WO2023124952A1 - 一种共价有机框架材料的绿色固相合成方法 - Google Patents

一种共价有机框架材料的绿色固相合成方法 Download PDF

Info

Publication number
WO2023124952A1
WO2023124952A1 PCT/CN2022/138498 CN2022138498W WO2023124952A1 WO 2023124952 A1 WO2023124952 A1 WO 2023124952A1 CN 2022138498 W CN2022138498 W CN 2022138498W WO 2023124952 A1 WO2023124952 A1 WO 2023124952A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
anhydride
linked
tris
acid
Prior art date
Application number
PCT/CN2022/138498
Other languages
English (en)
French (fr)
Inventor
张振杰
王志方
赵正峰
陈瑶
Original Assignee
张振杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张振杰 filed Critical 张振杰
Publication of WO2023124952A1 publication Critical patent/WO2023124952A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/02Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes
    • C08G16/025Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with heterocyclic organic compounds
    • C08G16/0268Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes with heterocyclic organic compounds containing nitrogen in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]

Definitions

  • the invention belongs to the field of porous organic materials, and in particular relates to a green solid-phase synthesis method of covalent organic framework materials.
  • Covalent organic frameworks are two-dimensional (2D) or three-dimensional (3D) porous crystalline organic polymer materials linked by organic monomers through covalent bonds, which have low density, large specific surface area, regular and stable structure, and large pore size Uniformity, easy functionalization and other advantages.
  • COFs are widely used in gas adsorption separation, catalysis, drug delivery, supercapacitors and other fields.
  • the types of COFs are also constantly enriched.
  • the types of COFs that have been reported so far include boronate linkage, imine linkage, hydrazone linkage, keto-enol linkage, polyimide linkage, ethylene linkage, etc. base connection etc.
  • the present invention develops a non-solvent-involved green synthesis method to prepare highly crystalline COFs materials by regulating and screening the organic monomers and synthesis conditions of COFs, and selecting suitable catalysts.
  • the participation of non-solvent can effectively avoid high-pressure operating conditions, which is suitable for large-scale production of COFs.
  • functionalized organic monomers as building blocks, COFs materials with special functions can be prepared.
  • the object of the present invention is to connect vinyl, imide, borate, boron and oxygen six-membered ring, imine, azine, keto-enol, hydrazone or triazine.
  • COFs provide a novel, green, and solvent-free synthesis method.
  • Another object of the present invention is vinyl connection, imide connection, boronic acid ester connection, boron oxygen six-membered ring connection, imine bond connection, azine connection, keto-enol connection, hydrazone bond connection or triazine
  • the synthesis of linked COFs provides cheaper reaction monomers, realizes the mass production of COFs, and prepares novel COFs.
  • the object of the present invention is also for vinyl linkage, imide linkage, boronic acid ester linkage, boroxine six-membered ring linkage, imine linkage, azine linkage, keto-enol linkage, hydrazone linkage or triazine linkage COF
  • the synthesis of foams provides new methods to synthesize a series of novel COFs and illustrates the advantages of foam materials in adsorption separation.
  • the first aspect of the present invention is to provide a solid-phase synthesis method of covalent organic framework materials (COFs), characterized in that, the covalent organic framework materials are linked by vinyl, imide, borate , boron oxygen six-membered ring connection, imine bond connection, azine connection, keto-enol connection, hydrazone bond connection or triazine connection covalent organic framework material, which is specifically synthesized through the following steps:
  • Organic monomer 1 and organic monomer 2 are obtained through condensation reaction in the presence of a catalyst in a non-solvent.
  • the synthesis method is an in-situ growth method, specifically: the catalyst, the organic monomer 1 and the organic monomer 2 are ground into a paste or evenly ground, coated on any substrate or directly put into a closed reaction In a container, high temperature polymerization yields a covalent organic framework material.
  • reaction is carried out under non-solvent conditions, comprising the steps of:
  • the organic monomer 1 is a dilinked monomer containing a carboxylic acid anhydride functional group, a dilinked monomer containing a carboxylic acid functional group, a dilinked monomer containing an aldehyde functional group or a triple linked monomer containing an aldehyde functional group.
  • the organic monomer 1 is a monomer containing phenylboronic acid, a monomer containing benzaldehyde, a monomer containing 2,4,6-trihydroxybenzene-1,3,5-tricarbaldehyde, or a monomer containing phthalic anhydride , a hydroxyacrylketone-containing monomer, a benzodione-containing monomer or a dibasic acid anhydride monomer.
  • the organic monomer 1 is a two-linked or three-linked monomer containing benzaldehyde, a two-linked monomer containing phthalic anhydride, and a two-linked monomer containing phthalic acid, wherein the two-linked monomer is Straight-line molecules, the angle between three linked monomers is 120°.
  • the organic monomer 2 is a two-linked monomer containing an amino functional group, a three-linked monomer containing an amino functional group, a four-linked monomer containing an amino functional group, a two-linked monomer containing an active methyl functional group, or an active methyl functional group. Trilinked monomers with functional groups.
  • the organic monomer 2 is a catechol-containing monomer, aniline-containing monomer, benzohydrazide-containing monomer, hydrazine hydrate, benzonitrile-containing monomer, phenylacetonitrile-containing monomer , dimethylpyrazine monomer, benzamidine-containing monomer, o-phenylenediamine-containing monomer or triamine monomer; more preferably, the organic monomer 2 is an aniline-containing two-link, three- Linked or four-linked monomers, two-linked or three-linked monomers containing benzohydrazide, hydrazine hydrate, two-linked or three-linked monomers containing active methyl groups, wherein the two-linked monomers are linear molecules, and the three-linked monomers The angle between the body and the four-linked monomer is 120°.
  • the catalyst is a compound containing an acid anhydride functional group, a compound containing a carboxylic acid functional group, a compound containing an imidazole functional group or a compound containing a hydroxyl functional group.
  • the catalyst is a substituted or unsubstituted compound as follows: benzoic anhydride, 4-trifluoromethylbenzoic anhydride, phenylacetic anhydride, acetic anhydride, trifluoroacetic anhydride, benzoic acid, 4-fluorobenzoic acid , 4-bromobenzoic acid, propionic acid, aromatic acid, imidazole, benzimidazole or phenol.
  • the organic monomer 1 is terephthalaldehyde, 1,4-bis(4-formylphenyl)benzene, 4,4'-biphenyldicarbaldehyde, 1,2-bis( 4'-formylphenyl)acetylene, 4,4'-(1,3-butadiyn-1,4-diyl)bisbenzaldehyde, 2,5-dimethoxy-1,4-p-phenylene Diformaldehyde, 4,7-bis(4-formylphenyl)benzofuran, 4,7-bis(4-formylphenyl)benzothiophene, 4,7-bis(4-formylphenyl) Benzoselenol, 1,3,5-pyrylenetricarbaldehyde, 2-hydroxy-1,3,5-benzenetricarbaldehyde, 2,4-dihydroxy-1,3,5-benzenetricarbaldehyde, 2,4-dihydroxy-1,3,5-
  • the organic monomer 2 is 2,5-dimethylpyrazine, tetramethylpyrazine, 3,6-dimethylpyridazine, 2,5-dimethylterephthalonitrile, 2,4,6 -Trimethyl-1,3,5-triazine, 2,4,6-collidine, 2,4,6,-trimethyl-pyrimidine, 2,4,6,-trimethyl-pyrimidine -5-carbonitrile, 2,4,6-collidine-3,5-dicarbonitrile, 2,4,6-tricyano-1,3,5-trimethylbenzene, 2,2' Any one of -bipyridine-5,5'-diacetonitrile.
  • the diconnected organic monomer 2 is reacted in combination with the triple-connected organic monomer 1, or the diconnected organic monomer 1 is reacted in combination with the triple-connected organic monomer 2.
  • the organic monomer 1 is pyromellitic dianhydride (PMDA), 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTCDA), pyromellitic acid (PA), 1 ,4,5,8-Naphthalene tetracarboxylic acid (NTA), terephthalaldehyde, 1,4-bis(4-formylphenyl)benzene, 4,4'-biphenyldicarbaldehyde, 1,2-bis( 4'-formylphenyl)acetylene, 4,4'-(1,3-butadiyn-1,4-diyl)bisbenzaldehyde, 2,5-dimethoxy-1,4-p-phenylene Diformaldehyde, trimesaldehyde, 2-hydroxy-1,3,5-benzenetricarbaldehyde, 2,4-dihydroxy-1,3,5-benzenetricarbalde
  • the organic monomer 2 is p-phenylenediamine, 2,5-diaminopyridine, benzidine, 4,4'-diaminoterphenyl, hydrazine hydrate, dihydrazine terephthalate, 2,5-diethyl Oxybenzene-1,4-bis(formylhydrazide), 2,5-bis(allyloxy)terephthalichydrazide, 1,3,5-tris(4-aminophenyl)benzene (TAPB ), 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT), tris(4-aminophenylamine) (TAPA), 5"-(4'-amino [1,1'-biphenyl]-4-yl)[1,1':4',1":3",1"':4"',1""-pentaphenyl]-4,4 "'-diamine (TABPB), 4',4"',
  • the diconnected organic monomer 2 is reacted in combination with the triple-connected organic monomer 1, or the diconnected organic monomer 1 is reacted in combination with the triple-connected or quadruple-connected organic monomer 2.
  • the covalent organic framework materials are polyimide-type covalent organic frameworks, vinyl-linked covalent organic framework foams, imine bond-linked covalent organic frameworks, azine-linked covalent organic frameworks, hydrazone bonds Linking covalent organic frameworks and keto-enol-based covalent organic framework materials.
  • the shape of the covalent organic framework material is block, cylinder or foam.
  • the pore diameter of the covalent organic framework material is 0.6-4.9 nm, more preferably 1.8-4.9 nm.
  • the molar ratio of the organic monomer 1 to the organic monomer 2 is 1:4 to 4:1, more preferably 1:1 to 1:2.
