WO2023123817A1 - 锂电池复合包装材料 - Google Patents

锂电池复合包装材料 Download PDF

Info

Publication number
WO2023123817A1
WO2023123817A1 PCT/CN2022/092579 CN2022092579W WO2023123817A1 WO 2023123817 A1 WO2023123817 A1 WO 2023123817A1 CN 2022092579 W CN2022092579 W CN 2022092579W WO 2023123817 A1 WO2023123817 A1 WO 2023123817A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
lithium battery
packaging material
composite packaging
battery composite
Prior art date
Application number
PCT/CN2022/092579
Other languages
English (en)
French (fr)
Inventor
庄志
张茜
黎秋生
刘倩倩
程跃
Original Assignee
江苏睿捷新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏睿捷新材料科技有限公司 filed Critical 江苏睿捷新材料科技有限公司
Publication of WO2023123817A1 publication Critical patent/WO2023123817A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the disclosure relates to a battery packaging material, especially a composite packaging material suitable for lithium batteries.
  • the packaging forms of lithium batteries mainly include: cylindrical, which is packaged by winding technology. Due to the mature technology, it has the advantages of high degree of automation, stable manufacturing quality, and low manufacturing cost; square shape, which is wound, It is made by two processes of lamination and lamination. Its structure is simple, and it is mainly used in the field of power batteries of automobiles and motorcycles; and soft package, which is the most difficult packaging form to make, usually its structure includes: an outer layer of protection layer, an intermediate metal layer, and an inner barrier layer, among which the lithium battery in the soft package has the advantages of high safety and high flexibility.
  • the casing of the pouch lithium battery is made of metal composite film, which mainly includes two types of products, namely dry-processed products and thermal-processed products.
  • polypropylene is used as the main material in the heat-welding layer of the soft-packed lithium battery, and its functions include: preventing electrolyte penetration, insulating to prevent short circuits, and heat-sealing properties, which can be used in battery assembly.
  • the battery assembly is sealed by heat welding, so it is understandable that the performance of the inner heat welding layer has a great influence on the performance of the lithium battery.
  • the MFR of the thermal welding layer in the prior art will be higher and the fluidity will be stronger, which will cause the electrolyte injected into the battery to vaporize during the battery packaging process, resulting in Insulation is reduced, resulting in a short circuit, or the risk of shortened battery life.
  • the risk factor of the lithium battery made by the prior art is relatively high. Therefore, it is necessary to provide an internal thermal welding layer that can satisfy stable insulation performance.
  • the present disclosure provides a lithium battery composite packaging material, comprising:
  • An inner thermal fusion layer formed on the side of the inner adhesive layer opposite to the metal layer, wherein the inner thermal fusion layer is in direct contact with the electrolyte in the lithium battery, and the inner adhesive layer and
  • the sum of the thicknesses of the inner thermally welded layers is ⁇ 25 ⁇ m, and when the temperature condition is 23 ⁇ 5°C and the humidity condition is 50 ⁇ 5%Rh and the pressure is 250v, the resistance value of the inner thermally welded layer is greater than or equal to 2.5G ⁇ / ⁇ m.
  • the thickness ratio of the inner adhesive layer to the inner heat-sealing layer is 2 to 1:1 to 3.
  • the melting point of the inner adhesive layer is 140°C to 155°C; and the melting point of the inner thermal welding layer is 135°C.
  • the MFR of the inner adhesive layer at 230° C. is 5 to 12 g/10 minutes; and the MFR of the inner heat-sealing layer at 230° C. is 12 g/10 minutes.
  • the inner thermally welded layer is a three-layer structure, which sequentially includes a layer, a b layer, and a c layer, wherein, the side of the a layer opposite to the b layer and The inner adhesive layer is in contact, and the thickness of the layer a: the thickness of the b layer: the thickness of the c layer is 1 to 2:2 to 8:1 to 3.
  • the melting point of the layer a is 135-152°C; the melting point of the layer b is 140-160°C; and the melting point of the layer c is 130-145°C.
  • the MFR of the layer a at 230°C is 3 to 7 g/10 minutes; the MFR of the layer b at 230° C. is 3 to 10 g/10 minutes; and the layer c is at 230° C.
  • the MFR at 230°C is 7 to 15 g/10 minutes.
  • the material of the inner heat-sealing layer includes: more than 50wt% polypropylene copolymer, or more than 50wt% polypropylene mixture.
  • it further includes: an outer substrate layer disposed on a side of the metal layer opposite to the inner adhesive layer.
  • the material of the outer substrate layer includes: polyester, polyamide, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicone resin, or phenolic resin.
  • it further includes: an outer adhesive layer formed between the metal layer and the outer substrate layer.
  • the present disclosure further provides a lithium battery composite packaging material, including: a first lithium battery composite packaging material, and a second lithium battery composite packaging material, wherein:
  • the first lithium battery composite packaging material includes:
  • the structure of the second lithium battery composite packaging material is the same as that of the first lithium battery composite packaging material, and the second lithium battery composite packaging material is set corresponding to the first lithium battery composite packaging material, so that An accommodating space is defined, wherein: the accommodating space is in contact with the inner thermally welded layer, and the accommodating space can accommodate an electrolyte, wherein, after heat sealing, when the inner adhesive layer and The residual rate of the inner thermal welding layer is 50% or more, and when the temperature condition is 23 ⁇ 5°C and the humidity condition is 50 ⁇ 5%Rh and the pressure is 250v, the metal layer and the inner thermal welding layer are welded together.
  • the resistance value of the layer is 1.0 G ⁇ / ⁇ m or more.
  • the present disclosure further provides a lithium battery composite packaging material, including: a first lithium battery composite packaging material, a second lithium battery composite packaging material, and an electrolyte, wherein:
  • the first lithium battery composite packaging material includes:
  • an inner thermal welding layer formed on one side of the inner adhesive layer opposite to the metal layer;
  • the structure of the second lithium battery composite packaging material is the same as that of the first lithium battery composite packaging material, and the second lithium battery composite packaging material is set corresponding to the first lithium battery composite packaging material, so that defining an accommodating space, wherein: the accommodating space is in contact with the inner thermal welding layer; and
  • the electrolyte is accommodated in the accommodating space, and it contains: a mixed solvent including: ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC); and 1Mol of LiPF6 (lithium hexafluorophosphate), wherein, after heat sealing, the residual rate of the inner adhesive layer and the inner thermal welding layer is more than 50%, and the electrolyte solution is placed at a temperature of 85°C for 24 hours Afterwards, when a pressure of 250v is applied in an environment with a temperature condition of 23 ⁇ 5°C and a humidity condition of 50 ⁇ 5%Rh, the resistivity between the metal layer and the electrolyte solution is above 200M ⁇ .
  • a mixed solvent including: ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC); and 1Mol of LiPF6 (lithium hexafluorophosphate)
  • FIGS. 1A and 1B are schematic structural views of lithium battery composite packaging materials according to some embodiments of the present disclosure.
  • FIGS. 2A and 2B are schematic structural views of lithium battery composite packaging materials according to some embodiments of the present disclosure.
  • 3 to 7 are schematic structural views of lithium battery composite packaging materials according to some embodiments of the present disclosure.
  • the present disclosure provides a lithium battery composite packaging material, wherein, the raw materials of the inner heat-welding layer of the lithium battery composite packaging material are prepared to control its melting point; and the MFR at 230°C enables the lithium battery to When the electrolyte solution is injected into the interior of the lithium battery composite packaging material, the lithium battery composite packaging material has stable structural strength, insulation performance, and heat sealing performance, so that the manufactured lithium battery has a higher safety factor, Can be used under harsher environmental conditions.
  • Figures 1A to 1B are used to represent the structural diagrams of the embodiments of the present disclosure, wherein, as shown in Figure 1A, the present disclosure is a lithium battery composite packaging material, comprising: a metal layer 1; an inner adhesive layer 2, formed on one side of the metal layer 1; and an inner heat-sealing layer 3, formed on the side of the inner adhesive layer 2 opposite to the metal layer 1, wherein the inner heat-sealing layer 3 is
  • the electrolyte in the lithium battery is in direct contact, and the sum of the thicknesses of the inner adhesive layer 2 and the inner thermal welding layer 3 is ⁇ 25 ⁇ m, and the temperature condition is 23 ⁇ 5°C and the humidity condition is 50 ⁇ 5%.
  • the resistance value of the inner heat-sealing layer 3 is ⁇ 2.5G ⁇ / ⁇ m.
  • the role of the metal layer 1 includes: providing a barrier effect to prevent moisture from infiltrating into the interior of the lithium battery; materials include: aluminum alloy, stainless steel, titanium steel, and nickel-plated iron plate At least one of; the structure includes: a single-layer metal foil, or a multi-layer metal foil stacked in pairs.
  • the metal foil is selected from the group consisting of aluminum alloy foil, nickel-plated iron plate, stainless steel foil, or a combination of the above. It can be understood that, in order to improve the formability of the lithium battery composite packaging material, the aluminum alloy foil used is a soft aluminum alloy foil made of annealed aluminum alloy, and the aluminum alloy foil can be used according to the needs.
  • Iron metal is added to the raw material of the foil to further improve the formability of the aluminum alloy foil; and in order to resist the erosion of the electrolyte or to avoid being decomposed by the electrolyte, silicon dioxide or magnesium can be added to the raw material of the aluminum alloy foil Metal, but not limited to.
  • the types of stainless steel foil include: austenite; ferrite; austenite-ferrite dual phase; martensitic; or precipitation hardened stainless steel foil, and not This is the limit.
  • austenitic stainless steel is selected to make stainless steel foil, wherein the type of stainless steel used includes: SUS304, SUS301, or SUS316L, and, optionally, SUS304 .
  • the thickness of the metal layer 1 should at least meet the minimum requirements for preventing moisture intrusion, typically , the thickness of the metal layer 1 is 9 to 200 ⁇ m, such as 10 to 150 ⁇ m, 15 to 100 ⁇ m, 20 to 80 ⁇ m or 25 to 50 ⁇ m, and not limited thereto. In yet another typical embodiment, the thickness of the metal layer 1 is no more than 100 ⁇ m, more typically, no more than 50 ⁇ m, and not limited thereto.
  • alloy components when alloy components are added to the composition of the metal layer 1, alloy components will be precipitated on the surface of the metal layer 1; or in the annealing step after the rolling process, the rolling process will be affected. oil volatility. Therefore, in the adjustment of the alloy composition, it is necessary to manage the surface cleanliness.
  • the management method of surface cleanliness includes: using the wetting reagent to test the wettability as an index, which can be used in the "National Standard of the People's Republic of China GB/T225638.5-2016, Aluminum Foil Test Method, Part 5: Wettability The method mentioned in “Detection”; or use the contact angle as an indicator, which can be used as mentioned in "National Standard GB/T22638.9-2008 of the People's Republic of China, Aluminum Foil Test Method Part 9: Hydrophilicity Measurement” method.
  • the obtained rating should be greater than or equal to D grade, typically greater than or equal to B grade; when the contact angle is used as the index, wherein: pure water
  • the contact angle is tested at an angle of less than 25, typically less than 20, more typically less than 15.
  • the wettability rating is lower than grade D; or the contact angle exceeds 25, the reactivity between the metal layer 1 and the anti-corrosion layer or the initial adhesion will be deteriorated.
  • the present disclosure suppresses the precipitation of the alloy from the metal layer 1 by adjusting the composition of the alloy; and the ratio of the alloy within a certain range; or during the annealing step during rolling , enabling easy management of temperature and time conditions.
  • the inner adhesive layer 2 can be formed between the two.
  • the inner thermal welding layer 3 comprises: polyolefin, cyclic polyolefin, carboxylic acid modified polyolefin, carboxylic acid modified cyclic polyolefin, methacrylic acid modified polyolefin, acrylic acid modified polyolefin, crotonic acid Modified polyolefin, or imide-modified polyolefin, but not limited thereto.
  • the modified polyolefin is optionally acrylic acid, methacrylic acid, maleic acid, anhydrous maleic anhydride, or polyamide.
  • the resin component of the inner adhesive layer 2 may or may not contain a polyolefin main chain, wherein the polyolefin main chain may optionally be included.
  • infrared spectroscopy or gas chromatography-mass spectrometry can be used for analysis, but the analysis method is not limited thereto.
  • the inner adhesive layer 2 and the inner heat-sealing layer 3 contain the same polyolefin and its modified resin, among which, polypropylene resin or propylene resin is optional. and ethylene copolymers.
  • the inner adhesive layer 2 includes: acid-modified polyolefin and a curing agent resin.
  • the acid-modified polyolefin is optionally maleic anhydride or acrylic acid-modified polyolefin; the purpose of the curing agent is to cure the acid-modified polyolefin, and epoxy-based curing agents and multifunctional isocyanate-based curing agents can be used.
  • the epoxy curing agent used is a compound with at least one epoxy group, but not limited thereto;
  • the multifunctional isocyanate curing agent used is a compound with more than two isocyanate groups in the molecule, but Not limited to this;
  • the oxazoline curing agent used is a compound with an oxazoline skeleton, but not limited thereto.
  • the epoxy curing agent comprises: bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolac glycidyl ether, glycerol polyglycidyl ether, or polyglycerol polyglycidyl ether ;
  • polyfunctional isocyanate curing agent includes: isophorone diisocyanate (PDI), hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), or the above substances polymerized or adducted components of or the reactants of such mixtures with other polymers.
  • the curing agent used in order to improve the adhesiveness between the inner adhesive layer 2 and the inner heat-sealing layer 3, includes more than one compound.
  • the function of the inner adhesive layer 2 is to act as an adhesive layer to tightly fix the substances on the corresponding two sides, and the thickness of the inner adhesive layer 2 can be optionally In another typical embodiment, the thickness of the inner adhesive layer 2 is 1 to 50 ⁇ m, but not limited thereto.
  • the main components of the inner adhesive layer 2 include: modified polyolefin resin, polyolefin resin, block copolymerized polypropylene resin (B-PP) with a polypropylene (PP) content exceeding 50% , random copolymerized polypropylene resin (R-PP), homopolymerized polypropylene resin (H-PP), or a mixture of the above components to form a single-layer or two-layer or more film layer.
  • the compounding method includes: using the solution-type inner layer adhesive layer 2 method; or the method of using the hot-melt inner layer adhesive layer 2, but not limited thereto.
  • the inner layer adhesive layer 2 is a solution type, and its raw materials include: a main agent, including: acid-modified polyolefin resin; and a hardener, including: isocyanate, epoxy resin, oxazoline resin, Triethylamine, N,N-dimethylethanolamine, or a combination of the above ingredients.
  • the method for forming the solution-type inner layer adhesive layer 2 includes: a dissolving step, adding the main agent and the hardener to a solvent to dissolve to form a mixed solution, wherein the solvent includes: Water, ethanol, isopropanol, ethyl acetate, methyl ethyl ketone, toluene, methylcyclohexane, or a combination of the above; a coating step, the mixed solution is evenly coated until the corrosion-resistant the surface of the metal layer 1; and a heating step, heating the mixed solution coated on the surface of the metal layer 1 to volatilize the solvent in the mixed solution to form the inner adhesive layer 2 .
  • the solvent includes: Water, ethanol, isopropanol, ethyl acetate, methyl ethyl ketone, toluene, methylcyclohexane, or a combination of the above
  • a coating step the mixed solution is evenly coated until the corrosion-resistant the surface of the metal layer 1
  • the thickness of the inner adhesive layer 2 is optionally 1 to 10 ⁇ m, such as 2 to 8 ⁇ m, 2 to 7 ⁇ m or 3 to 6 ⁇ m. In some typical embodiments, the thickness of the inner adhesive layer 2 is optionally 1 to 5 ⁇ m, but not limited thereto.
  • the thickness of the inner adhesive layer 2 when the thickness of the inner adhesive layer 2 is less than 1 ⁇ m, due to the thickness being too thin, the bonding force between the metal layer 1 and the inner heat-welding layer 3 will be reduced, and the tight adhesion cannot be achieved; In the case of 10 ⁇ m, although the adhesion can be maintained, under the action of the curing agent reaction, the inner adhesive layer 2 will be too hard and the bending resistance will be deteriorated, resulting in the flexibility of the lithium battery composite packaging material. In addition, when the bent state occurs, cracks may be generated, which may result in peeling between the metal layer 1 and the inner thermally welded layer 3 .
  • the acid-modified polyolefin resin used has a melting point of 60 to 155°C, such as 70 to 140°C, 80 to 120°C, or 90 to 110°C ; a weight average molecular weight of 10,000 to 150,000, such as 11,000 to 140,000, 12,000 to 135,000 or 12,500 to 130,000; or an acid value of 0.5 to 200 mgKOH/g, such as 5 to 180 mgKOH/g, 50 to 150 mgKOH/g or 100 to 120 mgKOH/g .
  • the solution-type inner layer adhesive layer 2 may not add a curing agent, wherein, under the condition of no curing agent, the composition of the solution-type inner layer adhesive layer 2 includes: acid-modified polyolefin, and amine Compounds for use as hardeners.
