WO2023124478A1 - 碱式锌盐纳米颗粒及其制备方法、量子点发光二级管 - Google Patents

碱式锌盐纳米颗粒及其制备方法、量子点发光二级管 Download PDF

Info

Publication number
WO2023124478A1
WO2023124478A1 PCT/CN2022/127789 CN2022127789W WO2023124478A1 WO 2023124478 A1 WO2023124478 A1 WO 2023124478A1 CN 2022127789 W CN2022127789 W CN 2022127789W WO 2023124478 A1 WO2023124478 A1 WO 2023124478A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
zinc salt
basic zinc
quantum dot
layer
Prior art date
Application number
PCT/CN2022/127789
Other languages
English (en)
French (fr)
Inventor
姚振垒
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2023124478A1 publication Critical patent/WO2023124478A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the application relates to the field of display technology, in particular to basic zinc salt nanoparticles, a preparation method thereof, and a quantum dot light-emitting diode.
  • Quantum dots have the advantages of high light color purity, high luminous quantum efficiency, adjustable luminous color, and high quantum yield.
  • Quantum dot light-emitting diode Quantum Dots Light Emitting Doide Display, QLED
  • QLED Quantum Dots Light Emitting Doide Display
  • QLED devices are mainly divided into green light quantum dot devices, red light quantum dot devices and blue light quantum dot devices according to the light emitting color. Among them, how to improve the lifetime of quantum dot devices is an important direction of research.
  • the material commonly used as the electron transport layer is zinc oxide (ZnO) nanoparticles, which are prepared by solution method synthesis, and at the same time, the solution process is used for film formation processing to perfectly match QLED.
  • ZnO zinc oxide
  • the solution process is used for film formation processing to perfectly match QLED.
  • Due to the nanoparticle morphology of the zinc oxide nanoparticles synthesized by the solution method it does not exist in a layered form under natural conditions, and its particle specific surface area is large, resulting in poor particle stability.
  • the zinc oxide nanoparticles The rapid attenuation and the sharp increase in conductivity cause the carrier balance of the device to be broken, resulting in a rapid decline in the life of the device, that is, the measured life of the quantum dot device is poor.
  • the present application provides a basic zinc salt nanoparticle, a preparation method thereof, and a quantum dot light-emitting diode.
  • the embodiment of the present application provides a basic zinc salt nanoparticle, the general formula of the basic zinc salt nanoparticle is Zn(OH) x A y B Z ; wherein A represents a cation, B represents an anion, and x is 1 or 2 , y and z are integers of 0-2 respectively, and y and z are not equal to 0 at the same time.
  • the cations are selected from one or more cations selected from magnesium ions, aluminum ions, zinc ions, and cadmium ions.
  • the anions are selected from one or more anions selected from chloride ions, bromide ions, fluoride ions, carbonate ions, sulfate ions, and phosphate ions.
  • the particle size of the nanoparticles is 3-6 nm; and/or the nanoparticles of the basic zinc salt have a sheet structure or a layer structure.
  • the basic zinc salt nanoparticles are Zn 2 (OH) 2 CO 3 , Zn(OH)ClCO 3 , ZnMg(OH)Cl or ZnMg(OH)ClCO 3 .
  • the embodiment of the present application also provides a preparation method of basic zinc salt nanoparticles, comprising the following steps: dissolving solution, alkaline source, zinc source, and one or both of cation source and anion source, Mixing and performing reaction treatment to obtain the basic zinc salt nano particle mother liquor; using a precipitant to precipitate with the basic zinc salt nano particle mother liquor, and centrifuging to obtain the basic zinc salt nano particle.
  • the temperature of the reaction treatment is 25° C. to 75° C.
  • the time of the reaction treatment is 60 to 90 minutes.
  • the molar ratio of the zinc source, the molar total amount of the cation source and the alkali in the alkalinity source is (1-1.5):1, or, the molar ratio of the zinc source and the alkali in the alkali source is (1-1.5):1.
  • the basic zinc salt nanoparticles when one or both of the cation source and the anion source are selected from the cation source, the basic zinc salt nanoparticles are cation-doped; when When one or both of the cation source and the anion source are selected from the anion source, the basic zinc salt nanoparticles are anion-doped; when one or both of the cation source and the anion source When selected from the cation source and the anion source, the basic zinc salt nanoparticles are co-doped with anions and cations.
  • the precipitation agent is one or more of ethyl acetate or heptane.
  • the reaction treatment before the reaction treatment, it also includes: pre-dissolving the alkalinity source, the zinc source, the cation source and the anion source respectively with a dissolving solution .
  • the dissolving solution is selected from ethanol solution.
  • the alkaline source is selected from one or more of sodium hydroxide and lithium hydroxide; and/or the zinc source is selected from zinc chloride salt, One or more of zinc carbonate, zinc phosphate; and/or the cation source is selected from one or more of magnesium ion compounds, aluminum ion compounds, zinc ion compounds, cadmium ion compounds; and/or The anion source is selected from one or more of zinc chloride, zinc carbonate, and zinc phosphate.
  • the embodiment of the present application also provides a quantum dot light-emitting diode, including: an anode layer, a cathode layer, a quantum dot light-emitting layer disposed between the anode layer and the cathode layer, and a quantum dot light-emitting layer disposed on the cathode layer and the electron transport layer between the quantum dot light-emitting layer, the material of the electron transport layer includes the above-mentioned basic zinc salt nanoparticles or the basic zinc salt nanoparticles prepared by the above-mentioned preparation method.
  • the quantum dot light-emitting diode further includes a hole injection layer and a hole transport layer, and the hole injection layer and the hole transport layer are arranged on the anode layer Between the quantum dot light-emitting layer, the hole injection layer is disposed close to the anode layer, and the hole transport layer is disposed close to the quantum dot light-emitting layer.
  • the material of the anode is selected from one or more of ITO, FTO or ZTO; and/or the material of the hole injection layer is selected from PEODT:PSS, One or more of WoO 3 , MoO 3 , NiO, V 2 O 5 , HATCN, CuS; and/or the material of the hole transport layer is selected from TFB, PVK, TCTA, TAPC, TPD, Poly-TPD, Poly -TBP, PFB, NPB, CBP, PEODT: one or more of PSS, WoO 3 , MoO 3 , NiO, V 2 O 5 , HATCN, CuS; and/or the material of the quantum dot light-emitting layer is selected from Binary phase quantum dots, ternary phase quantum dots or quaternary phase quantum dots, wherein the binary phase quantum dots are selected from one or more of CdS, CdSe, CdTe, InP, AgS, PbS, PbSe, H
  • Fig. 1 is the structural representation of an embodiment of the basic zinc salt nanoparticles provided by the application;
  • Figure 2 is a schematic flow diagram of an embodiment of the preparation method of the basic zinc salt nanoparticles provided by the present application
  • Fig. 3 is a schematic structural view of an embodiment of a quantum dot light-emitting diode provided by the present application.
  • 1-anode 2-hole injection layer, 3-hole transport layer, 4-quantum dot light-emitting layer, 5-electron transport layer, 6-cathode, 7-layer micromonomer.
  • a description of a range from 1 to 6 should be considered to have specifically disclosed subranges, such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6, etc., and Single numbers within the stated ranges, eg 1, 2, 3, 4, 5 and 6, apply regardless of the range. Additionally, whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range.
  • At least one means one or more, and “multiple” means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • the weight/volume/mole of the relevant components mentioned in the description of the examples of the present application can not only refer to the specific content of each component, but also represent the ratio of weight/volume/mole between the components. Therefore, as long as it is According to the description of the embodiment of the present invention, the content of the relevant components is scaled up or down within the scope disclosed in the description of the embodiment of the present invention.
  • mL in the description of the examples of the present invention can be converted into well-known volume units in the chemical industry such as ⁇ L, mL, L, m ; unit.
  • the application provides a basic zinc salt nanoparticle, the general formula of the basic zinc salt nanoparticle is Zn(OH) x A y B Z ; wherein A represents a cation, B represents an anion, and the value range of x 1 ⁇ x ⁇ 2, the value range of y is 0 ⁇ y ⁇ 2, the value range of z is 0 ⁇ z ⁇ 2, wherein the values of x, y, and z are positive integers from 1 to 2, y, The value of z is not equal to 0 at the same time. That is: both cations and anions can be doped.
  • the nanoparticles themselves have a sheet-like or layered structure, and these nanoparticles are assembled into a thin film.