  • the molar ratio of the catalyst to the organic monomer 1 is 1:5 to 5:1, more preferably 1:3 to 3:1.
  • the pressure of the reaction system is 0-1 atm.
  • the synthesis temperature is 20-200°C, more preferably 150-250°C, especially preferably 180-200°C.
  • the reaction time is 3-7 days, more preferably 5 days.
  • the airtight reaction vessel is one of a high temperature and high pressure resistant Pyrex tube, an ampoule bottle requiring flame sealing, and a steel high pressure reactor with a polytetrafluoroethylene lining.
  • the building monomer and a low-melting organic compound are put into a closed container according to a certain equivalent ratio, and the pressure in the container reaches 0.15 mmHg by vacuuming for half an hour, and the sealed tube is sealed by a flame.
  • the reaction container was placed in an oven at 200°C for 3-5 days.
  • the obtained solid powder was washed with DMF to remove unreacted monomers, and then washed with CH3OH to remove the excess regulator, and then the obtained The solid powder was Soxhlet extracted in anhydrous tetrahydrofuran solvent for 12 hours to remove unreacted small molecules in the pores, and finally the obtained solid powder was heated and dried in a vacuum high-temperature oven at 100°C for 12 hours to obtain highly crystalline Covalent organic framework materials.
  • the reaction system does not need to add an organic solvent, and belongs to a solid phase reaction system.
  • the present invention provides a simple and green synthesis method of COFs materials.
  • benzoic anhydride and benzoic acid with low melting point are selected as catalysts, and 2,5-dimethylpyrazine monomer or 2, 4,6-Trimethyl-1,3,5-triazine with three linked aldehydes (including: 1,3,5-tris(4'-formyl[1,1'-biphenyl]-4-yl ) benzene, 1,3,5-tris(p-formylphenyl)benzene, 4,4',4"-[benzene-1,3,5-triyltri(ethyne-2,1-diyl)] Triphenylaldehyde, 2,4,6-tris(4-formylphenyl)-1,3,5-triazine, 4',4"',4""'-(1,3,5-triazine -2,4,6-triyl)tri(([1,1'-biphenyl)
  • the green solvent-free synthesis method of the present invention is suitable for polyimide-type covalent organic frameworks, vinyl-linked covalent organic framework foams, imine bond-linked covalent organic frameworks, azine-linked covalent organic frameworks, hydrazone bonds Preparation of linked covalent organic frameworks and keto-enol-based covalent organic framework materials.
  • the two building blocks are dehydrated and condensed at high temperature with the assistance of another low-melting compound to prepare a covalent organic framework material with uniform pore size, high crystallinity, and high specific surface area.
  • Another aspect of the present invention relates to the synthesis of polyimide-based COFs of general formula 1.
  • the organic monomer 1 mainly includes two linking monomers containing anhydride functional groups, such as: pyromellitic dianhydride (PMDA), 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTCDA), etc.; Four-linked monomers with acid functional groups, such as pyromellitic acid (PA), 1,4,5,8-naphthalene tetracarboxylic acid (NTA), etc.
  • PMDA pyromellitic dianhydride
  • NTCDA 1,4,5,8-naphthalene tetracarboxylic dianhydride
  • PA pyromellitic acid
  • NTA 1,4,5,8-naphthalene tetracarboxylic acid
  • Organic monomers 2 mainly include trilinked monomers containing amino functional groups, such as: 1,3,5-tris(4-aminophenyl)benzene (TAPB), 2,4,6-tris(4-aminophenyl) -1,3,5-triazine (TAPT), tris(4-aminophenylamine) (TAPA), 5"-(4'-amino[1,1'-biphenyl]-4-yl)[ 1,1':4',1":3",1"':4"',1""-pentaphenyl]-4,4"'-diamine (TABPB), 4',4"', 4""'-(1,3,5-triazine-2,4,6-triyl)tri(([[1,1'-biphenyl]-4-amine))(TTBT), 2,7 ,12-triamino-5H-diindole[1,2-a:1',2'-c]fluorene-5,10,15
  • Compound 3 mainly includes compounds containing anhydride functional groups, such as benzoic anhydride (BZDA), 4-trifluoromethylbenzoic anhydride (TFBA), acetic anhydride (AA), etc.; or compounds containing carboxylic acid functional groups, such as benzoic acid ( BA), 4-fluorobenzoic acid (FBA), propionic acid (PA), etc.
  • BZDA benzoic anhydride
  • TFBA 4-trifluoromethylbenzoic anhydride
  • AA acetic anhydride
  • carboxylic acid functional groups such as benzoic acid ( BA), 4-fluorobenzoic acid (FBA), propionic acid (PA), etc.
  • the organic monomer 1 and organic monomer 2 mentioned above can be freely combined, and the target COFs can be prepared under the condition that any one of the compounds 3 participates.
  • Another aspect of the present invention relates to the synthesis of vinyl-based COFs of general formula 2
  • Organic monomer 1 mainly includes: 1,3,5-tris(4'-formyl[1,1'-biphenyl]-4-yl)benzene, 1,3,5-tris(p-formylphenyl) Benzene, 4,4',4"-[Benzene-1,3,5-triyltri(ethyn-2,1-diyl)]tritylaldehyde, 2,4,6-tris(4-formylbenzene base)-1,3,5-triazine, 4',4"',4""'-(1,3,5-triazine-2,4,6-triyl)tri(([1,1 '-biphenyl]-4-carbaldehyde)), 2,4,6-tris-(4-formyl-biphenyl-4-yl)-1,3,5-triazine, trimesaldehyde, p-phenylene Diformaldehyde, 1,4-bis(4-formylphen
  • Organic monomer 2 mainly includes: 2,4,6-trimethyl-1,3,5-triazine, 2,4,6-trimethylpyridine-3,5-dicarbonitrile, 2,4,6 - Tricyano-1,3,5-trimethylbenzene, 2,5-dimethylpyrazine, 3,6-dimethylpyridazine, 2,5-dimethylterephthalonitrile.
  • the monomers 1 and 2 mentioned above can be combined freely, and the target COFs can be prepared under the condition that any one of the compounds 3 participates.
  • Another aspect of the present invention relates to the synthesis of hydrazone bonded COFs of general formula 3.
  • Organic monomer 1 mainly includes: 1,3,5-tris(4'-formyl[1,1'-biphenyl]-4-yl)benzene, 1,3,5-tris(p-formylphenyl) Benzene, 4,4',4"-[Benzene-1,3,5-triyltri(ethyn-2,1-diyl)]tritylaldehyde, 2,4,6-tris(4-formylbenzene base)-1,3,5-triazine, 4',4"',4""'-(1,3,5-triazine-2,4,6-triyl)tri(([1,1 '-biphenyl]-4-carbaldehyde)), 2,4,6-tris-(4-formyl-biphenyl-4-yl)-1,3,5-triazine, trimesaldehyde.
  • Organic monomers 2 mainly include: dihydrazine terephthalate, 2,5-diethoxybenzene-1,4-bis(formylhydrazide), 2,5-bis(allyloxy)terephthalic acid Hydrazide, 1,3,5-benzenetricarboxylic hydrazide.
  • Compound 3 mainly includes: benzoic anhydride, benzimidazole, and benzoic acid.
  • the monomers 1 and 2 mentioned above can be combined freely, and the target COFs can be prepared under the condition that any one of the compounds 3 participates.
  • Another aspect of the present invention relates to the synthesis of imine COFs of general formula 4.
  • Organic monomer 1 mainly includes: 1,3,5-tris(p-formylphenyl)benzene, 2,4,6-tris(4-formylphenyl)-1,3,5-triazine, isobenzene Triformaldehyde, 2-hydroxy-1,3,5-benzenetricarbaldehyde, 2,4-dihydroxy-1,3,5-benzenetricarbaldehyde, terephthalaldehyde, 4,4'-biphenyldicarbaldehyde 1, 4-bis(4-formylphenyl)benzene, 1,2-bis(4'-formylphenyl)acetylene.
  • Organic monomers 2 mainly include: 1,3,5-tris(4-aminophenyl)benzene, 2,4,6-tris(4-aminophenyl)-1,3,5-triazine, tris(4 -aminophenyl)amine, p-phenylenediamine, 2,5-diaminopyridine, benzidine, 4,4'-diaminoterphenyl, hydrazine hydrate.
  • Compound 3 mainly includes: benzoic anhydride, benzimidazole, and benzoic acid.
  • the organic monomer 1 and organic monomer 2 mentioned above can be freely combined, and the target COFs can also be prepared under the condition that any one of the compounds 3 participates, wherein the COFs prepared by the organic monomer 2 are hydrazine hydrate are azine-linked Covalent organic framework materials.
  • Another aspect of the present invention relates to the synthesis of keto-enol COFs of general formula 5.
  • Organic monomer 1 is trialdehyde phloroglucinol.
  • Organic monomer 2 mainly includes: p-phenylenediamine, 2,5-diaminopyridine, benzidine, 4,4'-diaminoterphenyl, hydrazine hydrate, 1,3,5-tris(4-aminophenyl ) benzene, 2,4,6-tris(4-aminophenyl)-1,3,5-triazine, tris(4-aminophenyl)amine.
  • the target COFs can also be prepared under the conditions of any one of the above-mentioned organic monomers 1 and 2 in combination with the participation of any one of the compounds 3.
  • the present invention has the following innovations:
  • the solid catalyst selected by the present invention is as substituted or unsubstituted following compounds: benzoic anhydride, 4-trifluoromethylbenzoic anhydride, phenylacetic anhydride, acetic anhydride, trifluoroacetic anhydride, benzoic acid, 4-fluorobenzene Formic acid, 4-bromobenzoic acid, propionic acid, aromatic acid, imidazole, benzimidazole or phenol are the first attempts in this research field, successfully avoiding the participation of organic solvents, reducing the risk of reaction and effectively reducing the risk of reaction , providing a new method for the large-scale production of covalent organic framework materials.
  • Figure 1 Lists the structural formulas of some of the organic monomers used in the synthesis of covalent organic framework materials used in the present invention for exemplary illustration.
  • Figure 2 A schematic diagram illustrating the synthetic route of some covalent organic framework materials prepared by the present invention.
  • Figure 3 Powder diffraction patterns of several representative covalent organic framework materials prepared in the present invention.
  • Figure 4 Infrared spectra of several representative covalent organic framework materials prepared in the present invention.
  • Figure 5 77K nitrogen isothermal adsorption-desorption curves of several representative covalent organic framework materials prepared in the present invention.
  • polyimide-type covalent organic frameworks polyimide-type covalent organic frameworks, vinyl-linked covalent organic framework foams, imine bond-linked covalent organic frameworks, hydrazone-linked covalent organic frameworks, and keto-enol covalent Preparation of Valence Organic Framework Materials Synthesis and related performance characterization tests of six polyimide-type covalent organic framework materials, the specific implementation methods are as follows. On the contrary, the following examples are only for further explanation and invention of the present invention, and should not be considered as limiting the scope of the present invention.
