(S量)より算出した値である。C量、N量、S量は、温度1150℃において酸素とヘリウムをフローしながら酸化処理し、発生した二酸化炭素、窒素酸化物、硫黄酸化物の量を定量することにより測定する。反応性官能基中に窒素、もしくは硫黄を含む場合は、元素量/(反応性官能基1分子中に含まれる元素の数)として反応性官能基の量を算出する。また、球状表面処理シリカエアロゲルの表面に導入された反応性官能基を変換することによって導入した反応性官能基の量は、変換前の球状表面処理シリカエアロゲルの元素量と、変換後の元素量を比較することで算出する。
 また、導入した反応性官能基の量は、反応性官能基の反応性を利用して反応性官能基と反応する化合物の量により定量することもできる。例えば、エポキシ基量は、JIS-K-7236(エポキシ樹脂のエポキシ当量の求め方)に基づき、球状表面処理シリカエアロゾルの単位質量あたりのエポキシ基量(μmol/g)を測定する。
 反応性官能基の量は、(5)の工程において用いる表面処理剤の量によって制御することが可能であり、0.5mmol/g以上であることが好ましい。ただし、カラム充填剤として利用する際、反応性官能基の量は分離対象分子との親和性の強弱を考慮して決定すればよく、上記の範囲に限定されるものではない。
 (用途)
 本発明の一態様に係る球状表面処理シリカエアロゲルは、反応性官能基を表面に有するため、特許文献1で知られるように、反応性官能基を介してリガンドを固定化し、ペプチド、タンパク質または核酸といった生体分子の分離、分析、及び精製に広く用いることができる。また、比表面積および細孔容積が大きく、球状であるため、生体分子の保持力が良好で通液時の背圧が低く、さらに、均一な充填床を構築可能なカラム充填剤として利用できる。
 また、反応性官能基を有する多孔質シリカゲルの用途であった、金属吸着剤や、アミノ酸、ペプチド、タンパク質または核酸の固定化剤としても利用できる。さらに、従来の球状シリカエアロゲルの用途であった、断熱性付与剤や、化粧品用添加剤としても利用できる。
 以下、本発明を具体的に説明するため、実施例を示す。ただし本発明はこれらの実施例のみに制限されるものではない。なお、実施例及び比較例の評価は以下の方法で実施した。
 〔1.湿式法による球状表面処理シリカエアロゲルの製造〕
 <評価方法>
 BET法による比表面積、BJH法による細孔容積、BJH法による細孔半径のピークの測定は、上述の定義に従って日本ベル株式会社製BELSORP-miniにより行った。
 体積基準累計50%径(D50)の測定は、上述の定義に従ってBECKMAN COULTER製Multisizer 3により行った。超音波破砕装置による破砕処理は、BRANSONIC製1510J-DTH(出力70W)を用いて行った。
 平均円形度の測定は、上述の定義に従って日立ハイテクノロジーズ製S-5500(加速電圧3.0V、二次電子検出)を用いて行った。
 凝集度の測定は、上述の定義に従って行った。超音波破砕装置による破砕処理は、BRANSONIC製1510J-DTH(出力70W)を用いて行った。
 官能基量は、上述の定義に従って、C量、N量あるいはエポキシ基量から算出した。C値およびN値の測定は、全自動元素分析装置(elementar製vario MICRO cube)を用いて、温度1150℃において酸素とヘリウムをフローしながら測定した。
 エポキシ基の測定は、上述の定義に従って、JIS-K-7236(エポキシ樹脂のエポキシ当量の求め方)に基づき測定した。
 <実施例1>
 (ゲル化体の製造((1)~(4)の工程))
 硫酸(濃度9.2g/100mL)70gをスターラーで攪拌しながら、珪酸ソーダ(濃度SiO 16.4g/100mL、NaO 5.4g/100mL、SiOモル/NaOモル=3.2)を、pH2.9になるまで徐々に添加して、pH2.9の水性シリカゾルを調製した((1)の工程)。このシリカゾルを140g分取し、130gのヘプタン、ソルビタンモノオレエートを1.5g添加し、ホモジナイザー(IKA製、T25BS1)を用いて5600rpm/分の条件で1.5分攪拌し、W/Oエマルションを形成した((2)の工程)。得られたエマルションを攪拌羽で攪拌しながら、70℃で1時間かけてゲル化した((3)の工程)。イソプロピルアルコール77gとイオン交換水60gとを加えて、攪拌羽で攪拌しながらO相とW相とを分離した。続けて、0.5mol/L水酸化ナトリウム水溶液を4.8g添加した。70℃、1時間かけて、ゲル化体の熟成を行った。このスラリー溶液を濾過し、得られたケーキをイオン交換水、エタノールの順で洗浄することで、エタノールが浸透した状態のゲル化体を得た((4)の工程)。
 (表面処理((5)、(6)の工程))
 ゲル化体をエタノール100g中に分散させ、攪拌羽で攪拌しながら、アミノプロピルトリメトキシシラン(9.8g、5.0mmol/g)を徐々に添加して、50℃で3時間攪拌した((5)の工程)。このスラリーを濾過し、得られたケーキをエタノールで洗浄したのち、真空圧力下、150℃で12時間以上加熱乾燥することで、反応性官能基としてアミノ基を有する球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表1に示す。なお、官能基量はN量から算出した((6)の工程)。