  • Each nanosheet has a layered microstructure, multiple groups of nanosheets are stacked on top of each other, and the layered microstructure is formed by stacking a number of layered micromonomers through layers.
  • layered micromonomers can also be one-dimensional nanowires, nanobelts, nanotubes, nanohelices, and some quasi-two-dimensional nanofilms, nanodisks, quasi-one-dimensional Nano-tetrapins, nano-leaf, nano-nails, etc., any of the above-mentioned one-dimensional, two-dimensional or three-dimensional structures or combinations thereof that can reduce the specific surface area of nanoparticles are applicable.
  • nanometer-scale nanosheets are formed by stacking many nanometer and micro-monomers in layers. Referring to FIG. 1 , FIG. 1 is a schematic structural diagram of the basic zinc salt nanoparticles provided in Example 1 of the present application. The basic zinc salt nanoparticles are formed by stacking layered micromonomers 7 .
  • the basic zinc salt nanoparticles have nanosheets with a layered microstructure, which makes the basic zinc salt nanoparticles highly stable; multiple groups of nanosheets stacked on each other to form a film reduces the specific surface area of the particles, and the stacking is more compact after film formation. Therefore, the stability is high when applied to the device; and, after the device is energized, the basic zinc salt nanoparticles are not easy to decay, and the conductivity is stable, resulting in the balance of the device carriers, so the device is more stable during the energization process, thereby improving the life of the device. And the batch stability of the device is improved.
  • doped basic zinc salt nanoparticles are divided into the following three types: anion-doped, cation-doped and anion-cation co-doped.
  • anion doping is to use a salt of the same cation but different anions, for example, react a certain proportion of zinc chloride and zinc carbonate with sodium hydroxide or lithium hydroxide to generate Zn(OH)ClCO 3 .
  • the molar ratio of zinc source and alkali is (1-1.5):1.
  • cation doping refers to the salt of the same anion and different cations, such as the reaction of a certain proportion of zinc chloride and magnesium chloride with sodium hydroxide or lithium hydroxide to generate ZnMg(OH)Cl.
  • the molar ratio of the total molar amount of the zinc source, the cation source and the base is (1-1.5):1.
  • anion and cation co-doping is to use different cations, different cation salts react with sodium hydroxide or lithium hydroxide, for example, a certain proportion of zinc chloride and magnesium carbonate are blended to generate ZnMg(OH)ClCO 3 .
  • the molar ratio of the total molar amount of the zinc source, the cation source and the base is (1-1.5):1.
  • the cation is selected from one or more cations selected from Zn 2+ , Mg 2+ , Cd 2+ , and Al 3+ .
  • the conductive performance of the basic zinc salt doped with the metal cation is better than that of the undoped basic zinc salt, and the conductive performance of the basic zinc salt nanoparticles is improved.
  • the anion is selected from one or more anions of Cl ⁇ , Br ⁇ , F ⁇ , CO 3 2 ⁇ , SO 4 2 ⁇ , PO 4 3 ⁇ .
  • the conductivity of the basic zinc salt doped with the anion is better than that of the undoped basic zinc salt, which improves the conductivity of the basic zinc salt nanoparticles.
  • the size of the nanoparticles is 3-6 nm. Due to the limitation of the radius of the nanoparticles, it is difficult to avoid the preparation and the cost is high.
  • the embodiment of the present application also provides a method for preparing basic zinc salt nanoparticles, referring to Fig. 2, Fig. 2 is a schematic flow diagram of an embodiment of the method for preparing basic zinc salt nanoparticles provided by the present application, including The following steps:
  • Step S11 mixing the dissolving solution, the alkalinity source, the zinc source, and at least one of the cation source and the anion source, and performing a reaction treatment to obtain a mother liquor of basic zinc salt nanoparticles;
  • Step S12 Precipitate with the precipitant and the mother liquor of the basic zinc salt nanoparticles, and centrifuge to obtain the basic zinc salt nanoparticles.
  • the substance obtained through the preparation process itself has a layered structure.
  • an alkaline source, a zinc source, a cation source and an anion source are added in the synthesis reaction to obtain a basic zinc salt nanoparticle with a layered microstructure of nanosheet stacks.
  • the alkaline source can be selected from sodium hydroxide, lithium hydroxide and other compounds that can provide hydroxide;
  • the zinc source is selected from zinc chloride, zinc carbonate, zinc phosphate and other compounds that can provide zinc ions Compounds;
  • cation sources can be selected from magnesium ion compounds, aluminum ion compounds, zinc ion compounds, cadmium ion compounds and other compounds that can provide cations;
  • anion sources can be selected from zinc chloride salts, zinc carbonate salts, phosphoric acid Zinc salt and other compounds that can provide anions;
  • the precipitating agent is one or more of ethyl acetate or heptane.
  • the reaction treatment before the reaction treatment, it also includes: pre-dissolving the alkalinity source, the zinc source, the cation source and the anion source respectively by using the dissolving solution, that is, the alkalinity source, the zinc source, the cation source and the anion source are dissolved in an ethanol solution Source pre-dissolved.
  • the temperature of the synthesis reaction is 25° C. to 75° C., and the reaction time is 60 to 90 minutes.
  • doped basic zinc salt nanoparticles are divided into the following three types: anion-doped, cation-doped and anion-cation co-doped.
  • Anion doping is the use of salts of the same cation with different anions, for example, a certain proportion of zinc chloride and zinc carbonate react with sodium hydroxide or lithium hydroxide to generate Zn(OH)ClCO 3 .
  • the molar ratio of the zinc source and the alkali in the mother liquor of the basic zinc salt nanoparticles is (1-1.5):1.
  • Cation doping refers to the salt of the same anion with different cations, such as the reaction of a certain proportion of zinc chloride and magnesium chloride with sodium hydroxide or lithium hydroxide to generate ZnMg(OH)Cl.
  • the molar ratio of the total molar amount of zinc source, cation source and alkali is (1-1.5):1.
  • Anion and cation co-doping is to use different cations, different cation salts react with sodium hydroxide or lithium hydroxide, for example, a certain proportion of zinc chloride and magnesium carbonate are blended to generate ZnMg(OH)ClCO 3 .
  • the molar ratio of the total molar amount of the zinc source, the cation source and the alkali in the mother liquor of the basic zinc salt nanoparticles is (1-1.5):1.
  • the separation in this application can be selected from any of conventional nanoparticle separation methods, such as ultracentrifugation, membrane separation, chromatographic separation, and magnetic separation.
  • the embodiment of the present application further provides a quantum dot light-emitting diode, which includes an electron transport layer, and the material of the electron transport layer includes the above-mentioned basic zinc salt nanoparticles. It can be applied to flat panel display, especially can be applied to top emission QLED field effect transistor with microcavity structure.
  • the quantum dot light-emitting diode provided in the embodiment of the present application can be divided into a positive structure and an inverse structure.
  • the positive structure quantum dot light-emitting diode includes an anode and a cathode, the anode can be arranged on the substrate, and the quantum dot light-emitting layer and the electron transport layer are arranged between the anode and the cathode.
  • hole functional layers such as a hole injection layer, a hole transport layer, a hole blocking layer and/or an electron blocking layer can be set between the quantum dot light-emitting layer and the anode; the electron transport layer is arranged on the light-emitting layer; the electron transport An electron functional layer such as an electron injection layer may be provided between the layer and the cathode.
  • the reverse structure quantum dot light-emitting diode also includes a laminated structure of an anode and a cathode arranged oppositely, the cathode is arranged on the substrate, and the quantum dot light-emitting layer and the electron transport layer are arranged between the anode and the cathode.
  • hole functional layers such as a hole injection layer, a hole transport layer, a hole blocking layer and/or an electron blocking layer can be set between the quantum dot light-emitting layer and the cathode; the electron transport layer is arranged on the light-emitting layer; the electron transport An electron functional layer such as an electron injection layer may be provided between the layer and the anode.
  • the substrate can be a rigid substrate, such as glass, silicon, etc., or a flexible substrate, such as PET, PI, PVDF, PDMS, etc.; the material of the anode can be ITO, FTO or ZTO, etc.
  • the material of the hole injection layer includes any one of PEODT:PSS, WoO 3 , MoO 3 , NiO, V 2 O 5 , HATCN, CuS, etc.
