WO2023123822A1 - 金属复合膜及其制备方法 - Google Patents

金属复合膜及其制备方法 Download PDF

Info

Publication number
WO2023123822A1
WO2023123822A1 PCT/CN2022/092797 CN2022092797W WO2023123822A1 WO 2023123822 A1 WO2023123822 A1 WO 2023123822A1 CN 2022092797 W CN2022092797 W CN 2022092797W WO 2023123822 A1 WO2023123822 A1 WO 2023123822A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
acid
corrosion
resin
adhesive layer
Prior art date
Application number
PCT/CN2022/092797
Other languages
English (en)
French (fr)
Inventor
庄志
张茜
黎秋生
冶成良
程跃
Original Assignee
江苏睿捷新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111647964.1A external-priority patent/CN114284637B/zh
Application filed by 江苏睿捷新材料科技有限公司 filed Critical 江苏睿捷新材料科技有限公司
Publication of WO2023123822A1 publication Critical patent/WO2023123822A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/145Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins

Definitions

  • the disclosure relates to the related technical field of battery packaging materials, and in particular to a metal composite film layer and a preparation method thereof.
  • lithium-ion batteries are mainly divided into three categories according to their appearance: square, cylindrical, and soft pack.
  • the square and cylindrical shells are mainly made of aluminum alloy, stainless steel, etc.
  • the soft shell is made of a metal composite film laminated with metal and resin, which greatly improves the problem of inflexible shape design of hard-packed batteries.
  • metal composite films for soft packaging There are two main types of metal composite films for soft packaging.
  • One is dry-process products, which are composed of outer substrate resin layer, outer adhesive layer, middle metal layer, inner adhesive layer and inner thermal fusion resin layer from outside to inside;
  • the first is a heat-processed product, which consists of an outer substrate resin layer, an outer adhesive layer, an intermediate metal layer, and an inner thermal fusion resin layer from outside to inside.
  • Polypropylene is a common material in the inner adhesive layer.
  • the inner adhesive layer can make the middle metal layer and the inner heat-welded resin layer have a certain composite strength, electrolyte resistance strength, two-side sealing resistance and insulation, so as to prevent electrolyte penetration and short circuit, so the performance of the inner adhesive layer is very important for the performance of the battery. Great impact.
  • the adhesives currently used for the inner adhesive layer in the battery outer packaging are easily eroded by the electrolyte of the contents during use, and the peel strength between the intermediate metal layer and the inner heat-welded resin layer tends to decrease under long-term storage. In addition, heat resistance also tends to decrease.
  • HDI hexamethylene diisocyanate
  • the selection of catalysts and the control of reaction conditions of each supplier company will be different.
  • the obtained trimer product is a mixture of multiple components with varying degrees of purity, resulting in great differences in performance.
  • the phenomenon of peeling off of the middle metal layer and the inner thermal fusion resin layer caused by the damage of the inner adhesive layer is prone to occur, which seriously affects the safety of use.
  • the present disclosure provides a metal composite film, comprising:
  • the first adhesive layer is disposed between the metal layer and the first heat-melt resin layer, and the first adhesive layer contains at least a curing agent and acid-modified polypropylene;
  • the curing agent contains more than 50 wt% of hexamethylene diisocyanate, the hexamethylene diisocyanate self-polymerizes into a trimer, and the functionality of the hexamethylene diisocyanate is 3.0 to 4.5;
  • the acid-modified polypropylene contains polypropylene resin, the polypropylene resin is modified by grafting with carboxylic acid or its anhydride, the acid value of the acid-modified polypropylene is 1 to 5, and the melting point is 70 to 130°C, weight average molecular weight of 100,000 to 250,000;
  • a ratio NCO/COOH of the number of moles of isocyanate groups (NCO value) in the curing agent to the number of moles of carboxyl groups (COOH value) in the acid-modified polypropylene is 1.0 to 5.0.
  • the carboxylic acid includes one or more of maleic acid, fumaric acid, acrylic acid, and methacrylic acid, and its anhydrides include maleic anhydride, fumaric anhydride, acrylic anhydride, methyl One or more of acrylic anhydrides.
  • a first anti-corrosion layer and/or a second anti-corrosion layer is formed between the metal layer and the first adhesive layer, the second anti-corrosion layer is formed on the The side of the metal layer away from the first adhesive layer.
  • the first anti-corrosion layer and the second anti-corrosion layer each include a trivalent chromium compound, an inorganic acid, and an organic resin.
  • the trivalent chromium compound includes one or more of chromium nitrate, chromium phosphate, chromium fluoride, and chromium chloride; and/or the inorganic acid includes one or more of nitric acid, phosphoric acid Multiple; and/or the organic resin includes one or more of polyacrylic resin and polyvinyl alcohol; and/or the weight average molecular weight of the polyacrylic resin is 10,000 to 800,000; and/or The mass ratio between the trivalent chromium compound, the inorganic acid and the organic resin is (18 to 60): (3 to 60): (6 to 60); and/or the trivalent chromium compound and The mass ratio between the organic resins is (3 to 100):10.
  • each of the first anti-corrosion layer and the second anti-corrosion layer further includes fluoride, the trivalent chromium compound, the inorganic acid, the organic resin, and the fluoride
  • the mass ratio of is (18 to 60): (3 to 60): (6 to 60): (0 to 10), and the corresponding value of the fluoride is not 0.
  • the trivalent chromium compound includes one or more of chromium nitrate, chromium fluoride, chromium chloride, and chromium phosphate; and/or the inorganic acid includes one of nitric acid and hydrofluoric acid. one or more; and/or the organic resin includes at least polyvinyl alcohol; and/or the mass ratio between the trivalent chromium compound, the inorganic acid and the organic resin is (24 to 40):( 1 to 8): (10 to 12); and/or the mass ratio between the trivalent chromium compound and the organic resin is (2 to 4):1.
  • each of the first anti-corrosion layer and the second anti-corrosion layer further includes titanate, the trivalent chromium compound, the inorganic acid, the organic resin and titanate
  • the mass ratio between is (24 to 40): (1 to 8): (10 to 12): (0 to 5), and the corresponding value of the titanate is not 0.
  • the first corrosion protection layer and the second corrosion protection layer each include an aminated phenolic polymer, a trivalent chromium compound, and a phosphorus compound.
  • the aminated phenolic polymer can be 1 to 200 mg per 1 m2 area of the first anti-corrosion layer and the second anti-corrosion layer, and the chromium element in the trivalent chromium compound Accounting for 0.5 to 50 mg, the phosphorus element in the phosphorus compound accounts for 0.5 to 50 mg.
  • the first anticorrosion layer includes a first anticorrosion sublayer and a second anticorrosion sublayer
  • the second anticorrosion layer includes a first anticorrosion sublayer and a second anticorrosion sublayer.
  • Corrosion sub-layer, the first anti-corrosion sub-layer in the first anti-corrosion layer is formed on the side close to the metal layer
  • the second anti-corrosion sub-layer in the first anti-corrosion layer is formed on the side far away from the metal layer
  • the other side of the metal layer, and the first anti-corrosion sub-layer in the second anti-corrosion layer is formed on the side close to the metal layer
  • the second anti-corrosion sub-layer in the second anti-corrosion layer is formed on the other side away from the metal layer.
  • the first anticorrosion sublayer in the first anticorrosion layer and the first anticorrosion sublayer in the second anticorrosion layer include cerium oxide, phosphoric acid, or phosphate; and/or the The second anticorrosion sublayer in the second anticorrosion layer and the second anticorrosion sublayer in the second anticorrosion layer include polymer cationic or anionic polymers.
  • first anticorrosion sublayer in the first anticorrosion layer and the first anticorrosion sublayer in the second anticorrosion layer include cerium oxide, and phosphoric acid or phosphate
  • in the presence of 100 parts by mass of cerium oxide occupying 1 to 100 parts by mass of phosphoric acid or phosphate.
  • the first heat-melt resin layer sequentially includes: an outer resin layer, an intermediate resin layer from a side close to the first adhesive layer to the other side away from the first adhesive layer , and an inner resin layer.
  • the outer resin layer comprises random copolymerized polypropylene, the melting point of random copolymerized polypropylene is 140 to 160°C, and the 230°C melt index MFR of random copolymerized polypropylene is 4.5 to 6.5g/10min;
  • the intermediate resin layer includes block copolymerized polypropylene, random copolymerized polypropylene, polymer elastomer composed of propylene-butene, and non-crystalline propylene-based elastomer, and the melting point of block copolymerized polypropylene is 150
  • the 230°C melt index MFR of block copolymerized polypropylene is 1 to 4g/10min
  • the content of block copolymerized polypropylene relative to the middle resin layer is 40 to 60wt%
  • the melting point of random copolymerized polypropylene is 140 to 170°C
  • the 230°C melt index MFR of random copolymerized polypropylene is 140 to 170°
  • the present disclosure also provides a preparation method for preparing the above-mentioned metal composite film, including:
  • the first heat-melt resin layer is formed on a side of the first adhesive layer opposite to the metal layer.
  • the present disclosure also provides a lithium-ion battery, which includes the above-mentioned metal composite film.
  • FIG. 1 is a schematic cross-sectional structure to present a metal composite film according to some embodiments of the present disclosure
  • Fig. 2 is a histogram, to compare the peel strength measured after the composite products of Examples 1 to 9 and Comparative Examples 1 to 10 are immersed in an aqueous solution with a total mass of electrolyte of 1000PPM at a temperature of 85°C;
  • Fig. 3 is a histogram, to compare the peel strength maintenance rate measured after the composite products of Examples 1 to 9 and Comparative Examples 1 to 10 are immersed in an aqueous solution with a total mass of electrolyte solution of 1000PPM at a temperature of 85°C;
  • Fig. 4 is a histogram, to compare the initial peel strength of the composite products of Examples 1 to 9 and Comparative Examples 1 to 10 and the peel strength measured after being placed at different temperatures for 1 minute;
  • Fig. 5 is a histogram, to compare the peel strength maintenance rate measured after placing the composite products of Examples 1 to 9 and Comparative Examples 1 to 10 at different temperatures for 1 minute;
  • FIG. 6 is a chart of performance test data of the metal composite film of the embodiment and the comparative example of the present disclosure.
  • the metal composite film provided by some embodiments of the present disclosure can effectively ensure that the battery outer packaging has good adhesion and sealing performance in the electrolyte environment, so that the internal chemical system of the battery can work stably and ensure the basic safety of the battery.
  • one embodiment of the present disclosure proposes a metal composite film, which at least includes: a metal layer (1), a first adhesive layer (2), and a first heat-melt resin layer (3) , the first adhesive layer (2) is arranged between the metal layer (1) and the first heat-melt resin layer (3), and the first adhesive layer (2) contains at least a curing agent and an acid modified resistant polypropylene.
  • the curing agent contains more than 50wt% (such as 50wt%-100wt%, 55wt%-85wt%, 60wt%-75wt%, or 65wt%-70wt%) of hexamethylene diisocyanate, the Hexamethylene diisocyanate self-polymerizes into trimers.
  • the hexamethylene diisocyanate has a functionality of 3.0 to 4.5, such as 3.1 to 4.4, 3.5 to 4.0, or 3.6 to 3.8.
  • the acid-modified polypropylene contains a polypropylene resin modified by grafting with a carboxylic acid or an anhydride thereof.
  • the acid-modified polypropylene has an acid value of 1 to 5, such as 1.1 to 4.9, 1.5 to 4.5, 2 to 4, or 2.5 to 3.5.
  • the melting point is 70 to 130°C, such as 72 to 128°C, 80 to 120°C, 90 to 110°C, or 100 to 115°C.
  • the weight average molecular weight is 100,000 to 250,000, such as 110,000 to 240,000, 120,000 to 220,000, 150,000 to 200,000, or 160,000 to 180,000.
  • the ratio NCO/COOH of the number of moles of isocyanate groups (NCO value) in the curing agent to the number of moles of carboxyl groups (COOH value) in the acid-modified polypropylene is 1.0 to 5.0, such as 1.1 to 5.0. 4.9, 1.5 to 4.5, 2.0 to 4.0 or 2.5 to 3.5.
  • the curing agent Since the first adhesive layer (2) is formed by the curing reaction between acid-modified polypropylene and the curing agent, the curing agent not only generates the desired reaction product during the manufacturing stage, but also has a carbon atom number different from the reaction product. Impurities. Since it is very difficult to remove this impurity, the trimer product in the curing agent is a multi-component mixture. Based on this, the "functionality of hexamethylene diisocyanate" can be regarded as an indicator of the purity of the hexamethylene diisocyanate.
  • Acid value of acid-modified polypropylene indicates the number of milligrams of potassium hydroxide (KOH) required to neutralize 1 gram of acid-modified polypropylene, so the unit is omitted but actually mg KOH/g.
  • the melting point of the acid-modified polypropylene when the melting point of the acid-modified polypropylene is less than the minimum value of 70°C in the defined range, its heat resistance is reduced, and it is easy to cause the metal layer (1) and the first thermal welding
  • the resin layer (3) may be peeled off at high temperature.
  • the melting point of the acid-modified polypropylene exceeds the maximum value of 130°C in the defined range, although its heat resistance is improved, it is easy to form a hard layer structure when it reacts with the curing agent, resulting in poor flexibility and metal composites.
  • the flexibility of the film is reduced, or cracks are generated by bending, causing the metal layer (1) and the first heat-welding resin layer (3) to peel off.
  • the metal layer (1) and the first heat-melt resin layer (3) will form a hard layer structure, making the bending resistance worse , resulting in a reduction in the flexibility of the metal composite film, or cracks when bent, resulting in the peeling of the metal layer (1) and the first heat-welding resin layer (3).
  • the first adhesive layer (2) is formed by the reaction of acid-modified polypropylene and hexamethylene diisocyanate, such as carboxyl (COOH) and hexamethylene diisocyanate formed by graft polymerization of acid-modified polypropylene.
  • the isocyanate group (NCO) of methyl diisocyanate reacts, so that the first adhesive layer (2) maintains the characteristics of resistance to the electrolyte of the content, resistance to chemicals, and heat resistance.
  • the first adhesive layer (2) can be made to exhibit Excellent adhesion, chemical resistance and heat resistance.
  • the "ratio NCO/COOH” represents the ratio of the above-mentioned NCO value to the above-mentioned COOH value.
  • the ratio NCO/COOH is less than the minimum value of 1.0 in the defined range, indicating that the curing agent has fewer isocyanate groups compared to carboxyl groups of the acid-modified polypropylene.
  • the acid-modified polypropylene exists in excess, unreacted acid-modified polypropylene increases, resulting in an increase in the initial peel strength of the metal layer (1) and the first heat-sealing resin layer (3).
  • the chemical resistance of the first adhesive layer (2) is unstable.
  • the first adhesive layer (2) is easily corroded by the electrolyte solution of the content, so the metal layer (1) and the first thermally welded resin layer ( 3) The phenomenon that the peeling strength is lowered may cause the metal layer (1) and the first heat-sealing resin layer (3) to peel off. In addition, it also tends to lower the heat resistance.