  • Examples 1-14 are preparation methods of polyimide-type covalent organic framework materials
  • examples 15-17 are preparation methods of vinyl covalent organic framework foams
  • examples 18 and 19 are hydrazone bond covalent organic framework materials
  • the preparation method of the method examples 20 and 21 are the preparation methods of imine covalent organic framework materials
  • examples 22 and 23 are the preparation methods of keto-enol covalent organic framework materials, wherein each material is replaced by six kinds Different acid anhydride or aromatic acid regulators can obtain covalent organic framework materials with high crystallinity.
  • NTCDA 1,4,5,8-naphthalene tetracarboxylic dianhydride
  • NAA 1,4,5,8-naphthalene tetracarboxylic acid
  • TAPT 2,4,6-tris(4-aminophenyl)-1,3,5-triazine
  • benzoic anhydride (0.225mmol, 50.9mg)
  • 4-trifluoromethylbenzoic anhydride (0.225mmol, 81.50mg)
  • acetic anhydride 0.5mmol, 51.04mg
  • benzoic acid 0.6mmol, 73.28mg
  • 4-fluorobenzoic acid 0.6mmol, 86.47mg
  • propionic acid 0.6mmol, 44.4mg
  • NTCDA 1,4,5,8-naphthalene tetracarboxylic dianhydride
  • NAA 1,4,5,8-naphthalene tetracarboxylic acid
  • TAPA 4-aminophenylamine
  • benzoic anhydride 0.225mmol, 50.9mg
  • 4-trifluoromethylbenzoic anhydride 0.225mmol, 81.50mg
  • acetic anhydride 0.5mmol, 51.04mg
  • benzoic acid 0.6mmol, 73.28mg
  • 4-fluorobenzoic acid 0.6mmol, 86.47mg
  • propionic acid 0.6mmol, 44.4mg
  • a kind of, other operation is identical with embodiment 1, obtains black powder, and quality is between 51-59mg, and productive rate is 71%-91%.
  • NTCDA 1,4,5,8-naphthalene tetracarboxylic dianhydride
  • NAA 1,4,5,8-naphthalene tetracarboxylic acid
  • TAPB 1,3,5-tris(4-aminophenyl)benzene
  • benzoic anhydride (0.225mmol, 50.9mg)
  • 4-trifluoro Toluic anhydride (0.225mmol, 81.50mg)
  • acetic anhydride 0.5mmol, 51.04mg
  • benzoic acid 0.6mmol, 73.28mg
  • 4-fluorobenzoic acid 0.6mmol, 86.47mg
  • propionic acid 0.6
  • One of mmol, 44.4mg carefully put into a thick-walled glass tube resistant to high temperature and high pressure, vacuumize the powder until the pressure in the
  • NTCDA 1,4,5,8-naphthalene tetracarboxylic dianhydride
  • NAA 1,4,5,8-naphthalene tetracarboxylic acid
  • TABPB 1,4,5,8-naphthalene tetracarboxylic acid
  • NTCDA 1,4,5,8-naphthalene tetracarboxylic dianhydride
  • NAA 1,4,5,8-naphthalene tetracarboxylic acid
  • TTBT 1,4,5,8-naphthalene tetracarboxylic acid
  • benzoic anhydride (0.225mmol, 50.9mg)
  • 4-trifluoromethylbenzoic anhydride (0.225mmol, 81.50mg)
  • acetic anhydride One of (0.5mmol, 51.04mg), benzoic acid (0.6mmol, 73.28mg), 4-fluorobenzoic acid (0.6mmol, 86.47mg) or propionic acid (0.6mmol, 44.4
  • NTCDA 1,4,5,8-naphthalene tetracarboxylic dianhydride
  • NAA 1,4,5,8-naphthalene tetracarboxylic acid
  • TRO 2,7,12-triamino-5H-diindole[1,2-a:1',2'-c]fluorene-5,10,15-trione
  • benzoic anhydride (0.225mmol, 50.9mg)
  • 4-trifluoromethylbenzoic anhydride (0.225mmol, 81.50mg
  • acetic anhydride 0.5mmol, 51.04mg
  • benzoic acid 0.6mmol, 73.28mg
  • 4-fluorobenzoic acid 0.6mmol, 86.47mg
  • propionic acid 0.6mmol, 44.4mg
  • the selected 0.03mmol monomer 2 mainly includes: 2,5-dimethylpyrazine (32.4mg), 3,6-dimethylpyridazine (32.4mg), 2,5-dimethyl One of the base terephthalonitriles (46.9mg), with benzoic anhydride (0.6mmol 135mg) or benzoic acid (1.2mmol 146.5mg) and 0.2mmol of trimesaldehyde (32.4mg), 1,3,5 -Tris(4'-formyl[1,1'-biphenyl]-4-yl)benzene (123.8 mg), 1,3,5-tris(p-formylphenyl)benzene (78.1 mg), 4, 4',4"-[Benzene-1,3,5-triyltris(ethyn-2,1-diyl)]triphenylcarbaldehyde (92.5 mg), 2,4,6-tris(4-formylbenzene base)-1,3,5-
  • 0.04 mmol of monomer 1 is selected, mainly including: 1,3,5-tris(4'-formyl[1,1'-biphenyl]-4-yl)benzene (24.7 mg), 1,3,5-tris(p-formylphenyl)benzene (15.6mg), 2,4,6-tris(4-formylphenyl)-1,3,5-triazine (15.7mg), 4 ',4"',4""'-(1,3,5-triazine-2,4,6-triyl)tri(([1,1'-biphenyl]-4-carbaldehyde))(24.9 mg), one of trimesaldehyde (6.5mg) is packed into a high-temperature and high-pressure-resistant thick-walled glass tube; then weigh 0.06mmol monomer 2 and mainly include: dihydrazine terephthalate (11.7mg), 2 , one of 5-diethoxybenzene-1,4-bis(formy
  • the powder X-ray test reveals that using uniform
  • the powder sample prepared by the catalyzed reaction of benzenetricarbaldehyde and 2,5-diethoxybenzene-1,4-bis(formylhydrazide) under the catalysis of benzoic anhydride has high crystallinity, which is further proved by the infrared spectrum test in Figure 4c
  • the material is a COFs material linked by hydrazone bonds.
  • Figure 5c shows the nitrogen isothermal adsorption-desorption curve of the material at 77K, and its BET surface area is 951 m 2 /g.
  • organic monomer 1 mainly including: p-benzene Diformaldehyde (8mg), 1,4-bis(4-formylphenyl)benzene (17.2mg), 4,4'-biphenyldicarbaldehyde (12.6mg), 1,2-bis(4'-formyl One of phenyl)acetylene (14.1mg), 4,4'-(1,3-butadiyn-1,4-diyl)bisbenzaldehyde (15.5mg) was put into a glass tube, and then weighed 0.06 One mmol of compound 3: one of benzoic anhydride, benzimidazole, and benzoic acid was filled into a glass tube.
  • the tube is evacuated until the pressure inside the tube reaches 0.15mmHg, and then it is taken out from the vacuum line, and the glass tube is sealed by the hydrogen flame generated by the hydrogen oxygen machine to isolate the air. Put the sealed glass tube into an oven at 120°C for 3 days. After the reaction, the solid powder was obtained, soaked in DMF, CH 3 OH, and Soxhlet extracted in tetrahydrofuran solvent to 100°C for 48 hours, so as to obtain a relatively pure COF material with a yield of about 80% to 95%. .
  • organic monomer 1 aldehyde monomers mainly including: 1,3,5-tris(p-formylphenyl)benzene, 2,4,6-tris(4-aldehyde Phenyl)-1,3,5-triazine, trimesaldehyde, 2-hydroxy-1,3,5-benzenetricarbaldehyde, 2,4-dihydroxy-1,3,5-benzenetricarbaldehyde
  • a kind of high-temperature and high-pressure-resistant thick-walled glass tube then weigh 0.06mmol of amine monomers of organic monomer 2, including p-phenylenediamine, 2,5-diaminopyridine, benzidine, 4,4' - one of diaminoterphenyl and hydrazine hydrate is put into a glass tube; and then 0.06 mmol of compound 3: one of benzoic anhydride, benzimidazole and benzoic acid is weighed and put into
  • the tube is evacuated until the pressure inside the tube reaches 0.15mmHg, and then it is taken out from the vacuum line, and the glass tube is sealed by the hydrogen flame generated by the hydrogen oxygen machine to isolate the air. Put the sealed glass tube into an oven at 120°C for 3 days. After the reaction, the solid powder was obtained, soaked in DMF, CH 3 OH, and Soxhlet extracted in tetrahydrofuran solvent to 100°C for 48 hours, so as to obtain a relatively pure COF material with a yield of about 80% to 95%. .
  • the powder X-ray test revealed that the powder sample prepared by the reaction of trimesaldehyde and p-phenylenediamine under the catalysis of benzoic acid has high crystallinity, and the infrared spectrum test of Figure 4d further proves that the material It is a COFs material linked by imine bonds.
  • Figure 5d shows the nitrogen isothermal adsorption-desorption curve of this material at 77K, and its BET surface area is 401m 2 /g.
  • 0.04 mmol of amine monomers of organic monomer 2 are selected, mainly including: 1,3,5-tris(4-aminophenyl)benzene, 2,4,6-tris(4-aminophenyl) base)-1,3,5-triazine and tris(4-aminophenyl)amine into a thick-walled glass tube resistant to high temperature and high pressure; body, including one of terephthalaldehyde, 4,4'-biphenyldicarbaldehyde, 1,4-bis(4-formylphenyl)benzene, 1,2-bis(4'-formylphenyl)acetylene put into a glass tube; then weigh 0.06 mmol of compound 3: one of benzoic anhydride, benzimidazole, and benzoic acid into a glass tube.
  • the tube is evacuated until the pressure inside the tube reaches 0.15mmHg, and then it is taken out from the vacuum line, and the glass tube is sealed by the hydrogen flame generated by the hydrogen oxygen machine to isolate the air. Put the sealed glass tube into an oven at 120°C for 3 days. After the reaction, the solid powder was obtained, soaked in DMF, CH 3 OH, and Soxhlet extracted in tetrahydrofuran solvent to 100°C for 48 hours, so as to obtain a relatively pure COF material with a yield of about 80% to 95%. .
  • the tube is evacuated until the pressure inside the tube reaches 0.15mmHg, and then it is taken out from the vacuum line, and the glass tube is sealed by the hydrogen flame generated by the hydrogen oxygen machine to isolate the air. Put the sealed glass tube into an oven at 120°C for 3 days. After the reaction, the solid powder was obtained, soaked in DMF, CH 3 OH, and Soxhlet extracted in tetrahydrofuran solvent to 100°C for 48 hours, so as to obtain a relatively pure COF material with a yield of about 80% to 95%. .
  • the powder X-ray test reveals that the powder samples prepared by the reaction of 2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde with p-phenylenediamine under the catalysis of benzoic acid have very High crystallinity
  • the infrared spectrum test in Figure 4e further proves that the material is a keto-enol COFs material
  • Figure 5e shows the nitrogen isothermal adsorption-desorption curve of the material at 77K, and its BET surface area is 334m 2 /g.
  • the tube is evacuated until the pressure inside the tube reaches 0.15mmHg, and then it is taken out from the vacuum line, and the glass tube is sealed by the hydrogen flame generated by the hydrogen oxygen machine to isolate the air. Put the sealed glass tube into an oven at 120°C for 3 days. After the reaction, the solid powder was obtained, soaked in DMF, CH 3 OH, and Soxhlet extracted in tetrahydrofuran solvent to 100°C for 48 hours, so as to obtain a relatively pure COF material with a yield of about 80% to 95%. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