  • the material of the hole transport layer can be a small molecule organic or Conductive polymers, specifically including TFB, PVK, TCTA, TAPC, TPD, Poly-TPD, Poly-TBP, PFB, NPB, CBP, PEODT: PSS, WoO 3 , MoO 3 , NiO, V 2 O 5 , At least one of HATCN, CuS, etc.
  • the material of the quantum dot light-emitting layer can be a binary phase quantum dot material, a ternary phase quantum dot material or a quaternary phase quantum dot material.
  • binary phase quantum dots include but not limited to at least one of CdS, CdSe, CdTe, InP, AgS, PbS, PbSe, HgS;
  • ternary phase quantum dots include but not limited to Zn a Cd 1-a S, Cu At least one of a In 1-a S, Zn a Cd 1-a Se, Zn a Se 1-a S, Zn a Cd 1-a Te, PbSe a S 1-a ;
  • quaternary phase quantum dots include Zn a Cd 1-a S/ZnSe, Cu a In 1-a S/ZnS, Zn a Cd 1-a Se/ZnS, CuInSeS, Zn a Cd 1-a Te/ZnS, PbSe a S 1-a /ZnS At least one of , where 0 ⁇ a ⁇ 1.
  • the material of the cathode may include any of Al, Ag, Au, Cu, Mo and alloys thereof.
  • the quantum dot light-emitting diode of the present application uses the above-mentioned basic zinc salt nanoparticles as the material of the electron transport layer, which improves the performance of the quantum dot light-emitting diode; at the same time, the basic zinc salt nanoparticles replace the zinc oxide in the prior art as the quantum
  • the electron transport layer (ETL) of the dot light-emitting diode makes the electron transport layer (ETL) more stable during the electrical aging process, thereby improving the device performance of the quantum dot light-emitting diode.
  • the embodiment of the present application also provides a method for preparing a quantum dot light-emitting diode, which is used to prepare the above-mentioned quantum dot light-emitting diode, and an alkali source, a zinc source, a cation source and an anion are added in the preparation step of the electron transport layer source, to obtain a quantum dot light-emitting diode with a layered microstructure of nanosheets stacked and stacked basic zinc salt nanoparticles as the electron transport layer.
  • the positive-type quantum dot light-emitting diode can be prepared by the following steps:
  • the solution corresponding to the required materials for the electron transport layer is the basic zinc salt provided in the first aspect of the application Nanoparticles or the solution of basic zinc salt nanoparticles prepared in the second aspect.
  • a substrate provided with a cathode, and sequentially spin-coat a solution of a material corresponding to the hole injection layer, a solution of a material corresponding to the hole transport layer, a solution of a material corresponding to the quantum dot light-emitting layer, and a solution of a material corresponding to the electron transport layer on the cathode, After heat treatment respectively, the metal electrode is vapor-deposited or sputtered on the electron transport layer and packaged.
  • the substrate provided with the cathode is cleaned before depositing materials of other functional layers, and then the cleaned substrate provided with the cathode is treated with ultraviolet-ozone or oxygen plasma to further remove the substrate attached to the cathode surface. Organic matter, improve the work function of the cathode.
  • the hole injection layer has a thickness of 10-100 nm.
  • the hole transport layer has a thickness of 1-100 nm.
  • the electron transport layer has a thickness of 10-100 nm.
  • the thickness of the anode is 60-120 nm.
  • a preparation of basic zinc chloride nanoparticles comprising the following steps:
  • S1 Provide the corresponding alkaline source, zinc source, and anion source and their dissolving solutions, that is, dissolve 15mmol sodium hydroxide or 15mmol lithium hydroxide in 30mL ethanol solution, and dissolve 15mmol zinc chloride salt in 30mL ethanol solution,
  • the molar ratio of alkali and zinc chloride salt in sodium hydroxide or lithium hydroxide solution is 1:1, and the concentration of alkali and zinc salt is set as 0.5mmol/mL;
  • the above-mentioned basic zinc chloride nanoparticles were used as the material of the electron transport layer to prepare the quantum dot light-emitting diode A by the following method.
  • a substrate is provided, and ITO is deposited on the substrate to form an anode 1 to obtain an ITO substrate.
  • the ITO substrate is cleaned and treated with ultraviolet-ozone plasma to remove organic matter attached to the surface of the ITO substrate.
  • the sheet was placed in a nitrogen atmosphere, and a layer of TFB with a thickness of 30 nm was deposited on the hole injection layer 2, and the sheet was placed on a heating stage at 150°C for 30 minutes to remove the solvent, and the preparation of the hole transport layer 3 was completed.
  • a preparation of basic zinc carbonate nanoparticles the addition of sodium hydroxide in S1 is 15mmol or the addition of lithium hydroxide is 15mmol in the present embodiment, the addition of zinc carbonate is 12.5mmol, zinc carbonate consumption 12.5mmol, It can be dissolved in 25mL of ethanol to maintain a solution concentration of 0.5mmol/mL; the mol ratio of the alkali in the sodium hydroxide or lithium hydroxide solution to the zinc chloride salt is 1.2:1; the reaction temperature in S2 in this embodiment is 30 °C, and the reaction time was 80 min; the rest were the same as in Example 1 to prepare basic zinc carbonate nanoparticles.
  • a preparation of basic zinc phosphate nanoparticles the addition of sodium hydroxide in S1 in this embodiment is 20mmol or the addition of lithium hydroxide is 20mmol, the addition of zinc phosphate is 16.6mmol, and the corresponding ethanol consumption can be Be: 40mL of alkaline ethanol consumption, 33.2mL of the ethanol consumption of zinc phosphate;
  • the mol ratio of the alkali in sodium hydroxide or lithium hydroxide solution and zinc chloride salt is 1.2:1;
  • reaction temperature is 40 °C, the reaction time was 70 min; the rest was the same as in Example 1 to prepare basic zinc phosphate nanoparticles.
  • a preparation of 5% phosphate-doped basic zinc chloride nanoparticles the addition of sodium hydroxide in S1 in this embodiment is 15mmol or the addition of lithium hydroxide is 15mmol, zinc chloride can be 14.25mmol, phosphoric acid Zinc uses 0.75mmol to ensure that the total amount of zinc salt remains unchanged; in this embodiment, the reaction temperature in S2 is 50°C, and the reaction time is 65min; the rest are the same as in Example 1, and 5% phosphate doped basic zinc chloride nanoparticles are prepared .
  • the 5% phosphate-doped basic zinc chloride nanoparticles obtained in this example were prepared by the same method as the preparation method of the quantum dot light-emitting diode A in Example 1 to obtain the quantum dot light-emitting diode D.
  • a preparation of basic zinc chloride nanoparticles doped with 5% Cd the addition of sodium hydroxide in S1 in this embodiment is 15mmol or the addition of lithium hydroxide is 15mmol, and the same amount of doping guarantees the total amount of salt Invariant, 14.25mmol is used for zinc chloride, and 0.75mmol is used for cadmium chloride; the reaction temperature in S2 in this embodiment is 60°C, and the reaction time is 65min; Zinc chloride nanoparticles.
  • the 5% Cd-doped basic zinc chloride nanoparticles obtained in this example were prepared by the same method as the preparation method of the quantum dot light-emitting diode A in Example 1 to obtain the quantum dot light-emitting diode E.
  • a preparation of basic zinc chloride nanoparticles doped with 5% phosphate and 5% Cd is prepared.
  • the addition of sodium hydroxide in S1 is 15 mmol or the addition of lithium hydroxide is 15 mmol
  • the zinc chloride salt The addition of cadmium chloride is 13.5mmol; the addition of cadmium chloride is 0.75mmol; the addition of zinc phosphate is 0.75mmol, double doping, to ensure that the total amount of salt remains unchanged;
  • the reaction temperature in S2 in this embodiment is 75 °C , the reaction time is 60min; the rest is the same as in Example 1, and the basic zinc chloride nanoparticles doped with 5% phosphate and 5% Cd are prepared.
  • the 5% phosphate 5% Cd doped basic zinc chloride nanoparticles obtained in this example were prepared by the same method as the preparation method of quantum dot light emitting diode A in Example 1 to obtain quantum dot light emitting diode F.
  • Zinc Oxide is ETL's QLED device.
  • Example 1 the EQE(%) the Example 1 19 15000 Example 2 twenty one 16000 Example 3 twenty three 14000 Example 4 20 18000 Example 5 twenty two 20000 Example 6 25 25000 Comparative example 1 13 6000
  • the quantum dot light-emitting diodes provided by Examples 1 to 6 of the present application use basic zinc salt nanoparticles doped with cations or anions as the material of the electron transport layer, and the obtained quantum dot light-emitting diodes are compared with
  • the service life of quantum dot light-emitting diodes whose electron transport layer material is zinc oxide has been significantly improved, and the maximum brightness of the device has also been significantly improved, which shows that the particle decay speed of the electron transport layer prepared by basic zinc salt nanoparticles is slowed down and the stability is higher. At the same time, it also has high conductivity, which improves the existing devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请公开一种碱式锌盐纳米颗粒及其制备方法、量子点发光二级管。本申请提供的碱式锌盐纳米颗粒,具有层状微结构,稳定性高;多组纳米片相互层叠堆积成膜减小了颗粒的比表面积,成膜后堆积更加紧密,从而应用于器件时稳定性较高;且,在器件通电之后碱式锌盐纳米颗粒不易衰减,导电性平稳,从而提高了器件的寿命。