  • the first adhesive layer (2) becomes hard and brittle and the initial peel strength of the metal layer (1) and the first heat-sealable resin layer (3) decreases, the first adhesive layer (2) ) is easily corroded by the electrolyte of the content, and becomes harder and more brittle, resulting in insufficient flexibility, and the metal layer (1) and the metal layer (1) and the metal layer (1) and the A phenomenon in which the first heat-sealing resin layer (3) is peeled off.
  • the polypropylene resin is modified by grafting treatment with carboxylic acid or its anhydride, so that the acid-modified polypropylene is graft-polymerized with carboxyl groups (COOH).
  • carboxylic acid may include, but is not limited to, one or more of maleic acid, fumaric acid, acrylic acid, and methacrylic acid.
  • acid anhydride may include, but not limited to, one or more of maleic anhydride, fumaric anhydride, acrylic anhydride, and methacrylic anhydride.
  • the metal layer ( 1 ) and the first heat-sealable resin layer ( 3 ) are not the focus of protection in the present disclosure, and they are merely examples here, and no further description is necessary.
  • the metal layer (1) can be aluminum foil, aluminum alloy foil, nickel-plated iron foil or stainless steel foil, but not limited thereto; the thickness of the metal layer (1) can be 30 to 50 ⁇ m, such as 32 to 50 ⁇ m. 48 ⁇ m, 35 to 45 ⁇ m or 38 to 40 ⁇ m. In some embodiments, the thickness of the metal layer (1) may be 35 to 40 ⁇ m, but not limited thereto.
  • the first heat-melt resin layer (3) sequentially includes from the side close to the first adhesive layer (2) to the other side away from the first adhesive layer (2): An outer resin layer, a middle resin layer, and an inner resin layer, but not limited thereto.
  • the outer resin layer comprises random copolymer polypropylene which may have a melting point of 140 to 160°C such as 142 to 158°C, 145 to 155°C or 147 to 150°C, optionally 145°C. to 155°C, for example 151°C.
  • the 230°C melt index MFR of the random copolymer polypropylene may be 4.5 to 6.5 g/10min such as 4.7 to 6.2 g/10min, 5.0 to 6.0 g/10min or 5.2 to 5.8 g/10min, optionally It is 5 to 6°C g/10min, also optionally 5.5g/10min, but not limited thereto.
  • the side of the outer resin layer close to the first adhesive layer (2) may be corona-treated.
  • the intermediate resin layer may include block copolymerized polypropylene, random copolymerized polypropylene, polymer elastomer composed of propylene-butylene, and non-crystalline propylene-based elastomer.
  • the melting point of the block copolymer polypropylene may be 150 to 170°C such as 152 to 168°C, 155 to 165°C or 156 to 162°C, optionally 155 to 165°C, and optionally 162°C.
  • the 230°C melt index MFR of propylene may be 1 to 4 g/10 min, alternatively 1.5 to 3 g/10 min, further alternatively 2 g/10 min.
  • the content of the block copolymerized polypropylene relative to the middle resin layer may be 40 to 60 wt%, optionally 45 to 55 wt%, and optionally 50 wt%, but not limited thereto.
  • the random copolymer polypropylene may have a melting point of 140 to 170°C such as 145 to 165°C, 151 to 161°C or 152 to 159°C, alternatively 150 to 160°C, also optionally 155°C °C.
  • the random copolymer polypropylene may have a 230°C melt index MFR of 4 to 7 g/10 min, alternatively 4.5 to 6 g/10 min, further alternatively 5 g/10 min.
  • the content of the random copolymerized polypropylene relative to the middle resin layer may be 10 to 30 wt%, optionally 15 to 25 wt%, and optionally 20 wt%, but not limited thereto.
  • the melting point of the propylene-butene polymer elastomer may be 150 to 170°C, optionally 155 to 165°C, and optionally 160°C.
  • the 230°C melt index MFR of the polymer elastomer composed of propylene-butene may be 8 to 12 g/10 min, optionally 9 to 10 g/10 min, and optionally 9.5 g/10 min.
  • the content of the polymer elastomer composed of propylene-butylene relative to the middle resin layer may be 10 to 30 wt%, such as 12 to 28 wt%, 15 to 25 wt%, or 17 to 20 wt%, optionally 15 wt%. to 25wt%, and optionally 20wt%, but not limited thereto.
  • the 230°C melt index MFR of the non-crystalline propylene-based elastomer may be 2 to 4 g/10 min, alternatively 2.5 to 3.5 g/10 min, further alternatively 3 g/10 min.
  • the content of the non-crystalline propylene-based elastomer relative to the intermediate resin layer may be 5 to 15 wt%, such as 6 to 14 wt%, 8 to 12 wt%, or 9 to 11 wt%, optionally 8 to 12 wt%. , is also optionally 10wt%, but not limited thereto.
  • the inner resin layer may comprise random copolymer polypropylene, and the melting point of random copolymer polypropylene may be 135 to 155°C, such as 140 to 152°C, 142 to 150°C, or 144 to 148°C, optionally is 140 to 150°C, optionally also 145°C.
  • the random copolymer polypropylene may have a 230°C melt index MFR of 10 to 15 g/10 min such as 11 to 14 g/10 min, 11.5 to 13.5 g/10 min or 12 to 13 g/10 min, alternatively 11 to 13 g/10 min. 13g/10min, also optionally 12g/10min, but not limited thereto.
  • the thickness ratio of the outer resin layer, the middle resin layer, and the inner resin layer may be (1 to 5):(4 to 8):1 such as (1.5 to 4.5):(4.5 to 7.5):1, (1.9 to 3.9):(4 to 7):1 or (2.5 to 3.5):(5.5 to 6.5):1, optionally (2 to 4):(5 to 7):1, also optionally 3: 6:1, but not limited to this.
  • the metal composite film of the present embodiment can further comprise a first anti-corrosion layer (4), a second anti-corrosion layer (5), a second adhesive layer (6), and a second anti-corrosion layer (6).
  • the resin layer (7) is thermally welded.
  • the first anti-corrosion layer (4), the second anti-corrosion layer (5), the second adhesive layer (6), and the second hot-melt resin layer (7) It is not the key point of the protection of the present disclosure, and it is simply exemplified here, and it is not necessary to repeat it.
  • the second adhesive layer (6) is formed on the side of the metal layer (1) opposite to the first adhesive layer (2), and the second heat-melt resin layer (7) formed on the side of the second adhesive layer (6) opposite to the metal layer (1), the first anti-corrosion layer (4) formed on the metal layer (1) and the first adhesive layer Between (2), the second anti-corrosion layer (5) is formed between the metal layer (1) and the second adhesive layer (6).
  • the second adhesive layer (6) may include polyurethane-modified polyester polyol and aromatic isocyanate compound, or may include polyester polyol and aromatic isocyanate compound, or may include polyurethane Modified polyester polyols, polyester polyols and aromatic isocyanate compounds.
  • the ratio NCO/ OH may be 15 to 30, optionally 20 to 25, and also optionally 21, but is not limited thereto.
  • an example of the aromatic isocyanate compound may be toluene diisocyanate (TDI), but is not limited thereto.
  • the polyester polyol when the second adhesive layer (6) includes polyester polyol and aromatic isocyanate compound, the polyester polyol may include the first non-crystalline polyester polyol and the second non-crystalline Crystalline polyester polyol.
  • the weight ratio between the first non-crystalline polyester polyol and the second non-crystalline polyester polyol may be (4 to 1):1, optionally (3 to 1.5): 1, and optionally 2:1, but not limited thereto.
  • the weight average molecular weight of the first non-crystalline polyester polyol may be 7000 to 9000, optionally 7500 to 8500, and optionally 8000.
  • the first non-crystalline polyester polyol may have a Tg temperature of 70 to 90°C, alternatively 75 to 85°C, and alternatively 79°C.
  • the hydroxyl value of the first non-crystalline polyester polyol may be 10 to 20 mg KOH/g, optionally 13 to 18 mg KOH/g, and optionally 16 mg KOH/g, but Not limited to this.
  • the weight average molecular weight of the second non-crystalline polyester polyol may be 5500 to 7500, optionally 6000 to 7000, and optionally 6500.
  • the Tg temperature of the second non-crystalline polyester polyol may be -10 to 5°C, alternatively -7 to 0°C, and alternatively -3°C.
  • the hydroxyl value of the second non-crystalline polyester polyol may be 5 to 15 mg KOH/g, alternatively 7.5 to 12.5 mg KOH/g, and alternatively 10 mg KOH/g, but Not limited to this.
  • the side of the second heat-melt resin layer (7) close to the second adhesive layer (6) may be corona-treated.
  • each of the first anti-corrosion layer (4) and the second anti-corrosion layer (5) may include a trivalent chromium compound, an inorganic acid, and an organic resin.
  • the trivalent chromium compound may include one or more of chromium nitrate, chromium phosphate, chromium fluoride, and chromium chloride.
  • the inorganic acid may include one or more of nitric acid and phosphoric acid.
  • the organic resin may include one or more of polyacrylic resin and polyvinyl alcohol.
  • examples of polyacrylic resins can be polyacrylic acid, polymethyl acrylate, copolymers of acrylic acid and maleic acid, copolymers of acrylic acid and styrene, and derivatives thereof such as sodium salts and ammonium salts. one or more.
  • the polyacrylic resin may have a weight average molecular weight of 10,000 to 800,000, such as 50,000 to 700,000, 150,000 to 600,000, or 250,000 to 500,000, but is not limited thereto.
  • the mass ratio among the trivalent chromium compound, the inorganic acid and the organic resin may be (18-60):(3-60):(6-60), but not limited thereto.
  • each of the first anti-corrosion layer (4) and the second anti-corrosion layer (5) may further include fluoride, and the fluoride may at least include chromium fluoride.
  • the mass ratio among trivalent chromium compound, inorganic acid, organic resin and fluoride may be (18 to 60): (3 to 60): (6 to 60): (0 to 10) such as (20 to 55): (5 to 50): (10 to 50): (0.1 to 8), (25 to 50): (15 to 45): (15 to 45): (1 to 7) or (30 to 40): (20 to 40): (20 to 40): (2 to 5), the corresponding value of fluoride is not 0, but not limited thereto.
  • each of the first anti-corrosion layer (4) and the second anti-corrosion layer (5) may include a trivalent chromium compound, an inorganic acid, and an organic resin.
  • the trivalent chromium compound may include one or more of chromium nitrate, chromium fluoride, chromium chloride, and chromium phosphate.
  • the inorganic acid may include one or more of nitric acid and hydrofluoric acid.
  • the organic resin may include at least polyvinyl alcohol, but is not limited thereto.
  • the mass ratio among the trivalent chromium compound, the inorganic acid and the organic resin may be (24-40):(1-8):(10-12), but not limited thereto.
  • the mass ratio between the trivalent chromium compound and the organic resin may be (2 to 4):1.
  • each of the first anti-corrosion layer (4) and the second anti-corrosion layer (5) may further include titanate, and trivalent chromium compounds, inorganic acids, organic
  • the mass ratio between resin and titanate can be (24 to 40): (1 to 8): (10 to 12): (0 to 5) such as (25 to 38): (2 to 6): (10.5 to 11.5): (0.1 to 4.5), (28 to 35): (3 to 5): (10.8 to 11.2): (1 to 4) or (30 to 34): (3.5 to 4.5): (10.9 to 11.1 ): (2 to 3), the corresponding value of titanate is not 0, but not limited thereto.
  • each of the first anti-corrosion layer (4) and the second anti-corrosion layer (5) may include an aminated phenolic polymer, a trivalent chromium compound, and a phosphorus compound.
  • the aminated phenolic polymer may account for 1 to 200 mg such as 10 to 190 mg, 50 mg per 1 m of the first corrosion protection layer (4) and the second corrosion protection layer (5).
  • the chromium element in the trivalent chromium compound can account for 0.5 to 50 mg such as 1 to 55 mg, 5 to 45 mg or 10 to 30 mg
  • the phosphorus element in the phosphorus compound can account for 0.5 to 50 mg such as 1 to 45 mg, 5 to 40mg or 15 to 35mg, but not limited thereto.
  • each of the first anti-corrosion layer (4) and the second anti-corrosion layer (5) may include a first anti-corrosion sub-layer and a second anti-corrosion sub-layer, the first The first anti-corrosion sub-layer in the anti-corrosion layer (4) is formed on a side close to the metal layer (1), and the second anti-corrosion sub-layer in the first anti-corrosion layer (4) is formed on a side close to the metal layer (1).
  • the other side of the first adhesive layer (2), and the first anti-corrosion sub-layer in the second anti-corrosion layer (5) is formed on the side close to the metal layer (1), the second The second anti-corrosion sub-layer in the anti-corrosion layer (5) is formed on the other side close to the second adhesive layer (6).
  • the first anti-corrosion sub-layer in the first anti-corrosion layer (4) or the first anti-corrosion sub-layer in the second anti-corrosion layer (5) can include oxidation Cerium, phosphoric acid or phosphate, regardless of the second anti-corrosion sub-layer in the second anti-corrosion layer (5) or the second anti-corrosion sub-layer in the second anti-corrosion layer (5), can be Polymers include, but are not limited to, cationic or anionic polymers.
  • the first anti-corrosion sublayer includes cerium oxide and phosphoric acid or phosphate
  • 1 to 100 parts by mass of phosphoric acid or phosphate may be contained in the presence of 100 parts by mass of cerium oxide.
  • the most suitable parameter range is found to make the liquid-resistant peel strength and liquid-resistant heat-sealing strength of the adhesive layer formed Improvement, better performance, so as to meet the liquid resistance of the adhesive layer and the liquid resistance heat seal strength after heat sealing and in the electrolytic environment of the electrolyte as the content.
  • another embodiment of the present disclosure proposes a battery outer packaging material, which includes the above-mentioned metal composite film, and the metal composite film is obtained by being close to the first thermally welded resin layer (3) One side is in contact with the battery's electrolyte.
  • another embodiment of the present disclosure proposes a method for preparing the above-mentioned metal composite film, which includes: providing the metal layer (1); forming the first adhesive layer (2) on the metal layer (1) and forming the first heat-melt resin layer (3) on the side of the first adhesive layer (2) opposite to the metal layer (1).
  • a solution containing the components of the first adhesive layer (2) can be coated on the first On the metal layer (1), the solution containing the components of the first adhesive layer (2) is dried.
  • the The side of the first adhesive layer (2) opposite to the metal layer (1) is thermally compounded with the first heat-melt resin layer (3), and then subjected to aging treatment.
  • the temperature of heat compounding can be 80 to 100°C, optionally 90°C, and the temperature of aging treatment can be 40 to 60°C, optionally 50°C, and the time of aging treatment can be 6 to 10 days, optionally The earth is 7 days, but not limited to this.
  • the preparation method may further include forming the first anti- The corrosion layer (4) or the second anti-corrosion layer (5) is on both sides of the metal layer (1).
  • the first adhesive layer (2) is formed on the side of the metal layer (1) expected to form the first adhesive layer (2)
  • the second anti-corrosion layer (5) is formed on the metal layer (1) Opposite to the other side where the first adhesive layer (2) is expected to be formed. No matter it is the first anti-corrosion layer (4) or the second anti-corrosion layer (5), it can be coated with the first anti-corrosion layer (4) or the second anti-corrosion layer (5). ) solution of the components on the metal layer (1), and then heat drying.
  • the applied wet film weight of the solution may be 3 to 7 g/m 2 , optionally 5 g/m 2 .
  • the drying temperature may be 180 to 200°C, optionally 190°C, and the drying time may be 1 to 3 minutes, optionally 2 minutes.
  • the preparation method may further include forming the second adhesive layer (6) on the metal layer (1) relative to the first adhesive layer ( 2); and forming the second heat-welding resin layer (7) on the side of the second adhesive layer (6) opposite to the metal layer (1).
  • a second adhesive layer when forming the second adhesive layer (6) on the side of the metal layer (1) opposite to the first adhesive layer (2), a second adhesive layer may be coated with The component of (6) is on the side of the metal layer (1) opposite to the first adhesive layer (2).
  • the second The hot-melt resin layer (7) when forming the second heat-melt resin layer (7) on the side of the second adhesive layer (6) opposite to the metal layer (1), the second The hot-melt resin layer (7) is heat-composited with the second adhesive layer (6), and then subjected to aging treatment.