  • the weight ratio of the acid-modified polyolefin to the amine compound is 10 to 125:1, such as 15 to 110:1, 20 to 90:1 or 25 to 50:1, optionally 15 to 50:1.
  • the acid used includes: maleic acid, fumaric acid, or methacrylic acid; and the amine compound is triethylamine, N, N-2 methylethanolamine , or a combination of the above.
  • the acid-modified polyolefin is polypropylene with a melting point above 110° C., and the content of polypropylene is above 50 wt%.
  • the melting point is below 60°C, the heat resistance will be low, causing the metal layer 1 and the inner thermally welded layer 3 to peel off at high temperature; if the melting point exceeds 155°C, although the heat resistance is better, When reacting with the curing agent, a hard resin layer will be formed, resulting in poor bendability, and a decrease in the flexibility of the lithium battery composite packaging material, which is prone to cracks when bent, resulting in the metal layer 1 and Peeling occurs between the inner thermally welded layers 3 .
  • the weight-average molecular weight of the acid-modified polyolefin resin when the weight-average molecular weight of the acid-modified polyolefin resin is 10000 or less, in the heating step, although its fluidity is high, the thickness will be severely thinned during heat sealing, resulting in the The adhesive strength between the metal layer 1 and the inner heat-welding layer 3 decreases, and there is a problem of sealing performance, and this situation will still occur even if a curing agent is added; when the weight-average molecular weight of the acid-modified polyolefin resin exceeds 150,000 In this state, the resin layer will be too hard, which will reduce the flexibility and bending resistance of the lithium battery composite packaging material, making it prone to cracks when it is bent, or causing the metal layer 1 and the inner heat to weld Peeling occurs between the layers 3; when the acid value of the acid-modified polyolefin resin is less than 0.5 mgKOH/g, it will cause fewer curing reaction points with the curing agent
  • the inner adhesive layer 2 is a hot-melt type, and the acid-modified polyolefin resin used in the inner adhesive layer 2 has a melting point of 135 to 165° C., such as 140 to 100° C. 160°C, 145 to 155°C or 150 to 155°C; and under the temperature conditions of 230°C, the melt index (MFR) is 3 to 15g/10min, such as 5 to 15g/10min, 5 to 12g/10min or 8 to 10g /10min.
  • the thickness of the hot-melt type inner layer adhesive layer 2 is 2 to 80 ⁇ m, such as 10 to 80 ⁇ m, 15 to 70 ⁇ m or 30 to 50 ⁇ m, and, optionally, 5 to 50 ⁇ m; and the heat
  • the degree of modification of the acid-modified polyolefin resin used in the fusion type inner layer adhesive layer 2 is 1% to 15%, such as 2% to 12%, 3% to 11%, or 4% to 10%, and, Optionally 3% to 12%.
  • the melting point of the acid-modified polyolefin resin is below 135°C
  • the fluidity of the resin will be increased by heating, and the thickness will be seriously thinned during pressure heat sealing, so that all The adhesion strength between the metal layer 1 and the inner thermally welded layer 3 decreases, making the sealing property unstable
  • the amount of heat shrinkage will increase, which will increase the internal stress, resulting in a decrease in the adhesion between the hot-melt inner layer adhesive layer 2 and the metal layer 1, and, in a long-term storage state , it may be peeled off from the metal layer 1, and further thermal shrinkage will occur due to the heating during heat sealing, so that the adhesion between the metal layer 1 and the metal layer 1 will decrease, resulting in the problem of lower sealing strength.
  • melt index (MFR) of the acid-modified polyolefin resin is lower than 3g/10min at a temperature of 230°C, it is extruded onto the metal layer 1 after it has been thermally melted. When compounding, it will cause the film-forming property of extrusion to be unstable; and when the melt index (MFR) is higher than 15g/10min, the fluidity of the resin will become higher in the heating step, and the pressure and heat When sealing, the thickness is seriously thinned, which reduces the adhesion strength between the metal layer 1 and the inner heat-welding layer 3, and there is a problem of sealing performance.
  • the thickness of the hot-melt inner layer adhesive layer 2 when it is combined with the metal layer 1, it will not be able to absorb heat shrinkage due to excessive heat shrinkage, and , due to the increase of internal stress, it will reduce its adhesive force with the metal layer 1, and even peel off from the metal layer 1 during long-term storage; and when the hot-melt type inner layer adhesive layer 2 When the thickness exceeds 80 ⁇ m, although there will be no physical problems, it will lead to an increase in production price, which is not in line with the actual benefits of mass production.
  • the degree of modification of the hot-melt type inner layer adhesive layer 2 when the degree of modification of the hot-melt type inner layer adhesive layer 2 is less than 1%, it will cause unstable adhesion with the metal layer 1; and when it exceeds 15%, although There is no problem with physical properties, but it will lead to an increase in production price, which is not in line with the actual benefits of mass production.
  • the inner heat welding layer 3 is arranged on the innermost layer of the lithium battery composite packaging material, and its main function is to exert its heat welding property to seal the battery components when assembling the battery. It can be understood that the inner heat-sealing layer 3 is used as a heat-sealing layer.
  • the resin contained in the inner heat-sealing layer 3 is based on the principle that it can be heat-welded, including: polyolefin, acid-modified polyolefin, or resin containing polyolefin main chain, but not limited thereto.
  • the polyolefin comprises: low density polyethylene; medium density polyethylene; high density polyethylene; linear low density polyethylene; ethylene-alpha-olefin copolymer; homopolypropylene; polypropylene block copolymer , comprising: block copolymers of propylene and ethylene; random copolymers of polypropylene, comprising: random copolymers of propylene and ethylene; propylene-alpha-olefin copolymers; or terpolymers of ethylene-butene-propylene thing.
  • the polyolefin resin when used as a copolymer, can be a block copolymer; or a random copolymer, and the polyolefin resin used can be one or more than one of the above-listed.
  • the resin contained in the inner heat-sealing layer 3 may optionally be polypropylene.
  • the acid-modified polyolefin used is a polymer modified by block polymerization or graft polymerization of an acid component and a polyolefin.
  • the acid-modified polyolefin is a copolymer formed by using: a polar molecule, including: polyacrylic acid or methacrylic acid; and a polyolefin.
  • the acid components used include: maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride, anhydrides of the above components, or a combination of the above components, wherein, optional Preferably, acrylic acid, maleic acid, anhydrides of the above components, or a combination of the above components are used.
  • the inner heat-sealing layer 3 can be a single-layer structure or a multi-layer structure; and its components can include one or more than one resin, wherein, when the structure is multi-layer, The resin materials of each layer can be the same or different. Wherein, as shown in FIG.
  • the inner thermally welded layer 3 is a three-layer structure, which sequentially includes a layer 31, a layer b 32, and a layer c 33, wherein the layer a 31 is relatively opposite to the layer b One side of the layer 32 is in contact with the inner adhesive layer 2, and the thickness of the a layer 31: the thickness of the b layer 32: the thickness of the c layer 33 is 1 to 2:2 to 8:1 to 3, namely (1 to 2): (2 to 8): (1 to 3), such as (1 to 2): (3 to 7): (1 to 2), (1.5 to 3): (4 to 6):(1.5 to 2) or (1 to 1.5):(5 to 6):(1.5 to 2).
  • a slippery agent in order to improve the formability of the lithium battery composite packaging material, can be added to the inner thermal welding layer 3 .
  • the slip agent can use the products disclosed in the current public information, without special limitation, and one or more slip agents can be used.
  • an amide-based slip agent is optionally used, and is optionally used on the surface of the inner heat-sealing layer 3 .
  • the content of the slip agent used is not particularly limited, wherein, in order to improve the formability of the lithium battery composite packaging material , its content is optionally 10 to 50 mg/m 2 , such as 15 to 45 mg/m 2 , 20 to 40 mg/m 2 or 25 to 35 mg/m 2 ; in yet another typical embodiment, the content of slip agent is 15 to 40 mg/m 2 .
  • the formation of the slippery agent includes: exudation from the resin of the inner thermal fusion layer 3 to its surface; or coating the slippery agent on the surface of the inner thermal fusion layer 3 .
  • the inner heat-sealing layer 3 only needs to fulfill the function of sealing the battery component after heat-welding itself, and there is no special limitation on its thickness.
  • the thickness is less than 100 ⁇ m, such as 10 to 100 ⁇ m, 20 to 80 ⁇ m or 30 to 60 ⁇ m; in another typical embodiment, the thickness of the inner thermal welding layer 3 is 25 to 80 ⁇ m, but not limited thereto.
  • an anti-oxidant may be added to the components of the inner heat-welding layer 3 as required, so as to suppress the risk of thermal deterioration during the manufacturing process.
  • the antioxidants can use the products disclosed in the current public information, without special limitation, and one or more antioxidants can be used.
  • the components of the inner and inner heat-sealing layers 3 include: acid-modified polyolefin resin, homopolypropylene resin, block copolymerized polypropylene resin, random copolymerized polypropylene resin, polyethylene resin, the above-mentioned A single layer, or a composite layer, of a combination of the above, or a mixture of the above-mentioned combinations.
  • the melting point of the resin used in the inner thermal welding layer 3 is 120 to 162°C, such as 125 to 160°C, 130 to 150°C or 135 to 140°C, optionally 130 to 162°C; MFR under the temperature condition of 230°C is 2 to 15g/10min, such as 4 to 12g/10min, 5 to 10g/10min or 7 to 9g/10min, optionally 3 to 12g/10min; and the internal heat welding Layer 3 can be a single layer, or multiple layers, and has a thickness of 20 to 120 ⁇ m, such as 30 to 110 ⁇ m, 40 to 100 ⁇ m or 50 to 80 ⁇ m, optionally 25 to 80 ⁇ m.
  • the thickness of the resin on the other side in contact with the metal layer 1 is more than 2 ⁇ m; and the melting point is 130 to 152°C .
  • the melting point is below 120°C, its fluidity will increase during the heating step; its thickness will become thinner during pressure heat sealing, resulting in a decrease in its adhesion with the metal layer 1, and, when When pressurized, the resin in the squeezed part inside the lithium battery will flow to the edge part that is not squeezed, and because the lithium battery expands, shrinks, or bends, the external force may cause cracks, and the electrolyte will pass through the cracks It will permeate into the metal layer 1, causing the insulation resistance of the inner heat-welding layer 3 to decrease, electric leakage to occur, or battery life to be shortened.
  • the melting point of the resin used in the inner heat-sealing layer 3 exceeds 162°C, its crystallinity will increase, resulting in lower fluidity during pressure heat sealing, although heat resistance can be improved , but when highly crystalline resin is heat-sealed, a hard and brittle resin layer will be formed.
  • the inner thermal welding layer 3 under the action of external force factors such as expansion and contraction of the lithium battery, or bending processing, the inner thermal welding layer 3 is prone to cracks, and the sealing performance cannot be maintained stably for a long time.
  • the thickness of the inner heat-sealing layer 3 when the thickness of the inner heat-sealing layer 3 is less than 20 ⁇ m, its thickness cannot fully cover the deviation of the battery assembly or the mechanical processing size of the heat sealing device, or the deviation of the conditions, so it is impossible to obtain a uniform The thermally welded part cannot effectively maintain a stable and long-term sealing.
  • the resin in the extruded part inside the lithium battery when pressurized, the resin in the extruded part inside the lithium battery will flow to the edge part that is not extruded, so that the thickness of the inner thermal welding layer 3 is thinned, and the expansion of the lithium battery Under the action of external force factors such as shrinkage or bending, it is easy to cause cracks in the inner thermal welding layer 3, and the electrolyte penetrates through the cracks to contact with the metal layer 1, causing the insulation resistance of the inner thermal welding layer 3 to decrease, and Leakage occurs, resulting in shortened battery life.
  • the penetration of water vapor will increase, so that the moisture inside the battery will increase, wherein, when the water reacts with the electrolyte in the battery, a Gas, so that the battery is prone to swelling, rupture, or leakage and other risks, reducing the battery life.
  • hydrogen fluoride will be produced when water reacts with the electrolyte, and excessive hydrogen fluoride will corrode the anti-corrosion treated metal layer 1, resulting in the adhesion between the metal layer 1 and the inner thermal welding layer 3 The strength is reduced, and there is a risk of electrolyte leakage.
  • Figures 2A to 2B are used to represent the structural diagrams of the embodiments of the present disclosure, wherein, as shown in Figure 2A, which further includes: a first anti-corrosion layer 4 formed on the metal layer 1 and the inner between layers of adhesive layer 2.
  • the method for forming the first anti-corrosion layer 4 includes: applying an anti-corrosion solution on the side of the metal layer 1 in contact with the inner adhesive layer 2, wherein, The anti-corrosion solution includes chromium nitrate, phosphoric acid, nitric acid, polyacrylic acid (PAA), and water, and the weight ratio of each component is 58:4:0.7:5:3 in sequence.
  • PAA polyacrylic acid
  • the second anti-corrosion layer 5 is formed on the metal layer 1 opposite to the first One side of the anti-corrosion layer 4 , and the material of the second anti-corrosion layer 5 is the same as that of the first anti-corrosion layer 4 .
  • an anti-corrosion layer can be provided on one side or both sides of the metal layer 1 .
  • the purpose of setting the anti-corrosion layer includes: maintaining the uniformity of the surface of the metal layer 1; Separation or delamination occurs between layers 3 .
  • an anti-corrosion solution is coated on at least one side of the metal layer 1 opposite to the outer substrate layer 6 to form an anti-corrosion layer, and optionally on both sides of the metal layer 1
  • An anti-corrosion layer is formed on both sides, so as to more perfectly or stably maintain the uniformity of the surface of the metal layer 1 .
  • the uniformity of the surface of the metal layer 1 can be kept stable; change; facilitate long-term storage in high temperature or high humidity environment; or prevent delamination between the outer substrate layer 6 and the metal layer 1 .
  • the anti-corrosion layer is a layered structure formed by coating an anti-corrosion solution on the surface of the metal layer 1 .
  • the anti-corrosion solution used includes: phosphate, nitrate, chromate, fluoride, or rare earth oxide, and is not limited thereto.
  • the chemical conversion treatment of phosphate or chromate mainly includes: chromium chromate treatment, chromium phosphate treatment, phosphoric acid-chromate treatment, or chromate treatment, and is not limited thereto.
  • the chromium compound used for chemical conversion treatment includes: chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium diphosphate, chromium chloride, or chromium sulfate, and does not contain This is the limit.
  • the chromate conversion treatment mainly includes: etching chromate treatment, electrolytic chromate treatment, or coating-type chromate treatment, and coating-type chromate treatment is optional.
  • the metal phosphate includes: chromium phosphate, titanium phosphate, phosphoric acid Zirconium salt, zinc phosphate, or a combination of the above; a treatment solution that uses non-metallic phosphate and a mixture of non-metallic phosphate as the main component; or mixed with synthetic resin as a treatment solution, and passed through a roller After coating, gravure printing, or dipping, drying is performed.
  • the used treatment liquid includes: water, alcohol solvent, hydrocarbon solvent, ketone solvent, ester compound solvent, or ether solvent, optionally water.
  • the resin component used in the treatment liquid includes: aminated phenol, or a water-soluble polymer such as polyacrylic resin.
  • the anti-corrosion layer is coated on the surface of the metal layer 1 with aluminum oxide, titanium oxide, cerium oxide, or tin oxide dispersed in phosphoric acid; It is made by sintering at a temperature of 150°C.
  • the composition of the thin film obtained by coating anti-corrosion treatment includes: oxide sol of rare earth elements, anionic polymer, cationic polymer, or a combination of the above. Wherein, in the rare earth element oxide sol, fine particles of rare earth element oxides are dispersed in the liquid dispersion medium, wherein the fine particles mentioned here refer to particles with an average particle diameter of less than or equal to 100nm, and do not mean limit.
  • the rare earth element oxide includes: cerium oxide, yttrium oxide, neodymium oxide, or lanthanum oxide, and is not limited thereto.
  • the rare earth element oxide in order to improve adhesion, is optionally cerium oxide. It can be understood that the anti-corrosion layer may contain one or more rare earth element oxides.
  • the rare earth element oxide sol includes a liquid dispersion medium, including: water, alcohol solvent, hydrocarbon solvent, ketone solvent, ester compound solvent, or ether solvent, wherein, optionally for water.
  • the cationic polymer includes: polyethylene pipe imine; a complex ion polymer complex formed by a polymer having polyethylene pipe imine and carboxylic acid; Primary amine Graf-toacrylic resin of branched copolymerized primary amine; polyacetic acid, or derivatives of polyacetic acid; or aminated phenol, but not limited thereto.
  • the anionic polymer may optionally be polymethacrylic acid or its salt; or a copolymer of methacrylic acid or its salt as the main component.
  • the raw material of the anti-corrosion layer includes a crosslinking agent for crosslinking the polymers.
  • the crosslinking agent may optionally be a compound containing isocyanate chemical group, glycidyl chemical group, carboxyl chemical group, or oxazoline chemical group, or a silane coupling agent.
  • the anti-corrosion solution includes a trivalent chromium compound, an inorganic acid, a fluoride, an organic resin, and water.