涉及乙烯基共价有机框架泡沫、聚酰亚胺类、亚胺类、腙类或酮-烯醇类共价有机框架(COFs)的新合成方法。该方法属于绿色合成策略:在非溶剂条件下,将含甲基的单体和醛基单体在酸酐类或羧酸类化合物的参与下,发生缩合反应制备乙烯基COFs;将多头酸酐或多头羧酸单体和氨基单体在酸酐类或羧酸类化合物的参与下,发生缩合反应制备酰胺类COFs;将醛基单体和氨基单体在酸酐类、咪唑类或羧酸类化合物的参与下,发生缩合反应制备亚胺类COFs。采用该类方法得到的COFs具有较大的比表面积、规则可调的孔道结构和较高的结晶性。该合成方法有效的避免了有机溶剂的使用和反应过程导致高压的危险,适合大规模制备COFs材料。

Description

一种共价有机框架材料的绿色固相合成方法
本申请基于申请号为202111650887.5、申请日为2021年12月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明属于多孔有机材料领域,具体涉及一种共价有机框架材料的绿色固相合成方法。
背景技术
共价有机框架材料(COFs)是由有机单体通过共价键连接的二维(2D)或三维(3D)多孔晶态有机聚合物材料,具有密度低、比表面积大、结构规则稳定、孔径均一、易功能化等优点。通过对COFs材料进行合理的功能化设计,COFs被广泛的应用在气体吸附分离、催化、药物传输、超级电容器等领域。为了满足日益增长的需要,COFs的种类也在不断地丰富,目前已经报道的COFs种类有硼酸酯连接、亚胺键连接、腙键连接、酮-烯醇连接、聚酰亚胺连接、乙烯基连接等。其合成方法主要利用溶剂热制备,需要特殊的有机溶剂和催化剂作为反应介质,该过程既耗时又不环保。且该类溶剂热反应是在密闭的玻璃管或密闭容器中进行,其高温高压的反应条件严重阻碍了COFs的大规模生产。
随着政府对于低能耗、低污染的要求,以及人们环保意识的逐渐增加,发展绿色环保的制备方法大量合成COFs进一步满足COFs材料的实际应用,已经成为COFs材料领域亟待解决的问题。最近,离子液体合成、微波辅助合成和机械化学合成等环境友好的方法已经被应用在COFs的合成中,然而这些方法比较局限,只能实现个别COFs的合成,不具有广泛的普适性,因此,发展一种简单的、普适性高的、绿色无污染的、适合大规模生产的合成方法制备乙烯基连接、酰亚胺连接、硼酸酯连接、硼氧六元环连接、亚胺键连接、吖嗪连接、酮-烯醇连接、腙键连接或三嗪连接的COFs材料是迫切需要的,且具有实际意义。
一方面,本发明通过对COFs的有机单体和合成条件进行调控和筛选、选用适宜的催化剂,从而开发一种非溶剂参与的绿色合成方法制备高结晶性的COFs材料。另一方面,与传统的溶剂热合成相比,非溶剂的参与可以有效地避免高压的操作条件,适合COFs的大规模生产。此外,选用功能化的有机单体作为构筑单元,可以制备具有特殊功能的COFs 材料。
发明内容
本发明的目的是为乙烯基连接、酰亚胺连接、硼酸酯连接、硼氧六元环连接、亚胺键连接、吖嗪连接、酮-烯醇连接、腙键连接或三嗪连接的COFs提供一种新型的、绿色的、无溶剂的合成方法。
本发明的另外一个目的,为乙烯基连接、酰亚胺连接、硼酸酯连接、硼氧六元环连接、亚胺键连接、吖嗪连接、酮-烯醇连接、腙键连接或三嗪连接COFs的合成提供更加便宜的反应单体,实现COFs的大量制备,并制备新型的COFs。
本发明的目的也是为乙烯基连接、酰亚胺连接、硼酸酯连接、硼氧六元环连接、亚胺键连接、吖嗪连接、酮-烯醇连接、腙键连接或三嗪连接COF泡沫的合成提供新方法,合成一系列新型的COFs,并说明泡沫材料在吸附分离中的优势。
本发明的其他目的对于熟悉技术者而言,直接由前述和下述的说明即可清楚。
本发明的第一方面是提供一种共价有机框架材料(COFs)的固相合成方法,其特征在于,所述共价有机框架材料为通过乙烯基连接、酰亚胺连接、硼酸酯连接、硼氧六元环连接、亚胺键连接、吖嗪连接、酮-烯醇连接、腙键连接或三嗪连接的共价有机框架材料,其具体通过如下步骤进行合成:
有机单体1和有机单体2在非溶剂、有催化剂存在的条件下,通过缩合反应获得。
优选的,所述合成方法是原位生长方法,具体为:把催化剂、有机单体1和有机单体2,通过研磨成浆糊状或研磨均匀,涂在任意基底上或直接放进密闭反应容器中中,高温聚合得到共价有机框架材料。
优选的,所述反应在非溶剂条件下进行反应,包括如下步骤:
(1)将有机单体1和有机单体2加入到反应器中,加入催化剂进行反应;
(2)反应结束后,对产物进行纯化;
(3)纯化后的产物在超临界二氧化碳中处理或真空条件下加热处理得到最终产物。
优选的,所述有机单体1为含有羧酸酐官能团的二连接单体、含有羧酸官能团的二连接单体、含醛基官能团的二连接单体或含醛基官能团的三连接单体。
进一步优选的,有机单体1为含苯硼酸的单体、含苯甲醛的单体、2,4,6-三羟基苯-1,3,5-三甲醛、含邻苯二酸酐的单体、含羟基丙烯酮的单体、含苯二酮的单体或二元酸酐单体。 更优选的,所述有机单体1为含苯甲醛的二连接或三连接单体、含苯酸酐的二连接单体,含邻苯二甲酸的二连接单体,其中二连接单体的为直线分子,三连接单体夹角为120°。
优选的,有机单体2为含有氨基官能团的二连接单体、含有氨基官能团的三连接单体、含有氨基官能团的四连接单体、含活性甲基官能团的二连接单体、或含有活性甲基官能团的三连接单体。
进一步优选的,有机单体2为含邻苯二酚的单体、含苯胺的单体、含苯甲酰肼的单体、水合肼、含苯甲腈的单体、含苯乙腈的单体、二甲基吡嗪单体、含苯甲脒的单体、含邻苯二胺的单体或三胺单体;更进一步优选的,所述有机单体2为含苯胺的二连接、三连接或四连接单体、含苯甲酰肼的二连接或三连接单体、水合肼、含活性甲基的二连接或三连接单体,其中二连接单体的为直线分子,三连接单体和四连接单体的夹角为120°。
优选的,所述催化剂为含有酸酐官能团的化合物、含有羧酸官能团的化合物、含有咪唑官能团的化合物或含有羟基官能团的化合物。
进一步优选的,所述催化剂为取代或未取代的如下化合物:苯甲酸酐、4-三氟甲基苯甲酸酐、苯乙酸酐、乙酸酐、三氟乙酸酐、苯甲酸、4-氟苯甲酸、4-溴苯甲酸、丙酸、芳香酸、咪唑、苯并咪唑或苯酚。
本发明优选的方案中,所述有机单体1为对苯二甲醛、1,4-二(4-醛基苯基)苯、4,4'-联苯二甲醛、1,2-二(4'-甲酰基苯基)乙炔、4,4'-(1,3-丁二炔-1,4-二基)双苯甲醛、2,5-二甲氧基-1,4-对苯二甲醛、4,7-二(4-醛基苯基)苯并呋喃、4,7-二(4-醛基苯基)苯并噻吩、4,7-二(4-醛基苯基)苯并硒酚、1,3,5-均苯三甲醛、2-羟基-1,3,5-苯三甲醛、2,4-二羟基-1,3,5-苯三甲醛、2,4,6-三羟基-1,3,5-苯三甲醛、1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯、1,3,5-三(对甲酰基苯基)苯、4,4’,4”-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛、2,4,6-三(4-醛基苯基)-1,3,5-三嗪、4’,4”,4”’-(1,3,5-三嗪-2,4,6-三基)三(([1,1'-联苯]-4-甲醛))、2,4,6-三(4-甲酰基-联苯-4-基)-1,3,5-三嗪中的任意一种。
所述有机单体2为2,5-二甲基吡嗪、四甲基吡嗪、3,6-二甲基哒嗪、2,5-二甲基对苯二腈、2,4,6-三甲基-1,3,5-三嗪、2,4,6-三甲基吡啶、2,4,6,-三甲基-嘧啶、2,4,6,-三甲基-嘧啶-5-甲腈、2,4,6-三甲基吡啶-3,5-二甲腈、2,4,6-三氰基-1,3,5-三甲基苯、2,2'-联吡啶-5,5'-二乙腈中的任意一种。
其中,二连接的有机单体2与三连接的有机单体1组合反应,或二连接的有机单体1与三连接的有机单体2组合反应。
本发明优选的方案中,所述有机单体1为均苯四甲酸二酐(PMDA)、1,4,5,8-萘四甲酸二酐(NTCDA)、均苯四甲酸(PA)、1,4,5,8-萘四甲酸(NTA)、对苯二甲醛、1,4-二(4-醛基苯基)苯、4,4'-联苯二甲醛、1,2-二(4'-甲酰基苯基)乙炔、4,4'-(1,3-丁二炔-1,4-二基)双苯甲醛、2,5-二甲氧基-1,4-对苯二甲醛、均苯三甲醛、2-羟基-1,3,5-苯三甲醛、2,4-二羟基-1,3,5-苯三甲醛、2,4,6-三羟基-1,3,5-苯三甲醛、1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯、1,3,5-三(对甲酰基苯基)苯、4,4',4”-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛、2,4,6-三(4-醛基苯基)-1,3,5-三嗪、4',4”',4””'-(1,3,5-三嗪-2,4,6-三基)三(([1,1'-联苯]-4-甲醛))或2,4,6-三-(4-甲酰基-联苯-4-基)-1,3,5-三嗪中任意一种。
所述有机单体2为对苯二胺、2,5-二氨基吡啶、联苯胺、4,4'-二氨基三连苯、水合肼、对苯二酸二肼、2,5-二乙氧基苯-1,4-二(甲酰肼)、2,5-双(烯丙氧基)对苯二甲酰肼、1,3,5-三(4-氨苯基)苯(TAPB)、2,4,6-三(4-氨基苯基)-1,3,5-三嗪(TAPT)、三(4-氨基苯基胺)(TAPA)、5"-(4'-氨基[1,1'-联苯基]-4-基)[1,1':4',1”:3”,1”':4”',1””-五联苯]-4,4”'-二胺(TABPB)、4',4”',4””'-(1,3,5-三嗪-2,4,6-三基)三(([[1,1'-联苯]-4-胺))(TTBT)、2,7,12-三氨基-5H-二吲哚[1,2-a:1',2’-c]芴-5,10,15-三酮(TRO)、2,4,6-三(3-羟基-4-氨基苯基)-1,3,5-三嗪、1,3,5-苯三甲酰肼、N,N,N',N'-四(对氨基苯基)对苯二胺或四-(4-氨基苯)乙烯中任意一种。
其中,二连接的有机单体2与三连接有机单体1组合反应,或二连接的有机单体1与三连接或四连接的有机单体2组合反应。
优选的,共价有机框架材料(COFs)为聚酰亚胺型共价有机框架、乙烯基连接共价有机框架泡沫、亚胺键连接共价有机框架、吖嗪连接共价有机框架、腙键连接共价有机框架和酮-烯醇类共价有机框架材料。
优选的,共价有机框架材料的形态为块状、圆柱状或泡沫状。
优选的,所述共价有机框架材料的孔径为0.6-4.9nm,更优选的为1.8-4.9nm。
优选的,在反应体系中,有机单体1和有机单体2的摩尔比为1:4至4:1,更优选为1:1至1:2。
优选的,在反应体系中,催化剂和有机单体1的摩尔比为1:5至5:1,更优选为1:3至3:1。
优选的,反应体系的压强为0-1atm。
优选的,合成温度为20-200℃,更有选为150-250℃,尤其优选为180-200℃。
优选的,反应时间3-7天,更优选为5天。
优选的,所述密闭反应容器为耐高温高压的Pyrex管、需火焰封管的安瓿瓶、带有聚四氟乙烯衬里的钢制高压反应釜中的一种。
优选地,所述构筑单体和一种低熔点的有机化合物按照一定当量比放入密闭容器中,通过抽真空至容器内压力达到0.15mmHg,持续半个小时,通过火焰封管,将密封后的反应容器放入200℃烘箱中,持续3-5天,反应完毕后,将得到的固体粉末用DMF洗涤以除去未反应单体,再用CH3OH洗涤以除去过量加入的调节剂,随后将所得固体粉末在无水四氢呋喃溶剂中索氏提取12h,以除去孔道中未反应的小分子,最后将得到的固体粉末在真空高温烘箱中100℃的温度条件下加热干燥12h,以得到高结晶性的共价有机框架材料。
优选的,反应体系无需加入有机溶剂,属于固相反应体系。
另一方面,本发明提供一种COFs材料的简单的、绿色的合成方法,首先选用低熔点的苯甲酸酐、苯甲酸等作为催化剂,由2,5-二甲基吡嗪单体或2,4,6-三甲基-1,3,5-三嗪与三连接的醛(包括:1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯、1,3,5-三(对甲酰基苯基)苯、4,4',4”-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛、2,4,6-三(4-醛基苯基)-1,3,5-三嗪、4',4”',4””'-(1,3,5-三嗪-2,4,6-三基)三(([1,1'-联苯]-4-甲醛))、2,4,6-三-(4-甲酰基-联苯-4-基)-1,3,5-三嗪、均苯三甲醛)或二连接的醛(包括:对苯二甲醛、1,4-二(4-醛基苯基)苯、4,4'-联苯二甲醛、1,2-二(4'-甲酰基苯基)乙炔、4,4'-(1,3-丁二炔-1,4-二基)双苯甲醛、2,5-二甲氧基-1,4-对苯二甲醛、4,7-二(4-醛基苯基)苯并呋喃、4,7-二(4-醛基苯基)苯并噻吩、4,7-二(4-醛基苯基)苯并硒酚)在无溶剂条件下反应的得到产物。由于苯甲酸酐较低的熔点(43℃)利于COFs塑形,结合2,5-二甲基吡嗪或2,4,6-三甲基-1,3,5-三嗪单体低熔点的特性,与三醛单体在高温下反应,可以制备乙烯基COF泡沫材料。