 <実施例2>
 ゲル化体の製造は、実施例1と同様の操作で実施した。表面処理の工程では、ゲル化体をエタノール100g中に分散させ、攪拌羽で攪拌しながら、アミノプロピルトリメトキシシラン(4.9g、2.5mmol/g)を徐々に添加して、50℃で2時間20分攪拌した。その後、エンドキャッピングを目的として、メチルトリメトキシシラン(3.7g、2.5mmol/g)を徐々に添加して、50℃40分攪拌した。このスラリーを濾過し、得られたケーキをエタノールで洗浄したのち、真空圧力下、150℃で12時間以上加熱乾燥することで、反応性官能基としてアミノ基を有し、かつメチルトリメトキシシランによりエンドキャッピングを施した球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表1に示す。なお、官能基量はN量から算出した。
 <実施例3>
 表面処理の工程において、エンドキャッピングに用いる試薬を1,1,1,1,3,3,3,3-ヘキサメチルジシラザン(HMDS、2.2g、2.5mmol/g)にした以外は、実施例2と同様の操作を行うことで、反応性官能基としてアミノ基を有し、かつHMDSによりエンドキャッピングを施した球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表1に示す。なお、官能基量はN量から算出した。
 <実施例4>
 ゲル化体の製造の工程において、W/Oエマルションの形成方法を、ホモジナイザー(5600rpm/分、1.5分)から攪拌翼(600rpm/分、10分)に、さらにゲル化の時間を1時間から2.5時間に延長した以外は実施例2と同様の操作を行うことで、反応性官能基としてアミノ基を有し、かつメチルトリメトキシシランによりエンドキャッピングを施した、大粒径球状表面処理シリカエアロゲルを得た。得られた大粒径球状表面処理シリカエアロゲルの物性評価の結果を表1に示す。なお、官能基量はN量から算出した。
 <実施例5>
 表面処理の工程において、アミノプロピルトリメトキシシランの代わりに3-グリシドキシプロピルトリメトキシシラン(6.4g、2.5mmol/g)を用いた以外は実施例2と同様の操作を行うことで、反応性官能基としてエポキシ基を有し、かつメチルトリメトキシシランによりエンドキャッピングを施した球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表1に示す。なお、官能基量はエポキシ基量から算出した。
 <実施例6>
 実施例2により得られる、反応性官能基としてアミノ基を有し、かつメチルトリメトキシシランによりエンドキャッピングを施したシリカエアロゲル1gをイオン交換水11gに分散させ、スターラーで攪拌しながら、10%グルタルアルデヒド水溶液(6.2g、15mmol/g)を徐々に添加して、室温で24時間攪拌した。このスラリーを濾過し、得られたケーキをイオン交換水で洗浄したのち、真空乾燥下、150℃で12時間以上加熱乾燥することで、ホルミル基を有する球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表1に示す。なお、官能基量は変換前の球状表面処理シリカエアロゲルのC量と変換後のC量とを比較することで算出した。
 <実施例7>
 実施例2により得られる、反応性官能基としてアミノ基を有し、かつメチルトリメトキシシランによりエンドキャッピングを施したシリカエアロゲル1gをテトラヒドロフラン22gに分散させ、スターラーで攪拌しながら、無水コハク酸(1.5g、15mmol/g)を徐々に添加して、室温で24時間攪拌した。このスラリーを濾過し、得られたケーキをエタノールおよびイオン交換水で洗浄したのち、真空乾燥下、150℃で12時間以上加熱乾燥することで、カルボキシル基を有する球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表1に示す。なお、官能基量は変換前の球状表面処理シリカエアロゲルのC量と変換後のC量とを比較することで算出した。
 <実施例8>
 実施例7により得られる、反応性官能基としてカルボキシル基を有し、かつメチルトリメトキシシランによりエンドキャッピングを施したシリカエアロゲル0.3gをイソプロパノール5gに分散させ、スターラーで攪拌しながら、N-ヒドロキシコハク酸イミド(210mg、0.62mmol/g(カルボキシル基量に対して1当量))、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDAC・HCl、350mg、0.62mmol/g)を徐々に添加して、室温で24時間攪拌した。このスラリーを濾過し、得られたケーキをイソプロパノールで洗浄したのち、真空乾燥下、150℃で12時間以上加熱乾燥することで、N-ヒドロキシコハク酸イミドにより活性化された活性エステル基を有する球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表1に示す。なお、官能基量は変換前の球状表面処理シリカエアロゲルのC量およびN量と、変換後のC量およびN量とを比較することで算出した。