  • the weight ratio of trivalent chromium compound, inorganic acid, fluoride, and organic resin as (19 to 60): (3 to 60): (0 to 10): (6 to 60), such as (20 to 50): (5 to 50): (1 to 10): (10 to 60), (25 to 55): (10 to 45): (2 to 8): (15 to 50) or (30 to 40): (20 to 35): (4 to 6): (20 to 40), where,
  • the weight ratio of the trivalent chromium compound to the organic resin is optionally (3 to 100):10.
  • the trivalent chromium compound includes: chromium nitrate, chromium phosphate, chromium fluoride, chromium chloride, or a combination of the above;
  • the inorganic acid includes: nitric acid, phosphoric acid, or a combination of the above;
  • the fluoride includes fluoride chrome; or
  • the organic resin contains polyacrylic resin or polyvinyl alcohol.
  • the polyacrylic resin includes: polyacrylic acid, polymethyl acrylate, acrylic acid, or a copolymer of maleic acid; or acrylic acid, or styrene copolymer, and derivatives thereof of sodium salt or ammonium salt.
  • the polyacrylic resin has a weight average molecular weight of 10,000 to 800,000, but not limited thereto.
  • the anti-corrosion solution includes: a trivalent chromium compound, an inorganic acid, an organic resin, an organic solvent, and a titanate.
  • the weight ratio of trivalent chromium compound, inorganic acid, organic resin and titanate is (25 to 38): (1 to 8): (10 to 12): (0 to 5), and it is not limited thereto , wherein the ratio of the trivalent chromium compound to the organic resin is optionally (2 to 4):1.
  • the trivalent chromium compound in the anti-corrosion solution used includes: chromium nitrate, chromium fluoride, chromium chloride, chromium phosphate, or a combination of the above;
  • the inorganic acid includes: nitric acid, hydrofluoric acid, or a combination of the above; and the organic resin comprises: polyvinyl alcohol.
  • the anti-corrosion solution comprises an aminated phenolic polymer; and a resin of a trivalent chromium compound and a trivalent chromium phosphorus compound.
  • the metal layer 1 is an aluminum alloy foil layer, and in the anticorrosion solution coated on the aluminum alloy foil layer, it is coated on the aminated phenol polymer per square meter (m 2 ) of the resin film layer.
  • the trivalent chromium compound is 0.5 to 50 mg in terms of chromium, such as 1 to 45 mg, 5 to 50 mg 40 mg, 10 to 35 mg, or 20 to 20 mg; or the phosphorus compound is in the range of 0.5 to 50 mg in terms of phosphorus, such as 1 to 45 mg, 5 to 40 mg, 10 to 35 mg, or 20 to 20 mg.
  • the first anti-corrosion layer 4 includes: a cationic or anionic polymer; or the second anti-corrosion layer 5 includes: cerium oxide, phosphoric acid, or phosphate.
  • the weight ratio of cerium oxide to phosphoric acid or phosphate is 100:1 to 100, and it is not limited thereto.
  • the anti-corrosion solution contains a fluoride, wherein the fluoride contains: hydrofluoric acid, chromium fluoride, magnesium fluoride, iron fluoride, cobalt fluoride, nickel fluoride, fluorine ammonium fluoride, titanium fluoride and its complexes, zirconium fluoride salts or its complexes, magnesium fluoride, or ammonium bifluoride, but not limited thereto, where chromium fluoride is optional.
  • the titanate includes: titanous sulfate, titanium oxysulfate, ammonium titanate, titanium nitrate, ammonium titanate, titanium sulfate, fluorotitanic acid and its complexes, ethyl acetoacetate, trimethyl Ethanol, melamine, n-butyl hydroquinone, or a combination of the above.
  • the polyacrylic resin comprises: polyacrylic acid, acrylic acid methacrylate copolymer, acrylic acid maleic acid copolymer, acetate styrene copolymer or its sodium salt, ammonium salt, or amine Derivatives of salts, or derivatives thereof, wherein, ammonium salts, sodium salts or amine salts of polyacrylic acid are optional.
  • the polyacrylic resin comprises: a copolymer of acrylic acid and dicarboxylic acid, or anhydrous dicarboxylic acid, wherein, optionally, it is a copolymer of acrylic acid and carboxylic acid, or disulfuric anhydride ammonium, sodium or amine salts. It can be understood that the polyacrylic resin may contain one or more than one of the above-listed. In a typical embodiment, the weight average molecular weight of the polypropylene resin is 1000 to 1 million, such as 3000 to 900,000, 5000 to 800,000, 10,000 to 700,000 or 50,000 to 600,000, wherein, optionally 3,000 to 800,000.
  • the weight average molecular weight of the polyacrylic resin is more than 1000, the durability is high; and when the weight average molecular weight is less than 1 million, it has good stability, which is beneficial to manufacture.
  • the forming step of the anti-corrosion layer includes: a degreasing step, using alkali immersion method, electrolytic cleaning method, acid cleaning method, electrolytic acid cleaning method, oxygen activation method, or In the heat treatment method (annealing treatment), degreasing treatment is performed on at least one side of the metal layer 1 .
  • the forming step of the anti-corrosion layer further includes: a forming step, after the degreasing step is completed, using an anti-corrosion solution by bar coating, roll coating, gravure coating, or dipping Coating is carried out, and after the coating is completed, a high-temperature chemical reaction is applied to the surface of the metal layer 1 .
  • the metal layer 1 coated with the anti-corrosion solution is heat-treated at a high temperature of 130 to 200° C. for 0.5 to 5 minutes to form the anti-corrosion layer.
  • the thickness of the anti-corrosion layer is optionally 1 nm to 3.0 ⁇ m, wherein, optionally 1 nm to 1.5 ⁇ m, and not limited thereto.
  • the chromium content of the anti-corrosion layer is 8 mg per square meter (m2), wherein, optionally, 10 to 30 mg per square meter (m2), but not limited thereto.
  • FIG. 3 is used to represent the structural diagram of the third embodiment of the present disclosure, wherein, as shown in FIG. One side of the inner adhesive layer 2.
  • the outer base material layer 6 is arranged on the outermost side of the lithium battery composite packaging material, and its function includes: exerting the base material function of the lithium battery composite packaging material, so it can be understood that,
  • the raw material of the outer substrate layer 6 should at least have insulation properties.
  • the manufacturing method of the outer substrate layer 6 includes: directly forming a resin film from resin; or coating a resin film, and is not limited thereto.
  • the resin film includes: an unstretched film; or a stretched film, wherein the stretched film includes a uniaxially stretched film or a biaxially stretched film, and is not limited thereto.
  • the stretching mold may optionally be a biaxial stretching mold, and its manufacturing method includes: stepwise biaxial stretching method, blown film method, or simultaneous stretching method, and is not limited thereto .
  • the preparation method of the coating resin product includes: roll coating method, dimple coating method, or extrusion coating method, and is not limited thereto.
  • the raw material of the outer substrate layer 6 includes: polyester, polyamide, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicone resin, phenolic resin, resins listed above Modified products of the above-listed resins, copolymers of the above-listed resins, modified products of the above-listed resins, mixtures of the above-listed resins, or combinations thereof.
  • the material of the outer substrate layer 6 may optionally be polyester or polyamide.
  • the polyester comprises: polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene isophthalate, or copolymerized poly esters, but not limited thereto.
  • the copolyester is polymerized with ethylene terephthalate as the main body of the repeating unit; Polymerization of Alcohol Esters; Polymerization of Terephthalate with Isophthalate; Polymerization of Terephthalate with Adipate; Polymerization of Terephthalate with Sodium Isophthalate Polymerization; copolymerization of terephthalate with phenyl-dicarboxylate; or copolymerization of terephthalate with decane dicarboxylate.
  • one kind of polyester may be used alone; or two or more polyesters may be used in combination.
  • the polyamide comprises: nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, nylon 6, or nylon 66 copolymer.
  • the polyamide comprises structural units of terephthalic acid (t) or isophthalic acid (I), in some embodiments: nylon 6I, nylon 6T, nylon 6IT, or nylon 6I6T .
  • the polymerization raw material of the polyamide includes: hexamethylenediamine, isophthalic acid, terephthalic acid, or a combination thereof, but not limited thereto.
  • the polyamide comprises: PA4T, PA6T, PA9T, PA10T, PA11T, PA12T, PA6I, PA9I, PA10I, PA12I, PA46, PA6, PA66, PA69, PA10, PA11, PA12, PA610 , PA612, PA1010, PA1112, PA1011, PA1012, PA1212, PA MXD6, PA MXD9, PA MXD10, PA MXD12, PA PACM6, PA PACM9, PA PACM10, PA PACM12, PA6N, PA12N, PA10N, PA9N, or a combination of the above.
  • the polyamide is PA6T/61, PA6T/66, PA6T/610, PA6T/612, PA6T/12, PA6T/11, PA6T/6, PA6T/10T, PA6T/101, PA6T /106, PA6T/1010, PA6T/66/106, PA6T/MACM10, PA6T/MACM12, PA6T/MACM18, PA6T/MACM1, PA MACMT/61, PA6T/PACM6, PA6T/PACM10, PA6T/PACM12, PA6T/PACM18, PA6T/PACM1, PACMT/61, PA MPT/MP1, PA MPT/MP6, PA6T/MP1, PA6T/9T, PA6T/12T, PA6T/6I/66, PA6T/6I/6, PA6T/6I/12, PA6T/ 66/6, PA6T/66/12, PA6T/6I/MACM1, or PA6T/66/PACM6, but not limited to.
  • the outer substrate layer 6 comprises: a polyester film, a polyamide film, a polyolefin film, or a combination thereof.
  • outer substrate layer 6 comprises: a stretched polyester film, a stretched polyamide film, a stretched polyolefin film, or combinations thereof.
  • outer substrate layer 6 comprises: stretched polyethylene terephthalate film, stretched polybutylene terephthalate film, stretched nylon film, stretched poly Acrylic film, or a combination thereof.
  • the outer substrate layer 6 comprises: a biaxially oriented polyethylene terephthalate film, a biaxially oriented polybutylene terephthalate film, a biaxially oriented nylon film, Biaxially oriented polypropylene film, or combinations thereof.
  • the outer substrate layer 6 is composed of a single-layer structure or a multi-layer structure of two or more layers.
  • the outer base material layer 6 is a composite film formed by the interaction between the adhesive and the multi-layer structure; Multi-layer resin composite film made by "extrusion technology", but not limited thereto.
  • the multilayer resin composite mold can be used as the outer substrate layer 6 in an unstretched state; after uniaxial stretching; or after biaxial stretching.
  • the outer base material layer 6 when the outer base material layer 6 is composed of two or more layers, its structure is: a composite film of polyester film and nylon film; two or more layers of nylon film Composite film; or composite film composed of more than 2 layers of polyester film; optional stretched nylon film, composite film composed of stretched polyester film, composite film composed of more than 2 layers of stretched nylon film film, or a composite film composed of two or more layers of stretched polyester film.
  • the multilayer resin composite film is a composite film composed of a polyester resin film and a polyester resin film; a composite film composed of a polyamide resin film and a polyamide resin film; or a polyester resin film , Composite film composed of polyamide resin film.
  • it may optionally be a polyethylene terephthalate film, a composite film formed of a polyethylene terephthalate film; a polybutylene terephthalate film Composite film composed of polybutylene terephthalate film; nylon film, composite film composed of nylon film; or composite film composed of polyethylene terephthalate film, nylon film , and not limited to this.
  • the polyester resin is difficult to change color when the electrolyte is attached to the surface, in order to improve the above-mentioned shortcomings, when the outer base material layer 6 is a resin composite film with more than two layers , optionally disposing a polyester resin film on the outermost layer of the outer substrate layer 6 .
  • more than two layers of resin films can be compounded by interacting with an adhesive, wherein the adhesive can optionally use glue with the same composition as the outer adhesive layer 7 .
  • the method for compounding more than two layers of resin films includes: dry compounding method, sandwich compounding method, extrusion compounding method, thermal compounding method, and not limited thereto, wherein, optionally Dry compound method.
  • the reactive adhesive used as the outer layer can optionally be bonded with reactive polyurethane.
  • the thickness of the outer adhesive layer 7 is about 2 to 5 ⁇ m.
  • the resin coating method is used to form the outer base material layer 6 , the resin can be dissolved in an organic solvent first, and then the outer base material layer 6 is formed by coating.
  • the coating resin used in the resin coating method is a kind of phenolic resin, and its types include: polyamide resin, polyimide resin, polyurethane resin, epoxy resin, acrylic resin, polyester Ester resin, polyamide resin, polyimide resin, fluorine-based copolymer resin, polyester resin, etc.; or an amino resin, the type of which includes: polyester resin, polycarbonate resin, urea resin, or melamine resin.
  • one or more additives may be added to the surface or inside of the outer substrate layer 6, wherein the additives include: lubricants, flame retardants, anti-blocking agents, antioxidants , light stabilizer, tackifier, or antistatic agent.
  • the additives include: lubricants, flame retardants, anti-blocking agents, antioxidants , light stabilizer, tackifier, or antistatic agent.
  • a layered structure composed of a lubricant is optionally formed on the surface of the outer base material layer 6 .
  • the lubricant is optionally an amide lubricant, comprising: saturated fatty acid amide, unsaturated fatty acid amide, substituted amide, methylol amide, saturated fatty acid bisamide, unsaturated fatty acid bisamide, fatty acid amide, or aromatic Bisamide.
  • the saturated fatty acid amide comprises: lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, or hydroxystearic acid amide;
  • the unsaturated fatty acid amide comprises: oleic acid amide, or mustard Acid amides; substituted amides containing: N-oleyl palmitamide, N-stearamide, N-stearamide, N-oleyl stearamide, or N-stearamide; methylol amides containing: Methylol stearamide Fatty Acid Amides; Saturated Fatty Acid Bisamides Contains: Methylenebisstearamide, Ethylenebiscaprylamide, Ethylenebislaurateamide, Ethylenebisstearamide, Ethylenebishydroxystearamide Acid amide, ethylenebisbehenamide, hexamethylenebisstearamide, hexamethylenebisbehenamide, hexamethylenehydroxystearamide, n,n'-d
  • the coating amount of the lubricant is optionally more than 3 mg/m 2 , such as 3 to 50 mg/m 2 , 4 to 40 mg/m 2 , or 10 to 30 mg/m 2 . In a typical embodiment, the coating amount of the lubricant is 4 to 30 mg/m 2 , but not limited thereto. In a typical implementation, the lubricant formed on the surface of the outer base layer 6 seeps out from the base resin layer containing the lubricant; or the lubricant is coated on the surface of the outer base layer 6 .
  • the thickness of the resin film constituting each layer is optionally 2 to 30 ⁇ m, wherein the outer base layer
  • the thickness of 6 can meet the basic requirements as a base material, so the thickness is not limited to this.
  • the outer substrate layer 6 is blown film nylon, synchronous biaxially stretched nylon, asynchronous biaxially stretched nylon, synchronous biaxially stretched polyethylene terephthalate (PET), asynchronous biaxially stretched nylon Stretched polyethylene terephthalate (PET), synchronous biaxially oriented polybutylene terephthalate (PBT), asynchronous biaxially oriented polybutylene terephthalate (PBT), poly A single layer or a composite film of two or more layers formed of imide (PI), or one or more of the above-listed polymer materials.
  • PET synchronous biaxially stretched nylon
  • PET synchronous biaxially stretched polyethylene terephthalate
  • PET asynchronous biaxially stretched nylon Stretched polyethylene terephthalate
  • PBT synchronous biaxially oriented polybutylene terephthalate
  • PBT asynchronous biaxially oriented polybutylene terephthalate
  • the outer substrate layer 6 can be bonded to the metal layer 1 by means of extrusion, coating, lamination, thermal lamination, or a combination of the above methods.
  • the total thickness of the outer substrate layer 6 is optionally 5 to 35 ⁇ m, such as 10 to 35 ⁇ m, 10 to 30 ⁇ m or 15 to 25 ⁇ m. In some embodiments, when the thickness is less than 5 ⁇ m, the formability and insulation of the outer substrate layer 6 are poor; if the thickness exceeds 35 ⁇ m, the total thickness of the metal composite film will be too thick, resulting in the metal composite film. Softness deteriorates.
  • FIG. 4 is used to represent the structure diagram of the fourth embodiment of the present disclosure, wherein, as shown in FIG. Between the base layer 6.
  • an outer adhesive layer 7 is optionally formed between the two.
  • the outer adhesive layer 7 is an adhesive, including: two-component curing adhesive (two-component adhesive), or one-component curing adhesive (single-component adhesive) sub-adhesive).
  • the type of the adhesive includes: chemical reaction type, solvent volatile type, hot melt type, or hot press type, and is not limited thereto.
  • the outer adhesive layer 7 can be a single-layer structure, or a multi-layer structure of more than one layer.
  • the composition of the outer adhesive layer 7 includes: a main agent and a curing agent.
  • the two-component polyurethane adhesive is formed by using polyester polyol and polyurethane-modified polyol as diol main agent; and aromatic or aliphatic isocyanate as curing agent.