  • the aging treatment temperature may be 50 to 70°C, optionally 60°C, and the aging treatment time may be 1 to 5 days, optionally 3 days, but not limited thereto.
  • the composite metal composite film is composed of outer substrate resin layer/outer adhesive layer/intermediate metal layer/inner adhesive layer/inner thermal fusion resin layer.
  • Corona treatment is performed on the outer substrate resin layer resin film in contact with the outer adhesive layer.
  • one side of the metal foil such as: aluminum foil, aluminum alloy foil, nickel-plated iron foil or stainless steel foil, etc.
  • polyols and aromatic isocyanate compounds to form an outer adhesive layer on the metal foil.
  • aging treatment is carried out at a temperature of 60° C. for 3 days to form an outer substrate resin layer/outer adhesive layer/metal layer semi-finished product.
  • Amorphous polyester polyol with weight average molecular weight of 8000, Tg of 79°C and hydroxyl value of 16 mg KOH/g was mixed with amorphous polyester polyol of weight average molecular weight of 6500, Tg of -3°C and hydroxyl value of 10 mg KOH/g
  • the non-toxic polyester polyol is mixed according to the weight ratio of 10:5, and toluene diisocyanate (TDI) is added to form an external adhesive mixture with an NCO/OH ratio of 21.
  • a certain proportion is evenly coated on both sides of the metal foil by a coating roller, and then baked at 190°C for 2 minutes.
  • the coating wet film amount of the anti-corrosion layer treatment liquid is 5g/m 2
  • the chromium content coated on the surface of the aluminum foil is 15 mg/m 2 .
  • the inner adhesive layer is compounded on the metal surface of the outer substrate resin layer/outer adhesive layer/intermediate metal layer.
  • the inner adhesive layer is a two-component adhesive, and the dry compounding method is adopted.
  • the mixture of solvent-based acid-modified polypropylene and curing agent is mainly applied to the composite film of the outer base material resin.
  • the anti-corrosion-treated metal surface is dried to form an inner adhesive layer, which is thermally compounded with the adhesive surface of the hot-melt resin at a temperature of 90°C, and then cured at a temperature of 50°C for 7 days to form an outer substrate Composite product of resin layer/outer adhesive layer/middle metal layer/inner adhesive layer/inner heat-welded resin layer.
  • the adhesive surface of the inner heat-sealable resin layer film which is in contact with the inner adhesive layer is corona treated in advance.
  • the semi-finished packaging material of the outer substrate resin layer/outer adhesive layer/intermediate metal layer/inner adhesive layer is composited with the inner heat-welded resin layer by dry lamination, and aged at 60°C for three days to obtain the finished lithium-ion battery device outer shell Packaging Materials.
  • the inner thermal fusion resin layer is composed of three layers, and the side in contact with the inner adhesive layer is subjected to corona treatment, and its structure is:
  • the outer resin layer in contact with the inner adhesive layer a layer composed of random copolymerized polypropylene with a melting point of 151°C and an MFR (230°C) of 5.5g/10min;
  • Middle resin layer 50wt% of block copolymer polypropylene with melting point of 162°C and MFR (230°C) of 2g/10min; 20wt% of random copolymerized polypropylene with melting point of 155°C and MFR (230°C) of 5g/10min Propylene; 20wt% has a melting point of 160°C, an MFR (230°C) of 9.5g/10min, and a density of 0.87g/cm 3 propylene-butene polymer elastomer; and 10wt% of an MFR (230°C) of 3g/10min mixture layer formed by non-crystalline propylene-based elastomer;
  • Inner resin layer a layer composed of random copolymerized polypropylene with a melting point of 145°C and an MFR (230°C) of 12g/10min;
  • the resin thickness ratio of the three layers from the outer layer in contact with the inner adhesive layer to the inner layer in the inner heat welding resin layer is 3:6:1.
  • the most suitable parameter range is found, so that the liquid-resistant peel strength and liquid-resistant heat-sealing strength of the formed adhesive layer are improved, and the performance is better , so as to meet the liquid resistance of the adhesive layer and the liquid resistance heat seal strength after heat sealing and in the electrolytic environment of the electrolyte solution as the content.
  • the outer substrate resin layer is a biaxially stretched nylon film with a thickness of 25 ⁇ m, which is compounded to an 8021-series aluminum material with a thickness of 35 ⁇ m and a surface wettability of 68 dyn/cm as an intermediate metal layer through an adhesive.
  • Anti-corrosion treatment is carried out on both sides of the metal layer to form an anti-corrosion layer.
  • the anti-corrosion treatment is to make the mass ratio of trivalent chromium compound, inorganic acid and organic resin on the surface of the metal layer 2:2:1, the trivalent chromium compound is chromium phosphate, and the inorganic acid is Nitric acid, the organic resin is polyacrylic acid resin.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the resin layer of the outer base material is a 25 ⁇ m thick biaxially stretched nylon film, which is compounded on the 40 ⁇ m thick middle metal layer 8079 series aluminum material with a surface wettability of 70 dyn/cm through an adhesive.
  • Anti-corrosion treatment is carried out on both sides of the metal layer to form an anti-corrosion layer.
  • the anti-corrosion treatment is to make the mass ratio of trivalent chromium compound, inorganic acid and organic resin on the surface of the metal layer 2:2:1, the trivalent chromium compound is chromium phosphate, and the inorganic acid is Nitric acid, the organic resin is polyacrylic acid resin.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the outer substrate resin layer is a 25 ⁇ m thick bidirectional synchronously stretched nylon film, which is compounded by an adhesive to the heat-treated 38 ⁇ m thick stainless steel foil of the middle metal layer, and its surface water contact angle is 15 degrees.
  • Anti-corrosion treatment is carried out on both sides of the metal layer to form an anti-corrosion layer.
  • the anti-corrosion treatment is to make the mass ratio of trivalent chromium compound, inorganic acid and organic resin on the surface of the metal layer 2:2:1, the trivalent chromium compound is chromium phosphate, and the inorganic acid is Nitric acid, the organic resin is polyacrylic acid resin.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anti-corrosion layer was the same as in Example 1.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 1.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the outer substrate resin layer is a biaxially stretched nylon film with a thickness of 25 ⁇ m, which is compounded to an 8021-series aluminum material with a thickness of 35 ⁇ m and a surface wettability of 68 dyn/cm as an intermediate metal layer through an adhesive.
  • Anti-corrosion treatment is carried out on both sides of the metal layer to form an anti-corrosion layer.
  • the anti-corrosion treatment is to make the mass ratio of trivalent chromium compound, inorganic acid and organic resin on the surface of the metal layer 15:1:5, the trivalent chromium compound is chromium fluoride, inorganic acid It is hydrofluoric acid, and the organic resin is polyvinyl alcohol resin.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anticorrosion layer was the same as in Example 5.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 5.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the outer substrate resin layer is a biaxially stretched nylon film with a thickness of 25 ⁇ m, which is compounded to an 8021-series aluminum material with a thickness of 35 ⁇ m and a surface wettability of 68 dyn/cm as an intermediate metal layer through an adhesive.
  • Anti-corrosion treatment is carried out on both sides of the metal layer to form an anti-corrosion layer.
  • the anti-corrosion treatment is to make the mass ratio of trivalent chromium compound, inorganic acid, fluoride and aminated phenol resin on the surface of the metal layer to be 15:2:2:3.
  • the trivalent chromium compound is chromium nitrate, and the inorganic acid is phosphoric acid.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the outer substrate resin layer is a biaxially stretched nylon film with a thickness of 25 ⁇ m, which is compounded to an 8021-series aluminum material with a thickness of 35 ⁇ m and a surface wettability of 68 dyn/cm as an intermediate metal layer through an adhesive.
  • the anti-corrosion treatment is to form a layer of 0.1 ⁇ m thickness by 95wt% cerium oxide (CeO 2 ) and 5wt% aminopropyl trimethoxysilane on the surface of the metal layer.
  • a layer composed of a polyallylamine resin and an epichlorohydrin adduct of 1,6-hexanediol was formed to a thickness of 0.1 ⁇ m.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anti-corrosion layer was the same as in Example 1.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 1.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anti-corrosion layer was the same as in Example 1.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 1.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anti-corrosion layer was the same as in Example 1.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 1.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anti-corrosion layer was the same as in Example 1.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 1.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anti-corrosion layer was the same as in Example 1.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 1.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anti-corrosion layer was the same as in Example 1.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 1.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anti-corrosion layer was the same as in Example 1.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 1.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anti-corrosion layer was the same as in Example 1.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 1.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anti-corrosion layer was the same as in Example 1.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 1.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anti-corrosion layer was the same as in Example 1.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 1.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • the aluminum alloy foil is used to form a composite film, and both sides of the aluminum alloy foil are chemically treated to form an anti-corrosion layer.
  • the formation of the anti-corrosion layer was the same as in Example 1.
  • the lamination of the outer substrate resin layer and the outer adhesive layer is the same as in Example 1.
  • the formed solution-type mixture is coated on the metal surface of the composite film of the composite outer base resin layer relative to the outer base resin layer, and after drying, an inner adhesive layer with a thickness of 2 ⁇ m is formed, and then at a temperature of 90° C., with a thickness of 40 ⁇ m Hot-melt resin is thermally compounded, and then aged at 50°C for 7 days to form an outer substrate resin layer (25 ⁇ m)/outer adhesive layer (3 ⁇ m)/intermediate metal layer/inner adhesive layer/inner thermally welded resin layer ( 40 ⁇ m) composite finished product.
  • the bonding surface of the three-layer heat-melt resin film which is in contact with the inner adhesive layer is corona-treated in advance.
  • Test with a Differential Scanning Calorimeter set the heating and cooling rate to 10°C/min, and set four stages: (1) heating from 25°C to 150°C, (2) cooling from 150°C to 25°C, (3) heating from 25°C to 150°C, (4) cooling from 150°C to 25°C, and measuring the peak temperature of the second endothermic peak to obtain the melting point.
  • test temperature is 150°C
  • mobile phase is trichlorobenzene (TCB)
  • standard product is polystyrene (PS)
  • sample system is polyolefin samples, such as: common samples PP and PE; the test sample volume is 5mg .
  • Instrument model PL-GPC220; column model: PLgel MIXED-B LS 300x7.5mm; detector: differential refractive index detector.
  • Sample preparation Dissolve the sample completely in trichlorobenzene, filter it with a 0.22 ⁇ m organic filter membrane and test it directly on the machine, and read the test value of the weight average molecular weight Mw directly.
  • ⁇ V volume of KOH or NaOH consumed by titration (ml);
  • GPC-802, GPC-8025 and GPC-803 are used in series, produced by Shimadzu Corporation of Japan;
  • RI differential refractive index detector
  • the column temperature is 35°C; the flow rate is 1.0mL/min; the injection volume is 20L; the sample concentration is 0.002g/mL; both tetrahydrofuran (THF) and methanol are chromatographically pure.
  • the relative content of the peak area of each component was calculated by the normalization method to characterize its mass fraction.
  • the calculation formula is:
  • Wi is the mass fraction of the i-functionality component in the sample
  • A GPC chromatographic peak area of the i-functionality component in the sample.
  • NCO% the effective mass of NCO in the curing agent
  • the reading method of the peeling strength is that the moving distance of the inner thermally welded resin layer and the intermediate metal layer is 50mm, and the average value of the peeling strength between the moving distance of 10mm and 40mm is selected. 5/group for parallel testing.
  • the finished sample of the metal composite film is directly immersed in a mixed solvent containing 1M LiPF dimethyl carbonate (DMC): diethyl carbonate (DEC): ethylene carbonate (EC) ratio of 1:1:1, After soaking at 85°C for 1 day, 3 days, 7 days, and 14 days, take it out, wash it with water for 20 minutes, wipe off the moisture on the surface of the sample, and measure the bond between the middle metal layer and the inner heat-welded resin layer according to the initial peel strength test method of the finished product. Peel strength.
  • DMC LiPF dimethyl carbonate
  • DEC diethyl carbonate
  • EC ethylene carbonate
  • the finished sample of the metal composite film is directly immersed in a mixed solvent containing 1M LiPF dimethyl carbonate (DMC): diethyl carbonate (DEC): ethylene carbonate (EC) ratio of 1:1:1, Then add an aqueous solution accounting for 1000PPM of the total mass of the electrolyte to the mixed solvent, soak at 85°C for 1 day, 3 days, 7 days, and 14 days.
  • the peel strength test method measures the peel strength between the middle metal layer and the inner thermally welded resin layer.
  • Example 1 and Comparative Examples 1 and 2 lie in the functionality of the curing agent, but the characteristics of Example 1 are generally better than Comparative Examples 1 and 2;
  • the difference between 1 and Comparative Examples 3 and 4 lies in the acid value of acid-modified polypropylene, but the characteristics of Example 1 are generally better than those of Comparative Examples 3 and 4;
  • the difference between Example 1 and Comparative Examples 5 and 6 lies in the acid-modified polypropylene The melting point of polypropylene, but the characteristics of Example 1 are generally better than those of Comparative Examples 5 and 6;
  • the difference between Example 1 and Comparative Examples 7 and 8 lies in the molecular weight of acid-modified polypropylene, but the characteristics of Example 1 are generally better than those of Comparative Examples 5 and 6.
  • Compared with Comparative Examples 7 and 8; the difference between Example 1 and Comparative Examples 9 and 10 lies in the NCO/COOH value, but the characteristics of Example 1 are generally better than those of Comparative Examples 9 and 10.
  • Embodiment 9 As listed in FIG. 6 below and shown in FIGS. 2 to 5 , after comparing Embodiments 1 to 9, it can be seen that the characteristics of Embodiment 9 have been further improved overall.
  • the metal composite film provided by the disclosure improves the liquid-resistant peel strength and liquid-resistant heat-sealing strength of the adhesive layer formed by selecting the physical properties of the acid-modified polypropylene and the functionality of the curing agent, and the performance is more excellent, so as to meet the requirements of the adhesive.
  • the metal composite film provided by the present disclosure has excellent industrial application performance and can be widely used in the field of batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