Description

碱式锌盐纳米颗粒及其制备方法、量子点发光二级管
本申请要求于2021年12月30日在中国专利局提交的、申请号为202111653261.X、申请名称为“碱式锌盐纳米颗粒、量子点发光二级管以及制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体涉及碱式锌盐纳米颗粒及其制备方法、量子点发光二级管。
背景技术
量子点(Quantum Dots,QDs)具有光色纯度高、发光量子效率高、发光颜色可调、量子产额高等优点,加之其在应用过程中可通过印刷工艺制备,基于量子点的发光二极管(即量子点发光二极管:Quantum Dots Light Emitting Doide Display,QLED)越来越受到人们关注,同时,QLED器件的性能也迅速提高。目前,QLED器件根据发光颜色主要分为绿光量子点器件、红光量子点器件和蓝光量子点器件。其中,如何提高量子点器件的寿命是研究的一个重要方向。
目前常用的作为电子传输层的材料为氧化锌(ZnO)纳米颗粒,其制备是通过溶液法合成获得,同时使用溶液工艺进行成膜加工,以完美匹配QLED。但由于溶液法合成的氧化锌纳米颗粒的纳米颗粒形态,在自然条件下并不是以层状形式存在的,其颗粒比表面积较大,致使其颗粒稳定性较差,在通电之后氧化锌纳米颗粒迅速衰减,导电性急剧增加,致使器件载流子平衡被打破,导致器件的寿命快速衰减,即量子点器件的实测寿命较差。
技术解决方案
因此,本申请提供一种碱式锌盐纳米颗粒及其制备方法、量子点发光二级管。
本申请实施例提供一种碱式锌盐纳米颗粒,所述碱式锌盐纳米颗粒的通式 为Zn(OH) xA yB Z;其中A表示阳离子,B表示阴离子,x为1或2,y、z分别为0-2的整数,且y、z不同时等于0。
可选的,在本申请的一些实施例中,阳离子选自镁离子、铝离子、锌离子、镉离子中的一种或多种阳离子。
可选的,在本申请的一些实施例中,阴离子选自氯离子、溴离子、氟离子、碳酸根离子、硫酸根离子、磷酸根离子的一种或多种阴离子。
可选的,在本申请的一些实施例中,纳米颗粒的粒径为3~6nm;和/或碱式锌盐纳米颗粒为片状结构或层状结构。
可选的,在本申请的一些实施例中,碱式锌盐纳米颗粒为Zn 2(OH) 2CO 3、Zn(OH)ClCO 3、ZnMg(OH)Cl或ZnMg(OH)ClCO 3
相应的,本申请实施例还提供一种碱式锌盐纳米颗粒的制备方法,包括以下步骤:将溶解液、碱性源、锌源,以及阳离子源和阴离子源中的一种或两种,进行混合并进行反应处理,得到碱式锌盐纳米颗粒母液;利用沉淀剂与所述碱式锌盐纳米颗粒母液进行沉淀,离心分离获得碱式锌盐纳米颗粒。
可选的,在本申请的一些实施例中,所述反应处理的温度为25℃~75℃,反应处理的时间为60~90min。
可选的,在本申请的一些实施例中,所述碱式锌盐纳米颗粒母液中,所述锌源、所述阳离子源的摩尔总量和所述碱性源中的碱的摩尔比为(1~1.5):1,或者,所述锌源和所述碱性源中的碱的摩尔比为(1~1.5):1。
可选的,在本申请的一些实施例中,当所述阳离子源和阴离子源中的一种或两种选自所述阳离子源时,所述碱式锌盐纳米颗粒为阳离子掺杂;当所述阳离子源和阴离子源中的一种或两种选自所述阴离子源时,所述碱式锌盐纳米颗粒为阴离子掺杂;当所述阳离子源和阴离子源中的一种或两种选自所述阳离子源和阴离子源两种时,所述碱式锌盐纳米颗粒为阴阳离子共掺杂。
可选的,在本申请的一些实施例中,所述沉淀剂为乙酸乙酯或庚烷的一种或多种。
可选的,在本申请的一些实施例中,所述进行反应处理之前,还包括:利用溶解液分别将所述碱性源、所述锌源、所述阳离子源和所述阴离子源预溶解。
可选的,在本申请的一些实施例中,所述溶解液选自乙醇溶液。
可选的,在本申请的一些实施例中,所述碱性源选自于氢氧化钠、氢氧化锂中的一种或多种;和/或所述锌源选自氯化锌盐、碳酸锌盐、磷酸锌盐中的一种或多种;和/或所述阳离子源选自镁离子化合物、铝离子化合物、锌离子化合物、镉离子化合物中的一种或多种;和/或所述阴离子源选自氯化锌盐、碳酸锌盐、磷酸锌盐中的一种或多种。
相应的,本申请实施例还提供一种量子点发光二极管,包括:阳极层、阴极层、设置于所述阳极层与所述阴极层之间的量子点发光层,以及设于所述阴极层和所述量子点发光层之间的电子传输层,所述电子传输层的材料包括上述的碱式锌盐纳米颗粒或如上述的制备方法制备的碱式锌盐纳米颗粒。
可选的,在本申请的一些实施例中,所述量子点发光二极管还包括空穴注入层和空穴传输层,所述空穴注入层和所述空穴传输层设置在所述阳极层和所述量子点发光层之间,所述空穴注入层靠近所述阳极层设置,所述空穴传输层靠近所述量子点发光层设置。
可选的,在本申请的一些实施例中,所述阳极的材料选自ITO、FTO或ZTO中的一种或多种;和/或所述空穴注入层的材料选自PEODT:PSS、WoO 3、MoO 3、NiO、V 2O 5、HATCN、CuS中的一种或多种;和/或空穴传输层的材料选自TFB、PVK、TCTA、TAPC、TPD、Poly-TPD、Poly-TBP、PFB、NPB、CBP、PEODT:PSS、WoO 3、MoO 3、NiO、V 2O 5、HATCN、CuS中的一种或多种;和/或所述量子点发光层的材料选自二元相量子点、三元相量子点或四元相量子点,其中,所述二元相量子点选自CdS、CdSe、CdTe、InP、AgS、PbS、PbSe、HgS中的一种或多种;三元相量子点选自Zn aCd 1-aS、Cu aIn 1-aS、Zn aCd 1-aSe、Zn aSe 1-aS、Zn aCd 1-aTe、PbSe aS 1-a中的一种或多种;所述四元相量子点选自Zn aCd 1-aS/ZnSe、Cu aIn 1-aS/ZnS、Zn aCd 1-aSe/ZnS、CuInSeS、Zn aCd 1-aTe/ZnS、PbSe aS 1-a/ZnS中的一种或多种,其中0≤a≤1;和/或阴极的材料选自Al、Ag、Au、Cu、Mo及其合金中的一种或多种。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请 的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的碱式锌盐纳米颗粒一实施例的的结构示意图;
图2为本申请提供的碱式锌盐纳米颗粒的制备方法一实施例的流程示意图
图3是本申请提供的量子点发光二极管一实施例的的结构示意图;
其中,1-阳极,2-空穴注入层,3-空穴传输层,4-量子点发光层,5-电子传输层,6-阴极,7-层状微单体。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一 项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
本申请实施例说明书中所提到的相关成分的重量/体积/摩尔不仅仅可以指代各组分的具体含量,也可以表示各组分间重量/体积/摩尔的比例关系,因此,只要是按照本发明实施例说明书相关组分的含量按比例放大或缩小均在本发明实施例说明书公开的范围之内。具体地,本发明实施例说明书中的mL可以转换为μL、mL、L、m 3等化工领域公知的体积单位;本发明实施例说明书中的mmol可以转换为μmol、mol等化工领域公知的摩尔单位。
第一方面,本申请提供一种碱式锌盐纳米颗粒,碱式锌盐纳米颗粒的通式为Zn(OH) xA yB Z;其中A表示阳离子,B表示阴离子,x的取值范围为1≤x≤2,y的取值范围为0≤y≤2,z的取值范围为0≤z≤2,其中x、y、z的取值为1-2的正整数,y、z的取值不同时等于0。即:不论阳离子还是阴离子均可掺杂。
所述的纳米颗粒本身是一种片状或层状结构,这些纳米颗粒组建成薄膜。每一纳米片具有层状微结构,多组纳米片相互层叠堆积,层状微结构由若干层状微单体经由层形堆积而成。