  • the main agent used includes: polyester resin, including: polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene isophthalate Glycol ester, or copolyester; polyether resin; polyurethane resin; epoxy resin; phenolic resin; polyamide resin, including: nylon 6, nylon 66, nylon 12, or copolyamide; polyolefin resin, including: Polyolefin, cyclic polyolefin, acid-modified polyolefin, or acid-modified cyclic polyolefin; polyvinyl acetate; cellulose; (meth)acrylic resin; polyimide resin; polycarbonate; amino resin , comprising: urea resin, or melamine resin; rubber, comprising: neoprene rubber, nitrile rubber, or styrene-butadiene rubber; or silicone resin.
  • polyester resin including: polyethylene terephthalate, polybutylene terephthalate, polyethylene n
  • the curing agent used can be selected according to the functional groups of the components of the adhesive, including: multifunctional epoxy resins, polymers containing methanesulfonic acid, polyamine resins, or inorganic acids. It can be understood that, the components of the adhesive can use one of the above-listed ones, or a combination of more than one.
  • the outer adhesive layer 7 includes: binary or multi-component polyester; 1, 2, or more than 2 types of polyurethane-modified polyester; and isocyanate.
  • isocyanate is a compound having two or more isocyanate groups in the molecule, but not limited thereto.
  • the isocyanate comprises: isophorone diisocyanate (IPDI), toluene diisocyanate (TDI), diphenylmethane-4,4'-diisocyanate (MDI), 1,6-hexamethylene diisocyanate (HDI ), or a mixture of the above polymers.
  • the raw material of the outer adhesive layer 7 can be added with an additional component, including: colorant, thermoplastic elastomer, Adhesive, or at least one of filler, and not limited thereto.
  • the lithium battery composite packaging material can be colored.
  • the colorant can be a pigment, including: organic pigments, including: azo-based, phthalocyanine-based, quinacridone-based, anthraquinone-based, dioxazine-based, indithioindigo-based, perylene-based, or isoindole-based phylloline-based pigments; and inorganic pigments, including: carbon black-based, titanium oxide-based, cadmium-based, lead-based, or isoindoline-based pigments; or dyes, but not limited thereto.
  • the coloring agent includes one type or a combination of more than one type listed above. It can be understood that, in order to make the appearance of the lithium battery composite packaging material black, the color of the pigment or dye used may optionally be carbon black.
  • the average particle size of the pigment used is 0.05 to 5 ⁇ m, such as 0.08 to 4 ⁇ m, 0.1 to 3.5 ⁇ m or 1.2 to 2.5 ⁇ m, optionally 0.08 to 2 ⁇ m, but not limited thereto.
  • the average particle size of the pigment is the median value of the particle size measured by a laser diffraction/scattering particle size distribution measuring device.
  • the pigment content in the outer adhesive layer 7 is 5 to 60%, such as 10 to 60%, 10 to 50% or 20 to 40%, optionally 10 to 40%, But it is not limited thereto, as long as the lithium battery composite packaging material can be colored.
  • the thickness of the outer layer adhesive layer 7 only needs to be able to bond the outer substrate layer 6 and the metal layer 1, and is optionally 1 to 10 ⁇ m, such as 2 to 8 ⁇ m, 3 to 7 ⁇ m or 4 to 6 ⁇ m, and optionally 2 to 5 ⁇ m, but not limited thereto.
  • FIG. 5 is used to show the structural diagram of the fifth embodiment of the present disclosure, wherein, as shown in FIG. 5 , it further includes: a colored layer 8 formed on the metal layer 1 and the outer substrate Between layers 6.
  • a colored layer 8 may be formed between the outer base material layer 6 and the metal layer 1 according to coloring requirements.
  • the colored layer 8 can be formed by adding a coloring agent into the outer adhesive layer 7; the colored layer 8 is formed between the outer base material layer 6 and the outer adhesive layer 7; A coloring layer 8 is disposed on a side of the substrate layer 6 opposite to the metal layer 1 , and is not limited thereto.
  • a coloring can be formed by applying an ink containing a colorant to the surface of the outer substrate layer 6; the surface of the outer adhesive layer 7; or the surface of the metal layer 1.
  • Layer 8. Since the relevant implementation of the "colorant" has been disclosed in the description of the outer adhesive layer 7, it is not repeated here.
  • FIG. 6 is used to represent the structural diagram of the sixth embodiment of the present disclosure, wherein, as shown in FIG. 6, the present disclosure further provides a lithium battery composite packaging material, including: a first lithium battery composite packaging material 9 , and a second lithium battery composite packaging material 10, wherein: the first lithium battery composite packaging material 9 includes: an outer base material layer 6; a metal layer 1 disposed on one side of the outer base material layer 6 ; an inner adhesive layer 2 formed on one side of the metal layer 1 opposite to the outer substrate layer 6; and an inner heat-welding layer 3 formed on the inner adhesive layer 2 opposite to the metal layer 1; and the structure of the second lithium battery composite packaging material 10 is the same as that of the first lithium battery composite packaging material 9, and the second lithium battery composite packaging material 10 is the same as the first lithium battery composite packaging material
  • the composite packaging material 9 is correspondingly arranged to define an accommodating space 11, wherein: the accommodating space 11 is in contact with the inner thermally welded layer 3, and the accommodating space 11 can accommodate an electrolyte, wherein , after heat sealing
  • FIG. 7 is used to represent the structural diagram of the seventh embodiment of the present disclosure, wherein, as shown in FIG. 7 , the present disclosure further provides a lithium battery, including: a first lithium battery composite packaging material 9, a first Two lithium battery composite packaging materials 10, and an electrolyte 12, wherein: the first lithium battery composite packaging material 9 includes: an outer base material layer 6; a metal layer 1, disposed on the outer base material layer 6 one side; an inner adhesive layer 2 formed on the side of the metal layer 1 opposite to the outer substrate layer 6; and an inner heat-welding layer 3 formed on the inner adhesive layer 2 opposite to the One side of the metal layer 1; the structure of the second lithium battery composite packaging material 10 is the same as that of the first lithium battery composite packaging material 9, and the second lithium battery composite packaging material 10 is the same as the first lithium battery composite packaging material
  • the battery composite packaging material 9 is correspondingly arranged to define an accommodating space 11, wherein: the accommodating space 11 is in contact with the inner heat-welding layer 3; and the electrolyte 12 is accommodated
  • the wettability of the surface of the metal layer 1 may optionally be 65 mN/m, and may also be above 70 mN/m; and the titration contact angle of distilled water may optionally be below 15 degrees, and, It is also optionally below 10 degrees.
  • the rolling oil used in the manufacturing stage will still remain on the surface of the metal layer 1 , and cause the interface adhesion between the metal layer 1 and the anti-corrosion layer; or between the inner thermal welding layer 3 to deteriorate.
  • the metal layer 1 and the inner heat-welding layer 3 may be peeled off or fall off during long-term use or storage of the battery, resulting in battery leakage.
  • it can be annealed above 150°C; or deoiled by plasma, corona, or lye.
  • the method of deoiling with lye includes: a soaking step, immersing the metal layer 1 in lye at 50 to 65°C; a cleaning step, washing the metal layer 1 twice with deionized water and a drying step, drying the metal layer 1 to complete the deoiling process.
  • the forming step includes: prior to the side of the metal layer 1 in contact with the inner heat welding layer 3 Coating an anti-corrosion solution; performing heat treatment at a high temperature for a period of time.
  • the method of forming and compounding the outer adhesive layer 7 includes in sequence: a coating step, coating an organic solvent dissolved between the metal layer 1 and the outer substrate layer 6 Polyurethane-based adhesive; a heating step, heating at a certain temperature for a period of time to volatilize the organic solvent in the adhesive and form the outer adhesive layer 7 .
  • the composite method between the metal layer 1, the outer layer adhesive layer 7, and the outer base material layer 6 includes: making the outer base material layer 6, the outer layer The adhesive layer 7 is combined with the metal layer 1, and after being stored at a certain temperature for a certain period of time, the outer adhesive layer 7 undergoes a curing reaction to obtain the outer substrate layer 6, the outer adhesive layer 7, and the metal layer 1.
  • the composite between the outer base material layer 6 and the metal layer 1 may not use the outer layer adhesive layer 7, wherein, the composite method of the metal layer 1 and the outer base material layer 6 It is compounded by heating and pressing, and the outer base layer 6 is processed by heat treatment, ultraviolet light treatment and electron beam to make it into a film.
  • the composite method of the inner thermally welded layer 3 includes: a coating step, coating a solution-type inner layer adhesive layer 2 on the metal layer 1 With respect to one side of the outer substrate layer 6, wherein: the inner heat-sealing layer 3 includes: a main agent, a curing agent, and an organic solvent; a drying step, the solution-type inner layer adhesive layer 2 Drying to form an inner adhesive layer 2; a compounding step, compounding the adhesive surface of the inner adhesive layer 2 and the inner thermally welded layer 3 under a certain temperature and pressure, and performing aging treatment. It can be understood that the side of the inner heat-sealing layer 3 in contact with the inner adhesive layer 2 needs to be corona treated first.
  • the thickness ratio of the heat-melt type inner layer adhesive layer 2 to the inner heat-sealing layer 3 is 2 to 1:1 to 3.
  • the lithium battery composite packaging material is made by "thermal method", wherein the inner layer of the hot-melt type is bonded
  • the layer 2 is a layer 31 of "thermal method”, and the melting point of the hot-melt type inner adhesive layer 2 is 140 to 155°C; and the melting point of the inner heat-welding layer 3 is 135°C.
  • the MFR of the heat-melt inner adhesive layer 2 at 230° C. is 5 to 12 g/10 minutes; and the MFR of the inner heat-melt layer 3 is 12 g/10 minutes.
  • the inner thermally welded layer 3 is a multi-layer structure, optionally having a three-layer structure, including a layer 31, a layer b 32, and A layer c 33, wherein, the side of layer a 31 opposite to layer b 32 is bonded to the inner layer adhesive layer 2, and the thickness of layer a 31: the thickness of layer b 32: the thickness of layer c 33 is 1 to 2:2 to 8:1 to 3.
  • the melting point of layer a 31 is 135-152°C; the melting point of layer b 32 is 140-160°C; the melting point of layer c 33 is 130-145°C.
  • the MFR of layer a 31 at 230° C. is 3 to 7 g/10 minutes; the MFR of layer b 32 at 230° C. is 3 to 10 g/10 minutes; the MFR of layer c 33 at 230° C. is 7 to 15g/10 minutes.
  • the material of the inner thermal welding layer 3 includes: a copolymer of polypropylene with more than 50 wt%, or a mixture of polypropylene with more than 50 wt%; or the catalyst used for the synthesis of the resin of the inner thermal welding layer 3
  • the generated residual ions are optionally 300 ppm or less.
  • a first resistance value measurement is carried out. When the thickness of the inner heat-welding layer 3 and the inner adhesive layer 2 is greater than 25 ⁇ m, the temperature condition is 23 ⁇ 5° C. and the humidity condition is 50 ⁇ 5% Rh. When the voltage is 250v, the measured resistance value should be above 2.5G ⁇ / ⁇ m.
  • the insulation between the metal layer 1 and the inner thermal welding layer 3 ; or between the metal layer 1 , the inner adhesive layer 2 , and the inner thermal welding layer 3 will decrease. It can be understood that when the insulation is reduced, the possibility of electrical connection between the metal layer 1 and the electrolyte will be increased when the electrolyte coated in the lithium battery composite packaging material is in contact with the inner thermal welding layer 3 . Among them, since the electrical connection reduces the internal resistance of the battery, the life of the battery will be shortened when the battery is used for a long time, and the resistance of the part of the external terminal (tab) installed to extract power from the battery will also decrease. .
  • a second resistance value measurement is carried out, wherein: two lithium battery composite packaging materials are prepared, which at least include the outer base material layer 6, the metal layer 1, and the inner layer adhesive Layer 2, and the inner thermally welded layer 3, and heat-seal two sheets of lithium battery composite packaging materials in a manner corresponding to the inner thermally welded layer 3, wherein: when heat-sealed, the inner adhesive layer 2 and the inner thermally welded layer 3
  • the residual rate of the laminated body is more than 50%; and when the temperature condition is 23 ⁇ 5°C and the humidity condition is 50 ⁇ 5%Rh, when the pressure is 250V, the resistance value of the metal layer 1 and the inner thermal welding layer 3 can be Preferably, it is 1.0 G ⁇ / ⁇ m or more. Among them, when the resistance value is less than 1.0G ⁇ / ⁇ m, the insulation between the metal layer 1 and the inner thermal welding layer 3; The possibility of electrical connection of the electrolyte is increased, resulting in the above-ment
  • a resistivity measurement is carried out, wherein two lithium battery composite packaging materials are prepared, wherein at least the outer substrate layer 6, the metal layer 1, and the inner adhesive layer 2 are included. , and the inner thermally welded layer 3, and heat-seal two sheets of lithium battery composite packaging materials in a manner corresponding to the inner thermally welded layer 3, wherein: the heat-sealing conditions for forming a bag shape in such a way that the electrolyte does not leak are: Under the condition that the residual rate of the laminated body of the inner adhesive layer 2 and the inner thermally welded layer 3 is 50% or more, an electrolyte solution is added to the inside of the bag, wherein the composition of the electrolyte solution includes: a mixed solvent, including: bicarbonate ethyl ester [EC], dimethyl carbonate [DMC], and diethyl carbonate [DEC]; and 1 Mol of LiPF6 (lithium hexafluorophosphate).
  • a mixed solvent including: bicarbonate ethyl ester
  • the measured electrolyte and metal layer 1 The resistivity between them is above 200M ⁇ . Wherein, if the resistance value is less than 200M ⁇ , the insulation between the metal layer 1 and the inner thermal welding layer 3; or between the metal layer 1, the inner adhesive layer 2, and the inner thermal welding layer 3 will be reduced, resulting in the risks mentioned above.
  • the lithium battery composite outer packaging material of the present disclosure includes: an outer substrate layer 6 , an anti-corrosion layer, an outer adhesive layer 7 , and a metal layer 1 .
  • the method of stacking each layer is as follows: First, use biaxially stretched nylon with a thickness of 25 ⁇ m as the outer base material layer 6, and corona treatment is performed on the side of the outer base material layer 6 in contact with the outer layer adhesive layer 7 .
  • the metal layer 1 is laminated on the outer base material layer 6 by a dry composite method, wherein the metal layer 1 is an aluminum alloy foil.
  • an anti-corrosion solution is coated on both sides of the aluminum alloy foil after the annealing treatment and degreasing treatment to form an anti-corrosion layer, wherein the surface of the aluminum alloy foil after the annealing treatment and degreasing treatment
  • the contact angle was 15; and the thickness was 40 ⁇ m.
  • the forming method of the outer layer adhesive layer 7 includes: coating an outer layer adhesive liquid on the side of the anti-corrosion layer opposite to the metal layer 1, wherein: the preparation method of the outer layer adhesive liquid sequentially includes: a mixing step , a non-crystalline polyester polyol with a weight average molecular weight of 5000, a Tg of 50°C, and a hydroxyl value of 25 mg KOH/g; and a weight average molecular weight of 20,000, a Tg of -17°C, and a hydroxyl value of 8 mg KOH/g g of non-crystalline polyester polyols, mixed in a ratio of 3:2 by weight to form a mixed solution; an addition step, adding toluene diisocyanate (TDI) to the mixed solution to form NCO/OH
  • TDI toluene diisocyanate
  • the thickness of the outer adhesive layer 7 is 3 ⁇ m.
  • the method for forming the outer adhesive layer 7 further includes: a curing step, after the adding step, the metal layer 1, the outer adhesive layer 7, and the outer substrate layer 6 are placed at 80°C Matured for 3 days under the above temperature conditions.
  • the thickness of the outer substrate layer 6 is 25 ⁇ m; and the thickness of the outer adhesive layer 7 is 3 ⁇ m.
  • the anti-corrosion solution includes: chromium nitrate, phosphoric acid, nitric acid, polyacrylic acid (PAA), and water, and the weight ratio thereof is 58:4:0.7:5:3 in sequence.
  • the chromium content of the anti-corrosion layer is 15mg/m2.
  • the present disclosure satisfies the insulation of the inner thermal fusion layer in its original state, the insulation of the inner thermal fusion layer after heat sealing, and the insulation when the inner thermal fusion layer is coated with electrolyte, so that the lithium battery composite packaging material It can provide stable heat sealing performance and stable insulation performance in long-term storage or use, so that the lithium battery made of the lithium battery composite packaging material can have a longer service life, and the stability and More security.
  • the residual rate (the sum of the thicknesses of the inner adhesive layer 2 and the inner heat-sealing layer 3 after heat-sealing)/(the sum of the thicknesses of the inner-layer adhesive layer 2 and the inner heat-sealing layer 3 before heat-sealing).
  • the measurement of insulation is to place the sample to be measured in an environment with a temperature condition of 23 ⁇ 5°C and a humidity condition of 50 ⁇ 5%Rh for 12 hours, and then perform the measurement in the same environment.
  • Measurement of the first resistance value measurement of the resistance value of the inner thermally welded layer 3 in its original state.