本公开提供金属复合膜及其制备方法,其中,金属复合膜包括:一金属层、一第一胶粘剂层、及一第一热熔接树脂层,所述第一胶粘剂层设置于所述金属层与所述第一热熔接树脂层之间,所述第一胶粘剂层至少含有固化剂与酸改性聚丙烯,所述固化剂含有50wt%以上的六亚甲基二异氰酸酯,所述六亚甲基二异氰酸酯自聚合成三聚体,所述六亚甲基二异氰酸酯的官能度为3.0至4.5,所述酸改性聚丙烯含有聚丙烯树脂,所述聚丙烯树脂为用羧酸或其酸酐进行接枝处理进行改性过的,所述酸改性聚丙烯的酸值为1至5,熔点为70至130℃,重均分子量为10万至25万,所述固化剂中的异氰酸酯基摩尔数(NCO值)相对于所述酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为1.0至5.0。

Description

金属复合膜及其制备方法
相关申请的交叉引用
本公开要求于2021年12月30日提交中国专利局的申请号为“CN 202111647964.1”名称为“金属复合膜及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及于电池包装材料的相关技术领域,且特别涉及一种金属复合膜层及其制备方法。
背景技术
目前锂离子电池依外型主要分为方形、圆柱、软包等三大类。方形和圆柱的外壳主要采用铝合金、不锈钢等,而软包的外壳则采用金属和树脂层叠而成的金属复合膜,极大地改善硬装电池外形设计不灵活的问题。软包的金属复合膜主要有两种类型,一是干法品,其构成从外到内依次是外基材树脂层、外胶粘剂层、中间金属层、内胶粘剂层和内热熔接树脂层;另一是热法品,其构成从外到内依次是外基材树脂层、外胶粘剂层、中间金属层和内热熔接树脂层。
聚丙烯为内胶粘剂层中常见的材料。内胶粘剂层能使中间金属层和内热熔接树脂层具有一定的复合强度、耐电解液强度、二侧封耐性与绝缘性,从而防止电解液渗透与短路,所以内胶粘剂层的性能对于电池的性能影响极大。目前用于电池外包装中内胶粘剂层的粘接剂由于使用时易遭内容物电解液侵蚀,在长期保存下,易使中间金属层和内热熔接树脂层间的剥离强度降低。另外,耐热性也有下降的趋势。存在这些问题的主因是固化剂的选择,一般选择六亚甲基二异氰酸(HDI),但未考虑其官能度。虽然同为HDI,但是每个供应公司的催化剂选择与反应条件的控制都会有差异,通常得到的三聚体产物是多个组分的混合物,纯度高低不一,导致性能也有很大的差异。在长期保存中容易发生内胶粘剂层破坏引起的中间金属层和内热熔接树脂层剥离的现象,严重影响使用安全性。
发明内容
本公开提供一种金属复合膜,包括:
一金属层、一第一胶粘剂层、及一第一热熔接树脂层;
所述第一胶粘剂层设置于所述金属层与所述第一热熔接树脂层之间,所述第一胶粘剂层至少含有固化剂与酸改性聚丙烯;
所述固化剂含有50wt%以上的六亚甲基二异氰酸酯,所述六亚甲基二异氰酸酯自聚合成三聚体,所述六亚甲基二异氰酸酯的官能度为3.0至4.5;
所述酸改性聚丙烯含有聚丙烯树脂,所述聚丙烯树脂为用羧酸或其酸酐进行接枝处理进行改性过的,所述酸改性聚丙烯的酸值为1至5,熔点为70至130℃,重均分子量为10万至25万;
所述固化剂中的异氰酸酯基摩尔数(NCO值)相对于所述酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为1.0至5.0。
在一些实施方式中,所述的羧酸包括马来酸、富马酸、丙烯酸、与甲基丙烯酸中的一种或多种,其酸酐包括马来酸酐、富马酸酐、丙烯酸酐、甲基丙烯酸酐中的一种或多种。
在一些实施方式中,更包括:
一第一防腐蚀层及/或一第二防腐蚀层,所述第一防腐蚀层形成于所述金属层与所述第一胶粘剂层之间,所述第二防腐蚀层形成于所述金属层远离所述第一胶粘剂层的一侧。
在一些实施方式中,所述第一防腐蚀层与所述第二防腐蚀层各自包括三价铬化合物、无机酸以及有机树脂。
在一些实施方式中,所述三价铬化合物包括硝酸铬、磷酸铬、氟化铬、氯化铬中的一种或多种;且/或所述无机酸包括硝酸、磷酸中的一种或多种;且/或所述有机树脂包括聚丙烯酸系树脂和聚乙烯醇中的一种或多种;且/或所述聚丙烯酸系树脂的重均分子量是1万至80万;且/或所述三价铬化合物、所述无机酸与所述有机树脂之间的质量比是(18至60):(3至60):(6至60);且/或所述三价铬化合物与所述有机树脂之间的质量比是(3至100):10。
在一些实施方式中,所述第一防腐蚀层与所述第二防腐蚀层各自更包括氟化物,所述三价铬化合物、所述无机酸、所述有机树脂与所述氟化物之间的质量比是(18至60):(3至60):(6至60):(0至10),所述氟化物的对应数值不是0。
在一些实施方式中,所述三价铬化合物包括硝酸铬、氟化铬、氯化铬、磷酸铬中的一种或多种;且/或所述无机酸包括硝酸、氢氟酸中的一种或多种;且/或所述有机树脂至少包括聚乙烯醇;且/或所述三价铬化 合物、所述无机酸与所述有机树脂之间的质量比是(24至40):(1至8):(10至12);且/或所述三价铬化合物与所述有机树脂之间的质量比是(2至4):1。
在一些实施方式中,所述第一防腐蚀层与所述第二防腐蚀层各自更包括包括钛酸盐,所述三价铬化合物、所述无机酸、所述有机树脂与钛酸盐之间的质量比是(24至40):(1至8):(10至12):(0至5),所述钛酸盐的对应数值不是0。
在一些实施方式中,所述第一防腐蚀层与所述第二防腐蚀层各自包括氨基化酚聚合物、三价铬化合物及磷化合物。
在一些实施方式中,于所述第一防腐蚀层与所述第二防腐蚀层每1m 2面积下,所述氨基化酚聚合物可以1至200mg,所述三价铬化合物中的铬元素占0.5至50mg,所述磷化合物中的磷元素占0.5至50mg。
在一些实施方式中,所述第一防腐蚀层包括一第一防腐蚀子层与一第二防腐蚀子层,所述第二防腐蚀层包括一第一防腐蚀子层与一第二防腐蚀子层,所述第一防腐蚀层中的第一防腐蚀子层形成于接近所述金属层的一侧,所述第一防腐蚀层中的第二防腐蚀子层形成于远离所述金属层的另一侧,而所述第二防腐蚀层中的第一防腐蚀子层形成于接近所述金属层的一侧,所述第二防腐蚀层中的第二防腐蚀子层形成于远离所述金属层的另一侧。
在一些实施方式中,所述第一防腐蚀层中的第一防腐蚀子层与所述第二防腐蚀层中的第一防腐蚀子层包括氧化铈、磷酸或磷酸盐;且/或所述第二防腐蚀层中的第二防腐蚀子层与所述第二防腐蚀层中的第二防腐蚀子层包括聚合物阳离子系或阴离子系聚合物。
在一些实施方式中,于所述第一防腐蚀层中的第一防腐蚀子层与所述第二防腐蚀层中的第一防腐蚀子层包括氧化铈、以及磷酸或磷酸盐的情况下,于100质量份氧化铈的存在下,占有1至100质量份的磷酸或磷酸盐。
在一些实施方式中,所述第一热熔接树脂层自接近所述第一胶粘剂层的一侧向远离所述第一胶粘剂层的另一侧依序包括:一外树脂层、一中间树脂层、以及一内树脂层。
在一些实施方式中,所述外树脂层包括无规共聚聚丙烯,无规共聚聚丙烯的熔点是140至160℃,无规共聚聚丙烯的230℃熔融指数MFR是4.5至6.5g/10min;且/或所述中间树脂层包括嵌段共聚聚丙烯、无规共聚聚丙烯、丙烯-丁烯组成的聚合物弹性体、以及非结晶性丙烯系弹性体,嵌段共聚聚丙烯的熔点是150至170℃,嵌段共聚聚丙烯的230℃熔融指数MFR是1至4g/10min,嵌段共聚聚丙烯相对于中间树脂层的含量是40至60wt%,无规共聚聚丙烯的熔点是140至170℃,无规共聚聚丙烯的230℃熔融指数MFR是4至7g/10min,无规共聚聚丙烯相对于中间树脂层的含量是10至30wt%,丙烯-丁烯组成的聚合物弹性体的熔点是150至170℃,丙烯-丁烯组成的聚合物弹性体的230℃熔融指数MFR是8至12g/10min,丙烯-丁烯组成的聚合物弹性体相对于中间树脂层的含量是10至30wt%,非结晶性丙烯系弹性体的230℃熔融指数MFR是2至4g/10min,非结晶性丙烯系弹性体相对于中间树脂层的含量是5至15wt%;且/或所述内树脂层内树脂层包括无规共聚聚丙烯,无规共聚聚丙烯的熔点是135至155℃,无规共聚聚丙烯的230℃熔融指数MFR是10至15g/10min;且/或所述外树脂层、所述中间树脂层、以及所述内树脂层的厚度比是(1至5):(4至8):1。
本公开还提供制备上述金属复合膜的制备方法,包括:
提供所述金属层;
形成所述第一胶粘剂层于所述金属层上;以及
形成所述第一热熔接树脂层于所述第一胶粘剂层相对于所述金属层的一侧上。
本公开还提供一种锂离子电池,所述锂离子电池包括上述金属复合膜。
附图说明
图1为一剖面结构示意图,以呈现本公开的一些实施方式的金属复合膜;
图2为一直方图,以比较实施例1至9与比较例1至10的复合成品在85℃的温度下浸泡电解液总质量1000PPM的水溶液后测得的剥离强度;
图3为一直方图,以比较实施例1至9与比较例1至10的复合成品在85℃的温度下浸泡电解液总质量1000PPM的水溶液后测得的剥离强度维持率;
图4为一直方图,以比较实施例1至9与比较例1至10的复合成品初期剥离强度及在不同温度下置放1分钟后测得的剥离强度;及
图5为一直方图,以比较实施例1至9与比较例1至10的复合成品在不同温度下置放1分钟后测得的剥离强度维持率;
图6为本公开实施例和对比例的金属复合膜性能测试数据图表。
附图标记:
(1)金属层
(2)第一胶粘剂层
(3)第一热熔接树脂层
(4)第一防腐蚀层
(5)第二防腐蚀层
(6)第二胶粘剂层
(7)第二热熔接树脂层
具体实施方式
以下对本公开的一些实施方式结合附图进行详细说明。应当理解的是,此处所描述的一些实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中公开。
本公开一些实施方式提供的金属复合膜有效确保电池外包装在电解液环境中有良好的粘接性能和密封性能,使电池内部化学体系稳定工作,保证电池的基本安全。
如图1所示,本公开的一实施方式提出一种金属复合膜,其至少包括:一金属层(1)、一第一胶粘剂层(2)、及一第一热熔接树脂层(3),所述第一胶粘剂层(2)设置于所述金属层(1)与所述第一热熔接树脂层(3)之间,所述第一胶粘剂层(2)至少含有固化剂与酸改性聚丙烯。在一些实施方式中,所述固化剂含有50wt%以上(诸如50wt%-100wt%、55wt%-85wt%、60wt%-75wt%或65wt%-70wt%)的六亚甲基二异氰酸酯,所述六亚甲基二异氰酸酯自聚合成三聚体。在一些实施方式中,所述六亚甲基二异氰酸酯的官能度为3.0至4.5诸如3.1至4.4、3.5至4.0或3.6至3.8。在一些实施方式中,所述酸改性聚丙烯含有聚丙烯树脂,所述聚丙烯树脂为用羧酸或其酸酐进行接枝处理进行改性过的。在一些实施方式中,所述酸改性聚丙烯的酸值为1至5诸如1.1至4.9、1.5至4.5、2至4或2.5至3.5。在一些实施方式中,熔点为70至130℃诸如72至128℃、80至120℃、90至110℃或100至115℃。在一些实施方式中,重均分子量为10万至25万,诸如11万至24万、12万至22万、15万至20万或16万至18万。在一些实施方式中,所述固化剂中的异氰酸酯基摩尔数(NCO值)相对于所述酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为1.0至5.0诸如1.1至4.9、1.5至4.5、2.0至4.0或2.5至3.5。
由于所述第一胶粘剂层(2)由酸改性聚丙烯和固化剂固化反应形成的,固化剂在制造阶段时除了生成期望的反应生成物外,尚有与反应生成物不同碳原子数的杂质。由于除去这个杂质非常困难,所以固化剂中的三聚体产物是多组分混合物。基于此,「六亚甲基二异氰酸酯的官能度」可视为所述六亚甲基二异氰酸酯的纯度指标。
据信,不受理论的约束,所述六亚甲基二异氰酸酯的官能度未满界定范围的最小值3时,会产生很多直链状反应生成物,而直链状反应生成物会受电解液的渗透和氢氟酸的产生而发生分解。反之,所述六亚甲基二异氰酸酯的官能度超过界定范围的最大值4.5时,直链状的反应成分变少,但立体结构紧密状态的反应生成物变多;紧密结构体产生会使所述第一胶粘剂层(2)的内部应力变大,导致所述金属层(1)及所述第一热熔接树脂层(3)的剥离强度有变小的倾向。
「酸改性聚丙烯的酸值」表示中和1克酸改性聚丙烯所需的氢氧化钾(KOH)的毫克数,因此其单位虽省略但实际为mg KOH/g。
据信,不受理论的约束,所述酸改性聚丙烯的酸值未满界定范围的最小值1.0mg KOH/g时,与固化剂的固化反应点少,会造成所述金属层(1)及所述第一热熔接树脂层(3)的黏结性不稳。反之,所述酸改性聚丙烯的酸值超过界定范围的最大值5.0mg KOH/g时,与固化剂的固化反应过于剧烈而形成坚硬的层结构,造成耐弯曲性恶化,使得金属复合膜整体的灵活性下降,或弯折产生裂缝,引发所述金属层(1)及所述第一热熔接树脂层(3)剥离的情况。