需要说明的是,层状微单体除了纳米片之外,还可以是一维的纳米线、纳米带、纳米管、纳米螺旋,以及一些准二维的纳米薄膜、纳米盘,准一维的纳米四针、纳米叶、纳米钉等,上述任意可实现减小纳米颗粒的比表面积的一维或二维或三维结构或多种的组合均可适用。严格的说,纳米量级的纳米片,如在微观下看是由很多纳米微单体经由层形堆积而成。参阅图1,图1是本申请实施例1提供的碱式锌盐纳米颗粒的结构示意图。碱式锌盐纳米颗粒包括层状微单体7堆积而成。
碱式锌盐纳米颗粒具有层状微结构的纳米片,使得碱式锌盐纳米颗粒稳定性高;多组纳米片相互层叠堆积成膜减小了颗粒的比表面积,成膜后堆积更加紧密,从而应用于器件时稳定性较高;且,在器件通电之后碱式锌盐纳米颗粒不易衰减,导电性平稳,致使器件载流子平衡,因此器件通电过程更加稳定,从而提高了器件的寿命,并且提高了器件的批次稳定性。
需要说明的是,掺杂的碱式锌盐纳米颗粒分为下面三种:阴离子掺杂,阳离子掺杂与阴阳离子共掺杂。
所谓的阴离子掺杂是使用同一阳离子不同阴离子的盐,例如一定比例的氯化锌与碳酸锌与氢氧化钠或氢氧化锂反应,生成Zn(OH)ClCO 3。阴离子掺杂条件下,锌源和碱的摩尔比为(1~1.5):1。
所谓的阳离子掺杂指同一种阴离子不同阳离子的盐,例如一定比例氯化锌与氯化镁与氢氧化钠或氢氧化锂反应,生成ZnMg(OH)Cl。阳离子掺杂条件下,锌源、阳离子源的摩尔总量和碱的摩尔比为(1~1.5):1。
所谓的阴阳离子共掺是使用不同阳离子,不同阳离子的盐与氢氧化钠或氢氧化锂反应,例如一定比例的氯化锌与碳酸镁共混,反应生成ZnMg(OH)ClCO 3。共掺杂条件下,锌源、阳离子源的摩尔总量和碱的摩尔比为(1~1.5):1。
在一些实施例中,阳离子选自Zn 2+、Mg 2+、Cd 2+、Al 3+中的一种或多种阳离子。金属阳离子掺杂后的碱式锌盐的导电性能优于未掺杂的碱式锌盐,提高碱式锌盐纳米颗粒的导电性能。
在一些实施例中,阴离子选自Cl -、Br -、F -、CO 3 2-、SO 4 2-、PO 4 3-的一种或多种阴离子。阴离子掺杂后的碱式锌盐的导电性能优于未掺杂的碱式锌盐,提高碱式锌盐纳米颗粒的导电性能。
在一些实施例中,纳米颗粒的粒径为3~6nm。因为纳米颗粒的半径限制,避免制备难度大、成本高。
第二方面,本申请实施例还提供一种碱式锌盐纳米颗粒的制备方法,参阅图2,图2为本申请提供的碱式锌盐纳米颗粒的制备方法一实施例的流程示意图,包括以下步骤:
步骤S11:将溶解液、碱性源、锌源,以及阳离子源和阴离子源中的至少一种,进行混合并进行反应处理,得到碱式锌盐纳米颗粒母液;
步骤S12:利用沉淀剂与碱式锌盐纳米颗粒母液进行沉淀,离心分离获得碱式锌盐纳米颗粒。
本实施例中,由于碱式锌盐的特性,经过制备工艺获得的物质本身具有层状结构。具体通过在合成反应中加入碱性源、锌源、阳离子源和阴离子源,以得到一种具有层状微结构的纳米片层叠堆积的碱式锌盐纳米颗粒。
其中,碱性源可选自于氢氧化钠、氢氧化锂以及其他可以提供氢氧根的化 合物;锌源均选自于氯化锌盐、碳酸锌盐、磷酸锌盐以及其他可以提供锌离子的化合物;阳离子源可选自于镁离子化合物、铝离子化合物、锌离子化合物、镉离子化合物中的以及其他可以提供阳离子的化合物;阴离子源可选自于氯化锌盐、碳酸锌盐、磷酸锌盐以及其他可以提供阴离子的化合物;沉淀剂为乙酸乙酯或庚烷的一种或多种。
在一些实施例中,在反应处理之前,还包括:利用溶解液分别将碱性源、锌源、阳离子源和阴离子源预溶解,即用乙醇溶液将碱性源、锌源、阳离子源和阴离子源预溶解。
需要说明的是,合成反应的温度为25℃~75℃,反应时间为60~90min。
需要说明的是,掺杂的碱式锌盐纳米颗粒分为下面三种:阴离子掺杂,阳离子掺杂与阴阳离子共掺杂。
阴离子掺杂是使用同一阳离子不同阴离子的盐,例如一定比例的氯化锌与碳酸锌与氢氧化钠或氢氧化锂反应,生成Zn(OH)ClCO 3。阴离子掺杂条件下,碱式锌盐纳米颗粒母液中,锌源和碱的摩尔比为(1~1.5):1。
阳离子掺杂指同一种阴离子不同阳离子的盐,例如一定比例氯化锌与氯化镁与氢氧化钠或氢氧化锂反应,生成ZnMg(OH)Cl。阳离子掺杂条件下,碱式锌盐纳米颗粒母液中,锌源、阳离子源的摩尔总量和碱的摩尔比为(1~1.5):1。
阴阳离子共掺是使用不同阳离子,不同阳离子的盐与氢氧化钠或氢氧化锂反应,例如一定比例的氯化锌与碳酸镁共混,反应生成ZnMg(OH)ClCO 3。共掺杂条件下,碱式锌盐纳米颗粒母液中,锌源、阳离子源的摩尔总量和碱的摩尔比为(1~1.5):1。
需要说明的是,本申请中的分离可选自于常规的纳米颗粒分离方法,如超速离心法、膜分离法、色谱分离法、磁性分离法中任一种。
第三方面,本申请实施例还提供一种量子点发光二极管,包括电子传输层,电子传输层的材料包括上述的碱式锌盐纳米颗粒。可应用于平板显示,特别可应用于含微腔结构的顶发射QLED场效应晶体管。
具体的,本申请实施例提供的量子点发光二极管可以分正型结构和反型结构。
正型结构量子点发光二极管包括阳极和阴极,阳极可以设置在衬底上,量 子点发光层和电子传输层设置在阳极和阴极之间。进一步地,量子点发光层与阳极之间可以设置空穴注入层、空穴传输层、空穴阻挡层和/或电子阻挡层等空穴功能层;电子传输层设置在发光层上;电子传输层与阴极之间可以设置有电子注入层等电子功能层。
反型结构量子点发光二极管也包括相对设置的阳极和阴极的层叠结构,阴极设置在衬底上,量子点发光层和电子传输层设置在阳极和阴极之间。进一步地,量子点发光层与阴极之间可以设置空穴注入层、空穴传输层、空穴阻挡层和/或电子阻挡层等空穴功能层;电子传输层设置在发光层上;电子传输层与阳级之间可以设置有电子注入层等电子功能层。
在具体实施例中,衬底可以为刚性衬底,如玻璃、硅等,也可以为柔性衬底,如PET、PI、PVDF、PDMS等;阳极可以的材料为ITO、FTO或ZTO等中的任一种;空穴注入层的材料包括PEODT:PSS、WoO 3、MoO 3、NiO、V 2O 5、HATCN、CuS等中的任一种;空穴传输层的材料可以为小分子有机物或高分子导电聚合物,具体可以包括TFB、PVK、TCTA、TAPC、TPD、Poly-TPD、Poly-TBP、PFB、NPB、CBP、PEODT:PSS、WoO 3、MoO 3、NiO、V 2O 5、HATCN、CuS等中的至少一种;量子点发光层的材料可以为二元相量子点材料、三元相量子点材料或四元相量子点材料。其中,二元相量子点包括但不限于CdS、CdSe、CdTe、InP、AgS、PbS、PbSe、HgS中的至少一种;三元相量子点包括但不限于Zn aCd 1-aS、Cu aIn 1-aS、Zn aCd 1-aSe、Zn aSe 1-aS、Zn aCd 1-aTe、PbSe aS 1-a中的至少一种;四元相量子点包括Zn aCd 1-aS/ZnSe、Cu aIn 1-aS/ZnS、Zn aCd 1-aSe/ZnS、CuInSeS、Zn aCd 1-aTe/ZnS、PbSe aS 1-a/ZnS中的至少一种,其中0≤a≤1。阴极的材料可以包括Al、Ag、Au、Cu、Mo及其它们的合金中任一种。
本申请的量子点发光二极管,采用上述碱式锌盐纳米颗粒作为电子传输层的材料,提高了量子点发光二极管的性能;同时,碱式锌盐纳米颗粒代替现有技术中的氧化锌作为量子点发光二极管的电子传输层(ETL),使得电子传输层(ETL)在电老化过程中更加稳定,从而提高了量子点发光二极管的器件性能。
第四方面,本申请实施例还提供一种量子点发光二极管的制备方法,用于制备上述的量子点发光二极管,在电子传输层的制备步骤中加入碱性源、锌源、 阳离子源和阴离子源,以得到一种具有层状微结构的纳米片层叠堆积而成的碱式锌盐纳米颗粒作为电子传输层的量子点发光二极管。包括以下步骤:
S1:清洗透明导电膜基板;
S2:在透明导电膜基板上旋涂空穴注入层;
S3:在空穴注入层上继续旋涂空穴传输层;