 <比較例1>
 実施例1に記載のゲル化体の製造の工程において、スラリー溶液を濾過し、得られたケーキをイオン交換水、エタノールで洗浄して得られる、エタノールが浸透した状態のゲル化体を、真空乾燥下、150℃で12時間以上加熱乾燥することで、表面処理を施しておらず乾燥収縮した多孔質シリカを得た。得られた多孔質シリカの物性評価の結果を表1に示す。得られた多孔質シリカは、凝集粒子の割合が高く、平均円形度が明らかに0.8より小さかった。また、肉眼での観察より、凝集粒子の中には粒子径が1mmを超えるものもあり、上記コールターカウンター法による粒子径の計測は困難であった。
 <比較例2>
 比較例1により得られた多孔質シリカに対し、実施例2の表面処理の工程と同様の操作を行うことで、乾燥収縮した多孔質シリカに反応性官能基を導入した多孔質シリカを製造した。得られた反応性官能基を有する多孔質シリカの物性評価の結果を表1に示す。なお、官能基量はN量から算出した。得られた多孔質シリカは、凝集粒子の割合が高く、平均円形度が明らかに0.8より小さかった。また、肉眼での観察より、凝集粒子の中には粒子径が1mmを超えるものもあり、上記コールターカウンター法による粒子径の計測は困難であった。
Figure JPOXMLDOC01-appb-T000001
 <評価結果>
 実施例1~8においては、平均円形度が0.8以上であって、かつ少なくとも1種の反応性官能基を表面に有する、所望の球状表面処理シリカエアロゲルを作製できた。これらの球状表面処理シリカエアロゲルはすべて、BET法による比表面積が300~1000m/gの範囲であり、BJH法による細孔容積及び細孔半径のピークが各々1~8mL/g、1~30nmの範囲であり、コールターカウンター法により測定された粒度分布において体積基準累計50%径(D50)値が1~200μmの範囲であった。一方表面処理を施していない比較例1、あるいは比較例1により得られた多孔質ゲルに対し、反応性官能基を有する表面処理剤を用いて表面処理を施した比較例2においては、凝集粒子の割合が高く平均円形度が0.8未満であり、また細孔容積が1mL/g以下であって、目的の範囲の球状表面処理シリカエアロゲルが作製できなかった。
 〔2.乾式法による球状表面処理シリカエアロゲルの製造〕
 <評価方法>
 官能基が除去される温度は、上述の定義に従って、株式会社リガク製Thermo plus EVO(TG 8120)により行った。
 BET法による比表面積、BJH法による細孔容積、BJH法による細孔半径のピークの測定は、上述の定義に従って日本ベル株式会社製BELSORP-miniにより行った。
 体積基準累計50%径(D50)の測定は、上述の定義に従ってBECKMAN COULTER製Multisizer 3により行った。超音波破砕装置による破砕処理は、BRANSONIC製1510J-DTH(出力70W)を用いて行った。
 平均円形度の測定は、上述の定義に従って日立ハイテクノロジーズ製S-5500(加速電圧3.0V、二次電子検出)を用いて行った。
 凝集度の測定は、上述の定義に従って行った。超音波破砕装置による破砕処理は、BRANSONIC製1510J-DTH(出力70W)を用いて行った。
 官能基量は、上述の定義に従って、C量あるいはN量から算出した。C値およびN値の測定は、全自動元素分析装置(elementar製vario MICRO cube)を用いて、温度1150℃において酸素とヘリウムをフローしながら測定した。
 <実施例9>
 (ゲル化体の製造((a)~(d)の工程))
 硫酸(濃度9.2g/100mL)70gをスターラーで攪拌しながら、珪酸ソーダ(濃度SiO 16.4g/100mL、NaO 5.4g/100mL、SiOモル/NaOモル=3.2)を、pH2.9になるまで徐々に添加して、pH2.9の水性シリカゾルを調製した((a)の工程)。このシリカゾルを140g分取し、130gのヘプタン、ソルビタンモノオレエートを1.5g添加し、ホモジナイザー(IKA製、T25BS1)を用いて13000rpm/分の条件で2.5分攪拌し、W/Oエマルションを形成した((b)の工程)。得られたエマルションを攪拌羽で攪拌しながら、70℃で1時間かけてゲル化した((c)の工程)。イソプロピルアルコール77gとイオン交換水60gとを加えて、攪拌羽で攪拌しながらO相とW相とを分離した((d)の工程)。続けて、0.5mol/L水酸化ナトリウム水溶液を4.8g添加した。70℃、1時間かけて、ゲル化体の熟成を行った。このスラリー溶液を濾過し、得られたケーキをイオン交換水、エタノールの順で洗浄することで、エタノールが浸透した状態のゲル化体を得た((e)の工程)。
 (疎水化処理((f)の工程))