本发明的绿色无溶剂的合成方法,适用于聚酰亚胺型共价有机框架、乙烯基连接共价有机框架泡沫、亚胺键连接共价有机框架、吖嗪连接共价有机框架、腙键连接共价有机框架和酮-烯醇类共价有机框架材料的制备。在高真空度的密闭反应容器中,两种构筑单元在另一种低熔点的化合物辅助下,高温脱水缩合,制备孔径均一、高结晶度、高比表面积的共价有机框架材料。
本发明的另一方面是有关通式1的聚酰亚胺类COFs的合成。
Figure PCTCN2022138498-appb-000001
其中,有机单体1主要包括含有酸酐官能团的二连接单体,如:均苯四甲酸二酐(PMDA),1,4,5,8-萘四甲酸二酐(NTCDA)等;或者含有羧酸官能团的四连接单体,如均苯四甲酸(PA),1,4,5,8-萘四甲酸(NTA)等。
有机单体2主要包括含有氨基官能团的三连接单体,如:1,3,5-三(4-氨苯基)苯(TAPB)、2,4,6-三(4-氨基苯基)-1,3,5-三嗪(TAPT)、三(4-氨基苯基胺)(TAPA)、5"-(4'-氨基[1,1'-联苯基]-4-基)[1,1':4',1”:3”,1”':4”',1””-五联苯]-4,4”'-二胺(TABPB)、4',4”',4””'-(1,3,5-三嗪-2,4,6-三基)三(([[1,1'-联苯]-4-胺))(TTBT)、2,7,12-三氨基-5H-二吲哚[1,2-a:1',2’-c]芴-5,10,15-三酮(TRO)、2,4,6-三(3-羟基-4-氨基苯基)-1,3,5-三嗪、N,N,N',N'-四(对氨基苯基)对苯二胺、四-(4-氨基苯)乙烯等。
化合物3主要包括含有酸酐官能团的化合物,如苯甲酸酐(BZDA)、4-三氟甲基苯甲酸酐(TFBA)、乙酸酐(AA)等;或者含有羧酸官能团的化合物,如苯甲酸(BA)、4-氟苯甲酸(FBA)、丙酸(PA)等。
在上述提到的有机单体1和有机单体2可以随意组合,在化合物3中任意一个参与的条件下均可制备目标COFs。
本发明的另一方面是有关通式2的乙烯基类COFs的合成
Figure PCTCN2022138498-appb-000002
有机单体1主要包括:1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯、1,3,5-三(对甲酰基苯基)苯、4,4',4”-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛、2,4,6-三(4-醛基苯基)-1,3,5-三嗪、4',4”',4””'-(1,3,5-三嗪-2,4,6-三基)三(([1,1'-联苯]-4-甲醛))、2,4,6-三-(4-甲酰基-联苯-4-基)-1,3,5-三嗪、均苯三甲醛、对苯二甲醛、1,4-二(4-醛基苯基)苯、4,4'-联苯二甲醛、1,2-二(4'-甲酰基苯基)乙炔、4,4'-(1,3-丁二炔-1,4-二基)双苯甲醛、2,5-二甲氧基-1,4-对苯二甲醛、4,7-二(4-醛基苯基)苯并呋喃、4,7-二(4-醛基苯基)苯并噻吩、4,7-二(4-醛基苯基)苯并硒酚。
有机单体2主要包括:2,4,6-三甲基-1,3,5-三嗪、2,4,6-三甲基吡啶-3,5-二甲腈、2,4,6-三氰基-1,3,5-三甲基苯、2,5-二甲基吡嗪、3,6-二甲基哒嗪、2,5-二甲基对苯二腈。
在上述提到的单体1和单体2可以随意组合,在化合物3中任意一个参与的条件下均可制备目标COFs。
本发明的另一方面是有关通式3的腙键类COFs的合成。
Figure PCTCN2022138498-appb-000003
有机单体1主要包括:1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯、1,3,5-三(对甲酰基苯基)苯、4,4',4”-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛、2,4,6-三(4-醛基苯基)-1,3,5-三嗪、4',4”',4””'-(1,3,5-三嗪-2,4,6-三基)三(([1,1'-联苯]-4-甲醛))、2,4,6-三-(4-甲酰基-联苯-4-基)-1,3,5-三嗪、均苯三甲醛。
有机单体2主要包括:对苯二酸二肼、2,5-二乙氧基苯-1,4-二(甲酰肼)、2,5-双(烯丙氧基)对苯二甲酰肼、1,3,5-苯三甲酰肼。
化合物3主要包括:苯甲酸酐、苯并咪唑、苯甲酸。
在上述提到的单体1和单体2可以随意组合,在化合物3中任意一个参与的条件下均可制备目标COFs。
本发明的另一方面是有关通式4的亚胺类COFs的合成。
Figure PCTCN2022138498-appb-000004
有机单体1主要包括:1,3,5-三(对甲酰基苯基)苯、2,4,6-三(4-醛基苯基)-1,3,5-三嗪、均苯三甲醛、2-羟基-1,3,5-苯三甲醛、2,4-二羟基-1,3,5-苯三甲醛、对苯二甲醛、4,4'-联苯二甲醛1,4-二(4-醛基苯基)苯、1,2-二(4'-甲酰基苯基)乙炔。
有机单体2主要包括:1,3,5-三(4-氨基苯基)苯、2,4,6-三(4-氨基苯基)-1,3,5-三嗪、三(4-氨基苯基)胺、对苯二胺、2,5-二氨基吡啶、联苯胺、4,4'-二氨基三连苯、水合肼。
化合物3主要包括:苯甲酸酐、苯并咪唑、苯甲酸。
上述提到的有机单体1和有机单体2可以随意组合,在化合物3中任意一个参与的条件下也可制备目标COFs,其中有机单体2为水合肼所制备的COFs为吖嗪连接的共价有机框架材料。
本发明的另一方面是有关通式5的酮-烯醇类COFs的合成。
Figure PCTCN2022138498-appb-000005
有机单体1为三醛基间苯三酚。
有机单体2主要包括:对苯二胺、2,5-二氨基吡啶、联苯胺、4,4'-二氨基三连苯、水合肼、1,3,5-三(4-氨基苯基)苯、2,4,6-三(4-氨基苯基)-1,3,5-三嗪、三(4-氨基苯基)胺。
在上述提到的有机单体1与有机单体2中的任意一种单体组合,在化合物3中任意一个参与的条件下也可制备目标COFs。
与现有技术相比,本发明有以下创新之处:
1.优化了现有的乙烯基连接、酰亚胺连接、硼酸酯连接、硼氧六元环连接、亚胺键连接、吖嗪连接、酮-烯醇连接、腙键连接或三嗪连接的共价有机框架材料的合成方法,拓展了反应单体,降低的材料成本,通过无溶剂法的合成避免了高毒性催化剂、溶剂的使用,降低了能耗,提高了共价有机框架的结晶性和比表面积具备极佳的普适性。
2.优化了现有的乙烯基连接、酰亚胺连接、硼酸酯连接、硼氧六元环连接、亚胺键连接、吖嗪连接、酮-烯醇连接、腙键连接或三嗪连接的共价有机框架材料的合成方法,通过无溶剂法的合成避免了高毒性催化剂、溶剂的使用,降低了筛选反应条件的时间。得益于固相反应易成型的优点,可以一步制备高结晶性的共价有机框架泡沫。
3.本发明选用的固催化剂如取代或未取代的如下化合物:苯甲酸酐、4-三氟甲基苯甲酸酐、苯乙酸酐、乙酸酐、三氟乙酸酐、苯甲酸、4-氟苯甲酸、4-溴苯甲酸、丙酸、芳香酸、咪唑、苯并咪唑或苯酚等为本研究领域的首次尝试,成功的避免了有机溶剂的参与,降低了反应的有效地降低了反应的风险,为共价有机框架材料的大规模生产提供了新方法。
附图说明
图1:列举了部分本发明所用到的合成共价有机框架材料所用的有机构单体的结构式,进行示例性说明。
图2:列举了部分本发明所制备的共价有机框架材料的合成路线示意图。
图3:本发明所制备的几种代表性共价有机框架材料的粉末衍射图。
图4:本发明所制备的几种代表性共价有机框架材料的红外光谱图。
图5:本发明所制备的几种代表性共价有机框架材料的77K氮气等温吸脱附曲线图。
注:由于所制备的共价有机框架材料的种类和数量较多,每种共价有机框架只提供一个材料的表征数据图。
具体实施方式
下面结合实施例和附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。除非本申请上下文中另有其他说明,否则本申请中所用技术术语及缩写均具有本领域技术人员所知的常规含义;除非另有说明,否则下述实施例中所用原料化合物均为商购获得。
按照本发明所提到的,聚酰亚胺型共价有机框架、乙烯基连接共价有机框架泡沫、亚胺键连接共价有机框架、腙键连接共价有机框架和酮-烯醇类共价有机框架材料的制备六种聚酰亚胺型共价有机框架材料的合成及相关性能表征测试,其具体实施方式如下。相反,下列实施例仅用于对本发明进一步解释和发明,而不应视为限制本发明的范围。
实施例1~14为聚酰亚胺型共价有机框架材料的制备方法,实施例15~17为乙烯基共价有机框架泡沫的制备方法,实施例18和19为腙键共价有机框架材料的制备方法,实施例20和21为亚胺型共价有机框架材料的制备方法,实施例22和23为酮-烯醇类共价有机框架材料的制备方法,其中每一种材料更换六种不同的酸酐类或芳酸类调节剂均可以得到结晶性高的共价有机框架材料。
实施例1
如图1所示,称取1,4,5,8-萘四甲酸二酐(NTCDA)(0.15mmol,40.23mg)或1,4,5,8-萘四甲酸(NTA)(0.15mmol,45.63mg)中的一种,2,4,6-三(4-氨基苯基)-1,3,5-三嗪(TAPT)(0.10mmol,35.4mg)、以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一种,小心地装入耐高温 高压的厚壁玻璃管中。抽真空至管内压力达到0.15mmHg后从真空线上取下,通过氢氧机产生的火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入250℃烘箱中反应5天。反应后得到土黄色粉末的固体粉末,将其在DMF,CH 3OH中浸泡后,在四氢呋喃溶剂中索氏提取持续48h,从而得到土黄色粉末的粉末,质量在51-59mg之间,产率约为74%-84%。如图3a所示,粉末X-射线测试揭示,利用1,4,5,8-萘四甲酸二酐与2,4,6-三(4-氨基苯基)-1,3,5-三嗪在苯甲酸酐催化反应下所制备的粉末样品具有很高的结晶性,图4a红外光谱测试进一步证明该材料是酰亚胺连接COFs材料,图5a为该材料在77K条件下氮气等温吸脱附曲线,其BET表面积为894m 2/g。
实施例2
如图1所示,称取1,4,5,8-萘四甲酸二酐(NTCDA)(0.15mmol,40.23mg)或1,4,5,8-萘四甲酸(NTA)(0.15mmol,45.63mg)中的一种,三(4-氨基苯基胺)(TAPA)(0.10mmol,29.0mg)、以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一种,其他操作与实施例1相同,得到黑色粉末,质量在51-59mg之间,产率为71%-91%。
实施例3
如图1所示,称取1,4,5,8-萘四甲酸二酐(NTCDA)(0.2mmol,,53.6mg)或1,4,5,8-萘四甲酸(NTA)(0.2mmol,60.8mg)中的一种,N,N,N',N'-四(对氨基苯基)对苯二胺(0.1mmol,47.2mg)或四-(4-氨基苯)乙烯(0.1mmol,39.2mg)中的一种,以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.8mmol,97.6mg)、4-氟苯甲酸(0.8mmol,115.29mg)或丙酸(0.8mmol,59.2mg)中的一种,其他操作与实施例1相同,得到的棕色粉末,产率约为90%
实施例4
如图1所示,称取均苯四甲酸二酐(PMDA)(0.15mmol,32.7mg)或均苯四甲酸(PA)(0.15mmol,38.1mg)中的一种,1,3,5-三(4-氨苯基)苯(TAPB)(0.10mmol,35.1mg),以及苯甲酸酐(0.3mmol,67.8mg)、4-三氟甲基苯甲酸酐(0.3mmol,108.67mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一种,小心地装入耐高温高压的厚壁玻璃管中。抽真空至 管内压力达到0.15mmHg后从真空线上取下,通过氢氧机产生的火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入200℃烘箱中反应5天。反应后得到橙黄色的固体粉末,将其在DMF,CH 3OH中浸泡后,在四氢呋喃溶剂中索氏提取持续48h,从而得到橙黄色的粉末,质量在44-52mg之间,产率约在77%-95%之间。
实施例5:
如图1所示,称取均苯四甲酸二酐(PMDA)(0.15mmol,32.7mg)或均苯四甲酸(PA)(0.15mmol,38.1mg)中的一种,2,4,6-三(4-氨基苯基)-1,3,5-三嗪(TAPT)(0.10mmol,35.4mg),以及苯甲酸酐(0.3mmol,67.8mg)、4-三氟甲基苯甲酸酐(0.3mmol,108.67mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一种,其他操作与实施例4相同,得到淡黄色的固体粉末,质量在42-59mg之间,产率约在75%-86%之间。
实施例6