  • the resistance value of the inner thermal welding layer 3 or the inner adhesive layer 2 is measured with a measuring instrument with an accuracy of 1 ⁇ m, wherein, when the resistance value is above 2.5 G ⁇ / ⁇ m, It is regarded as normal and marked as "OK"; when the resistance value is less than 2.5G ⁇ / ⁇ m, it is regarded as abnormal and marked as "NG".
  • the sample is cut in the range of 200 mm in the MD direction and 76 mm in the TD direction. Then, the sample is folded in half along the MD direction; a tab is placed in the middle of the sample; and the tab is heat-sealed along the MD direction, wherein the material of the tab is Ni.
  • the heat-sealing conditions are: under the temperature condition of 190° C.; and under the pressure condition of 1.0 MPa, the heat-sealing lasts for 3 seconds.
  • the resistance value of the inner thermal welding layer 3 or the inner layer adhesive layer 2 is measured with a measuring instrument with an accuracy of 1 ⁇ m, wherein, when the resistance value is above 1 G ⁇ / ⁇ m, the apparent If it is normal, it is marked as "OK”; when the resistance value is less than 1G ⁇ / ⁇ m, it is regarded as abnormal, and it is marked as "NG".
  • Resistivity measurement The resistivity of the inner thermally welded layer 3 was measured after the electrolytic solution was injected.
  • the sample injected with the electrolyte was stored at 60° C. for 24 hours, and allowed to cool down to room temperature.
  • a drop of pure water can be dropped on the part where the two are in contact.
  • the resistivity of the inner heat-sealing layer 3 or the inner adhesive layer 2 is measured with a measuring instrument with an accuracy of 1 ⁇ m, wherein, when the resistivity is above 200 m ⁇ , it is considered normal , marked as "OK"; when the resistivity is less than 200m ⁇ , it is considered abnormal and marked as "NG”.
  • the method is as follows:
  • Step 1 Put the crucible in the muffle furnace and heat it to constant weight at the experimental temperature. Place it in a desiccator for at least 1 h, allow it to cool to room temperature, and weigh it on an analytical balance to the nearest 0.1 mg.
  • Step 2 Put the sample that has been pre-dried according to relevant material specifications or whose volatile matter content is known into a weighing bottle of known mass. Weigh, accurate to 0.1mg or 0.1% of the sample size, the sample size is subject to the amount of ash that can produce 5mg to 50mg.
  • Step 3 If the crucible is large enough to accommodate a sample equivalent to 5mg to 50mg of ash, the sample can be weighed directly in the crucible. For larger materials, it can be crushed into small pieces first, and then broken into fragments of suitable size.
  • Step 4 Put the sample into the crucible, which should not exceed half the height of the crucible, and then directly heat it on a Bunsen burner or other suitable heating source to make it burn slowly. Combustion should not be too violent to avoid loss of ash particles. After cooling the rest of the samples. Repeat the above operation until all the samples are burned.
  • Step 5 Put the crucible into the muffle furnace which has been preheated to the specified temperature, and calcinate for 30 minutes.
  • Step 6 Put the crucible in a desiccator to cool for 1 hour, or allow it to cool to room temperature, and weigh it on an analytical balance with an accuracy of 0.1 mg. Calcined under the same conditions for another 30 minutes until constant weight, that is, the difference between two consecutive weighing results is not more than 0.5 mg.
  • the thickness is measured using a micrometer, the method is as follows:
  • Step 1 Wipe the measured object clean, and handle the micrometer with care when using it;
  • Step 2 Loosen the locking device of the micrometer, calibrate the zero position, and turn the knob to make the distance between the anvil and the micrometer screw slightly larger than the object to be measured;
  • Step 3 Hold the ruler frame of the micrometer in one hand, place the object to be measured between the anvil and the end face of the micrometer screw, and turn the knob with the other hand.
  • the screw is about to approach the object, turn the force measuring device until you hear After the rattling sound, turn gently for 0.5 to 1 circle;
  • Step 4 Tighten the locking device (to prevent the screw from rotating when the micrometer is moved), and then read.
  • h2-h1 is the thickness of the inner adhesive layer.
  • Examples 1-11 and comparative examples 1-8 are listed below to illustrate the performance of the lithium battery composite packaging material provided by the present disclosure.
  • the lithium battery composite outer packaging material is made, referring to the schematic structural diagram of the lithium battery composite outer packaging material in accompanying drawing 4, wherein, the structure of the lithium battery composite outer packaging material includes in sequence: an outer base material layer 6 , 3 ⁇ m thick outer adhesive layer 7 ; and an aluminum alloy foil layer.
  • an inner adhesive layer 2 and an inner heat-welding layer 3 are sequentially formed on the opposite side of the aluminum alloy foil layer to the outer substrate layer 6, and then composited to manufacture the lithium battery disclosed herein Composite packaging materials.
  • the inner layer adhesive layer 2 is formed on the aluminum alloy foil layer, an anti-corrosion layer has been formed on the side of the aluminum alloy foil layer opposite to the outer substrate layer 6; the inner layer adhesive layer 2 is a solution-type inner layer The adhesive layer 2; and the inner heat-welding layer 3 have been corona treated before compounding.
  • the subsequent steps are carried out, therefore, it is not necessary to repeat them in subsequent examples or comparative examples .
  • this embodiment 1 is anhydrous maleic anhydride-modified polypropylene ring solution with a weight average molecular weight of 80000, a melting point of 80 ° C, and an acid value of 2 mg KOH/g, and an aromatic isocyanate (HDI, dimethyl isocyanate) solution, mixed at a weight ratio of 20:1 to form an inner layer adhesive layer 2 with a thickness of 3.5 ⁇ m, and after compounding the inner heat-welding layer 3 described later, at 60°C Carry out aging treatment for 3 days to make the lithium battery composite packaging material of this embodiment.
  • HDI dimethyl isocyanate
  • the inner thermally welded layer 3 is a three-layer structure (combined with reference to FIG. 1B ), which includes a layer 31, b layer 32, and c layer 33 in sequence, wherein the three layers of a, b, and c
  • the thickness ratio is 1:8:1.
  • Layer a 31 includes: random polypropylene (r-pp) resin with a melting point of 135°C; 65 parts by weight of propylene (b-pp), 10 parts by weight of ethylene-polypropylene elastomer, and 25 parts by weight of propylene-ethylene elastomer, wherein the melting point of the mixed resin made from the raw material of b layer 32 is 160 ° C; and MFR is 3.0 g/10 minutes (230° C.); and the composition of layer c 33 and layer a 31 is the same.
  • the thickness of the inner heat-sealing layer 3 is 80 ⁇ m; the inner heat-sealing layer 3 of the three-layer structure is pre-coiled by extruding the three-layer film with a screw extruder; in the three-layer structure, it is The layer a 31 is in contact with the inner adhesive layer 2 .
  • the inner adhesive layer 2 is compounded with the inner thermally welded layer 3 to form the inner layer of the lithium battery composite packaging material.
  • the lithium battery composite packaging material of the present disclosure is an aluminum-plastic film, and the inner layer of the aluminum-plastic film can be used to block the electrolyte to provide the insulation and liquid resistance of the aluminum-plastic film.
  • the preparation method of the solution-type inner layer adhesive layer 2 used includes: modifying an anhydrous maleic anhydride-modified polypropylene with a weight average molecular weight of 60,000, a melting point of 100° C., and an acid value of 5 mg KOH/g ; Mix with anhydrous maleic acid-modified polypropylene with a weight average molecular weight of 80,000, a melting point of 80° C., and an acid value of 3 mg KOH/g in a weight ratio of 8:2 to obtain a mixture.
  • the obtained mixture is mixed with linear aliphatic polyisocyanate (PDI, pentamethylene diisocyanate) in a weight ratio of 10:1 to form an inner adhesive layer 2, wherein the thickness of the inner adhesive layer 2 is 3.5 ⁇ m.
  • PDI linear aliphatic polyisocyanate
  • the inner thermal welding layer 3 has a three-layer structure, which is layer a 31 and layer b in sequence 32, and c layer 33, wherein, the thickness ratio of a layer 31, b layer 32, and c layer 33 is 2:5:3, and, a layer 31 comprises random polypropylene (r-pp) resin, its melting point is 135°C; and the MFR at 230°C is 7.0 g/10 minutes.
  • r-pp random polypropylene
  • the b-layer 32 is 30 parts by weight of a block polypropylene (b-pp) resin with a melting point of 160°C and an MFR of 2.0 g/10 minutes at 230°C; a melting point of 124°C and an MFR of 230°C 30 parts by weight of random polypropylene (r-pp) resin of 10 g/10 minutes; a mixed resin made by mixing 40 parts by weight of ethylene-polypropylene elastomer with a melting point of 124 ° C, wherein: layer b 32 is mixed The melting point of the resin is 142°C; and the MFR at 230°C is 5.0 g/10 minutes.
  • the c-layer 33 comprises a random polypropylene (r-pp) resin having a melting point of 135C; and an MFR at 230C of 15.0 g/10 minutes.
  • the thickness of the inner heat-sealing layer 3 is 40 ⁇ m; the inner heat-sealing layer 3 of the three-layer structure is pre-coiled by an extruder with a three-layer structure of the film; in the three-layer structure, it is The layer a 31 is in contact with the inner adhesive layer 2 .
  • the inner adhesive layer 2 is compounded with the inner thermally welded layer 3 to form the inner layer of the lithium battery composite packaging material.
  • the lithium battery composite packaging material of the present disclosure is an aluminum-plastic film, and the inner layer of the aluminum-plastic film can be used to block the electrolyte to provide the insulation and liquid resistance of the aluminum-plastic film.
  • the lithium battery composite outer packaging material is made, referring to the schematic structural diagram of the lithium battery composite outer packaging material in accompanying drawing 4, wherein, the structure of the lithium battery composite outer packaging material includes in sequence: an outer base material layer 6 , 3 ⁇ m thick outer adhesive layer 7 ; and an aluminum alloy foil layer.
  • an inner adhesive layer 2 and an inner thermal welding layer 3 are sequentially formed on the side of the aluminum alloy foil layer opposite to the outer substrate layer 6, and then compounded to make the lithium battery disclosed in this disclosure Composite packaging materials.
  • an anti-corrosion layer has been formed on the side of the aluminum alloy foil layer opposite to the outer substrate layer 6 in advance.
  • the forming method of the inner adhesive layer 2 includes: mixing an anhydrous maleic anhydride-modified polypropylene solution with a weight-average molecular weight of 130,000, a melting point of 88° C., and an acid value of 1 mg KOH/g; and epoxy resin (bis A mixed system of phenol A diglycidyl ether and p-aminophenol triglycidyl) solution is mixed in a ratio of 100:1.9 by weight to form a mixed solution, and the mixed solution is applied to the anti-corrosion layer relative to the aluminum alloy foil one side of the layer.
  • epoxy resin bis A mixed system of phenol A diglycidyl ether and p-aminophenol triglycidyl
  • the lithium battery composite packaging material of the present embodiment is completed.
  • the inner thermally welded layer 3 is a three-layer structure, which is a layer 31, b layer 32, and c layer 33 in sequence, wherein a layer 31.
  • the thickness ratio of layer b 32 and layer c 33 is 1:2:1, and layer a 31 includes random polypropylene (r-pp) resin with a melting point of 150°C; and an MFR at 230°C It is 5.0g/10 minutes; b layer 32 comprises random polypropylene (r-pp) resin, its melting point is 140 °C; And the MFR at 230 °C is 10.0g/10 minutes; And c layer 33 comprises random polypropylene Propylene (r-pp) resin has a melting point of 130°C; and an MFR of 12.0 g/10 minutes at 230°C.
  • the thickness of the inner heat-sealing layer 3 is 80 ⁇ m; the inner heat-sealing layer 3 of the three-layer structure is pre-coiled by extruding the three-layer film with an extruder; In the three-layer structure, the a-layer 31 is in contact with the inner adhesive layer 2 .
  • the inner adhesive layer 2 is compounded with the inner thermally welded layer 3 to form the inner layer of the lithium battery composite packaging material.
  • the lithium battery composite packaging material of the present disclosure is an aluminum-plastic film, and the inner layer of the aluminum-plastic film can be used to block the electrolyte to provide the insulation and liquid resistance of the aluminum-plastic film.
  • the lithium battery composite outer packaging material is made, referring to the schematic structural diagram of the lithium battery composite outer packaging material in accompanying drawing 4, wherein, the structure of the lithium battery composite outer packaging material includes in sequence: an outer base material layer 6 , 3 ⁇ m thick outer adhesive layer 7 ; and an aluminum alloy foil layer.
  • an inner adhesive layer 2 and an inner thermal welding layer 3 are sequentially formed on the side of the aluminum alloy foil layer opposite to the outer substrate layer 6, and then compounded to make the lithium battery disclosed in this disclosure Composite packaging materials.
  • the inner adhesive layer 2 is a solution type.
  • the forming method of the inner adhesive layer 2 includes: mixing a methacrylic acid-modified polypropylene resin with a weight average molecular weight of 70,000, a melting point of 145° C., and an acid value of 4.5 mg KOH/g; and a curing agent, including: three A mixture of ethylamine and N,N-dimethylethanolamine was applied to the side of the anti-corrosion layer opposite to the aluminum alloy foil layer, and dried at 160°C for 2 minutes to form an inner layer with a thickness of 2 ⁇ m.
  • Layer Adhesive Layer 2 includes: mixing a methacrylic acid-modified polypropylene resin with a weight average molecular weight of 70,000, a melting point of 145° C., and an acid value of 4.5 mg KOH/g; and a curing agent, including: three A mixture of ethylamine and N,N-dimethylethanolamine was applied to the side of the anti-corrosion layer opposite to the aluminum alloy foil layer, and dried at
  • the inner thermally welded layer and the inner adhesive layer 2 are laminated by extrusion. Then, heat treatment was performed for 30 seconds under the temperature condition of 190°C.
  • the inner heat-sealing layer 3 has a three-layer structure, which is a layer 31, b layer 32, and c layer 33 in sequence, wherein a layer 31.
  • the thickness ratio of b-layer 32 and c-layer 33 is 1:8:1, and a-layer 31 is modified from maleic anhydride with a melting point of 142°C and an MFR of 10.0g/10min at 230°C.
  • r-pp random polypropylene
  • low-density polyethylene 20 parts by weight of non-crystalline polypropylene elastomer
  • a mixed resin composed of 12 parts by weight of block polypropylene elastomer , wherein, the melting point of the mixed resin of layer a 31 is 135° C.; and the MFR at 230° C. is 7.0 g/10 minutes.
  • the b-layer 32 is a mixed resin composed of 65 parts by weight of block polypropylene (b-pp) with an ethylene content of 5%, 10 parts by weight of ethylene-polypropylene elastomer, and 25 parts by weight of propylene-ethylene elastomer, wherein , the melting point of the mixed resin of layer b 32 is 160° C.; and the MFR at 230° C. is 3.0 g/10 minutes.
  • the c-layer 33 comprises a random polypropylene (r-pp) resin having a melting point of 135°C; and an MFR at 230°C of 7.0 g/10 minutes.
  • the thickness of the inner heat-sealing layer 3 is 30 ⁇ m; the inner heat-sealing layer 3 of the three-layer structure is pre-rolled by an extruder with a three-layer film in the form of screw extrusion; In the three-layer structure, the a-layer 31 is in contact with the inner adhesive layer 2 .
  • the inner adhesive layer 2 is compounded with the inner thermally welded layer 3 to form the inner layer of the lithium battery composite packaging material.
  • the lithium battery composite packaging material of the present disclosure is an aluminum-plastic film, and the inner layer of the aluminum-plastic film can be used to block the electrolyte to provide the insulation and liquid resistance of the aluminum-plastic film.
  • the manufacturing method of the lithium battery composite packaging material in this embodiment includes: first: using the aforementioned method to make a lithium battery composite outer packaging material, referring to the schematic structural diagram of the lithium battery composite outer packaging material in Figure 4, wherein the lithium battery
  • the structure of the battery composite outer packaging material includes in sequence: an outer base material layer 6, an outer layer adhesive layer 7 with a thickness of 3 ⁇ m; and an aluminum alloy foil layer; Sequentially form an inner adhesive layer 2 and an inner thermally welded layer 3, wherein: the inner adhesive layer 2 and the inner thermally welded layer 3 are laminated by a thermal method.
  • the inner adhesive layer 2 and the inner thermally welded layer 3 are formed by co-extrusion with an extruder, and after laminating the inner thermally welded layer 3, heat treatment is performed at a temperature of 180° C. for 30 seconds. Because in embodiment 5 to 11, the manufacturing method used is all the same, so do not repeat in the explanation of following embodiment; And in comparative example 1 to 8, except that comparative example 4 is to use dry process, The manufacturing methods mentioned above are used in the other comparative examples, so no more details will be given in the following comparative examples.
  • the inner adhesive layer 2 is layer a; and the inner thermally welded layer 3 is layer b, wherein: the combined thickness of the two layers is 45 ⁇ m, and, a The thickness ratio of layer and b layer is 1:1.
  • layer a is an acid-modified polypropylene (mpp) resin, and layer a is 18 parts by weight of atactic polypropylene with a melting point of 142° C. and an MFR of 10 g/10 minutes at 230° C.; a melting point of 162° C.