据信,不受理论的约束,所述酸改性聚丙烯的熔点未满界定范围最小值70℃时,其耐热性降低,易造成所述金属层(1)及所述第一热熔接树脂层(3)在高温下发生剥离的情况。反之,所述酸改性聚丙烯的熔点超过界定范围最大值130℃时,其耐热性虽获致提升,但与固化剂的反应时易形成坚硬的层结构,导致弯曲性差,从而造成金属复合膜的柔软性下降,或弯折产生裂缝,引起所述金属层(1)及所述第一热熔接树脂层(3)剥离的情况。
据信,不受理论的约束,所述酸改性聚丙烯的重均分子量未满界定范围最小值10万时,其加热时,会提高流动性,导致热封时造成厚度严重变薄,进而降低所述金属层(1)及所述第一热熔接树脂层(3)的附着强度,而存在密封性不足的问题。反之,所述酸改性聚丙烯的重均分子量超过25万,则所述金属层(1)及 所述第一热熔接树脂层(3)会形成坚硬的层结构,使得耐弯曲性变差,造成金属复合膜的柔软性下降,或弯折产生裂缝,导致所述金属层(1)及所述第一热熔接树脂层(3)的剥离情况。
此外,所述第一胶粘剂层(2)是由酸改性聚丙烯与六亚甲基二异氰酸酯反应形成,例如可以是由酸改性聚丙烯接枝聚合而成的羧基(COOH)与六亚甲基二异氰酸酯的异氰酸酯基(NCO)反应,使得所述第一胶粘剂层(2)保持耐内容物电解液、耐化学药品、与耐热等特性。通过使于上述酸改性聚丙烯的羧基含有率(COOH值)与于上述固化剂的异氰酸酯基含有率(NCO值)在适当的范围内,可以使得所述第一胶粘剂层(2)表现出优异的粘接力、耐化学药品性和耐热性。「比值NCO/COOH」表示上述NCO值相对于上述COOH值的比值。
据信,不受理论的约束,比值NCO/COOH未满界定范围的最小值1.0时,表示于固化剂的异氰酸酯基相较于酸改性聚丙烯的羧基少。于此情况下,由于酸改性聚丙烯过量存在,因此未反应的酸改性聚丙烯增多,造成所述金属层(1)及所述第一热熔接树脂层(3)的初期剥离强度提高。但是由于未反应的酸改性聚丙烯增多,使得所述第一胶粘剂层(2)的耐药品不稳定。另外,基于耐药品不稳定,所述第一胶粘剂层(2)易受内容物电解液侵蚀,因此在长期保存中会发生所述金属层(1)及所述第一热熔接树脂层(3)的剥离强度降低的现象,使得所述金属层(1)及所述第一热熔接树脂层(3)有时会剥离。另外,亦会导致耐热性有下降的趋势。
据信,不受理论的约束,比值NCO/COOH超过界定范围的最大值5.0时,表示于固化剂的异氰酸酯基相较于酸改性聚丙烯的羧基多。于此情况下,由于固化剂过量存在,因此未反应的固化剂增多,进而造成固化剂交联物增多,使所述第一胶粘剂层(2)变硬变脆的倾向偏高。基于此,所述金属层(1)及所述第一热熔接树脂层(3)的初期剥离强度有降低的倾向。另外,由于所述第一胶粘剂层(2)变硬变脆且所述金属层(1)及所述第一热熔接树脂层(3)的初期剥离强度降低,所述第一胶粘剂层(2)易受内容物电解液侵蚀,而变得更硬更脆,造成柔软性不足,在长期保存中容易发生所述第一胶粘剂层(2)破坏引起的所述金属层(1)及所述第一热熔接树脂层(3)剥离的现象。
根据前文所述,用羧酸或其酸酐对所述聚丙烯树脂进行接枝处理进行改性,使酸改性聚丙烯接枝聚合有羧基(COOH)。在一些实施方式中,羧酸可以包括但不限于马来酸、富马酸、丙烯酸、与甲基丙烯酸中的一种或多种。在一些实施方式中,而酸酐可以包括但不限于马来酸酐、富马酸酐、丙烯酸酐、与甲基丙烯酸酐中的一种或多种。
在上述实施方式中,所述金属层(1)及所述第一热熔接树脂层(3)并非本公开所保护的重点,于此仅简单例示,无赘述必要。
在一些实施方式中,金属层(1)可以是铝箔、铝合金箔、镀镍铁箔或不锈钢箔,但不限于此;所述金属层(1)的厚度可以是30至50μm,诸如32至48μm、35至45μm或38至40μm。在一些实施方式中,金属层(1)的厚度可以为35至40μm,但不限于此。
在一些实施方式中,所述第一热熔接树脂层(3)自接近所述第一胶粘剂层(2)的一侧向远离所述第一胶粘剂层(2)的另一侧依序包括:一外树脂层、一中间树脂层、以及一内树脂层,但不限于此。
在一些实施方式中,外树脂层包括无规共聚聚丙烯,无规共聚聚丙烯的熔点可以是140至160℃诸如142至158℃、145至155℃或147至150℃,可选地是145至155℃,例如是151℃。在一些实施方式中,无规共聚聚丙烯的230℃熔融指数MFR可以是4.5至6.5g/10min诸如4.7至6.2g/10min、5.0至6.0g/10min或5.2至5.8g/10min,可选地是5至6℃g/10min,还可选地是5.5g/10min,但不限于此。此外,外树脂层接近所述第一胶粘剂层(2)的一侧可以为经电晕处理过的。
在一些实施方式中,中间树脂层可以包括嵌段共聚聚丙烯、无规共聚聚丙烯、丙烯-丁烯组成的聚合物弹性体、以及非结晶性丙烯系弹性体。嵌段共聚聚丙烯的熔点可以是150至170℃诸如152至168℃、155至165℃或156至162℃,可选地是155至165℃,还可选地是162℃,嵌段共聚聚丙烯的230℃熔融指数MFR可以是1至4g/10min,可选地是1.5至3g/10min,还可选地是2g/10min。在一些实施方式中,嵌段共聚聚丙烯相对于中间树脂层的含量可以是40至60wt%,可选地是45至55wt%,还可选地是50wt%,但不限于此。在一些实施方式中,无规共聚聚丙烯的熔点可以是140至170℃诸如145至165℃、151至161℃或152至159℃,可选地是150至160℃,还可选地是155℃。在一些实施方式中,无规共聚聚丙烯的230℃熔融指数MFR可以是4至7g/10min,可选地是4.5至6g/10min,还可选地是5g/10min。在一些实施方式中,无规共聚聚丙烯相对于中间树脂层的含量可以是10至30wt%,可选地是15至25wt%,还可选地是20wt%,但不限于此。在一些实施方式中,丙烯-丁烯组成的聚合物弹性体的熔点可以是150至170℃,可选地是155至165℃,还可选地是160℃。在一些实施方式中,丙烯-丁烯组成的聚合物弹性体的230℃熔融指数MFR可以是8至12g/10min,可选地是9至10g/10min,还可选地是9.5g/10min。在一些实施方式中,丙烯-丁烯组成的聚合物弹性体相对于中间树脂层的含量可以是10至30wt%诸如12至28wt%、15至25wt%或17至20wt%,可选地是15至25wt%,还可选地是20wt%,但不限于此。在一些实施方式中,非结晶性丙烯系弹 性体的230℃熔融指数MFR可以是2至4g/10min,可选地是2.5至3.5g/10min,还可选地是3g/10min。在一些实施方式中,非结晶性丙烯系弹性体相对于中间树脂层的含量可以是5至15wt%诸如6至14wt%、8至12wt%或9至11wt%,可选地是8至12wt%,还可选地是10wt%,但不限于此。
在一些实施方式中,,内树脂层可以包括无规共聚聚丙烯,无规共聚聚丙烯的熔点可以是135至155℃诸如140至152℃、142至150℃或144至148℃,可选地是140至150℃,还可选地是145℃。在一些实施方式中,无规共聚聚丙烯的230℃熔融指数MFR可以是10至15g/10min诸如11至14g/10min、11.5至13.5g/10min或12至13g/10min,可选地是11至13g/10min,还可选地是12g/10min,但不限于此。
此外,外树脂层、中间树脂层、以及内树脂层的厚度比可以是(1至5):(4至8):1诸如(1.5至4.5):(4.5至7.5):1、(1.9至3.9):(4至7):1或(2.5至3.5):(5.5至6.5):1,可选地是(2至4):(5至7):1,还可选地是3:6:1,但不限于此。
又如图1所示,本实施方式的金属复合膜更可包括一第一防腐蚀层(4)、一第二防腐蚀层(5)、一第二胶粘剂层(6)、及一第二热熔接树脂层(7)。
于本实施方式中,所述第一防腐蚀层(4)、所述第二防腐蚀层(5)、所述第二胶粘剂层(6)、及所述第二热熔接树脂层(7)并非本公开所保护的重点,于此仅简单例示,无赘述必要。
在一些实施方式中,所述第二胶粘剂层(6)形成于所述金属层(1)相对于所述第一胶粘剂层(2)的一侧,所述第二热熔接树脂层(7)形成于所述第二胶粘剂层(6)相对于所述金属层(1)的一侧,所述第一防腐蚀层(4)形成于所述金属层(1)与所述第一胶粘剂层(2)之间,所述第二防腐蚀层(5)形成于所述金属层(1)与所述第二胶粘剂层(6)之间。
在一些实施方式中,所述第二胶粘剂层(6)可以包括聚氨酯改性的聚酯多元醇以及芳香族异氰酸酯类化合物,或者可以包括聚酯多元醇以及芳香族异氰酸酯类化合物,或者可以包括聚氨酯改性的聚酯多元醇、聚酯多元醇以及芳香族异氰酸酯类化合物。在一些实施方式中,于芳香族异氰酸酯类化合物的异氰酸酯基摩尔数(NCO值)相对于聚氨酯改性的聚酯多元醇及/或聚酯多元醇的羟基摩尔数(OH值)的比值NCO/OH可以是15至30,可选地是20至25,还可选地是21,但不限于此。在一些实施方式中,芳香族异氰酸酯类化合物的实例可以是甲苯二异氰酸酯(TDI),但不限于此。在一些实施方式中,于所述第二胶粘剂层(6)包括聚酯多元醇以及芳香族异氰酸酯类化合物的情况下,聚酯多元醇可以包括第一非结晶性聚酯多元醇与第二非结晶性聚酯多元醇。在一些实施方式中,第一非结晶性聚酯多元醇与第二非结晶性聚酯多元醇之间的重量比可以是(4至1):1,可选地是(3至1.5):1,还可选地是2:1,但不限于此。在一些实施方式中,第一非结晶性聚酯多元醇的重均分子量可以是7000至9000,可选地是7500至8500,还可选地是8000。在一些实施方式中,第一非结晶性聚酯多元醇的Tg温度可以是70至90℃,可选地是75至85℃,还可选地是79℃。在一些实施方式中,而第一非结晶性聚酯多元醇的羟基值可以是10至20mg KOH/g,可选地是13至18mg KOH/g,还可选地是16mg KOH/g,但不限于此。在一些实施方式中,第二非结晶性聚酯多元醇的重均分子量可以是5500至7500,可选地是6000至7000,还可选地是6500。在一些实施方式中,第二非结晶性聚酯多元醇的Tg温度可以是-10至5℃,可选地是-7至0℃,还可选地是-3℃。在一些实施方式中,第二非结晶性聚酯多元醇的羟基值可以是5至15mg KOH/g,可选地是7.5至12.5mg KOH/g,还可选地是10mg KOH/g,但不限于此。
在一些实施方式中,所述第二热熔接树脂层(7)接近所述第二胶粘剂层(6)的一侧可以为经电晕处理过的。
在一些实施方式中,所述第一防腐蚀层(4)与所述第二防腐蚀层(5)各自可包括三价铬化合物、无机酸、以及有机树脂。在一些实施方式中,三价铬化合物可以包括硝酸铬、磷酸铬、氟化铬、氯化铬中的一种或多种。在一些实施方式中,无机酸可以包括硝酸、磷酸中的一种或多种。在一些实施方式中,有机树脂可以包括聚丙烯酸系树脂和聚乙烯醇中的一种或多种。在一些实施方式中,聚丙烯酸系树脂的实例可以是聚丙烯酸、聚丙烯酸甲酯、丙烯酸和马来酸的共聚物、丙烯酸和苯乙烯的共聚物及其钠盐、铵盐等衍生物中的一种或多种。在一些实施方式中,聚丙烯酸系树脂的重均分子量可以是1万至80万诸如5万至70万、15万至60万或25万至50万,但不限于此。在一些实施方式中,三价铬化合物、无机酸与有机树脂之间的质量比可以是(18至60):(3至60):(6至60),但不限于此。例如,三价铬化合物与有机树脂之间的质量比可以是(3至100):10。在一些实施方式中,于上述条件下,所述第一防腐蚀层(4)与所述第二防腐蚀层(5)各自可以另包括氟化物,氟化物至少可包括氟化铬。在一些实施方式中,三价铬化合物、无机酸、有机树脂与氟化物之间的质量比可以是(18至60):(3至60):(6至60):(0至10)诸如(20至55):(5至50):(10至50):(0.1至8)、(25至50):(15至45):(15至45):(1至7)或(30至40):(20至40):(20至40):(2至5),氟化物的对应数值不是0,但不限于此。