S4:在空穴传输层上继续旋涂量子点发光层;
S5:在量子点发光层上继续旋涂碱式锌盐纳米颗粒母液得到电子传输层;
S6:在电子传输层上蒸镀或溅射金属作为阴极;
S7:封装器件。
以下以正型结构量子点发光二极管的制备步骤为例,本申请实施例中正型结构量子点发光二极管可以选择通过以下步骤制备:
准备空穴注入层、空穴传输层、量子点发光层、电子传输层对应所需材料的溶液;其中,电子传输层对应所需材料的溶液即为本申请第一方面提供的碱式锌盐纳米颗粒或第二方面制备的碱式锌盐纳米颗粒的溶液。
准备设置有阴极的衬底,并在阴极上依次旋涂空穴注入层对应材料的溶液、空穴传输层对应材料的溶液、量子点发光层对应材料的溶液、电子传输层对应材料的溶液,并分别经过热处理后,再在电子传输层上蒸镀或溅射金属电极,并封装得到。
其中,设置有阴极的衬底在沉积其他功能层的材料之前,先清洗干净,然后将清洗干净的设置有阴极的衬底用紫外-臭氧或氧气等离子体处理,以进一步除去设置有阴极表面附着的有机物,提高阴极的功函数。
在一些实施例中,空穴注入层的厚度为10~100nm。
在一些实施例中,空穴传输层的厚度为1~100nm。
在一些实施例中,电子传输层的厚度为10~100nm。
在一些实施例中,阳极的厚度为60~120nm。
为使本发明上述实施细节和操作能清楚地被本领域技术人员理解,以及本发明实施例碱式锌盐纳米颗粒、量子点发光二级管以及制备方法的进步性能显著的体现,以下通过多个实施例来举例说明上述技术方案。
实施例1
一种碱式氯化锌纳米颗粒的制备,包括以下步骤:
S1:提供相应的碱性源、锌源、和阴离子源以及其溶解液,即将15mmol氢氧化钠或15mmol氢氧化锂溶于30mL乙醇溶液中,将15mmol氯化锌盐溶于30mL乙醇溶液中,氢氧化钠或氢氧化锂溶液中的碱与氯化锌盐的摩尔比为1:1,碱与锌盐的浓度设定为0.5mmol/mL;
S2:将氢氧化钠或氢氧化锂乙醇溶液逐滴添加到氯化锌盐乙醇溶液中,在温度为25℃、反应时间90min的条件下进行合成反应,得到碱式氯化锌纳米颗粒母液;
S3:反应完成后,利用过量乙酸乙酯或者庚烷作为沉淀剂与碱式氯化锌纳米颗粒母液进行沉淀,离心分离获得碱式氯化锌纳米颗粒。
S4:将碱式氯化锌纳米颗粒沉淀重新溶回乙醇即得碱式氯化锌溶液。
将上述碱式氯化锌纳米颗粒作为电子传输层材料通过以下方法制备量子点发光二极管A。
Ⅰ:提供ITO基板
首先,提供衬底,并在衬底上沉积ITO,形成阳极1,得到ITO基板,将ITO基板清洗干净,并用紫外-臭氧等离子体处理,除去ITO基板表面附着的有机物。
II:空穴注入层2制备
将ITO基板置于空气气氛中,在阳极1上沉积一层厚度为20nm的PEDOT:PSS,并将ITO基板置于150℃加热台上加热30min,除去水分,完成空穴注入层2的制备。
III:空穴传输层3制备
将片子置于氮气气氛中,并在空穴注入层2上沉积一层厚度为30nm的TFB,并将片子置于150℃加热台上加热30min,除去溶剂,完成空穴传输层3的制备。
IV:量子点发光层4制备
将片子重新固定,并在空穴传输层3上旋涂CuInSeS溶液,并将片子放置在80℃的加热台上加热10分钟,除去残留的溶剂,得到厚度为30nm的量子点发光层4,完成量子点发光层4的制备。
V:电子传输层5的制备
将碱式氯化锌的乙醇溶液稀释至浓度为20mg/mL备用;将片子重新固定, 并在量子点发光层4上旋涂稀释后的碱式氯化锌溶液,并将片子放置在80℃的加热台上加热30分钟,得到厚度为50nm的电子传输层5,完成电子传输层5的制备。
VI:阴极6的制备
将沉积完各功能层的片子置于蒸镀仓中通过掩膜板热蒸镀一层Ag作为阴极6,厚度为100nm,并封装,得到最终的量子点发光二极管A,其层结构参阅图3。
实施例2
一种碱式碳酸锌纳米颗粒的制备,本实施例中S1中氢氧化钠的加入量为15mmol或氢氧化锂的加入量为15mmol,碳酸锌的加入量为12.5mmol,碳酸锌用量12.5mmol,可以溶解在25mL的乙醇中保持0.5mmol/mL的溶液浓度;氢氧化钠或氢氧化锂溶液中的碱与氯化锌盐的摩尔比为1.2:1;本实施例中S2中反应温度为30℃,反应时间80min;其余与实施例1相同,制备得到碱式碳酸锌纳米颗粒。
并将本实施例得到的碱式碳酸锌纳米颗粒通过与实施例1中量子点发光二极管A的制备方法相同的方法制备得到量子点发光二极管B。
实施例3
一种碱式磷酸锌纳米颗粒的制备,本实施例中S1中氢氧化钠的加入量为20mmol或氢氧化锂的加入量为20mmol,磷酸锌盐的加入量为16.6mmol,相应的乙醇用量可以为:碱性乙醇用量40mL,磷酸锌的乙醇用量33.2mL;氢氧化钠或氢氧化锂溶液中的碱与氯化锌盐的摩尔比为1.2:1;本实施例中S2中反应温度为40℃,反应时间70min;其余与实施例1相同,制备得到碱式磷酸锌纳米颗粒。
并将本实施例得到的碱式磷酸锌纳米颗粒通过与实施例1中量子点发光二极管A的制备方法相同的方法制备得到量子点发光二极管C。
实施例4
一种5%磷酸根掺杂碱式氯化锌纳米颗粒的制备,本实施例中S1中氢氧化钠的加入量为15mmol或氢氧化锂的加入量为15mmol,氯化锌可用14.25mmol,磷酸锌用0.75mmol保证锌盐总量不变;本实施例中S2中反应温 度为50℃,反应时间65min;其余与实施例1相同,制备得到5%磷酸根掺杂碱式氯化锌纳米颗粒。
并将本实施例得到的5%磷酸根掺杂碱式氯化锌纳米颗粒通过与实施例1中量子点发光二极管A的制备方法相同的方法制备得到量子点发光二极管D。
实施例5
一种5%Cd掺杂的碱式氯化锌纳米颗粒的制备,本实施例中S1中氢氧化钠的加入量为15mmol或氢氧化锂的加入量为15mmol,同样掺杂保证盐的总量不变,氯化锌用14.25mmol,氯化镉用0.75mmol;本实施例中S2中反应温度为60℃,反应时间65min;其余与实施例1相同,制备得到5%Cd掺杂的碱式氯化锌纳米颗粒。
并将本实施例得到的5%Cd掺杂的碱式氯化锌纳米颗粒通过与实施例1中量子点发光二极管A的制备方法相同的方法制备得到量子点发光二极管E。
实施例6
一种5%磷酸根5%Cd掺杂的碱式氯化锌纳米颗粒的制备,本实施例中S1中氢氧化钠的加入量为15mmol或氢氧化锂的加入量为15mmol,氯化锌盐的加入量为13.5mmol;氯化镉的加入量为0.75mmol;磷酸锌盐的加入量为0.75mmol,双掺杂,保证盐的总量不变;本实施例中S2中反应温度为75℃,反应时间60min;其余与实施例1相同,制备得到5%磷酸根5%Cd掺杂的碱式氯化锌纳米颗粒。
并将本实施例得到的5%磷酸根5%Cd掺杂的碱式氯化锌纳米颗粒通过与实施例1中量子点发光二极管A的制备方法相同的方法制备得到量子点发光二极管F。
对比例1
氧化锌为ETL的QLED器件。
将实施例1~6、对比例1所制备的量子点发光二极管分别进行测试,其检测结果如下:
表1
  器件外量子效率 器件T95@1knit寿命(h)
  EQE(%)  
实施例1 19 15000
实施例2 21 16000
实施例3 23 14000
实施例4 20 18000
实施例5 22 20000
实施例6 25 25000
对比例1 13 6000
从表1中可以知道,本申请实施例1~6提供的量子点发光二极管采用掺杂有阳离子或阴离子的碱式锌盐纳米颗粒作为电子传输层的材料,得到的量子点发光二极管相较于电子传输层材料为氧化锌的量子点发光二极管使用寿命有明显提升、器件最大亮度也有明显提升,这说明采用碱式锌盐纳米颗粒制备的电子传输层的颗粒衰减速度减缓和稳定性更高,同时也具有较高的导电性能,改善了现有的器件采用氧化锌纳米颗粒作为电子传输层材料时因为通电之后氧化锌纳米颗粒迅速衰减,导电性急剧增加,致使器件载流子平衡被打破,器件性能快速衰减,器件寿命较差的问题,优化了QLED内部的载流子平衡,提高QLED的量子效率和使用寿命。