  • a mixed resin composed of 42 parts by weight of homopolypropylene with an MFR of 3 g/10 minutes at 230 °C; 8 parts by weight of low-density polyethylene; and 32 parts by weight of crystalline propylene elastomer, wherein: random Polypropylene and homopolypropylene are acid-modified polypropylene modified with maleic anhydride; and the melting point of layer a mixed resin is 155°C; and the MFR at 230°C is 5.0g/10min.
  • layer b comprises random polypropylene (r-pp) resin with a melting point of 135° C.; and an MFR at 230° C. of 12.0 g/10 minutes.
  • the two layers a and b are bonded to the aluminum alloy foil layer by extrusion casting, and the side of layer a opposite to layer b is in contact with the aluminum alloy foil layer.
  • the aluminum-plastic film made after compounding can block the electrolyte, prevent the electrolyte from directly contacting the aluminum alloy foil layer, enhance insulation, and enhance liquid resistance.
  • layer a and layer b are bonded to the aluminum alloy foil layer by extrusion casting. Therefore, after compounding
  • the produced aluminum-plastic film has the functions of blocking the electrolyte, preventing the electrolyte from directly contacting the aluminum alloy foil layer, enhancing insulation, and enhancing liquid resistance. Therefore, we will not do more in the description of the following examples. repeat.
  • the inner adhesive layer 2 is layer a; and the inner heat-sealing layer 3 is layer b, wherein: the combined thickness of the two layers is 45 ⁇ m, and, a The thickness ratio of layer and b layer is 1:1.
  • layer a is an acid-modified polypropylene (mpp) resin, and layer a is 75 parts by weight of random polypropylene with a melting point of 142°C and an MFR of 7.5g/10 minutes at 230°C; low density 3 parts by weight of polyethylene; and a mixed resin composed of 20 parts by weight of propylene elastomer, wherein: random polypropylene is a modified polypropylene modified with methacrylic acid; and the melting point of layer a mixed resin is 140°C and an MFR of 9.0 g/10 minutes at 230°C.
  • layer b comprises random polypropylene (r-pp) resin with a melting point of 135° C.; and an MFR at 230° C. of 12.0 g/10 minutes.
  • the inner adhesive layer 2 is layer a; and the inner thermally welded layer 3 is layer b, wherein: the thickness of the two layers is 60 ⁇ m, and, a The thickness ratio of layer and b layer is 1:1.
  • layer a comprises maleic anhydride-modified acid-modified polypropylene (mpp) resin, the melting point of which is 140° C.; and the MFR at 230° C. is 12.0 g/10 minutes.
  • the b layer is composed of 65 parts by weight of random polypropylene (r-pp) resin with a melting point of 137 ° C and an MFR of 10.0 g/10 minutes at 230 ° C; 3 parts by weight of low-density polyethylene; A mixed resin composed of 32 parts by weight of the body, wherein, the melting point of the layer b mixed resin is 135° C.; and the MFR at 230° C. is 12.0 g/10 minutes.
  • r-pp random polypropylene
  • the inner adhesive layer 2 is layer a; and the inner thermally welded layer 3 is layer b, wherein: the combined thickness of the two layers is 45 ⁇ m, and, a The thickness ratio of layer and b layer is 1:3.
  • layer a is an acid-modified polypropylene (mpp) resin, and layer a is 18 parts by weight of atactic polypropylene with a melting point of 142° C. and an MFR of 10 g/10 minutes at 230° C.; a melting point of 162° C.
  • a mixed resin composed of 42 parts by weight of homopolypropylene with an MFR of 3 g/10 minutes at 230 °C; 8 parts by weight of low-density polyethylene; and 32 parts by weight of crystalline propylene elastomer, wherein: random Polypropylene and homopolypropylene are acid-modified polypropylene modified with maleic anhydride; and the melting point of layer a mixed resin is 155°C; and the MFR at 230°C is 5.0g/10min.
  • layer b comprises random polypropylene (r-pp) resin with a melting point of 135° C.; and an MFR at 230° C. of 12.0 g/10 minutes.
  • the inner adhesive layer 2 is layer a; and the inner thermally welded layer 3 is layer b, wherein: the thickness of the two layers is 45 ⁇ m, and, a The thickness ratio of layer and b layer is 2:1.
  • layer a is an acid-modified polypropylene (mpp) resin, and layer a is 18 parts by weight of atactic polypropylene with a melting point of 142° C. and an MFR of 10 g/10 minutes at 230° C.; a melting point of 162° C.
  • a mixed resin composed of 42 parts by weight of homopolypropylene with an MFR of 3 g/10 minutes at 230 °C; 8 parts by weight of low-density polyethylene; and 32 parts by weight of crystalline propylene elastomer, wherein: random Polypropylene and homopolypropylene are acid-modified polypropylene modified with maleic anhydride; and the melting point of layer a mixed resin is 155°C; and the MFR at 230°C is 5.0g/10min.
  • layer b comprises random polypropylene (r-pp) resin with a melting point of 135° C.; and an MFR at 230° C. of 12.0 g/10 minutes.
  • the inner adhesive layer 2 is layer a; and the inner heat-sealing layer 3 is layer b, wherein: the combined thickness of the two layers is 45 ⁇ m, and, a The thickness ratio of layer and b layer is 1:1.
  • layer a is an acid-modified polypropylene (mpp) resin with a melting point of 140° C.; and an MFR at 230° C. of 7.0 g/10 minutes.
  • layer b comprises random polypropylene (r-pp) resin with a melting point of 135° C.; and an MFR at 230° C. of 12.0 g/10 minutes.
  • the inner adhesive layer 2 is layer a; and the inner heat-sealing layer 3 is layer b, wherein: the combined thickness of the two layers is 45 ⁇ m, and, a The thickness ratio of layer and b layer is 1:1.
  • layer a is an acid-modified polypropylene (mpp) resin with a melting point of 150°C; and an MFR of 10.0 g/10 minutes at 230°C.
  • layer b comprises random polypropylene (r-pp) resin with a melting point of 135° C.; and an MFR at 230° C. of 12.0 g/10 minutes.
  • the inner adhesive layer 2 is layer a; and the inner thermally welded layer 3 is layer b, wherein the thickness of the two layers is 45 ⁇ m, and the difference between layer a and layer b The thickness ratio is 1:9.
  • layer a is an acid-modified polypropylene (mpp) resin, and layer a is made of random polypropylene (r-pp) 18 wt. 42 parts by weight of homopolypropylene (h-pp) with a melting point of 162° C.
  • the mixed resin formed wherein: random polypropylene and homopolypropylene are acid-modified polypropylene modified with maleic anhydride; and the melting point of layer a mixed resin is 155°C; and at 230°C
  • the MFR is 5.0g/10min.
  • layer b comprises random polypropylene (r-pp) resin with a melting point of 135° C.; and an MFR at 230° C. of 12.0 g/10 minutes.
  • Example 5 improves the heat resistance and insulation properties of the material, wherein, when the thickness ratio of layer a to layer b is 1:9, due to a The thickness of the layer is thinner, which will lead to poor heat resistance.
  • Example 5 when the battery is in use, heat will be generated during the charging or discharging process of the battery. If the heat resistance of layer a is insufficient, it will cause the metal layer 1 and the inner thermal welding layer 3 are peeled off under the action of high temperature.
  • the MFR of the b-layer is higher, the fluidity of the inner heat-welding layer 3 will be improved.
  • the heat-sealing conditions set by the heat-sealing machine used are temperature 190°C and pressure 1.0Mpa , and the heat-sealing time is 3 seconds.
  • the thickness of the b-layer will be seriously thinned during heat-sealing.
  • the electrolyte exists, when the b-layer becomes thinner, the The high temperature will cause the electrolyte to vaporize, and the force of electrolyte vaporization will cause defects or cracks in the thinned b-layer part, so that the electrolyte will pass through the b-layer and contact the metal layer 1, resulting in insulation Reduced performance.
  • the resin in the extruded part of the battery will flow to the edge part that is not extruded. Therefore, when the battery is subjected to external forces such as expansion and contraction or bending processing to cause cracks, it will also cause electrolysis.
  • the liquid penetrates through the crack and contacts the metal layer 1, causing the insulation resistance of the inner heat-welding layer 3 (layer b) to decrease, causing leakage, or shortening the life of the battery.
  • Comparative Example 2 As shown in Table 13, the difference between Comparative Example 2 and Comparative Example 1 is that the catalyst residue in Comparative Example 1 is more, but less than 1000 ppm. Wherein, when the catalyst residue is more but less than 1000ppm, the first resistance value measurement of the inner thermal fusion layer is "OK" when the thickness is 30 ⁇ m, but the second resistance value and resistivity measurement results are "NG".
  • the inner adhesive layer 2 is layer a; and the inner heat-sealing layer 3 is layer b, wherein: the combined thickness of the two layers is 45 ⁇ m, and the difference between layer a and layer b The thickness ratio is 4:1.
  • layer a is homopolypropylene (h-pp), its melting point is 162°C, and its MFR at 230°C is 40g/10min, wherein, homopolypropylene (h-pp) is made of maleic anhydride Modified polypropylene.
  • layer b is a random polypropylene (r-pp) resin with a melting point of 135° C.; and an MFR at 230° C. of 12.0 g/10 minutes.
  • Comparative Example 5 the layer a of Comparative Example 3 is made of homopolypropylene (h-pp) with high MFR, and no other resins are added, wherein, when the heat seal residual rate is more than 50%, when the electrolyte is injected The dielectric breakdown voltage decreases during the test. At 30 ⁇ m, there was no problem with the dielectric breakdown voltage and the resistance during heat sealing, but the resistance also decreased after the electrolyte solution was injected.
  • h-pp homopolypropylene
  • the method for forming the inner layer adhesive layer 2 of this comparative example 4 includes: anhydrous maleic anhydride-modified polypropylene ring solution with a weight average molecular weight of 80,000, a melting point of 80° C., and an acid value of 2 mg KOH/g, and Aromatic isocyanate (HDI, dimethyl isocyanate) solutions are mixed at a weight ratio of 20:1, and the resulting mixed solution is coated on the metal layer 1 and dried to obtain a thickness of 0.5 ⁇ m Inner adhesive layer 2.
  • the inner adhesive layer 2 is completed, it is compounded with the inner thermally welded layer 3 and subjected to an aging treatment at a temperature of 60° C. for 3 days to obtain the lithium battery composite packaging material of this comparative example.
  • the inner heat-sealing layer 3 has a three-layer structure, which is a layer 31, b layer 32, and c layer 33 in sequence, wherein a layer 31, b layer 32, The thickness ratio to the c-layer 33 is 1:8:1.
  • the layer a 31 is a random polypropylene (r-pp) resin with a melting point of 135° C.; and an MFR at 230° C. of 7.0 g/10 minutes.
  • the b-layer 32 is a mixed resin composed of: 65 parts by weight of block polypropylene (b-pp) with an ethylene content of 5%; 10 parts by weight of ethylene-polypropylene elastomer; and 25 parts by weight of propylene-ethylene elastomer. Its melting point is 160°C; and its MFR at 230°C is 3.0 g/10 minutes.
  • the c-layer 33 comprises a random polypropylene (r-pp) resin having a melting point of 135°C; and an MFR at 230°C of 7.0 g/10 minutes.
  • the thickness of the inner heat-sealing layer 3 is 80 ⁇ m; the inner heat-sealing layer 3 of the three-layer structure is pre-rolled by an extruder with a three-layer film by screw extrusion; In the three-layer structure, the a-layer 31 is in contact with the inner adhesive layer 2 .
  • the inner adhesive layer 2 is compounded with the inner thermally welded layer 3 to form the inner layer of the lithium battery composite packaging material.
  • the lithium battery composite packaging material of the present disclosure is an aluminum-plastic film, and the inner layer of the aluminum-plastic film can be used to block the electrolyte to provide the insulation and liquid resistance of the aluminum-plastic film.
  • 500 ppm of catalyst residue remained.
  • Example 4 Comparing this Comparative Example 4 with Example 1, the heat resistance of the material in Example 1 is improved, and it maintains the possibility of avoiding peeling at high temperatures, and at the same time, it is heat-sealed to avoid the possibility of short circuit, and has less catalyst residue. ; Wherein, the thickness of the inner adhesive layer 2 of this comparative example is 0.5 ⁇ m, due to the lower thickness, resulting in lower heat resistance. Since the battery generates heat during use, charging and discharging, if the heat resistance is low, the metal layer 1 and the inner heat-welding layer 3 may be peeled off at high temperature.
  • the burrs on the tabs can easily penetrate the inner thermal welding layer and the inner adhesive layer 2 during heat sealing, resulting in the metal layer 1 and the tab There is a certain possibility of contact, resulting in a short circuit.
  • the removal of catalyst residues in this comparative example is not sufficient. When there are more catalyst residues, but less than 1000ppm; and the heat seal residual rate is above 70%, the results of the first and second resistance value measurements are "OK" , but in the measurement of the third resistance value, the resistance will drop, so the measurement result is "NG".
  • the inner adhesive layer 2 is layer a; and the inner heat-sealing layer 3 is layer b, wherein: the combined thickness of the two layers is 45 ⁇ m, and , The thickness ratio of layer a and layer b is 1:1.
  • layer a is an acid-modified polypropylene (mpp) resin with a melting point of 130°C; and an MFR of 5.0 g/10 minutes at a temperature of 230°C.
  • layer b is a random polypropylene (r-pp) resin with a melting point of 120° C.; and an MFR at 230° C. of 12.0 g/10 minutes.
  • Example 5 Comparing this Comparative Example 5 with Example 5, the material of Example 5 has improved heat resistance, which can effectively prevent the metal layer 1 and the inner thermal welding layer 3 from breaking down at high temperatures when the battery generates heat during use or charging and discharging. peeling; wherein, the melting point of layer a of this comparative example is lower than 140°C; When heat is generated, the metal layer 1 and the inner thermally welded layer 3 will be peeled off at high temperature.
  • the inner adhesive layer 2 is layer a; and the inner heat-sealing layer 3 is layer b, wherein: the combined thickness of the two layers is 45 ⁇ m, and , The thickness ratio of layer a and layer b is 1:1.
  • layer a is an acid-modified polypropylene (mpp) resin with a melting point of 160° C.; and an MFR at 230° C. of 5.0 g/10 minutes.
  • layer b is random polypropylene (r-pp), its melting point is 145° C.; and the MFR at 230° C. is 12.0 g/10 minutes.
  • layer a is an acid-modified polypropylene (mpp) resin, and layer a is made of 18 parts by weight of atactic polypropylene with a melting point of 142° C. and an MFR of 10 g/10 minutes at 230° C.; a melting point of A mixed resin composed of 42 parts by weight of homopolypropylene whose MFR at 162°C and 230°C is 3 g/10 minutes; 8 parts by weight of low-density polyethylene; and 32 parts by weight of crystalline propylene elastomer.
  • mpp polypropylene
  • the random polypropylene and homopolypropylene used are acid-modified polypropylene modified with maleic anhydride, and the melting point of layer a mixed resin is 155°C;
  • the MFR is 5.0 g/10 minutes.
  • layer b comprises random polypropylene (r-pp) resin with a melting point of 135° C.; and an MFR at 230° C. of 12.0 g/10 minutes.
  • Example 5 Comparing this Comparative Example 7 with Example 5, Example 5 has less catalyst residue and has improved liquid-resistant peel strength; wherein, the layer ratio of the inner adhesive layer 2 and the inner heat-sealing layer 3 in this Comparative Example is 3:1, exceeding 2 to 1:1 to 3, therefore, the proportion of catalyst residue in the inner adhesive layer 2 is relatively large.
  • the composition of the inner adhesive layer 2 includes maleic anhydride-modified polypropylene, it has a high content of polar groups, wherein a part of the polar groups is used to capture hydrofluoric acid; The group will react with the solvent component of the inner adhesive layer 2, resulting in a decrease in the liquid-resistant peel strength of the inner adhesive layer 2, so that during the use of the battery, at high temperature, there will be a gap between the metal layer 1 and the inner heat-welding layer 3 Produce peeling.
  • the inner adhesive layer 2 is layer a; and the inner heat-welding layer 3 is layer b, wherein: the combined thickness of the two layers is 45 ⁇ m, and , The thickness ratio of layer a and layer b is 1:1.
  • layer a includes: acid-modified polypropylene (mpp) resin, the melting point of which is 155° C.; and the MFR at 230° C. is 3.0 g/10 minutes.
  • layer b includes: random polypropylene (r-pp) resin, the melting point of which is 135° C.; and the MFR at 230° C. is 8.0 g/10 minutes.
  • Example 5 has the strength of the battery composite packaging material improved; wherein, in this Comparative Example, the MFR of the inner layer adhesive layer 2 and the inner thermal welding layer 3 is lower, so the fluidity of the resin Poor, because the inner adhesive layer 2 and the inner heat-welding layer 3 cannot be well melted during heat sealing, resulting in lower strength of the overall lithium battery composite packaging material obtained after heat sealing.