 ゲル化体に35%塩酸を22g、ヘキサメチルジシロキサンを16g添加し、攪拌しながら70℃で12時間保持することにより、シリル化処理を行った。シリル化処理後、攪拌羽で攪拌しながら48%水酸化ナトリウム水溶液を16g添加し、中和処理を行った。続いて、ヘプタン100gを加え、ゲル化体を抽出し、イオン交換水100gで2回洗浄を行った。
 (球状シリカエアロゲル粉体の製造((g)の工程))
 得られたシリル化後のゲル化体を吸引濾過機により濾別した。ゲル化体の乾燥を真空圧力下、150℃で16時間以上加熱することで、疎水化処理された球状シリカエアロゲル粉体を得た。
 (表面処理((h)の工程))
 上記疎水化処理された球状シリカエアロゲル粉体(7g)に3-グリシドキシプロピルトリメトキシシラン(4.0g、2.5mmol/g)を加えて均一になるまで攪拌し、乾燥機を用いて150℃で1時間加熱した。続いて、真空圧力下、150℃で3時間加熱乾燥することで、反応性官能基としてエポキシ基を有する球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表2に示す。なお、官能基量は疎水化処理された球状シリカエアロゲルのC量と表面処理後のC量とを比較することで算出した。
 <実施例10>
 (ゲル化体の製造((a)~(d)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を得た。
 (疎水化処理((f)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を疎水化処理した。
 (球状シリカエアロゲル粉体の製造((g)の工程))
 得られたシリル化後のゲル化体を吸引濾過機により濾別した。ゲル化体の乾燥を真空圧力下、150℃で16時間以上加熱することで、疎水化処理された球状シリカエアロゲル粉体を得た。続いて、上記疎水化処理された球状シリカエアロゲル粉体(20g)をるつぼに入れ、焼成炉を用いて200℃まで昇温し、200℃で1時間加熱したのち、自然放冷することで、シラノール基を有する球状シリカエアロゲル粉体を得た。
 (表面処理((h)の工程))
 上記シラノール基を有する球状シリカエアロゲル粉体(5g)に3-グリシドキシプロピルトリメトキシシラン(2.9g、2.5mmol/g)を加えて均一になるまで攪拌し、乾燥機を用いて150℃で1時間加熱した。続いて、真空圧力下、150℃で3時間加熱乾燥することで、反応性官能基としてエポキシ基を有する球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表2に示す。なお、官能基量は焼成後の球状シリカエアロゲルのC量と表面処理後のC量とを比較することで算出した。
 <実施例11>
 (ゲル化体の製造((a)~(d)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を得た。
 (疎水化処理((f)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を疎水化処理した。
 (球状シリカエアロゲル粉体の製造((g)の工程))
 得られたシリル化後のゲル化体を吸引濾過機により濾別した。ゲル化体の乾燥を真空圧力下、150℃で16時間以上加熱することで、疎水化処理された球状シリカエアロゲル粉体を得た。続いて、上記疎水化処理された球状シリカエアロゲル粉体(10mg)を熱重量示差熱分析装置(TG-DTA)により分析し、400℃から420℃の範囲における重量減少率が3.4%であることから、410℃付近で官能基が除去されることを確認した。上記疎水化処理された球状シリカエアロゲル粉体(20g)をるつぼに入れ、焼成炉を用いて400℃まで昇温し、400℃で1時間加熱したのち、自然放冷することで、シラノール基を有する球状シリカエアロゲル粉体を得た。
 (表面処理((h)の工程))
 上記シラノール基を有する球状シリカエアロゲル粉体(12g)に3-グリシドキシプロピルトリメトキシシラン(6.9g、2.5mmol/g)を加えて均一になるまで攪拌し、乾燥機を用いて150℃で1時間加熱した。続いて、真空圧力下、150℃で3時間加熱乾燥することで、反応性官能基としてエポキシ基を有する球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表2に示す。なお、官能基量は焼成後の球状シリカエアロゲルのC量と表面処理後のC量とを比較することで算出した。
 <実施例12>
 (ゲル化体の製造((a)~(d)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を得た。
 (疎水化処理((f)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を疎水化処理した。
 (球状シリカエアロゲル粉体の製造((g)の工程))