在一些实施方式中,所述第一防腐蚀层(4)与所述第二防腐蚀层(5)各自可包括三价铬化合物、无 机酸、以及有机树脂。在一些实施方式中,三价铬化合物可以包括硝酸铬、氟化铬、氯化铬、磷酸铬中的一种或多种。在一些实施方式中,无机酸可以包括硝酸、氢氟酸中的一种或多种。在一些实施方式中,有机树脂至少可包括聚乙烯醇,但不限于此。在一些实施方式中,三价铬化合物、无机酸与有机树脂之间的质量比可以是(24至40):(1至8):(10至12),但不限于此。例如,三价铬化合物与有机树脂之间的质量比可以是(2至4):1。在一些实施方式中,于上述条件下,所述第一防腐蚀层(4)与所述第二防腐蚀层(5)各自可以另包括钛酸盐,而三价铬化合物、无机酸、有机树脂与钛酸盐之间的质量比可以是(24至40):(1至8):(10至12):(0至5)诸如(25至38):(2至6):(10.5至11.5):(0.1至4.5)、(28至35):(3至5):(10.8至11.2):(1至4)或(30至34):(3.5至4.5):(10.9至11.1):(2至3),钛酸盐的对应数值不是0,但不限于此。
在一些实施方式中,所述第一防腐蚀层(4)与所述第二防腐蚀层(5)各自可包括氨基化酚聚合物、三价铬化合物及磷化合物。在一些实施方式中,于所述第一防腐蚀层(4)与所述第二防腐蚀层(5)每1m 2面积下,氨基化酚聚合物可以占1至200mg诸如10至190mg、50至150mg或80至120mg,三价铬化合物中的铬元素可以占0.5至50mg诸如1至55mg、5至45mg或10至30mg,磷化合物中的磷元素可以占0.5至50mg诸如1至45mg、5至40mg或15至35mg,但不限于此。
在一些实施方式中,所述第一防腐蚀层(4)与所述第二防腐蚀层(5)各自可包括一第一防腐蚀子层与一第二防腐蚀子层,所述第一防腐蚀层(4)中的第一防腐蚀子层形成于接近所述金属层(1)的一侧,所述第一防腐蚀层(4)中的第二防腐蚀子层形成于接近所述第一胶粘剂层(2)的另一侧,而所述第二防腐蚀层(5)中的第一防腐蚀子层形成于接近所述金属层(1)的一侧,所述第二防腐蚀层(5)中的第二防腐蚀子层形成于接近所述第二胶粘剂层(6)的另一侧。在一些实施方式中,无论是所述第一防腐蚀层(4)中的第一防腐蚀子层或所述第二防腐蚀层(5)中的第一防腐蚀子层,均可包括氧化铈、磷酸或磷酸盐,而无论是所述第二防腐蚀层(5)中的第二防腐蚀子层或所述第二防腐蚀层(5)中的第二防腐蚀子层,均可包括聚合物阳离子系或阴离子系聚合物,但不限于此。在一些实施方式中,于第一防腐蚀子层包括氧化铈、以及磷酸或磷酸盐的情况下,于100质量份氧化铈的存在下,可以占有1至100质量份的磷酸或磷酸盐。
据信,不受理论的约束,通过对酸改性聚丙烯的物性及固化剂的官能度进行选择,找到最适的参数范围,使构成的胶粘剂层的耐液剥离强度和耐液热封强度提升,性能更优,从而满足胶粘剂层的耐液性能和热封后及作为内容物的电解液的电解环境中的耐液热封强度。
基于上述金属复合膜的特性,本公开的另一实施方式提出一种电池外包装材,其包括上述金属复合膜,所述金属复合膜是通过接近所述第一热熔接树脂层(3)的一侧与电池的电解液接触。
此外,本公开的另一实施方式提出一种上述金属复合膜的制备方法,其包括:提供所述金属层(1);形成所述第一胶粘剂层(2)于所述金属层(1)上;及形成所述第一热熔接树脂层(3)于所述第一胶粘剂层(2)相对于所述金属层(1)的一侧上。
在一些实施方式中,于进行形成所述第一胶粘剂层(2)于所述金属层(1)上时,可先涂布含有所述第一胶粘剂层(2)的组分的溶液于所述金属层(1)上,再干燥含有所述第一胶粘剂层(2)的组分的溶液。
在一些实施方式中,于进行形成所述第一热熔接树脂层(3)于所述第一胶粘剂层(2)相对于所述金属层(1)的一侧上时,可先将所述第一胶粘剂层(2)相对于所述金属层(1)的一侧与所述第一热熔接树脂层(3)热复合,再进行熟化处理。热复合的温度可以是80至100℃,可选地是90℃,而熟化处理的温度可以是40至60℃,可选地是50℃,熟化处理的时间可以是6至10天,可选地是7天,但不限于此。
在本实施方式中,在提供所述金属层(1)与形成所述第一胶粘剂层(2)于所述金属层(1)上之间,本制备方法更可包括形成所述第一防腐蚀层(4)或所述第二防腐蚀层(5)于所述金属层(1)的二侧。而所述第一胶粘剂层(2)形成于所述金属层(1)预计形成所述第一胶粘剂层(2)的一侧,所述第二防腐蚀层(5)形成于所述金属层(1)相对于预计形成所述第一胶粘剂层(2)的另一侧。无论是所述第一防腐蚀层(4)或所述第二防腐蚀层(5),均可先涂布含有所述第一防腐蚀层(4)或所述第二防腐蚀层(5)的组分的溶液至所述金属层(1)上,再热烘干燥。溶液的的涂布湿膜量可以是3至7g/m 2,可选地是5g/m 2。热烘干燥的温度可以是180至200℃,可选地是190℃,而热烘干燥的时间可以是1至3分钟,可选地是2分钟。
在本实施方式中,在提供所述金属层(1)之后,本制备方法更可包括形成所述第二胶粘剂层(6)于所述金属层(1)相对于所述第一胶粘剂层(2)的一侧;以及形成所述第二热熔接树脂层(7)于所述第二胶粘剂层(6)相对于所述金属层(1)的一侧。
在一些实施方式中,于进行形成所述第二胶粘剂层(6)于所述金属层(1)相对于所述第一胶粘剂层(2)的一侧时,可涂布含有第二胶粘剂层(6)的组分于所述金属层(1)相对于所述第一胶粘剂层(2)的一侧。
在一些实施方式中,于形成所述第二热熔接树脂层(7)于所述第二胶粘剂层(6)相对于所述金属层 (1)的一侧时,可先将所述第二热熔接树脂层(7)与所述第二胶粘剂层(6)热复合,再进行熟化处理。熟化处理的温度可以是50至70℃,可选地是60℃,熟化处理的时间可以是1至5天,可选地是3天,但不限于此。
实施例
以下说明各实施例与比较例提出的金属复合膜的复合过程,不足的地方于各实施例与比较例补充:
复合品金属复合膜由外基材树脂层/外胶粘剂层/中间金属层/内胶粘剂层/内热熔接树脂层构成。
层叠方法:
对与外胶粘剂层接触的外基材树脂层树脂薄膜进行电晕处理。在一些实施方式中,在金属箔(如:铝箔、铝合金箔、镀镍铁箔或不锈钢箔等)的一面涂上双组份聚氨酯粘合剂(聚氨酯改性的聚酯多元醇或聚酯多元醇以及芳香族异氰酸酯类化合物),在金属箔上形成外胶粘剂层。金属箔上的外胶粘剂层和外基材树脂层薄膜热复合后,在60℃的温度下进行3天的熟化处理,形成外基材树脂层/外胶粘剂层/金属层半成品。
使用以下配方的胶粘剂在金属箔的一面上进行涂布形成外胶粘剂层:
将重均分子量为8000,Tg为79℃,羟基值为16mg KOH/g的非结晶性聚酯多元醇与重均分子量为6500,Tg为-3℃,羟基值为10mg KOH/g的非结晶性聚酯多元醇按照重量比为10:5的比例混合,加入甲苯二异氰酸酯(TDI),形成NCO/OH比值为21的外粘结混合液。
金属两面均预先进行防腐处理:
一定的配比通过涂布辊均匀涂在金属箔的两面上,然后在190℃热烘2min。防腐蚀层处理液的涂布湿膜量为5g/m 2,铝箔表面涂布的铬含量在15mg/m 2
内胶粘剂层复合方式:
外基材树脂层/外胶粘剂层/中间金属层的金属面上复合内胶粘剂层。内胶粘剂层为双组份粘接剂,采用干式复合法,主要将溶剂型酸改性聚丙烯和固化剂的混合物涂布到复合外基材树脂的复合膜中相对于外基材树脂的防腐处理过的金属面上,干燥后形成内胶粘剂层,在90℃温度下,与热熔接树脂的粘结面进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层/外胶粘剂层/中间金属层/内胶粘剂层/内热熔接树脂层的复合成品。
内热熔接树脂层复合方式:
与内胶粘剂层接触的内热熔接树脂层薄膜的粘接面预先进行电晕处理。完成外基材树脂层/外胶粘剂层/中间金属层/内胶粘剂层的半成品包装材料通过干式复合方式与内热熔接树脂层完成复合,在60℃条件下老化三天得到成品锂离子电池装置外包装材料。在一些实施方式中,内热熔接树脂层由三层组成,与内胶粘剂层接触的一面进行电晕处理,其结构为:
与内胶粘剂层接触的外树脂层:由熔点为151℃,MFR(230℃)为5.5g/10min的无规共聚聚丙烯组成的层;
中间树脂层:50wt%的熔点为162℃,MFR(230℃)为2g/10min的嵌段共聚聚丙烯;20wt%的熔点为155℃,MFR(230℃)为5g/10min的无规共聚聚丙烯;20wt%的熔点为160℃,MFR(230℃)为9.5g/10min,密度为0.87g/cm 3的丙烯-丁烯组成的聚合物弹性体;和10wt%的MFR(230℃)为3g/10min非结晶性丙烯系弹性体所形成的混合物层;
内树脂层:由熔点为145℃,MFR(230℃)为12g/10min的无规共聚聚丙烯组成的层;
内热熔接树脂层中从与内胶粘剂层接触的外层到内层的三层树脂厚度比为3:6:1。
依本公开,通过对酸改性聚丙烯的物性及固化剂的官能度进行选择,找到最适的参数范围,使构成的胶粘剂层的耐液剥离强度和耐液热封强度提升,性能更优,从而满足胶粘剂层的耐液性能和热封后及作为内容物的电解液的电解环境中的耐液热封强度。
实施例1
外基材树脂层为25μm厚的双向拉伸尼龙膜,其通过胶粘剂复合到表面润湿性为68dyn/cm的35μm厚的中间金属层8021系铝材上。金属层两面进行防腐处理形成防腐蚀层,防腐处理为使金属层表面的三价铬化合物、无机酸、有机树脂的质量比例为2:2:1,三价铬化合物为磷酸铬,无机酸为硝酸,有机树脂为聚丙烯酸树脂。
把重均分子量为25万,熔点为85℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再 在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
实施例2
外基材树脂层为25μm厚的双向拉伸尼龙膜,其通过胶粘剂复合到表面润湿性为70dyn/cm的40μm厚的中间金属层8079系铝材上。金属层两面进行防腐处理形成防腐蚀层,防腐处理为使金属层表面的三价铬化合物、无机酸、有机树脂的质量比例为2:2:1,三价铬化合物为磷酸铬,无机酸为硝酸,有机树脂为聚丙烯酸树脂。
把重均分子量为25万,熔点为85℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.1,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
实施例3
外基材树脂层为25μm厚的双向同步拉伸尼龙膜,其通过胶粘剂复合到经过热处理的38μm厚的中间金属层不锈钢箔上,其表面水接触角为15度。金属层两面进行防腐处理形成防腐蚀层,防腐处理为使金属层表面的三价铬化合物、无机酸、有机树脂的质量比例为2:2:1,三价铬化合物为磷酸铬,无机酸为硝酸,有机树脂为聚丙烯酸树脂。
把重均分子量为25万,熔点为85℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为4.2,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
实施例4
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例1相同。
外基材树脂层与外胶粘剂层的层叠同实施例1。
把重均分子量为12万,熔点为75℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
实施例5
外基材树脂层为25μm厚的双向拉伸尼龙膜,其通过胶粘剂复合到表面润湿性为68dyn/cm的35μm厚的中间金属层8021系铝材上。金属层两面进行防腐处理形成防腐蚀层,防腐处理为使金属层表面的三价铬化合物、无机酸、有机树脂的质量比例为15:1:5,三价铬化合物为氟化铬,无机酸为氢氟酸,有机树脂为聚乙烯醇树脂。
把重均分子量为25万,熔点为85℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为4.82。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶 粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
实施例6
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例5相同。
外基材树脂层与外胶粘剂层的层叠同实施例5。
把重均分子量为25万,熔点为85℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为1.36。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
实施例7
外基材树脂层为25μm厚的双向拉伸尼龙膜,其通过胶粘剂复合到表面润湿性为68dyn/cm的35μm厚的中间金属层8021系铝材上。金属层两面进行防腐处理形成防腐蚀层,防腐处理为使金属层表面的三价铬化合物、无机酸、氟化物和氨基化酚树脂的质量比例为15:2:2:3。三价铬化合物为硝酸铬,无机酸为磷酸。