如图1所示,称取均苯四甲酸二酐(PMDA)(0.15mmol,32.7mg)或均苯四甲酸(PA)(0.15mmol,38.1mg)中的一种,三(4-氨基苯基胺)(TAPA)(0.10mmol,29.0mg)或2,4,6-三(3-羟基-4-氨基苯基)-1,3,5-三嗪(0.10mmol,40.2mg),以及苯甲酸酐(0.3mmol,67.8mg)、4-三氟甲基苯甲酸酐(0.3mmol,108.67mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一种,其他操作与实施例4相同,得到紫黑色的固体粉末,质量在42-52mg之间,产率约在75%-91%之间。
实施例7
如图1所示,称取均苯四甲酸二酐(PMDA)(0.2mmol,43.6mg)或均苯四甲酸(PA)(0.2mmol,50.8mg)中的一种,N,N,N',N'-四(对氨基苯基)对苯二胺(0.1mmol,47.2mg)或四-(4-氨基苯)乙烯(0.1mmol,39.2mg)中的一种,以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.8mmol,97.6mg)、4-氟苯甲酸(0.8mmol,115.29mg)或丙酸(0.8mmol,59.2mg)中的一种,其他操作与实施例4相同,得到的棕色粉末,产率约为90%。
实施例8
如图1所示,称取1,4,5,8-萘四甲酸二酐(NTCDA)(0.15mmol,40.23mg)或1,4,5,8-萘四甲酸(NTA)(0.15mmol,45.63mg)中的一种,1,3,5-三(4-氨苯基)苯(TAPB)(0.10mmol,35.1mg),以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一种,小心地装入耐高温高压的厚壁玻璃管中,将该粉末抽真空至管内压力达到0.15mmHg后从真空线上取下,通过氢氧机产生的火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入250℃烘箱中反应3天。反应后得到黑色固体粉末,将其在DMF,CH 3OH中浸泡后,在四氢呋喃溶剂中索氏提取持续48h,从而得到的黑色粉末,质量在43-54mg之间,产率约为68%-83%之间。
实施例9
如图1所示,称取均苯四甲酸二酐(PMDA)(0.15mmol,32.7mg)或均苯四甲酸(PA)(0.15mmol,38.1mg)中的一种,5"-(4'-氨基[1,1'-联苯基]-4-基)[1,1':4',1”:3”,1”':4”',1””-五联苯]-4,4”'-二胺(TABPB)(0.1mmol,57.9mg)、以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一种,小心地装入耐高温高压的厚壁玻璃管中,将该粉末抽真空至管内压力达到0.15mmHg后从真空线上取下,通过氢氧机产生的火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入250℃烘箱中反应3天。反应后得到黑色固体粉末,将其在DMF,CH 3OH中浸泡后,在四氢呋喃溶剂中索氏提取持续48h,从而得到的黑色粉末,质量为46-53mg左右,产率约为67%-76%之间。
实施例10:
如图1所示,称取均苯四甲酸二酐(PMDA)(0.15mmol,32.7mg)或均苯四甲酸(PA)(0.15mmol,38.1mg)中的一种,4',4”',4””'-(1,3,5-三嗪-2,4,6-三基)三(([[1,1'-联苯]-4-胺))(TTBT)(0.1mmol,58.3mg)、以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一种,其他操作与实施例9相同,得到的深黄色粉末,质量为52-68mg左右,产率约为75%-83%之间。
实施例11:
如图1所示,称取1,4,5,8-萘四甲酸二酐(NTCDA)(0.15mmol,40.23mg)或1,4,5,8-萘四甲酸(NTA)(0.15mmol,45.63mg)中的一种,5"-(4'-氨基[1,1'-联苯基]-4-基)[1,1':4',1”:3”,1”':4”',1””-五联苯]-4,4”'-二胺(TABPB)(0.1mmol,57.9mg),以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一种,其他操作与实施例9相同,得到的黑色粉末,质量为43-59mg左右,产率约为63%-79%之间。
实施例12:
如图1所示,称取1,4,5,8-萘四甲酸二酐(NTCDA)(0.15mmol,40.23mg)或1,4,5,8-萘四甲酸(NTA)(0.15mmol,45.63mg)中的一种,4',4”',4””'-(1,3,5-三嗪-2,4,6-三基)三(([[1,1'-联苯]-4-胺))(TTBT)(0.1mmol,58.3mg),以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一种,其他操作与实施例9相同,得到的黑色粉末,质量为52-63mg左右,产率约为75%-81%之间。
实施例13:
如图1所示,称取均苯四甲酸二酐(PMDA)(0.15mmol,32.7mg)或均苯四甲酸(PA)(0.15mmol,38.1mg)中的一种,2,7,12-三氨基-5H-二吲哚[1,2-a:1',2’-c]芴-5,10,15-三酮(TRO)(0.1mmol,42.9mg),以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一种,其他操作与实施例9相同,得到的棕色粉末,质量为47-52mg左右,产率约为63%-71%之间。
实施例14:
如图1所示,称取1,4,5,8-萘四甲酸二酐(NTCDA)(0.15mmol,40.23mg)或1,4,5,8-萘四甲酸(NTA)(0.15mmol,45.63mg)中的一种,2,7,12-三氨基-5H-二吲哚[1,2-a:1',2’-c]芴-5,10,15-三酮(TRO)(0.1mmol,42.9mg),以及苯甲酸酐(0.225mmol,50.9mg)、4-三氟甲基苯甲酸酐(0.225mmol,81.50mg)、乙酸酐(0.5mmol,51.04mg)、苯甲酸(0.6mmol,73.28mg)、4-氟苯甲酸(0.6mmol,86.47mg)或丙酸(0.6mmol,44.4mg)中的一 种,其他操作与实施例9相同,得到的棕色粉末,质量为43-55mg左右,产率约为61%-73%之间。
实施例15:
如2式所示,选取0.2mmol的2,4,6-三甲基吡啶-3,5-二甲腈(24.2mg)、2,4,6-三氰基-1,3,5-三甲基苯(39.0mg)、2,4,6-三甲基-1,3,5-三嗪(24.6mg)中的一种,与苯甲酸酐(0.6mmol 135mg)或苯甲酸(0.12mmol 146.5mg)以及0.2mmol的均苯三甲醛(32.4mg)、1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯(123.8mg)、1,3,5-三(对甲酰基苯基)苯(78.1mg)、4,4',4”-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛(92.5mg)、2,4,6-三(4-醛基苯基)-1,3,5-三嗪(78.7mg)、2,4,6-三-(4-甲酰基-联苯-4-基)-1,3,5-三嗪(124.3mg)中的一种装入耐高温高压的厚壁玻璃管中,将该管抽真空至管内压力达到0.15mmHg后从真空线上取出,通过氢氧机产生的火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入180℃烘箱中反应5天。反应后得到固体粉末,将其在DMF,CH 3OH中浸泡后,在四氢呋喃溶剂中索氏提取至100℃持续48h,从而得到乳白色到橙黄色不等的整块COF状材料,质量约为52mg,产率约在85%到95%之间。如图3b所示,粉末X-射线测试揭示,利用2,4,6-三甲基-1,3,5-三嗪与均苯三醛在苯甲酸酐催化反应下所制备的粉末样品具有很高的结晶性,图4b红外光谱测试进一步证明该材料是碳碳双键连接的COFs材料,图5b为该材料在77K条件下氮气等温吸脱附曲线,其BET表面积为536m 2/g。
实施例16:
如2式所示,选取0.02mmol的2,4,6-三甲基吡啶-3,5-二甲腈(24.2mg)、2,4,6-三氰基-1,3,5-三甲基苯(39.0mg)、2,4,6-三甲基-1,3,5-三嗪(24.6mg)中的一种,与苯甲酸酐(0.6mmol 135mg)或苯甲酸(1.2mmol 146.5mg)以及0.3mmol的对苯二甲醛(40.2mg)、1,4-二(4-醛基苯基)苯(85.9mg)、4,4'-联苯二甲醛(63mg)、1,2-二(4'-甲酰基苯基)乙炔(70.3mg)、4,4'-(1,3-丁二炔-1,4-二基)双苯甲醛(77.5mg)、2,5-二甲氧基苯-1,4-二甲醛(58.2mg)、4,7-二(4-醛基苯基)苯并呋喃(97.8mg)、4,7-二(4-醛基苯基)苯并噻吩(102.7mmg)、4,7-二(4-醛基苯基)苯并硒酚(116.7mg),中的一种装入耐高温高压的厚壁玻璃管中,将该管抽真空至管内压力达到0.15mmHg后从真空线上取出,通过氢氧机产生的火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入 180℃烘箱中反应5天。反应后得到固体粉末,将其在DMF,CH 3OH中浸泡后,在四氢呋喃溶剂中索氏提取至100℃持续48h,从而得到乳白色,黄色和棕红色不等的整块COF状材料,产率约在83%到95%之间。
实施例17:
如2式所示,选取0.03mmol的单体2主要包括:2,5-二甲基吡嗪(32.4mg)、3,6-二甲基哒嗪(32.4mg)、2,5-二甲基对苯二腈(46.9mg)中的一种,与苯甲酸酐(0.6mmol 135mg)或苯甲酸(1.2mmol 146.5mg)以及0.2mmol的均苯三甲醛(32.4mg)、1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯(123.8mg)、1,3,5-三(对甲酰基苯基)苯(78.1mg)、4,4',4”-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛(92.5mg)、2,4,6-三(4-醛基苯基)-1,3,5-三嗪(78.7mg)、2,4,6-三-(4-甲酰基-联苯-4-基)-1,3,5-三嗪(124.3mg)中的一种装入耐高温高压的厚壁玻璃管中,将该管抽真空至管内压力达到0.15mmHg后从真空线上取出,通过氢氧机产生的火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入200℃烘箱中反应5天。反应后得到橙黄色的固体粉末,将其在DMF,CH 3OH中浸泡后,在四氢呋喃溶剂中索氏提取至100℃持续48h,从而得到乳白色,黄色和棕红色不等的的整块COF状材料,产率约在80%到95%之间。
实施例18:
如3式所示,选取0.04mmol的单体1,主要包括:1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯(24.7mg)、1,3,5-三(对甲酰基苯基)苯(15.6mg)、2,4,6-三(4-醛基苯基)-1,3,5-三嗪(15.7mg)、4',4”',4””'-(1,3,5-三嗪-2,4,6-三基)三(([1,1'-联苯]-4-甲醛))(24.9mg)、均苯三甲醛(6.5mg)中的一种装入耐高温高压的厚壁玻璃管中;再称取0.06mmol单体2主要包括:对苯二酸二肼(11.7mg)、2,5-二乙氧基苯-1,4-二(甲酰肼)(16.9mg)、2,5-双(烯丙氧基)对苯二甲酰肼(18.4mg)中的一种装入玻璃管;再称取0.06mmol的化合物3:苯甲酸酐、苯并咪唑、苯甲酸中的一种装入玻璃管。将该管抽真空至管内压力达到0.15mmHg后从真空线上取出,通过氢氧机产生的氢气火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入120℃烘箱中反应3天。反应后得到固体粉末,将其在DMF,CH 3OH中浸泡后, 在四氢呋喃溶剂中索氏提取至100℃持续48h,从而得到比较纯净的COF材料,产率约在80%到95%之间。如图3c所示,粉末X-射线测试揭示,利用均苯三甲醛与2,5-二乙氧基苯-1,4-二(甲酰肼)在苯甲酸酐催化反应下所制备的粉末样品具有很高的结晶性,图4c红外光谱测试进一步证明该材料是腙键连接的COFs材料,图5c为该材料在77K条件下氮气等温吸脱附曲线,其BET表面积为951m 2/g。
实施例19:
如3式所示,选取0.04mmol的1,3,5-苯三甲酰肼(10.1mg)装入耐高温高压的厚壁玻璃管中;再称取0.06mmol有机单体1主要包括:对苯二甲醛(8mg)、1,4-二(4-醛基苯基)苯(17.2mg)、4,4'-联苯二甲醛(12.6mg)、1,2-二(4'-甲酰基苯基)乙炔(14.1mg)、4,4'-(1,3-丁二炔-1,4-二基)双苯甲醛(15.5mg)中的一种装入玻璃管,再称取0.06mmol的化合物3:苯甲酸酐、苯并咪唑、苯甲酸中的一种装入玻璃管。将该管抽真空至管内压力达到0.15mmHg后从真空线上取出,通过氢氧机产生的氢气火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入120℃烘箱中反应3天。反应后得到固体粉末,将其在DMF,CH 3OH中浸泡后,在四氢呋喃溶剂中索氏提取至100℃持续48h,从而得到比较纯净的COF材料,产率约在80%到95%之间。
实施例20:
如4式所示,选取0.04mmol有机单体1的醛类单体,主要包括:1,3,5-三(对甲酰基苯基)苯、2,4,6-三(4-醛基苯基)-1,3,5-三嗪,均苯三甲醛、2-羟基-1,3,5-苯三甲醛、2,4-二羟基-1,3,5-苯三甲醛中的一种装入耐高温高压的厚壁玻璃管中;再称取0.06mmol有机单体2的胺类单体,包括对苯二胺、2,5-二氨基吡啶、联苯胺、4,4'-二氨基三连苯,水合肼中的一种装入玻璃管;再称取0.06mmol的化合物3:苯甲酸酐、苯并咪唑、苯甲酸中的一种装入玻璃管。将该管抽真空至管内压力达到0.15mmHg后从真空线上取出,通过氢氧机产生的氢气火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入120℃烘箱中反应3天。反应后得到固体粉末,将其在DMF,CH 3OH中浸泡后,在四氢呋喃溶剂中索氏提取至100℃持续48h,从而得到比较纯净的COF材料,产率约在80%到95%之间。如图3d所示,粉末X-射线测试揭示,利用均苯三甲醛与对苯二胺在苯甲酸催化反应下所制备的 粉末样品具有很高的结晶性,图4d红外光谱测试进一步证明该材料是亚胺键连接的COFs材料,图5d为该材料在77K条件下氮气等温吸脱附曲线,其BET表面积为401m 2/g。
实施例21:
如4式所示,选取0.04mmol有机单体2的胺类单体,主要包括:1,3,5-三(4-氨基苯基)苯、2,4,6-三(4-氨基苯基)-1,3,5-三嗪、三(4-氨基苯基)胺中的一种装入耐高温高压的厚壁玻璃管中;再称取0.06mmol有机单体1的醛类单体,包括对苯二甲醛、4,4'-联苯二甲醛1,4-二(4-醛基苯基)苯、1,2-二(4'-甲酰基苯基)乙炔中的一种装入玻璃管;再称取0.06mmol的化合物3:苯甲酸酐、苯并咪唑、苯甲酸中的一种装入玻璃管。将该管抽真空至管内压力达到0.15mmHg后从真空线上取出,通过氢氧机产生的氢气火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入120℃烘箱中反应3天。反应后得到固体粉末,将其在DMF,CH 3OH中浸泡后,在四氢呋喃溶剂中索氏提取至100℃持续48h,从而得到比较纯净的COF材料,产率约在80%到95%之间。
实施例22:
如5式所示,选取0.04mmol的2,4,6-三羟基-1,3,5-苯三甲醛(8.4mg)装入耐高温高压的厚壁玻璃管中;再称取0.06mmol有机单体2包括对苯二胺、2,5-二氨基吡啶、联苯胺、4,4'-二氨基三连苯、水合肼中的一种装入玻璃管;再称取0.06mmol的化合物3:苯甲酸酐、苯并咪唑、苯甲酸中的一种装入玻璃管。将该管抽真空至管内压力达到0.15mmHg后从真空线上取出,通过氢氧机产生的氢气火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入120℃烘箱中反应3天。反应后得到固体粉末,将其在DMF,CH 3OH中浸泡后,在四氢呋喃溶剂中索氏提取至100℃持续48h,从而得到比较纯净的COF材料,产率约在80%到95%之间。如图3e所示,粉末X-射线测试揭示,利用2,4,6-三羟基-1,3,5-苯三甲醛与对苯二胺在苯甲酸催化反应下所制备的粉末样品具有很高的结晶性,图4e红外光谱测试进一步证明该材料是酮-烯醇类COFs材料,图5e为该材料在77K条件下氮气等温吸脱附曲线,其BET表面积为334m 2/g。
实施例23:
如5式所示,选取0.04mmol的2,4,6-三羟基-1,3,5-苯三甲醛(8.4mg)装入耐高温高压的厚壁玻璃管中;再称取0.06mmol单体2包括1,3,5-三(4-氨基苯基)苯、2,4,6-三(4-氨基苯基)-1,3,5-三嗪、三(4-氨基苯基)胺中的一种装入玻璃管;再称取0.06mmol的化合物3:苯甲酸酐、苯并咪唑、苯甲酸中的一种装入玻璃管。将该管抽真空至管内压力达到0.15mmHg后从真空线上取出,通过氢氧机产生的氢气火焰将玻璃管封好,以隔绝空气。将密封好的玻璃管放入120℃烘箱中反应3天。反应后得到固体粉末,将其在DMF,CH 3OH中浸泡后,在四氢呋喃溶剂中索氏提取至100℃持续48h,从而得到比较纯净的COF材料,产率约在80%到95%之间。
最后应说明的是:以上所述仅为本发明的优选实施例,并不用于对本发明做任何形式上的限制。任何熟悉本领域的研究及技术人员,在不脱离本发明的技术方案范围的情况下,利用上述内容对本发明的技术方案做出的非创新性变动和修改,例如仅更改原料试剂添加比例、反应时长和操作流程等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种共价有机框架材料(COFs)的固相合成方法,其特征在于,所述共价有机框架材料为通过乙烯基连接、酰亚胺连接、硼酸酯连接、硼氧六元环连接、亚胺键连接、吖嗪连接、酮-烯醇连接、腙键连接或三嗪连接的共价有机框架材料,其具体通过如下步骤进行合成:
    有机单体1和有机单体2在非溶剂、有催化剂存在的条件下,通过缩合反应获得;
    其中,所述有机单体1为含有羧酸酐官能团的二连接单体、含有羧酸官能团的二连接单体、含醛基官能团的二连接单体或含醛基官能团的三连接单体;
    所述有机单体2为含有氨基官能团的二连接单体、含有氨基官能团的三连接单体、含有氨基官能团的四连接单体、含活性甲基官能团的二连接单体、或含有活性甲基官能团的三连接单体;
    所述催化剂为含有酸酐官能团的化合物、含有羧酸官能团的化合物、含有咪唑官能团的化合物或含有羟基官能团的化合物。
  2. 如权利要求1所述的固相合成方法,其特征在于,所述合成方法是原位生长方法,具体为:把催化剂、有机单体1和有机单体2,通过研磨成浆糊状或研磨均匀,涂在任意基底上或直接放进密闭反应容器中,高温聚合得到共价有机框架材料。
  3. 如权利要求1所述的固相合成方法,其特征在于,在非溶剂条件下进行反应,包括如下步骤:
    (1)将有机单体1和有机单体2加入到反应器中,加入催化剂进行反应;
    (2)反应结束后,对产物进行纯化;
    (3)纯化后的产物在超临界二氧化碳中处理或真空条件下加热处理得到最终产物。
  4. 如权利要求1-3任一项所述的固相合成方法,其特征在于,所述有机单体1为含苯硼酸的单体、含苯甲醛的单体、2,4,6-三羟基苯-1,3,5-三甲醛、含邻苯二酸酐的单体、含羟基丙烯酮的单体、含苯二酮的单体或二元酸酐单体,所述有机单体2为含邻苯二酚的单体、含苯胺的单体、含苯甲酰肼的单体、水合肼、含苯甲腈的单体、含苯乙腈的单体、二甲基吡嗪单体、含苯甲脒的单体、含邻苯二胺的单体或三胺单体;
    进一步优选的,所述有机单体1为含苯甲醛的二连接或三连接单体、含苯酸酐的二连接单体,含邻苯二甲酸的二连接单体,其中二连接单体的为直线分子,三连接单体夹角为120°;所述有机单体2为含苯胺的二连接、三连接或四连接单体、含苯甲酰肼的二连接或三连接单体、水合肼、含活性甲基的二连接或三连接单体,其中二连接单体的为直线分子,三连接单体和四连接单体的夹角为120°。
  5. 如权利要求1-3任一项所述的固相合成方法,其特征在于,所述催化剂为取代或未取代的如下化合物:苯甲酸酐、4-三氟甲基苯甲酸酐、苯乙酸酐、乙酸酐、三氟乙酸酐、苯甲酸、4-氟苯甲酸、4-溴苯甲酸、丙酸、芳香酸、咪唑、苯并咪唑或苯酚。
  6. 如权利要求1-3任一项所述的固相合成方法,其特征在于,所述有机单体1为对苯二甲醛、1,4-二(4-醛基苯基)苯、4,4'-联苯二甲醛、4,7-二(4-醛基苯基)苯并呋喃、4,7-二(4-醛基苯基)苯并噻吩、4,7-二(4-醛基苯基)苯并硒酚、1,2-二(4'-甲酰基苯基)乙炔、4,4'-(1,3-丁二炔-1,4-二基)双苯甲醛、2,5-二甲氧基-1,4-对苯二甲醛、1,3,5-均苯三甲醛、2-羟基-1,3,5-苯三甲醛、2,4-二羟基-1,3,5-苯三甲醛、2,4,6-三羟基-1,3,5-苯三甲醛、1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯、1,3,5-三(对甲酰基苯基)苯、4,4’,4”-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛、2,4,6-三(4-醛基苯基)-1,3,5-三嗪、4’,4”,4”’-(1,3,5-三嗪-2,4,6-三基)三(([1,1'-联苯]-4-甲醛))、2,4,6-三(4-甲酰基-联苯-4-基)-1,3,5-三嗪中的任意一种;
    所述有机单体2为2,5-二甲基吡嗪、四甲基吡嗪、3,6-二甲基哒嗪、2,5-二甲基对苯二腈、2,4,6-三甲基-1,3,5-三嗪、2,4,6-三甲基吡啶、2,4,6,-三甲基-嘧啶、2,4,6,-三甲基-嘧啶-5-甲腈、2,4,6-三甲基吡啶-3,5-二甲腈、2,4,6-三氰基-1,3,5-三甲基苯、2,2'-联吡啶-5,5'-二乙腈中的任意一种;
    其中,二连接的有机单体2与三连接单体1组合反应,或二连接的单体1与三连接的单体2组合反应。
  7. 如权利要求1-3任一项所述的固相合成方法,其特征在于,所述有机单体1为均苯四甲酸二酐(PMDA)、1,4,5,8-萘四甲酸二酐(NTCDA)、均苯四甲酸(PA)、1,4,5,8-萘四甲酸(NTA)、对苯二甲醛、1,4-二(4-醛基苯基)苯、4,4'-联苯二甲醛、1,2-二(4'-甲酰基苯基)乙炔、4,4'-(1,3-丁二炔-1,4-二基)双苯甲醛、2,5-二甲氧基-1,4-对苯二甲醛、均苯三甲醛、2-羟基-1,3,5-苯三甲醛、2,4-二羟基-1,3,5-苯三甲醛、2,4,6-三羟 基-1,3,5-苯三甲醛、1,3,5-三(4'-醛基[1,1'-联苯]-4-基)苯、1,3,5-三(对甲酰基苯基)苯、4,4',4”-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛、2,4,6-三(4-醛基苯基)-1,3,5-三嗪、4',4”',4””'-(1,3,5-三嗪-2,4,6-三基)三(([1,1'-联苯]-4-甲醛))或2,4,6-三-(4-甲酰基-联苯-4-基)-1,3,5-三嗪中任意一种;
    所述有机单体2为对苯二胺、2,5-二氨基吡啶、联苯胺、4,4'-二氨基三连苯、水合肼、对苯二酸二肼、2,5-二乙氧基苯-1,4-二(甲酰肼)、2,5-双(烯丙氧基)对苯二甲酰肼、1,3,5-三(4-氨苯基)苯、2,4,6-三(4-氨基苯基)-1,3,5-三嗪、三(4-氨基苯基胺)、5"-(4'-氨基[1,1'-联苯基]-4-基)[1,1':4',1”:3”,1”':4”',1””-五联苯]-4,4”'-二胺、4',4”',4””'-(1,3,5-三嗪-2,4,6-三基)三(([[1,1'-联苯]-4-胺))、2,7,12-三氨基-5H-二吲哚[1,2-a:1',2’-c]芴-5,10,15-三酮、2,4,6-三(3-羟基-4-氨基苯基)-1,3,5-三嗪、1,3,5-苯三甲酰肼、N,N,N',N'-四(对氨基苯基)对苯二胺或四-(4-氨基苯)乙烯中任意一种;
    其中,二连接的有机单体2与三连接有机单体1组合反应,或二连接的有机单体1与三连接或四连接的有机单体2组合反应。
  8. 如权利要求1-3任一项所述的固相合成方法,其特征在于,所述共价有机框架材料(COFs)的形态为块状、圆柱状或泡沫状,孔径为1.8-4.9nm。
  9. 如权利要求1-3任一项所述的固相合成方法,其特征在于,所述有机单体1与有机单体2的摩尔比为1:4至4:1;催化剂和有机单体1的摩尔比为1:5至5:1。
  10. 如权利要求1-3任一项所述的固相合成方法,其特征在于,反应体系压强为0-1atm;反应时间为3-7天;反应温度为20-250℃。
PCT/CN2022/138498 2020-12-30 2022-12-12 一种共价有机框架材料的绿色固相合成方法 WO2023124952A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011603704 2020-12-30
CN202111650887.5A CN114773556B (zh) 2020-12-30 2021-12-30 一种共价有机框架材料的绿色固相合成方法
CN202111650887.5 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023124952A1 true WO2023124952A1 (zh) 2023-07-06