 得られたシリル化後のゲル化体を吸引濾過機により濾別した。ゲル化体の乾燥を真空圧力下、150℃で16時間以上加熱することで、疎水化処理された球状シリカエアロゲル粉体を得た。続いて、上記疎水化処理された球状シリカエアロゲル粉体(20g)をるつぼに入れ、焼成炉を用いて600℃まで昇温し、600℃で1時間加熱したのち、自然放冷することで、シラノール基を有する球状シリカエアロゲル粉体を得た。
 (表面処理((h)の工程))
 上記シラノール基を有する球状シリカエアロゲル粉体(7g)に3-グリシドキシプロピルトリメトキシシラン(4.1g、2.5mmol/g)を加えて均一になるまで攪拌し、乾燥機を用いて150℃で1時間加熱した。続いて、真空圧力下、150℃で3時間加熱乾燥することで、反応性官能基としてエポキシ基を有する球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表2に示す。なお、官能基量は焼成後の球状シリカエアロゲルのC量と表面処理後のC量とを比較することで算出した。
 <実施例13>
 (ゲル化体の製造((a)~(d)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を得た。
 (疎水化処理((f)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を疎水化処理した。
 (球状シリカエアロゲル粉体の製造((g)の工程))
 得られたシリル化後のゲル化体を吸引濾過機により濾別した。ゲル化体の乾燥を真空圧力下、150℃で16時間以上加熱することで、疎水化処理された球状シリカエアロゲル粉体を得た。続いて、上記疎水化処理された球状シリカエアロゲル粉体(20g)をるつぼに入れ、焼成炉を用いて800℃まで昇温し、800℃で1時間加熱したのち、自然放冷することで、シラノール基を有する球状シリカエアロゲル粉体を得た。
 (表面処理((h)の工程))
 上記シラノール基を有する球状焼成シリカエアロゲル粉体(8.7g)に3-グリシドキシプロピルトリメトキシシラン(5.1g、2.5mmol/g)を加えて均一になるまで攪拌し、乾燥機を用いて150℃で1時間加熱した。続いて、真空圧力下、150℃で3時間加熱乾燥することで、反応性官能基としてエポキシ基を有する球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表2に示す。なお、官能基量は焼成後の球状シリカエアロゲルのC量と表面処理後のC量とを比較することで算出した。
 <実施例14>
 (ゲル化体の製造((a)~(d)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を得た。
 (疎水化処理((f)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を疎水化処理した。
 (球状シリカエアロゲル粉体の製造((g)の工程))
 実施例10と同様の操作を行うことで、シラノール基を有する球状シリカエアロゲル粉体を得た。
 (表面処理((h)の工程))
 上記シラノール基を有する球状シリカエアロゲル粉体(15g)にアミノプロピルトリメトキシシラン(6.5g、2.5mmol/g)を加えて均一になるまで攪拌し、乾燥機を用いて150℃で1時間加熱した。続いて、真空圧力下、150℃で3時間加熱乾燥することで、反応性官能基としてアミノ基を有する球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表2に示す。なお、官能基量は元素分析により測定したN量から算出した。
 <実施例15>
 実施例14により得られる、反応性官能基としてアミノ基を有する球状シリカエアロゲル1gをイオン交換水11gに分散させ、スターラーで攪拌しながら、10%グルタルアルデヒド水溶液(6.2g、15mmol/g)を徐々に添加して、室温で24時間攪拌した。このスラリーを濾過し、得られたケーキをイオン交換水で洗浄したのち、真空乾燥下、150℃で12時間以上加熱乾燥することで、ホルミル基を有する球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表2に示す。なお、官能基量は変換前の球状表面処理シリカエアロゲルのC量と変換後のC量とを比較することで算出した。
 <実施例16>
 実施例14により得られる、反応性官能基としてアミノ基を有する球状シリカエアロゲル1gをテトラヒドロフラン22gに分散させ、スターラーで攪拌しながら、無水コハク酸(1.5g、15mmol/g)を徐々に添加して、室温で24時間攪拌した。このスラリーを濾過し、得られたケーキをエタノールおよびイオン交換水で洗浄したのち、真空乾燥下、150℃で12時間以上加熱乾燥することで、カルボキシル基を有する球状表面処理シリカエアロゲルを得た。得られた球状表面処理シリカエアロゲルの物性評価の結果を表2に示す。なお、官能基量は変換前の球状表面処理シリカエアロゲルのC量と変換後のC量とを比較することで算出した。
 <参考例1>
 (ゲル化体の製造((a)~(d)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を得た。