Claims (16)

  1. 一种碱式锌盐纳米颗粒,其中,所述碱式锌盐纳米颗粒的通式为Zn(OH) xA yB Z;其中A表示阳离子,B表示阴离子,x为1或2,y、z分别为0-2的整数,且y、z不同时等于0。
  2. 根据权利要求1所述的碱式锌盐纳米颗粒,其中,所述阳离子选自镁离子、铝离子、锌离子、镉离子中的一种或多种阳离子。
  3. 根据权利要求1所述的碱式锌盐纳米颗粒,其中,所述阴离子选自氯离子、溴离子、氟离子、碳酸根离子、硫酸根离子、磷酸根离子的一种或多种阴离子。
  4. 根据权利要求1所述的碱式锌盐纳米颗粒,其中,所述纳米颗粒的粒径为3~6nm;和/或
    所述碱式锌盐纳米颗粒为片状结构或层状结构。
  5. 根据权利要求1所述的碱式锌盐纳米颗粒,其中,碱式锌盐纳米颗粒为Zn 2(OH) 2CO 3、Zn(OH)ClCO 3、ZnMg(OH)Cl或ZnMg(OH)ClCO 3
  6. 一种碱式锌盐纳米颗粒的制备方法,其中,包括以下步骤:
    将溶解液、碱性源、锌源,以及阳离子源和阴离子源中的一种或两种,进行混合并进行反应处理,得到碱式锌盐纳米颗粒母液;
    利用沉淀剂与所述碱式锌盐纳米颗粒母液进行沉淀,离心分离获得碱式锌盐纳米颗粒。
  7. 根据权利要求6所述的碱式锌盐纳米颗粒的制备方法,其中,所述反应处理的温度为25℃~75℃,反应处理的时间为60~90min。
  8. 根据权利要求6所述的碱式锌盐纳米颗粒的制备方法,其中,所述碱式锌盐纳米颗粒母液中,所述锌源、所述阳离子源的摩尔总量和所述碱性源中的碱的摩尔比为(1~1.5):1,或者,所述锌源和所述碱性源中的碱的摩尔比为(1~1.5):1。
  9. 根据权利要求6所述的碱式锌盐纳米颗粒的制备方法,其中,
    当所述阳离子源和阴离子源中的一种或两种选自所述阳离子源时,所述碱式锌盐纳米颗粒为阳离子掺杂;
    当所述阳离子源和阴离子源中的一种或两种选自所述阴离子源时,所述碱式锌盐纳米颗粒为阴离子掺杂;
    当所述阳离子源和阴离子源中的一种或两种选自所述阳离子源和阴离子源两种时,所述碱式锌盐纳米颗粒为阴阳离子共掺杂。
  10. 根据权利要求6所述的碱式锌盐纳米颗粒的制备方法,其中,所述沉淀剂为乙酸乙酯或庚烷的一种或多种。
  11. 根据权利要求6所述的碱式锌盐纳米颗粒的制备方法,其中,所述进行反应处理之前,还包括:
    利用溶解液分别将所述碱性源、所述锌源、所述阳离子源和所述阴离子源预溶解。
  12. 根据权利要求11所述的碱式锌盐纳米颗粒的制备方法,其中,所述溶解液选自乙醇溶液。
  13. 根据权利要求6所述的碱式锌盐纳米颗粒的制备方法,其中,所述碱性源选自于氢氧化钠、氢氧化锂中的一种或多种;和/或
    所述锌源选自氯化锌盐、碳酸锌盐、磷酸锌盐中的一种或多种;和/或
    所述阳离子源选自镁离子化合物、铝离子化合物、锌离子化合物、镉离子化合物中的一种或多种;和/或
    所述阴离子源选自氯化锌盐、碳酸锌盐、磷酸锌盐中的一种或多种。
  14. 一种量子点发光二极管,其中,包括:阳极层、阴极层、设置于所述阳极层与所述阴极层之间的量子点发光层,以及设于所述阴极层和所述量子点发光层之间的电子传输层,所述电子传输层的材料包括如权利要求1-5任一项所述的碱式锌盐纳米颗粒或如权利要求6-13任一项所述的制备方法制备的碱式锌盐纳米颗粒。
  15. 根据权利要求14所述的量子点发光二极管,其中,所述量子点发光二极管还包括空穴注入层和空穴传输层,所述空穴注入层和所述空穴传输层设置在所述阳极层和所述量子点发光层之间,所述空穴注入层靠近所述阳极层设置,所述空穴传输层靠近所述量子点发光层设置。
  16. 根据权利要求15所述的量子点发光二极管,其中,
    所述阳极的材料选自ITO、FTO或ZTO中的一种或多种;和/或
    所述空穴注入层的材料选自PEODT:PSS、WoO 3、MoO 3、NiO、V 2O 5、HATCN、CuS中的一种或多种;和/或
    空穴传输层的材料选自TFB、PVK、TCTA、TAPC、TPD、Poly-TPD、Poly-TBP、PFB、NPB、CBP、PEODT:PSS、WoO 3、MoO 3、NiO、V 2O 5、HATCN、CuS中的一种或多种;和/或
    所述量子点发光层的材料选自二元相量子点、三元相量子点或四元相量子点,其中,所述二元相量子点选自CdS、CdSe、CdTe、InP、AgS、PbS、PbSe、HgS中的一种或多种;三元相量子点选自Zn aCd 1-aS、Cu aIn 1-aS、Zn aCd 1-aSe、Zn aSe 1-aS、Zn aCd 1-aTe、PbSe aS 1-a中的一种或多种;所述四元相量子点选自Zn aCd 1-aS/ZnSe、Cu aIn 1-aS/ZnS、Zn aCd 1-aSe/ZnS、CuInSeS、Zn aCd 1-aTe/ZnS、PbSe aS 1-a/ZnS中的一种或多种,其中0≤a≤1;和/或
    阴极的材料选自Al、Ag、Au、Cu、Mo及其合金中的一种或多种。
PCT/CN2022/127789 2021-12-30 2022-10-26 碱式锌盐纳米颗粒及其制备方法、量子点发光二级管 WO2023124478A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111653261.X 2021-12-30
CN202111653261.XA CN116425191A (zh) 2021-12-30 2021-12-30 碱式锌盐纳米颗粒、量子点发光二级管以及制备方法