Family

ID=82423081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138498 WO2023124952A1 (zh) 2020-12-30 2022-12-12 一种共价有机框架材料的绿色固相合成方法

Country Status (2)

Country Link
CN (1) CN114773556B (zh)
WO (1) WO2023124952A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117101558A (zh) * 2023-10-25 2023-11-24 烟台大学 一种共价有机框架气凝胶的制备方法及应用
CN117327243A (zh) * 2023-09-27 2024-01-02 天津师范大学 烯烃链接的二维共价有机框架及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773556B (zh) * 2020-12-30 2024-06-04 耀科新材料(苏州)有限公司 一种共价有机框架材料的绿色固相合成方法
CN117624521A (zh) * 2022-08-19 2024-03-01 耀科新材料(苏州)有限公司 一种离子型共价有机框架材料、其固相合成方法及应用
CN115466186B (zh) * 2022-08-25 2023-10-10 四川大学 一种基于高度共轭COFs的光响应模拟氧化酶及其制备方法与应用
CN115417988B (zh) * 2022-08-29 2023-12-05 湖南大学 苯并咪唑连接共价有机框架及其制备方法和应用
CN115521426B (zh) * 2022-09-26 2024-02-09 通化师范学院 一种亚胺连接微孔共价有机骨架材料、制备方法及其应用
CN115678032B (zh) * 2022-11-24 2023-07-28 南昌大学 一种烯烃链接的阳离子三维共价有机框架的制备方法及应用
CN116174047B (zh) * 2023-03-07 2024-05-24 广东工业大学 一种共价有机化合物负载的单原子钴催化剂及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109232588A (zh) * 2018-10-17 2019-01-18 中国科学院生态环境研究中心 一种共价有机框架材料的机械化学制备方法及应用
CN110229345A (zh) * 2019-06-04 2019-09-13 南京邮电大学 一种含β酮烯胺结构的共价有机框架材料及其制备方法与应用
CN114773556A (zh) * 2020-12-30 2022-07-22 南开大学 一种共价有机框架材料的绿色固相合成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462559B2 (ja) * 2009-09-08 2014-04-02 新日鉄住金化学株式会社 多価ヒドロキシ化合物、それらの製造方法及びエポキシ樹脂組成物並びにその硬化物
CN110218317A (zh) * 2019-06-06 2019-09-10 南京邮电大学 一种聚酰亚胺型共价有机框架材料及其制备方法与应用
CN111909389B (zh) * 2020-08-06 2022-04-15 山东师范大学 一种共价有机框架材料及其制备方法与应用
CN112080484B (zh) * 2020-09-16 2023-01-03 四川大学 一种基于磁性COFs的固定化酶、合成方法及其在制备生物柴油中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109232588A (zh) * 2018-10-17 2019-01-18 中国科学院生态环境研究中心 一种共价有机框架材料的机械化学制备方法及应用
CN110229345A (zh) * 2019-06-04 2019-09-13 南京邮电大学 一种含β酮烯胺结构的共价有机框架材料及其制备方法与应用
CN114773556A (zh) * 2020-12-30 2022-07-22 南开大学 一种共价有机框架材料的绿色固相合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", vol. ORDER EOLIT, 27 May 2020, NANJING UNIVERSITY, CN, article NING, FANGYI: "Research on COFs-based Pore Channel Modification and In-situ Composites", pages: 1 - 67, XP009546876, DOI: 10.27235/d.cnki.gnjiu.2020.000760 *
BISHNU P. BISWAL, SUMAN CHANDRA, SHARATH KANDAMBETH, BINIT LUKOSE, THOMAS HEINE, RAHUL BANERJEE: "Mechanochemical Synthesis of Chemically Stable Isoreticular Covalent Organic Frameworks", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 135, no. 14, 10 April 2013 (2013-04-10), pages 5328 - 5331, XP055097320, ISSN: 00027863, DOI: 10.1021/ja4017842 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117327243A (zh) * 2023-09-27 2024-01-02 天津师范大学 烯烃链接的二维共价有机框架及其制备方法和应用
CN117327243B (zh) * 2023-09-27 2024-04-30 天津师范大学 烯烃链接的二维共价有机框架及其制备方法和应用
CN117101558A (zh) * 2023-10-25 2023-11-24 烟台大学 一种共价有机框架气凝胶的制备方法及应用
CN117101558B (zh) * 2023-10-25 2024-01-05 烟台大学 一种共价有机框架气凝胶的制备方法及应用

Also Published As

Publication number Publication date
CN114773556B (zh) 2024-06-04
CN114773556A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2023124952A1 (zh) 一种共价有机框架材料的绿色固相合成方法
EL‐Mahdy et al. Dual‐function fluorescent covalent organic frameworks: HCl sensing and photocatalytic H2 evolution from water
CN112156758B (zh) 多孔材料及其制备方法和应用
Guan et al. Design and applications of three dimensional covalent organic frameworks
Peng et al. Synthesis of a sulfonated two‐dimensional covalent organic framework as an efficient solid acid catalyst for biobased chemical conversion
Zhao et al. Preparation and characterization of triptycene-based microporous poly (benzimidazole) networks
CN112608490B (zh) 硫醚功能化的芘基共价有机框架材料及其制备方法和应用
KR102254149B1 (ko) 용매로 연결된 다공성 공유결합 유기 고분자 및 그 제조방법
Li et al. Post-synthesis modification of porous organic polymers with amine: a task-specific microenvironment for CO 2 capture
CN110862551B (zh) 孔道含氟基团多孔芳香骨架材料、制备方法及其在小分子烷烃吸附中的应用
WO2022105250A1 (zh) 邻苯二酚衍生的多孔聚合物的制备及其负载高自旋单原子铁的光催化应用
Vinu et al. Microporous 3D aluminum MOF doped into chitosan‐based mixed matrix membranes for ethanol/water separation
Li et al. Highly active self-immobilized FI-Zr catalysts in a PCP framework for ethylene polymerization
Wang et al. Flexible Ketone-bridged organic porous nanospheres: Promoting porosity utilizing intramolecular hydrogen-bonding effects for effective gas separation
Liu et al. Irreversible tautomerization as a powerful tool to access unprecedented functional porous organic polymers with a tris (β-keto-hydrazo) cyclohexane subunit (TKH-POPs)
El-Ghazawy et al. Preparation and characterization of melamine-based porous Schiff base polymer networks for hydrogen storage
Bi et al. Polymer‐supported palladium (II) containing N2O2: An efficient and robust heterogeneous catalyst for C–C coupling reactions
Yang et al. A stable MOF@ COF‐Pd catalyst for C–C coupling reaction of pyrimidine sulfonate and arylboronic acid
Moon et al. Organic sol–gel synthesis of microporous molecular networks containing spirobifluorene and tetraphenylmethane nodes
CN108117537B (zh) 基于四硫富瓦烯单元的三维共价有机框架材料及合成方法
Wang et al. Thiazole functionalized covalent triazine frameworks for C 2 H 6/C 2 H 4 separation with remarkable ethane uptake
CN114292412B (zh) 基于喹啉环连接的共价有机框架材料及其制备方法
Xu et al. Microporous organic polymers: synthesis, types, and applications
CN110790927B (zh) 一种聚1,4,5-取代三唑及其制备方法和应用
Huang et al. Microporous Nitrogen‐Rich Polymers via Ullmann Coupling Reaction for Selective Adsorption of C2H2 over CH4

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914207

Country of ref document: EP

Kind code of ref document: A1