把重均分子量为25万,熔点为85℃,酸值为1的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
实施例8
外基材树脂层为25μm厚的双向拉伸尼龙膜,其通过胶粘剂复合到表面润湿性为68dyn/cm的35μm厚的中间金属层8021系铝材上。金属层两面进行防腐处理形成防腐蚀层,防腐处理为于金属层表面先形成厚度为0.1μm的由95wt%的氧化铈(CeO 2)和5wt%的氨基丙基三甲氧基硅烷构成的层,再形成厚度为0.1μm的由聚烯丙基胺树脂和1,6-己二醇的表氯醇加成物构成的层。
把重均分子量为25万,熔点为85℃,酸值为4的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
实施例9
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例1相同。
外基材树脂层与外胶粘剂层的层叠同实施例1。
把重均分子量为25万,熔点为130℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
比较例1
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例1相同。
外基材树脂层与外胶粘剂层的层叠同实施例1。
把重均分子量为25万,熔点为85℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为2.0,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
比较例2
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例1相同。
外基材树脂层与外胶粘剂层的层叠同实施例1。
把重均分子量为25万,熔点为85℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为5.0,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
比较例3
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例1相同。
外基材树脂层与外胶粘剂层的层叠同实施例1。
把重均分子量为25万,熔点为85℃,酸值为0.8的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
比较例4
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例1相同。
外基材树脂层与外胶粘剂层的层叠同实施例1。
把重均分子量为25万,熔点为85℃,酸值为5.5的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
比较例5
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例1相同。
外基材树脂层与外胶粘剂层的层叠同实施例1。
把重均分子量为12万,熔点为55℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液 型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
比较例6
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例1相同。
外基材树脂层与外胶粘剂层的层叠同实施例1。
把重均分子量为25万,熔点为140℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
比较例7
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例1相同。
外基材树脂层与外胶粘剂层的层叠同实施例1。
把重均分子量为8.5万,熔点为85℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
比较例8
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例1相同。
外基材树脂层与外胶粘剂层的层叠同实施例1。
把重均分子量为28万,熔点为85℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为3.6。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
比较例9
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例1相同。
外基材树脂层与外胶粘剂层的层叠同实施例1。
把重均分子量为25万,熔点为85℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为0.5。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再 在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
比较例10
使用铝合金箔形成复合膜,铝合金箔两面预先进行化学处理形成防腐蚀层。防腐蚀层的形成与实施例1相同。
外基材树脂层与外胶粘剂层的层叠同实施例1。
把重均分子量为25万,熔点为85℃,酸值为2的无水马来酸酐改性的聚丙烯溶液和固化剂形成溶液型混合物,固化剂含有50wt%以上的六亚甲基二异氰酸酯,六亚甲基二异氰酸酯自聚合成三聚体,官能度为3.4,固化剂中的异氰酸酯基摩尔数(NCO值)相对于酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为7.0。形成的溶液型混合物涂布到复合外基材树脂层的复合膜中相对于外基材树脂层的金属面上,干燥后形成厚度2μm的内胶粘剂层,之后在90℃的温度下,与40μm热熔接树脂进行热复合,再在50℃的温度下进行熟化处理7天,形成外基材树脂层(25μm)/外胶粘剂层(3μm)/中间金属层/内胶粘剂层/内热熔接树脂层(40μm)的复合成品。此外,与内胶粘剂层接触的三层热熔接树脂薄膜的粘接面预先进行电晕处理。
针对以上实施例和对比例制备得到的金属复合膜的性能测试方法如下:
测试方法:
1、内粘接剂层的树脂熔点测量
用差示扫描热量计(Differential Scanning Calorimeter)进行测试,设定升温、降温速率为10℃/分钟,设定四个阶段:(1)自25℃升温到150℃,(2)自150℃降温到25℃,(3)自25℃升温到150℃,(4)自150℃降温到25℃,并测量其第二个吸热峰的峰顶温度,获得熔点。
2、内粘接剂层的树脂分子量测量
使用高温GPC对高分子树脂的重均分子量Mw进行测试。
测试条件:测试温度为150℃;流动相为三氯苯(TCB);标准品为聚苯乙烯(PS);样品体系为聚烯烃类样品,如:常见样品PP和PE;测试样品量为5mg。
仪器型号:PL-GPC220;色谱柱型号:PLgel MIXED-B LS 300x7.5mm;检测器:示差折光检测器。
样品制备:将样品完全溶解在三氯苯中,用0.22μm的有机滤膜过滤后直接上机测试,直接读取重均分子量Mw的测试值。
3、内胶粘剂层的酸值测量
用有机溶剂将内胶粘剂层溶解成样品溶液,再用氢氧化钾(KOH)或氢氧化钠(NaOH)标准滴定溶液中和滴定样品溶液,以指示剂相应的颜色变化来判定滴定终点,最后通过终点消耗的标准滴定溶液的体积计算样品溶液的酸价。计算公式如下:
Figure PCTCN2022092797-appb-000001
△V:滴定消耗的KOH或NaOH体积数(ml);
C:KOH或NaOH标准溶液的摩尔浓度(mol/L);
m:树脂的质量(g)。
4、固化剂的官能度测量
(1)仪器、色谱条件及试剂
仪器:LC-10AD型高效液相色谱仪,日本岛津公司生产;
色谱柱:GPC-802、GPC-8025和GPC-803等三根色谱柱串联使用,日本岛津公司生产;
检测器:示差折光检测器(RI);
柱温为35℃;流速为1.0mL/min;进样量为20L;样品浓度为0.002g/mL;四氢呋喃(THF)、甲醇均为色谱纯。
(2)样品衍生化处理
用250mL碘量瓶称取1g的样品,向碘量瓶中加入20mL的甲醇,充分摇动,使样品完全分散在甲醇中。然后置入70℃恒温水浴中回流2h取出,在通风橱中自然挥发出过量的甲醇,再放入真空烘箱中以50℃烘干2h,即可得到黄色黏稠状的衍生物。
(3)样品GPC测试
用25mL称量瓶称取少量衍生物,加入THF配置成0.002g/mL的溶液,待样品充分溶解后,用注射器 抽取过量溶液注入六通阀,同时打开积分仪,可得到样品中各官能度组分的凝胶渗透色谱(GPC)色谱峰。
用归一法计算各组分峰面积的相对含量来表征其质量分数。计算公式为:
Figure PCTCN2022092797-appb-000002
Wi:为样品中i官能度组分的质量分数;
A:样品中i官能度组分的GPC色谱峰面积。
5、NCO/COOH值
根据主剂酸改性聚丙烯和固化剂加入的量,计算固化剂中的异氰酸酯基摩尔数(NCO值)与主剂酸改性聚丙烯中的羧基摩尔数(COOH值)之间的比值(NCO/COOH)值。计算公式如下:
Figure PCTCN2022092797-appb-000003
NCO%:固化剂中NCO的有效质量;
Nv%:固含量。
6、初始剥离强度测试
初始剥离强度测试
把金属复合膜成品制备成直条状,样条尺寸为100x15mm,使用拉伸试验装置进行中间金属层和内热熔接树脂层间剥离测试,将已剥离开的内热熔接树脂层薄膜放在伸缩试验装置的上夹板中,中间金属层放在下夹板中,然后在伸缩速度为50mm/min的情况下,进行剥离面呈180度的T型剥离,开始测定中间金属层和内热熔接树脂层之间的剥离强度。
剥离强度的读取方式为内热熔接树脂层及中间金属层的移动距离在50mm,选取移动距离10mm到40㎜之间的剥离强度的平均值。5个/组进行平行测试。
7、成品的耐电解液测试
将金属复合膜成品样条直接浸泡在含有1M LiPF 6的碳酸二甲酯(DMC):碳酸二乙酯(DEC):碳酸乙烯酯(EC)量比为1:1:1的混合溶剂中,在85℃的温度下浸泡1天,3天,7天,14天后,取出,水洗20min,擦干样条表面水分,按照成品的初始剥离强度测试方法测量中间金属层与内热熔接树脂层间的剥离强度。
8、成品的加水耐电解液测试
将金属复合膜成品样条直接浸泡在含有1M LiPF 6的碳酸二甲酯(DMC):碳酸二乙酯(DEC):碳酸乙烯酯(EC)量比为1:1:1的混合溶剂中,再在混合溶剂中添加占电解液总质量1000PPM的水溶液,在85℃的温度下浸泡1天,3天,7天,14天后,取出,水洗20min,擦干样条表面水分,按照成品的初始剥离强度测试方法测量中间金属层与内热熔接树脂层间的剥离强度。
测试结构参见图6:如以下图6所列,比较例6的溶液型混合物黏度过高,无法均匀涂布,使得得到的复合成品初期强度极低,因此其他测试便无法进行。
如以下图6所列与图2至5所示,实施例1与比较例1、2的差异在于固化剂的官能度,但实施例1的特性整体上优于比较例1、2;实施例1与比较例3、4的差异在于酸改性聚丙烯的酸值,但实施例1的特性整体上优于比较例3、4;实施例1与比较例5、6的差异在于酸改性聚丙烯的熔点,但实施例1的特性整体上优于比较例5、6;实施例1与比较例7、8的差异在于酸改性聚丙烯的分子量,但实施例1的特性整体上优于比较例7、8;实施例1与比较例9、10的差异在于NCO/COOH值,但实施例1的特性整体上优于比较例9、10。
如以下图6所列与图2至5所示,经比较实施例1至9后,可知实施例9的特性整体上得到了进一步的提高。
以上涉及到公知常识的内容不作详细描述,本领域的技术人员能够理解。
以上所述仅为本公开的一些实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。本项公开的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。
工业实用性
本公开提供的金属复合膜通过对酸改性聚丙烯的物性及固化剂的官能度进行选择,使构成的胶粘剂层的耐液剥离强度和耐液热封强度提升,性能更加优异,从而满足胶粘剂层的耐液性能和热封后及作为内容物的电解液的电解环境中的耐液热封强度。综上,本公开提供的金属复合膜具有优异的的工业应用性能,可广泛地应用于电池领域。