Publications (1)

Publication Number Publication Date
WO2023124478A1 true WO2023124478A1 (zh) 2023-07-06

Family

ID=86997503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127789 WO2023124478A1 (zh) 2021-12-30 2022-10-26 碱式锌盐纳米颗粒及其制备方法、量子点发光二级管

Country Status (2)

Country Link
CN (1) CN116425191A (zh)
WO (1) WO2023124478A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102745737A (zh) * 2012-07-27 2012-10-24 大连交通大学 碱式氯化锌单晶纳米棒的合成方法
KR20130127018A (ko) * 2012-05-07 2013-11-22 포항공과대학교 산학협력단 나노 입자를 포획하고 있는 층상이중수산화물 또는 혼합금속수산화물 및 그 제조 방법
CN105366706A (zh) * 2014-08-25 2016-03-02 蒋小华 一种纳米碱式碳酸锌的制备方法
CN113120947A (zh) * 2019-12-30 2021-07-16 Tcl集团股份有限公司 复合材料及其制备方法和量子点发光二极管
CN113241432A (zh) * 2021-05-12 2021-08-10 江苏理工学院 一种ZnO/Bi2O3复合材料的制备方法及应用于镍锌电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130127018A (ko) * 2012-05-07 2013-11-22 포항공과대학교 산학협력단 나노 입자를 포획하고 있는 층상이중수산화물 또는 혼합금속수산화물 및 그 제조 방법
CN102745737A (zh) * 2012-07-27 2012-10-24 大连交通大学 碱式氯化锌单晶纳米棒的合成方法
CN105366706A (zh) * 2014-08-25 2016-03-02 蒋小华 一种纳米碱式碳酸锌的制备方法
CN113120947A (zh) * 2019-12-30 2021-07-16 Tcl集团股份有限公司 复合材料及其制备方法和量子点发光二极管
CN113241432A (zh) * 2021-05-12 2021-08-10 江苏理工学院 一种ZnO/Bi2O3复合材料的制备方法及应用于镍锌电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", vol. 2012, 1 May 2011, TIANJIN UNIVERSITY, CN, article MAO, JING: "Synthesis and Performance Research of Zinc-Based Nanostructure", pages: 1 - 150, XP009546917 *
HOU, XINGANG ET AL.: "Preparation of Nanocrystalline Basic Zinc Carbonate", JOURNAL OF LANZHOU UNIVERSITY OF TECHNOLOGY, vol. 34, no. 6, 31 December 2008 (2008-12-31), XP009547369 *
HOU, XINGANG ET AL.: "Process Study on Grain Refinement of Basic Zinc Carbonate", INORGANIC CHEMICALS INDUSTRY, vol. 41, no. 9, 30 September 2009 (2009-09-30), XP009547364 *

Also Published As

Publication number Publication date
CN116425191A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
KR101620870B1 (ko) 표면 개질된 산화아연을 전자전달층 물질로 포함하는 발광 다이오드
WO2012160714A1 (ja) 有機電子デバイス及びその製造方法
CN111384278B (zh) 一种量子点发光二极管及其制备方法
CN112538163B (zh) 复合材料及其制备方法和量子点发光二极管
KR20200087847A (ko) 전자 전달 박막 및 그 제조 방법과 용도
WO2023124478A1 (zh) 碱式锌盐纳米颗粒及其制备方法、量子点发光二级管
JP6156797B2 (ja) 有機電子デバイス
CN112349850A (zh) 无机半导体材料及其制备方法
CN113809247B (zh) 氧化锌薄膜及其制备方法、量子点发光二极管
CN113121382B (zh) 金属化合物材料及其制备方法、量子点发光二极管和发光装置
CN111384245B (zh) 复合材料及其制备方法和量子点发光二极管
CN113817455A (zh) 无机化合物复合材料、量子点发光二极管及其制备方法
CN112279949A (zh) 一种复合材料及其制备方法与量子点发光二极管
WO2023051461A1 (zh) 氧化钼纳米材料及制备方法、光电器件
CN111384259B (zh) 一种量子点发光二极管及其制备方法
CN113045211B (zh) 复合材料及其制备方法、应用、发光二极管及其制备方法
CN113054118B (zh) 复合材料及其制备方法、应用、发光二极管及其制备方法
CN114203940B (zh) 薄膜的制备方法和发光二极管
CN112397620B (zh) 纳米复合颗粒及其制备方法和应用
CN112320838B (zh) 纳米材料及其制备方法和应用
WO2022143962A1 (zh) 量子点发光二极管及其制备方法
WO2023051317A1 (zh) 氧化钨纳米材料及其制备方法、光电器件
WO2023093791A1 (zh) 薄膜处理方法、发光二极管的制备方法及发光二极管
CN116143162A (zh) 纳米颗粒及其制备方法、电子传输层、量子点发光二极管
CN115394943A (zh) 氢化氧化锌纳米材料及其制备方法、薄膜以及光电器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913741

Country of ref document: EP

Kind code of ref document: A1