  • the effect of the present disclosure relative to the prior art lies in that: by adjusting the type and proportion of the resin components contained in the inner adhesive layer 2 and the inner thermal welding layer 3, the inner adhesive layer 2 and the inner thermal fusion layer 3 can be adjusted.
  • the thickness ratio of the inner thermally welded layer 3 is such that the combined thickness of the inner adhesive layer 2 and the inner thermally welded layer 3 is more than 30 ⁇ m, and pressurized under an environment with a temperature condition of 23 ⁇ 5°C and a humidity condition of 50 ⁇ 5% Rh At 250v, the measured resistance value is above 2.5G ⁇ / ⁇ m.
  • the resistance value of the metal layer 1 and the inner thermal welding layer 3 is 1.0G ⁇ / ⁇ m or more.
  • the resistivity measurement when the temperature condition is 23 ⁇ 5° C. and the humidity condition is 50 ⁇ 5% Rh, when a voltage of 250 V is applied, the measured resistivity is more than 200 M ⁇ .
  • the lithium battery composite packaging material provided by the present disclosure has high and stable heat sealing performance and insulation performance, so that the lithium battery made according to the present disclosure can have a longer service life, and the stability and safety are higher, so it has Excellent industrial practical performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)

Abstract

本公开属于锂电池包装材料之领域,具体而言为一种锂电池复合包装材料,包含:一金属层;一内层黏合层,形成于所述金属层之一侧;以及一内热熔接层,形成于所述内层黏合层相对于所述金属层之一侧,其中,所述内热熔接层是与锂电池中之电解液直接接触,且,所述内层黏合层与所述内热熔接层之厚度总和≥25μm,且,于温度条件为23±5℃、以及湿度条件为50±5%Rh之环境下加压250v时,所述内热熔接层之电阻值≥2.5GΩ/μm。其中,本公开提供稳定之热封性能、与绝缘性能,使依本公开所制成之锂电池能够拥有更长之使用寿命,且,稳定性和安全性更高。

Description

锂电池复合包装材料
相关申请的交叉引用
本公开要求于2021年12月30日提交中国专利局的申请号为“CN 202111651437.8”名称为“锂电池复合包装材料”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及一种电池包装材料,尤指一种适用于锂电池之复合包装材料。
背景技术
目前锂电池之封装形式主要包含:圆柱形,其是以卷绕工艺进行封装,由于技术发展成熟,具有自动化程度高、制造质量稳定、与制造成本低之优点;方形,其是以卷绕、与迭片两种工艺所制成,其结构简单,主要应用于汽机车之动力电池的领域上;以及软包,其为制作难度最高之封装形式,通常其结构依序包含:一外层保护层、一中间金属层、以及一内层阻隔层,其中软包之锂电池具有安全性高、与灵活性高之优点。
通常,软包锂电池之外壳是采用金属复合膜,其主要包含两种产品类型,分别为干法品;以及热法品。其中,于软包锂电池之内热熔接层中,是以聚丙烯为主要材料,且其功能包含:防止电解液渗透、具有绝缘性可防止短路、以及具有热封性能,可于进行电池组装时以热熔接之方式将电池组件密封,因此可以理解地,内热熔接层之性能对锂电池的性能影响很大。
于先前技艺中,当热封条件优化时,会使先前技艺之内热熔接层的MFR较高,且流动性较强,会造成电池封装过程中,注入到电池内部的电解液气化,而使绝缘性降低,而造成短路、或电池寿命缩短之风险。
综上所述,先前技艺所制成之锂电池的危险系数较高,因此,提供一种可满足稳定之绝缘性能的内热熔接层实为时势所需。
发明内容
本公开提供一种锂电池复合包装材料,包含:
一金属层;
一内层黏合层,形成于所述金属层之一侧;以及
一内热熔接层,形成于所述内层黏合层相对于所述金属层之一侧,其中,所述内热熔接层是与锂电池中之电解液直接接触,且,所述内层黏合层与所述内热熔接层之厚度总和≥25μm,且,于温度条件为23±5℃、以及湿度条件为50±5%Rh之环境下加压250v时,所述内热熔接层之电阻值≥2.5GΩ/μm。
在一些实施方式中,其中,所述内层黏合层与所述内热熔接层之厚度比为2至1:1至3。
在一些实施方式中,其中,所述内层黏合层之熔点为:140至155℃;以及所述内热熔接层之熔点为135℃。
在一些实施方式中,其中,所述内层黏合层于230℃下之MFR为5至12g/10分钟;以及所述内热熔接层于230℃下之MFR为12g/10分钟。
在一些实施方式中,其中,所述内热熔接层为三层结构,依序包含一a层、一b层、与一c层,其中,所述a层相对于所述b层之一侧与所述内层黏合层接触,且,所述a层之厚度:所述b层之厚度:所述c层之厚度为1至2:2至8:1至3。
在一些实施方式中,其中,所述a层之熔点为135至152℃;所述b层之熔点为140至160℃;以及所述c层之熔点为130至145℃。
在一些实施方式中,其中,所述a层于230℃下之MFR为3至7g/10分钟;所述b层于230℃下之MFR为3至10g/10分钟;以及所述c层于230℃下之MFR为7至15g/10分钟。
在一些实施方式中,其中,所述内热熔接层之材料包含:50wt%以上之聚丙烯的共聚物、或50wt%以上之聚丙烯的混合物。
在一些实施方式中,更包含:一外基材层,设置于所述金属层相对于所述内层黏合层之一侧。
在一些实施方式中,其中,所述外基材层之原料包含:聚酯、聚酰胺、聚烯烃、环氧树脂、丙烯酸树脂、氟树脂、聚氨酯、硅树脂、或酚醛树脂。
在一些实施方式中,更包含:一外层黏合层,形成于所述金属层与所述外基材层之间。
本公开另提供一种锂电池复合包装材料,包含:一第一锂电池复合包装材料、以及一第二锂电池复合包装材料,其中:
所述第一锂电池复合包装材料包含:
一外基材层;
一金属层,设置于所述外基材层之一侧;
一内层黏合层,形成于所述金属层相对于所述外基材层之一侧;以及
一内热熔接层,形成于所述内层黏合层相对于所述金属层之一侧;以及
所述第二锂电池复合包装材料之结构与所述第一锂电池复合包装材料相同,且,所述第二锂电池复合包装材料与所述第一锂电池复合包装材料相对应地设置,以界定出一容置空间,其中:所述容置空间与所述内热熔接层接触,且,所述容置空间可容纳一电解液,其中,经过热封后,当所述内层黏合层与所述内热熔接层之残存率为50%以上,且,于温度条件为23±5℃、以及湿度条件为50±5%Rh之环境下加压250v时,所述金属层和所述内热熔接层的电阻值为1.0GΩ/μm以上。
本公开另提供一种锂电池复合包装材料,包含:一第一锂电池复合包装材料、一第二锂电池复合包装材料、以及一电解液,其中:
所述第一锂电池复合包装材料包含:
一外基材层;
一金属层,设置于所述外基材层之一侧;
一内层黏合层,形成于所述金属层相对于所述外基材层之一侧;以及
一内热熔接层,形成于所述内层黏合层相对于所述金属层之一侧;
所述第二锂电池复合包装材料之结构与所述第一锂电池复合包装材料相同,且,所述第二锂电池复合包装材料与所述第一锂电池复合包装材料相对应地设置,以界定出一容置空间,其中:所述容置空间与所述内热熔接层接触;以及
所述电解液容置于所述容置空间中,且,其含有:一混合溶剂,包含:碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、与碳酸二乙酯(DEC);以及1Mol的LiPF6(六氟磷酸锂),其中,经过热封后,所述内层黏合层与所述内热熔接层之残存率为50%以上,且,所述电解液于85℃之温度条件下放置24小时后,再于温度条件为23±5℃、以及湿度条件为50±5%Rh之环境下加压250v时,所述金属层和所述电解液间的电阻率为200MΩ以上。
附图说明
图1A和1B为本公开一些实施方式的锂电池复合包装材料的结构示意图;
图2A和2B为本公开一些实施方式的锂电池复合包装材料的结构示意图;
图3至7为本公开一些实施方式的锂电池复合包装材料的结构示意图;
附图标记:1-金属层,2-溶液型内层黏合层,3-内热熔接层,31-a层,32-b层,33-c层,4-第一防腐蚀层,5-第二防腐蚀层,6-外基材层,7-外层黏合层。
具体实施方式
本公开提供一种锂电池复合包装材料,其中,调配所述锂电池复合包装材料之内热熔接层的原料,以控制其熔点;以及于230℃下之MFR,使锂电池于封装过程中,将电解液注入所述锂电池复合包装材料之内部时,所述锂电池复合包装材料具有稳定之结构强度、绝缘性能、与热封性能,而使所制成之锂电池具有较高之安全系数,可于更苛刻的环境条件下使用。
为让本公开上述及/或其他目的、功效、特征更明显易懂,下文特举可选或典型的实施方式,作详细说明于下:
请参阅图1A至1B,其用以表示本公开实施方式之结构图,其中,如图1A所示,本公开为一种锂电池复合包装材料,包含:一金属层1;一内层黏合层2,形成于所述金属层1之一侧;以及一内热熔接层3,形成于所述内层黏合层2相对于所述金属层1之一侧,其中,所述内热熔接层3是与锂电池中之电解液直接接触,且,所述内层黏合层2与所述内热熔接层3之厚度总和≥25μm,且,于温度条件为23±5℃、以及湿度条件为50±5%Rh之环境下加压250v时,所述内热熔接层3之电阻值≥2.5GΩ/μm。
1.金属层1之相关实施方式。
在一典型实施方式中,所述金属层1之作用包含:提供一阻隔效果,以防止水份浸入锂电池之内部;材料包含:铝合金、不锈钢、钛钢、与镀镍处理的铁板中的至少一种;结构包含:单层之金属箔、或多层之金属箔两两相互堆栈所构成。于一典型实施方式中,金属箔是选自以下所组成之群组:铝合金箔、镀镍铁板、不锈钢箔、或以上之结合。其中可以理解地,为了提升所述锂电池复合包装材料的成形性,所使用之铝合金箔为经过退火处理后之铝合金所制成的软质铝合金箔,且,可视需求于铝合金箔之原料中添加铁金属,以更进一步提升铝合金箔之成形性;以及为了耐电解液之侵蚀、或避免被电解液所分解,于铝合金箔之原料中可添加二氧化硅、或镁金属,且不以此为限。于另一典型实施方式中,所述之不锈钢箔的种类包含:奥氏体系;铁素体系;奥氏体-铁素体双相;马氏体系;或析出硬化型的不锈钢箔,且不以此为限。其中,为了提升所述锂电池复合包装材料的成形性,选用奥氏体系的不锈钢来制成不锈钢箔,其中所使用之不锈钢种类包含:SUS304、SUS301、或SUS316L,且,可选地为SUS304。于又一典型实施方式中,当所述金属层1是由一层、或多层之金属箔所构成时,所述金属层1之厚度应至少能满足防止水份侵入的最低要求,典型地,所述金属层1之厚度为9至200μm,诸如10至150μm、15至100μm、20至80μm或25至50μm,且不以此为限。于又一典型实施方式中,所述金属层1的厚度不超过100μm,更典型地,不超过50μm,且不以此为限。
在一典型实施方式中,由于在所述金属层1之成分中添加合金成分时,会导致所述金属层1之表面析出合金成分;或于轧制工序后进行的退火步骤中,影响轧制油的挥发性。因此,于合金成分的调整中,需对表面清洁度进行管理。其中,表面清洁度之管理方法包含:以润湿试剂测试润湿性为指标,其中可采用“中华人民共和国国家标准GB/T225638.5-2016,铝箔测试方法,第5部分:润湿性的检测”中所提及之方法;或以接触角为指标,其中可采用“中华人民共和国国家标准GB/T22638.9-2008,铝箔测试方法第9部分:亲水性测量”中所提及之方法。
在一典型实施方式中,以润湿试剂测试润湿性为指标时,所获得之评级应大于或等于D级,典型地为大于等于B级;以接触角作为指标时,其中:以纯水进行测试时之接触角的角度为小于25,典型地为小于20,更典型地为小于15。在一些实施方式中,当润湿性之评级低于D级;或者接触角超过25时,会导致所述金属层1与所述防腐层间的反应性、或初期的密合性恶化。其中可以理解地,当反应性恶化时,所述防腐层和所述金属层1间的反应不充分,因此对作为电池电解液的渗透耐性;以及对电解质和水相互反应所产生的氟化氢的耐性会下降,导致防腐层对金属层1的附着力随着时间推移而降低;防腐层发生溶解;或金属层1和防腐层间产生剥离,而导致电池的使用寿命减少。此外可以理解地,当所述防腐层和所述金属层1的初期密合性恶化时,将发生同样的状况。
综上所述,为避免产生以上所提及之风险,本公开通过调整合金成分;以及合金的比率在一定范围内,来抑制合金从金属层1中析出;或在轧制时的退火步骤中,使温度和时间条件的管理变得容易。
2.内层黏合层2之相关实施方式。
为了使所述金属层1与所述内热熔接层3间黏接紧密,可于两者之间形成所述内层黏合层2。其中,所述内热熔接层3包含:聚烯烃、环状聚烯烃、羧酸改性聚烯烃、羧酸改性环状聚烯烃、甲基丙烯酸改性聚烯烃、丙烯酸改性聚 烯烃、巴豆酸改性聚烯烃、或酰亚胺改性聚烯烃,且不以此为限。为了提升所述金属层1与所述内热熔接层3之间的黏结性,其中,改性聚烯烃可选地为丙烯酸、甲基丙烯酸、马来酸、无水马来酸酐、或聚酰胺。于一典型实施方式中,所述内层黏合层2的树脂成分中可包含、或不包含有聚烯烃主链,其中,可选地含有聚烯烃主链。为了测试构成所述内层黏合层2的树脂是否包含聚烯烃主链,可使用红外分光法、或气相色谱-质谱法进行分析,但分析方法不以此为限。
在一典型实施方式中,所述内层黏合层2、与所述内热熔接层3之成分中所包含的聚烯烃及其改性树脂为相同,其中,可选地为聚丙烯树脂、或丙烯和乙烯共聚物。于一典型实施方式中,为了使所述锂电池复合包装材料于长期使用时仍能保持其稳定性,所述内层黏合层2包含:酸改性聚烯烃、与固化剂的树脂。其中,酸改性聚烯烃可选地为马来酸酐、或丙烯酸改性的聚烯烃;固化剂之目的是为了使酸改性聚烯烃固化,可使用环氧系固化剂、多官能异氰酸酯系固化剂、碳二亚胺系固化剂、或恶唑啉系固化剂,但不以此为限。其中,所使用之环氧系固化剂为具有至少1个环氧基的化合物,但不以此为限;所使用之多官能异氰酸酯系固化剂为分子内具有2个以上异氰酸酯基的化合物,但不以此为限;所使用之碳化二亚胺系固化剂为分子内具有至少1个碳化二亚胺基(-N=C=N-)的化合物,但不以此为限,其中,可选地为具有至少2个以上碳化二亚胺基的聚碳化二亚胺化合物;所使用之恶唑啉系固化剂为具有恶唑啉骨架的化合物,但不以此为限。在一些实施方式中,环氧系固化剂包含:双酚A二缩水甘油醚、改性双酚A二缩水甘油醚、酚醛清漆缩水甘油醚、甘油聚缩水甘油醚、或聚甘油聚缩水甘油醚;或多官能异氰酸酯系固化剂包含:异佛尔酮二异氰酸酯(PDI)、六亚甲基二异氰酸酯(HDI)、甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、或以上物质的聚合或加成后的成分或此类混合物与其他聚合物的反应物。于另一典型实施方式中,为提高所述内层黏合层2与所述内热熔接层3之间的黏结性,所使用之固化剂成分包含1种以上的化合物。