 (疎水化処理((f)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を疎水化処理した。
 (球状シリカエアロゲル粉体の製造((g)の工程))
 実施例9と同様の操作を行うことで、疎水化処理された球状シリカエアロゲル粉体を得た。
 参考例1では、上記疎水化処理された球状シリカエアロゲル粉体に、表面処理((h)の工程)を施さなかった。得られた球状シリカエアロゲル粉体の物性評価の結果を表2に示す。
 <参考例2>
 (ゲル化体の製造((a)~(d)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を得た。
 (疎水化処理((f)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を疎水化処理した。
 (球状シリカエアロゲル粉体の製造((g)の工程))
 実施例10と同様の操作を行うことで、シラノール基を有する球状シリカエアロゲル粉体を得た。
 参考例2では、上記シラノール基を有する球状シリカエアロゲル粉体に、表面処理((h)の工程)を施さなかった。得られたシラノール基を有する球状シリカエアロゲル粉体の物性評価の結果を表2に示す。
 <参考例3>
 (ゲル化体の製造((a)~(d)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を得た。
 (疎水化処理((f)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を疎水化処理した。
 (球状シリカエアロゲル粉体の製造((g)の工程))
 実施例11と同様の操作を行うことで、シラノール基を有する球状シリカエアロゲル粉体を得た。
 参考例3では、上記シラノール基を有する球状シリカエアロゲル粉体に、表面処理((h)の工程)を施さなかった。得られたシラノール基を有する球状シリカエアロゲル粉体の物性評価の結果を表2に示す。
 <参考例4>
 (ゲル化体の製造((a)~(d)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を得た。
 (疎水化処理((f)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を疎水化処理した。
 (球状シリカエアロゲル粉体の製造((g)の工程))
 実施例12と同様の操作を行うことで、シラノール基を有する球状シリカエアロゲル粉体を得た。
 参考例4では、上記シラノール基を有する球状シリカエアロゲル粉体に、表面処理((h)の工程)を施さなかった。得られたシラノール基を有する球状シリカエアロゲル粉体の物性評価の結果を表2に示す。
 <参考例5>
 (ゲル化体の製造((a)~(d)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を得た。
 (疎水化処理((f)の工程))
 実施例9と同様の操作を行うことで、ゲル化体を疎水化処理した。
 (球状シリカエアロゲル粉体の製造((g)の工程))
 実施例13と同様の操作を行うことで、シラノール基を有する球状シリカエアロゲル粉体を得た。
 参考例5では、上記シラノール基を有する球状シリカエアロゲル粉体に、表面処理((h)の工程)を施さなかった。得られたシラノール基を有する球状シリカエアロゲル粉体の物性評価の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 <評価結果>
 実施例9~16においては、平均円形度が0.8以上であって、かつ少なくとも1種の反応性官能基を表面に有する、所望の球状表面処理シリカエアロゲルを作製できた。これらの球状表面処理シリカエアロゲルはすべて、BET法による比表面積が300~1000m/gの範囲であり、BJH法による細孔容積及び細孔半径のピークが各々1~8mL/g、1~30nmの範囲であり、コールターカウンター法により測定された粒度分布において体積基準累計50%径(D50)値が1~200μmの範囲であった。一方表面処理を施していない参考例1~5においては、球状シリカエアロゲルは反応性官能基を有さず、目的の範囲の球状表面処理シリカエアロゲルが作製できなかった。

Claims (11)

  1.  BET法による比表面積が300~1000m/gであり、BJH法による細孔容積及び細孔半径のピークが各々1~8mL/g、1~30nmであり、コールターカウンター法により測定された粒度分布において体積基準累計50%径(D50)値が1~200μmであり、画像解析法により求めた平均円形度が0.8以上であって、かつ少なくとも1種の反応性官能基を表面に有する、球状表面処理シリカエアロゲル。
  2.  反応性官能基が、1級アミノ基、2級アミノ基、チオール基、ヒドロキシ基、エポキシ基、イソシアネート基、ホルミル基、カルボキシル基、エステル基、アミド基、スルホン酸エステル基、ビニル基からなる群より選ばれる反応性官能基である、請求項1に記載の球状表面処理シリカエアロゲル。