Claims (17)

  1. 一种金属复合膜,其特征在于,包括:
    一金属层、一第一胶粘剂层、及一第一热熔接树脂层;
    所述第一胶粘剂层设置于所述金属层与所述第一热熔接树脂层之间,所述第一胶粘剂层至少含有固化剂与酸改性聚丙烯;
    所述固化剂含有50wt%以上的六亚甲基二异氰酸酯,所述六亚甲基二异氰酸酯自聚合成三聚体,所述六亚甲基二异氰酸酯的官能度为3.0至4.5;
    所述酸改性聚丙烯含有聚丙烯树脂,所述聚丙烯树脂为用羧酸或其酸酐进行接枝处理进行改性过的,所述酸改性聚丙烯的酸值为1至5,熔点为70至130℃,重均分子量为10万至25万;
    所述固化剂中的异氰酸酯基摩尔数(NCO值)相对于所述酸改性聚丙烯中的羧基摩尔数(COOH值)的比值NCO/COOH为1.0至5.0。
  2. 依权利要求1所述的金属复合膜,其特征在于,所述的羧酸包括马来酸、富马酸、丙烯酸、与甲基丙烯酸中的一种或多种,其酸酐包括马来酸酐、富马酸酐、丙烯酸酐、甲基丙烯酸酐中的一种或多种。
  3. 依权利要求1或2所述的金属复合膜,其特征在于,更包括:
    一第一防腐蚀层及/或一第二防腐蚀层,所述第一防腐蚀层形成于所述金属层与所述第一胶粘剂层之间,所述第二防腐蚀层形成于所述金属层远离所述第一胶粘剂层的一侧。
  4. 依权利要求3所述的金属复合膜,其特征在于,所述第一防腐蚀层与所述第二防腐蚀层各自包括三价铬化合物、无机酸以及有机树脂。
  5. 依权利要求4所述的金属复合膜,其特征在于,所述三价铬化合物包括硝酸铬、磷酸铬、氟化铬、氯化铬中的一种或多种;且/或所述无机酸包括硝酸、磷酸中的一种或多种;且/或所述有机树脂包括聚丙烯酸系树脂和聚乙烯醇中的一种或多种;且/或所述聚丙烯酸系树脂的重均分子量是1万至80万;且/或所述三价铬化合物、所述无机酸与所述有机树脂之间的质量比是(18至60):(3至60):(6至60);且/或所述三价铬化合物与所述有机树脂之间的质量比是(3至100):10。
  6. 依权利要求5所述的金属复合膜,其特征在于,所述第一防腐蚀层与所述第二防腐蚀层各自更包括氟化物,所述三价铬化合物、所述无机酸、所述有机树脂与所述氟化物之间的质量比是(18至60):(3至60):(6至60):(0至10),所述氟化物的对应数值不是0。
  7. 依权利要求4-6中任一项所述的金属复合膜,其特征在于,所述三价铬化合物包括硝酸铬、氟化铬、氯化铬、磷酸铬中的一种或多种;且/或所述无机酸包括硝酸、氢氟酸中的一种或多种;且/或所述有机树脂至少包括聚乙烯醇;且/或所述三价铬化合物、所述无机酸与所述有机树脂之间的质量比是(24至40):(1至8):(10至12);且/或所述三价铬化合物与所述有机树脂之间的质量比是(2至4):1。
  8. 依权利要求7所述的金属复合膜,其特征在于,所述第一防腐蚀层与所述第二防腐蚀层各自更包括包括钛酸盐,所述三价铬化合物、所述无机酸、所述有机树脂与钛酸盐之间的质量比是(24至40):(1至8):(10至12):(0至5),所述钛酸盐的对应数值不是0。
  9. 依权利要求3-8中任一项所述的金属复合膜,其特征在于,所述第一防腐蚀层与所述第二防腐蚀层各自包括氨基化酚聚合物、三价铬化合物及磷化合物。
  10. 依权利要求9所述的金属复合膜,其特征在于,于所述第一防腐蚀层与所述第二防腐蚀层每1m 2面积下,所述氨基化酚聚合物可以1至200mg,所述三价铬化合物中的铬元素占0.5至50mg,所述磷化合物中的磷元素占0.5至50mg。
  11. 依权利要求3所述的金属复合膜,其特征在于,所述第一防腐蚀层包括一第一防腐蚀子层与一第二防腐蚀子层,所述第二防腐蚀层包括一第一防腐蚀子层与一第二防腐蚀子层,所述第一防腐蚀层中的第一防腐蚀子层形成于接近所述金属层的一侧,所述第一防腐蚀层中的第二防腐蚀子层形成于远离所述金属层的另一侧,而所述第二防腐蚀层中的第一防腐蚀子层形成于接近所述金属层的一侧,所述第二防腐蚀层中的第二防腐蚀子层形成于远离所述金属层的另一侧。
  12. 依权利要求11所述的金属复合膜,其特征在于,所述第一防腐蚀层中的第一防腐蚀子层与所述第二防腐蚀层中的第一防腐蚀子层包括氧化铈、磷酸或磷酸盐;且/或所述第二防腐蚀层中的第二防腐蚀子层与所述第二防腐蚀层中的第二防腐蚀子层包括聚合物阳离子系或阴离子系聚合物。
  13. 依权利要求12所述的金属复合膜,其特征在于,于所述第一防腐蚀层中的第一防腐蚀子层与所述第二防腐蚀层中的第一防腐蚀子层包括氧化铈、以及磷酸或磷酸盐的情况下,于100质量份氧化铈的存在下,占有1至100质量份的磷酸或磷酸盐。
  14. 依权利要求1所述的金属复合膜,其特征在于,所述第一热熔接树脂层自接近所述第一胶粘剂层的一侧向远离所述第一胶粘剂层的另一侧依序包括:一外树脂层、一中间树脂层、以及一内树脂层。
  15. 依权利要求14所述的金属复合膜,其特征在于,所述外树脂层包括无规共聚聚丙烯,无规共聚聚 丙烯的熔点是140至160℃,无规共聚聚丙烯的230℃熔融指数MFR是4.5至6.5g/10min;且/或所述中间树脂层包括嵌段共聚聚丙烯、无规共聚聚丙烯、丙烯-丁烯组成的聚合物弹性体、以及非结晶性丙烯系弹性体,嵌段共聚聚丙烯的熔点是150至170℃,嵌段共聚聚丙烯的230℃熔融指数MFR是1至4g/10min,嵌段共聚聚丙烯相对于中间树脂层的含量是40至60wt%,无规共聚聚丙烯的熔点是140至170℃,无规共聚聚丙烯的230℃熔融指数MFR是4至7g/10min,无规共聚聚丙烯相对于中间树脂层的含量是10至30wt%,丙烯-丁烯组成的聚合物弹性体的熔点是150至170℃,丙烯-丁烯组成的聚合物弹性体的230℃熔融指数MFR是8至12g/10min,丙烯-丁烯组成的聚合物弹性体相对于中间树脂层的含量是10至30wt%,非结晶性丙烯系弹性体的230℃熔融指数MFR是2至4g/10min,非结晶性丙烯系弹性体相对于中间树脂层的含量是5至15wt%;且/或所述内树脂层内树脂层包括无规共聚聚丙烯,无规共聚聚丙烯的熔点是135至155℃,无规共聚聚丙烯的230℃熔融指数MFR是10至15g/10min;且/或所述外树脂层、所述中间树脂层、以及所述内树脂层的厚度比是(1至5):(4至8):1。
  16. 一种制备依权利要求1至13中任一项所述的金属复合膜的制备方法,其特征在于,包括:
    提供所述金属层;
    形成所述第一胶粘剂层于所述金属层上;以及
    形成所述第一热熔接树脂层于所述第一胶粘剂层相对于所述金属层的一侧上。
  17. 一种锂离子电池,其特征在于,所述锂离子电池包括权利要求1至15中任一项所述的金属复合膜。
PCT/CN2022/092797 2021-12-30 2022-05-13 金属复合膜及其制备方法 WO2023123822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111647964.1A CN114284637B (zh) 2021-12-30 金属复合膜及其制备方法
CN202111647964.1 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023123822A1 true WO2023123822A1 (zh) 2023-07-06

Family

ID=80878568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092797 WO2023123822A1 (zh) 2021-12-30 2022-05-13 金属复合膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2023123822A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120277A (ja) * 2012-12-14 2014-06-30 Toyo Ink Sc Holdings Co Ltd 非水電解質二次電池容器用積層体、及びその製造方法、並びに非水電解質二次電池、及び接着剤組成物
CN104903416A (zh) * 2013-02-07 2015-09-09 三井化学株式会社 粘接剂、层叠体、电池外壳用包装材料、电池、高碱性溶液用包装材料、用于含有醇的溶液的包装材料及包装体
CN112563632A (zh) * 2020-12-07 2021-03-26 江西睿捷新材料科技有限公司 一种金属复合膜,电化学装置
CN113059884A (zh) * 2021-03-17 2021-07-02 上海恩捷新材料科技有限公司 一种电池元件用高成型且耐久性优异的外包装材料及电池
CN113927973A (zh) * 2021-09-30 2022-01-14 江西睿捷新材料科技有限公司 一种高冲深电池装置用外包装材料
CN114148047A (zh) * 2021-11-26 2022-03-08 江苏睿捷新材料科技有限公司 金属复合膜层及其制备方法
CN114284637A (zh) * 2021-12-30 2022-04-05 江苏睿捷新材料科技有限公司 金属复合膜及其制备方法
CN114300792A (zh) * 2021-12-30 2022-04-08 江苏睿捷新材料科技有限公司 锂电池复合包装材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120277A (ja) * 2012-12-14 2014-06-30 Toyo Ink Sc Holdings Co Ltd 非水電解質二次電池容器用積層体、及びその製造方法、並びに非水電解質二次電池、及び接着剤組成物
CN104903416A (zh) * 2013-02-07 2015-09-09 三井化学株式会社 粘接剂、层叠体、电池外壳用包装材料、电池、高碱性溶液用包装材料、用于含有醇的溶液的包装材料及包装体
CN112563632A (zh) * 2020-12-07 2021-03-26 江西睿捷新材料科技有限公司 一种金属复合膜,电化学装置
CN113059884A (zh) * 2021-03-17 2021-07-02 上海恩捷新材料科技有限公司 一种电池元件用高成型且耐久性优异的外包装材料及电池
CN113927973A (zh) * 2021-09-30 2022-01-14 江西睿捷新材料科技有限公司 一种高冲深电池装置用外包装材料
CN114148047A (zh) * 2021-11-26 2022-03-08 江苏睿捷新材料科技有限公司 金属复合膜层及其制备方法
CN114284637A (zh) * 2021-12-30 2022-04-05 江苏睿捷新材料科技有限公司 金属复合膜及其制备方法
CN114300792A (zh) * 2021-12-30 2022-04-08 江苏睿捷新材料科技有限公司 锂电池复合包装材料

Also Published As

Publication number Publication date
CN114284637A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
JP5584970B2 (ja) リチウム電池用外装材
JP4440573B2 (ja) リチウム電池金属端子部密封用接着性フィルム
CN107431152B (zh) 电池用包装材料、其制造方法和电池
CN105315934A (zh) 粘合剂组合物、叠层体、蓄电元件用包装材料、蓄电元件用容器及蓄电元件
US20140377636A1 (en) Aluminum pouch film for secondary battery, packaging material including same, secondary battery including same, and method for manufacturing aluminum pouch film for secondary battery
US20160087250A1 (en) Aluminium pouch film for secondary battery, packaging material comprising same, secondary battery comprising same, and manufacturing method therefor
JP2002231217A (ja) フィルムシール型非水電解質電池
WO2023123817A1 (zh) 锂电池复合包装材料
TW201116574A (en) Resin composition and organic-electrolyte battery
WO2023093072A1 (zh) 一种耐电解液锂离子电池装置用外包装材料及电池
KR101540857B1 (ko) 이차 전지 리드 탭용 고분자 필름
JP6686587B2 (ja) 電池用包装材料、その製造方法及び電池
JPWO2015152397A1 (ja) リチウム電池用外装材
WO2016159190A1 (ja) 電池用包装材料、その製造方法及び電池
JP2024063170A (ja) 蓄電デバイス用外装材、蓄電デバイス用外装材の製造方法、及び蓄電デバイス
TW201710074A (zh) 鋰離子電池用包裝材料
JP6015066B2 (ja) 電池用包装材料
WO2023123822A1 (zh) 金属复合膜及其制备方法
CN111971360B (zh) 聚烯烃系粘接剂组合物
WO2021201293A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP4900418B2 (ja) リチウム電池金属端子部密封用接着性フィルム
CN114284637B (zh) 金属复合膜及其制备方法
JP7105539B2 (ja) 蓄電デバイス金属端子部密封用接着性フィルム
JP6435092B2 (ja) 変性ポリオレフィン系樹脂
JP6264420B2 (ja) 電池用包装材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913118

Country of ref document: EP

Kind code of ref document: A1