  3.  (1)水性シリカゾルを調製する工程、
     (2)該水性シリカゾルを疎水性溶媒中に分散させてW/O型エマルションを形成させる工程、
     (3)前記シリカゾルをゲル化させて、前記W/O型エマルションをゲル化体の分散液へと変換する工程、
     (4)前記ゲル化体中の水分を、有機溶媒に置換する工程、
     (5)前記ゲル化体を、反応性官能基を有する表面処理剤で処理する工程、及び、
     (6)前記置換した有機溶媒を除去する工程
    を上記順に有する、請求項1または2に記載の球状表面処理シリカエアロゲルの製造方法。
  4.  (a)水性シリカゾルを調製する工程、
     (b)該水性シリカゾルを疎水性溶媒中に分散させてW/O型エマルションを形成させる工程、
     (c)前記シリカゾルをゲル化させて、前記W/O型エマルションをゲル化体の分散液へと変換する工程、
     (d)前記ゲル化体の分散液を、O相とW相の2層に分離させる工程、
     (e)前記W相を回収する工程、
     (f)前記W相中の前記ゲル化体を疎水化剤で処理する工程、
     (g)前記W相から前記ゲル化体を回収し、球状シリカエアロゲル粉体を得る工程、及び、
     (h)前記球状シリカエアロゲル粉体を、反応性官能基を有する表面処理剤で処理する工程
    を上記順に有する、請求項1または2に記載の球状表面処理シリカエアロゲルの製造方法。
  5.  前記工程(g)では、ゲル化体、または、当該ゲル化体を乾燥させて得た粉体を、焼成することによって球状シリカエアロゲル粉体を得る、請求項4に記載の球状表面処理シリカエアロゲルの製造方法。
  6.  請求項1または2に記載の球状表面処理シリカエアロゲルを含むカラム充填剤。
  7.  請求項1または2に記載の球状表面処理シリカエアロゲルを含む金属吸着剤。
  8.  請求項1または2に記載の球状表面処理シリカエアロゲルを含む、アミノ酸、ペプチド、タンパク質または核酸の固定化剤。
  9.  請求項1または2に記載の球状表面処理シリカエアロゲルを含む断熱性付与剤。
  10.  請求項1または2に記載の球状表面処理シリカエアロゲルを含む化粧品用添加剤。
  11.  (A)疎水化処理された球状シリカエアロゲル粉体を、反応性官能基を有する表面処理剤で処理する工程を含む、請求項1または2に記載の球状表面処理シリカエアロゲルの製造方法。
PCT/JP2022/045806 2021-12-27 2022-12-13 球状表面処理シリカエアロゲル及びその製造方法 WO2023127481A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-213475 2021-12-27
JP2021213475 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127481A1 true WO2023127481A1 (ja) 2023-07-06

Family

ID=86998709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045806 WO2023127481A1 (ja) 2021-12-27 2022-12-13 球状表面処理シリカエアロゲル及びその製造方法

Country Status (2)

Country Link
TW (1) TW202335964A (ja)
WO (1) WO2023127481A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043365A (ja) * 2008-08-11 2010-02-25 Dic Corp 超疎水性粉体、これを用いる超疎水性表面を有する構造体及びそれらの製造方法
JP2013060309A (ja) * 2011-09-12 2013-04-04 Achilles Corp 疎水性に優れるナノ構造多孔質体
WO2013062105A1 (ja) * 2011-10-28 2013-05-02 Agcエスアイテック株式会社 シリカ球状体及びアフィニティ担体
WO2017119503A1 (ja) * 2016-01-08 2017-07-13 株式会社ジーンデザイン ゾル-ゲル法で作製される無機多孔質体を用いた核酸合成用担体
WO2017179738A1 (ja) * 2016-04-15 2017-10-19 日産化学工業株式会社 気体分離膜の製造方法
JP2019019017A (ja) * 2017-07-13 2019-02-07 株式会社トクヤマ 球状シリカエアロゲル、その製造方法、及び、その用途
JP2020142969A (ja) * 2019-03-08 2020-09-10 株式会社トクヤマ 球状シリカエアロゲル粉体の製造方法
JP2021533133A (ja) * 2018-08-03 2021-12-02 レモネックス インコーポレイテッドLemonex Inc. アトピー性疾患の予防または治療用の薬学的組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043365A (ja) * 2008-08-11 2010-02-25 Dic Corp 超疎水性粉体、これを用いる超疎水性表面を有する構造体及びそれらの製造方法
JP2013060309A (ja) * 2011-09-12 2013-04-04 Achilles Corp 疎水性に優れるナノ構造多孔質体
WO2013062105A1 (ja) * 2011-10-28 2013-05-02 Agcエスアイテック株式会社 シリカ球状体及びアフィニティ担体
WO2017119503A1 (ja) * 2016-01-08 2017-07-13 株式会社ジーンデザイン ゾル-ゲル法で作製される無機多孔質体を用いた核酸合成用担体
WO2017179738A1 (ja) * 2016-04-15 2017-10-19 日産化学工業株式会社 気体分離膜の製造方法
JP2019019017A (ja) * 2017-07-13 2019-02-07 株式会社トクヤマ 球状シリカエアロゲル、その製造方法、及び、その用途
JP2021533133A (ja) * 2018-08-03 2021-12-02 レモネックス インコーポレイテッドLemonex Inc. アトピー性疾患の予防または治療用の薬学的組成物
JP2020142969A (ja) * 2019-03-08 2020-09-10 株式会社トクヤマ 球状シリカエアロゲル粉体の製造方法

Also Published As

Publication number Publication date
TW202335964A (zh) 2023-09-16

Similar Documents

Publication Publication Date Title
JP6013531B2 (ja) 表面処理された金属酸化物粒子
Arkhireeva et al. Synthesis of sub-200 nm silsesquioxane particles using a modified Stöber sol–gel route
Rosenholm et al. Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications
EP2181069B1 (en) A method for synthesising porous silica microparticles
WO2012057086A1 (ja) エアロゲル及びその製造方法
JP4430164B2 (ja) 疎水性非凝集コロイドシリカの製造方法
US6239243B1 (en) Method for preparing hydrophilic silica gels with high pore volume
JP4936208B2 (ja) コアシェル型球状シリカ系メソ多孔体及びコアシェル型球状シリカ系メソ多孔体の製造方法
JP5132193B2 (ja) 多孔質シリカ粒子およびその製造方法
JPWO2012147812A1 (ja) 金属酸化物粉末及びその製造方法
JP6196462B2 (ja) 多孔質球状金属酸化物
JP2008516889A (ja) 水性コロイドシリカ分散液からの直接的疎水性シリカの製造法
WO1999036355A2 (en) Method of preparing hydrophobic silica
JP5267758B2 (ja) 疎水性シリカ粉末の製造法
Ambrozewicz et al. Fluoroalkylsilane versus alkylsilane as hydrophobic agents for silica and silicates
JP2008127405A (ja) コアシェル型球状シリカ系メソ多孔体、それを用いた触媒及び吸着材
JPH0640714A (ja) 高吸油性多孔質シリカ及びその製造方法並びに担体
JP2003165718A (ja) 無孔質球状シリカ及びその製造方法
JP6955700B2 (ja) Co2吸着材
Lee et al. Preparation of colloidal silica using peptization method
JPH1135315A (ja) 高密度メソ多孔体の製造方法
WO2023127481A1 (ja) 球状表面処理シリカエアロゲル及びその製造方法
JP2021187692A (ja) 多孔質金属酸化物粉末及びその製造方法
JP5141948B2 (ja) バイモダルな細孔構造を有する球状シリカ系メソ多孔体及びその製造方法
JP2006027985A (ja) 球状シリカ系メソ多孔体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915705

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023570811

Country of ref document: JP