在一典型实施方式中,所述内层黏合层2之功能在于作为黏接层之作用,将其相对应之两侧的物质紧密固着,且,所述内层黏合层2之厚度可选地为1至80μm,诸如5至70μm、10至60μm、15至50μm或20至45μm,在又一典型实施方式中,内层黏合层2之厚度为1至50μm,但不以此为限。于一典型实施方式中,所述内层黏合层2之主要成分包含:改性聚烯烃树脂、聚烯烃树脂、聚丙烯(PP)含量超过50%的嵌段共聚聚丙烯树脂(B-PP)、无规共聚聚丙烯树脂(R-PP)、均聚聚丙烯树脂(H-PP)、或以上成分所制成之混合物所形成的单层或两层以上的膜层。于另一典型实施方式中,当利用所述内层黏合层2将所述金属层1、与所述内热熔接层3进行复合时,其复合方法包含:使用溶液型之内层黏合层2的方法;或使用热熔型之内层黏合层2的方法,但不以此为限。其中,所述内层黏合层2为溶液型,且,其原料包含:一主剤,包含:酸改性聚烯烃树脂;以及一硬化剂,包含:异氰酸酯、环氧树脂、恶唑啉系树脂、三乙胺、N,N-二甲基乙醇胺、或以上成分之结合。在一些实施方式中,所述溶液型之内层黏合层2之形成方法包含:一溶解步骤,将主剂、与硬化剂加入一溶剂中溶解,以形成一混合液,其中所述溶剂包含:水、乙醇、异丙醇、乙酸乙酯、甲基乙基酮、甲苯、甲基环己烷、或以上之结合;一涂布步骤,将所述混合液均匀涂布到已形成有防腐蚀层之所述金属层1的表面;以及一加热步骤,加热涂布于所述金属层1表面之所述混合液,使所述混合液中之溶剂挥发,以形成所述内层黏合层2。其中,所述内层黏合层2的厚度可选地为1至10μm,诸如2至8μm、2至7μm或3至6μm。在一些典型实施方式或只能怪,内层黏合层2的厚度可选地为1至5μm,但不以此为限。其中,内层黏合层2于厚度不足1μm的情况下,由于厚度过薄,会导致所述金属层1与所述内热熔接层3之间的黏结力降低,而无法紧密黏接;于厚度超过10μm的情况下,虽然可以保持黏结性,但是在固化剂反应的作用下,会使所述内层黏合层2过于坚硬、以及耐弯曲性变差,而造成所述锂电池复合包装材料的灵活性下降,且,于弯折之状态发生时,可能导致裂缝产生,而使所述金属层1、与所述内热熔接层3间产生剥离。
在一典型实施方式中,于溶液型之内层黏合层2中,所使用之酸改性聚烯烃树脂的熔点为60至155℃,诸如70至140℃、80至120℃或90至110℃;重均分子量为10000至150000,诸如11000至140000、12000至135000或12500至130000;或酸值为0.5至200mgKOH/g,诸如5至180mgKOH/g、50至150mgKOH/g或100至120mgKOH/g。于一典型实施方式中,溶液型之内层黏合层2可不添加固化剂,其中,在无固化剂的条件下,溶液型之内层黏合层2之成分包含:酸改性聚烯烃、以及胺化合物,以作为硬化剂之用途。其中,酸改性聚烯烃、与胺化合物的重量比例为10至125:1,诸如15至110:1、20至90:1或25至50:1,可选地为15至50:1。于另一典型实施方式中,于酸改性聚烯烃中,使用之酸包含:马来酸、富马酸、或甲基丙烯酸;以及胺化合物为三乙胺、N,N-2甲基乙醇胺、或上述之结合。于又一典型实施方式中,酸改性的聚烯烃为熔点于110℃以上的聚丙烯,且,聚丙烯的含量为50wt%以上。其中,若熔点在60℃以下,会导致耐热性较低,使所述金属层1和所述内热熔接层3于高温下产生剥离;若熔点超过155℃,虽然耐热性较好,但和固化剂进行反应时,会形成坚硬的树脂层,而导致弯曲性不好、以及所述锂电池复合包装材料之灵活性下降,而容易于弯折时产生裂痕,导致所述金属层1和所述内热熔接层3间产生剥离。于又一典型实施方式中,于酸改性聚烯烃树脂之重均分子量为10000以下时,于加热步骤中,虽然其流动性高,但在热封时会造成厚度严重变薄,而导致所述金属层1与所述内热熔接层3之黏着强度降低,存在密封性之问题,且,即使加入固化剂依然会有此种状况发生;于酸改性聚烯烃树脂之重均分子量超过150000之状态下,会导致树脂层过于坚硬,而降低所述锂电池复合包装材料的灵活性、与耐弯曲性,使其于弯折时容易产生裂痕,或导致所述金属层1和所述内热熔接层3间产生剥离;于酸改性聚烯烃树脂的酸值小于0.5mgKOH/g时,会导致其与固化剂的固化反应点少,而造成所述金属层1与所述内热熔接层3的黏结性不稳定;或于酸值超过200mgKOH/g时,会导致其固化剂的固化反应过于剧烈,造成树脂层过于坚硬,而降低所述锂电池复合包装材料的灵活性、与耐弯曲性,使其于弯折时容易产生裂痕,或导致所述金属层1和所述内热熔接层3间产生剥离。
在一典型实施方式中,所述内层黏合层2为热熔融型,且,于所述内层黏合层2中所使用的酸改性聚烯烃树脂之熔点为135至165℃,诸如140至160℃、145至155℃或150至155℃;以及于230℃之温度条件下,熔融指数(MFR)为3至15g/10min,诸如5至15g/10min、5至12g/10min或8至10g/10min。于一典型实施方式中,热熔融型之内层黏合层2的厚度为2至80μm,诸如10至80μm、15至70μm或30至50μm,且,可选地为5至50μm;以及所述热熔融型之内层黏合层2中所使用的酸改性聚烯烃树脂的改性度为1%至15%,诸如2%至12%、3%至11%或4%至10%,且,可选地为3%至12%。其中,当酸改性聚烯烃树脂之熔点在135℃以下时,于加热步骤中,加热会造成树脂之流动性变高,以及于加压热封时,造成厚度严重变薄之问题,使所述金属层1与所述内热熔接层3的附着强度降低,使密 封性不稳定;以及当熔点在165℃以上时,虽然于加压热封时流动性相对较低,耐热性提高,但与所述金属层1复合时,会造成热收缩量增多,使得内部应力增加,而导致热熔融型内层黏合层2与所述金属层1的附着能力下降,且,于长期之保存状态下,有可能会与所述金属层1产生剥离,且,由于热封时的加热会进一步发生热收缩,使其与所述金属层1间的黏附力下降,而造成密封强度变低之困扰。
在一典型实施方式中,如果酸改性聚烯烃树脂于230℃之温度条件下,熔融指数(MFR)低于3g/10min时,在其热熔融过后,挤出到所述金属层1上进行复合时,会导致挤出之成膜性容易出现不稳定之状况;以及熔融指数(MFR)在高于15g/10min时,在其加热步骤中会造成树脂流动性变高,而于加压热封时,导致厚度严重变薄,使所述金属层1与所述内热熔接层3间的附着强度降低,而存在密封性之问题。于一典型实施方式中,当热熔融型之内层黏合层2的厚度不足2μm时,在其与所述金属层1复合时,会由于热收缩量过多,而导致不能吸收热收缩,且,由于内部应力的增加,会导致其与所述金属层1的黏合力降低,甚至于长期保存之过程中产生与所述金属层1剥离的状况;以及当热熔融型之内层黏合层2的厚度超过80μm时,虽然不会产生物性问题,但会导致生产价格上涨,不符合量产制造之实际效益。于另一典型实施方式中,当热熔融型之内层黏合层2的改性度小于1%时,会造成其与所述金属层1的黏接性不稳定;以及超过15%时,虽然没有物性之问题,但会导致生产价格上涨,不符合量产制造之实际效益。
3.内热熔接层3之相关实施方式。
所述内热熔接层3是设置于所述锂电池复合包装材料之最内层,其主要之功能为:在组装电池时,发挥其热熔接性,以密封电池组件。其中可以理解地,所述内热熔接层3是作为热封层之用途。其中,内热熔接层3所包含之树酯以可进行热熔接为原则,包含:聚烯烃、酸改性聚烯烃、或含有聚烯烃主链的树脂,但不以此为限。在一些实施方式中,聚烯烃包含:低密度聚乙烯;中密度聚乙烯;高密度聚乙烯;线状低密度聚乙烯;乙烯-α-烯烃共聚物;均聚丙烯;聚丙烯嵌段共聚物,包含:丙烯与乙烯的嵌段共聚物;聚丙烯的无规共聚物,包含:丙烯与乙烯的无规共聚物;丙烯-α-烯烃共聚物;或乙烯-丁烯-丙烯的三元共聚物。其中可以理解地,作为共聚物时,聚烯烃树脂可为嵌段共聚物;或无规共聚物,且,所使用之聚烯烃系树脂可为以上所列举之1种、或1种以上。于一典型实施方式中,其中所述内热熔接层3所包含之树酯可选地为聚丙烯。
在一典型实施方式中,所使用之酸改性聚烯烃是通过一酸成分与一聚烯烃嵌段聚合、或接枝聚合而改性的聚合物。其中,酸改性聚烯烃是使用:一极性分子,包含:聚丙烯酸或甲基丙烯酸;以及一聚烯烃所共聚而成的共聚物。于一典型实施方式中,所使用之酸成分包含:马来酸、丙烯酸、衣康酸、巴豆酸、马来酸酐、衣康酸酐、上述成分之酸酐、或以上成分之结合,其中,可选地为使用丙烯酸、马来酸、以上成分之酸酐、或以上成分之结合。于另一典型实施方式中,所述内热熔接层3可为单层结构、或多层结构;并且其成分可包含1种、或1种以上之树脂,其中,当其结构为多层时,每一层之树脂材料可为相同、或不同。其中,如图1B所示,所述内热熔接层3为三层结构,依序包含一a层31、一b层32、与一c层33,其中,所述a层31相对于所述b层32之一侧与所述内层黏合层2接触,且,所述a层31之厚度:所述b层32之厚度:所述c层33之厚度为1至2:2至8:1至3,即(1至2):(2至8):(1至3),诸如(1至2):(3至7):(1至2)、(1.5至3):(4至6):(1.5至2)或(1至1.5):(5至6):(1.5至2)。
在一典型实施方式中,为了提升所述锂电池复合包装材料之成形性,可于所述内热熔接层3中添加一爽滑剂。其中,爽滑剂可以使用目前公开资料中所揭露之产品,无特别之限制,且,可使用1种、或1种以上之爽滑剂。于一典型实施方式中,可选地为使用酰胺系爽滑剂,且可选地使用于所述内热熔接层3的表面。其中,当所述内热熔接层3的表面形成、或涂布有爽滑剂之情况下,所使用之爽滑剂的含量无特别限制,其中,为了提升所述锂电池复合包装材料之成型性,其含量可选地为10至50mg/m 2,诸如15至45mg/m 2、20至40mg/m 2或25至35mg/m 2;在又一典型实施方式中,爽滑剂的含量为15至40mg/m 2。其中可以理解地,爽滑剂之形成方式包含:从所述内热熔接层3之树脂中渗出到其表面;或于内热熔接层3的表面涂布爽滑剂。于另一典型实施方式中,所述内热熔接层3在满足其本身于热熔接后可达成密封电池组件之功能即可,对于其厚度并无特别之限制,其中,所述内热熔接层3之厚度为100μm以下,诸如10至100μm、20至80μm或30至60μm;在又一典型实施方式中,内热熔接层3之厚度为25至80μm,但不以此为限。
在一典型实施方式中,所述内热熔接层3之成分可依需求添加一抗氧化剂,以抑制其于制造过程中产生热劣化之风险。其中,抗氧化剂可以使用目前公开资料中所揭露之产品,无特别之限制,且,可使用1种、或1种以上之抗氧化剂。于一典型实施方式中,所述内内热熔接层3之成分包含:酸改性聚烯烃树脂、均聚聚丙烯树脂、嵌段共聚聚丙烯树脂、无规共聚聚丙烯树脂、聚乙烯树脂、上述之结合、或上述之结合所产生之混合物的单层、或复合层。于另一典型实施方式中,所述内热熔接层3所用之树脂的熔点为120至162℃,诸如125至160℃、130至150℃或135至140℃,可选地为130至162℃;于230℃之温度条件下的MFR为2至15g/10min,诸如4至12g/10min、5至10g/10min或7至9g/10min,可选地为3至12g/10min;以及所述内热熔接层3可为单层、或多层,且,其厚度为20至120μm,诸如30至110μm、40至100μm或50至80μm,可选地为25至80μm。于又一典型实施方式中,当所述内内热熔接层3为复合层之情况下,其与所述金属层1相接触之另一面的树脂之厚度为2μm以上;以及熔点为130至152℃。其中,当熔点为120℃以下时,于加热步骤中,其流动性会增高;于加压热封时,其厚度会变薄,导致其与所述金属层1之附着力下降,且,当加压时,会使锂电池内部之被挤压部分的树脂流向没有被挤压的边缘部分,且,由于锂电池于膨胀、收缩、或弯曲加工时,外力可能引起裂缝,并且电解液通过裂缝会渗透到所述之金属层1处,造成所述内热熔接层3的绝缘电阻下降、发生漏电现象、或电池寿命会缩短。
在一典型实施方式中,当所述内热熔接层3所用之树脂之熔点超过162℃时,其结晶性会提高,导致其于加压热封时之流动性变低,虽然可提高耐热性,但于高结晶性树脂热封时,会形成硬而脆的树脂层。在一些实施方式中,在锂电池的膨胀收缩、或弯曲加工等外力因素之作用状态下,会导致内热熔接层3容易产生龟裂,而无法长期稳定的维持密封性。于一典型实施方式中,于230℃之温度条件下,当树脂的MFR低于2g/10min时,会造成加压热封时,树脂的流动性较低,因此很难得到稳定的密封性;当树脂的MFR超过15g/10min时,会造成加压热封时,树脂流动性过高,而导致树脂厚度严重变薄,因此也难以稳定维持密封性。于另一典型实施方式中,当进行加压时,会使锂电池内部之被挤压部分的树脂流向没有被挤压的边缘部分,其中,在锂电池的膨胀收缩、或弯曲加工等外力因素之作用状 态下,容易导致所述内热熔接层3裂缝,而使电解液通过裂缝渗透至与所述金属层1接触,造成内热熔接层3的绝缘电阻下降,而发生漏电现象,导致电池之寿命缩短。
在一典型实施方式中,当所述内热熔接层3的厚度不足20μm时,其厚度无法充分覆盖电池组件、或热密封装置之机械加工尺寸存在之偏差、或条件的偏差,因此无法得到均匀之热熔接部分,而无法有效维持稳定、长久之密封性。于一典型实施方式中,于加压时,会使锂电池内部之被挤压部分的树脂流向没有被挤压的边缘部分,使内热熔接层3的厚度变薄,且,在锂电池的膨胀收缩、或弯曲加工等外力因素之作用状态下,容易导致所述内热熔接层3裂缝,而使电解液通过裂缝渗透至与所述金属层1接触,造成内热熔接层3的绝缘电阻下降,而发生漏电现象,导致电池之寿命缩短。于另一典型实施方式中,当内热熔接层3之厚度超过120μm时,由于水蒸气之穿透量会增加,使电池内部之水分增多,其中,当水与电池中之电解液反应时会产生气体,而使电池易发生膨胀、破裂、或漏液等危险,使电池寿命降低。于又一典型实施方式中,当水与电解液反应时会产生氟化氢,且,过量氟化氢会腐蚀经过防腐蚀处理的金属层1,而导致所述金属层1与内热熔接层3之间的附着强度降低,而产生电解液漏液之风险。
请参阅图2A至2B,其用以表示本公开实施方式之结构图,其中,如图2A所示,其中更包含:一第一防腐蚀层4,形成于所述金属层1与所述内层黏合层2之间。于一典型实施方式中,其中:所述第一防腐蚀层4之形成方法包含:将一防腐蚀液涂布于所述金属层1与所述内层黏合层2接触之一侧,其中,所述防腐蚀液包含硝酸铬、磷酸、硝酸、聚丙烯酸(PAA)、与水,且,各成分间之重量比例依序为58:4:0.7:5:3。于另一典型实施方式中,如图2B所示,其中更包含:一第二防腐蚀层5,其中,所述第二防腐蚀层5形成于所述金属层1相对于所述所述第一防腐蚀层4之一侧,且,所述第二防腐蚀层5与所述第一防腐蚀层4之原料相同。
4.防腐蚀层之相关实施方式。
为了防止锂电池中的电解质与水分反应产生的氟化氢腐蚀所述金属层1之表面,可于金属层1之一侧、或相对应之两侧设置一防腐蚀层。其中,设置所述防腐蚀层之目的包含:保持所述金属层1表面的均一性;以及降低黏接性(润湿性)之变化,而可防止所述金属层1、与所述内热熔接层3间产生分离、或产生分层。
在一典型实施方式中,至少于所述金属层1相对于所述外基材层6之一侧涂布防腐蚀液,以形成一防腐蚀层,可选地于所述金属层1的两侧皆形成有一防腐蚀层,以更加完善、或稳定的保持所述金属层1表面的均一性。其中,在所述金属层1与所述外基材层6接触之一侧形成有防腐蚀层时,可使所述金属层1表面的均一性维持稳定;降低黏结性(润湿性)的变化;便于在高温、或高湿之环境条件中长期保存;或防止所述外基材层6、与所述金属层1间产生分层。于一典型实施方式中,所述防腐蚀层是将一防腐蚀液涂布于金属层1之表面所形成之层状结构。其中,所使用之防腐蚀液包含:磷酸盐、硝酸盐、铬酸盐、氟化物、或稀土氧化物,且不以此为限。于另一典型实施方式中,磷酸盐、或铬酸盐的化成处理主要包含:铬酸铬处理、磷酸铬处理、磷酸-铬酸盐处理、或铬酸盐处理,且不以此为限。于另一典型实施方式中,所用于进行化成处理的铬化合物包含:硝酸铬、氟化铬、硫酸铬、乙酸铬、草酸铬、重磷酸铬、氯元素化铬、或硫酸铬,且不以此为限。在一些实施方式中,铬酸盐化成处理之方式主要包含:蚀刻铬酸盐处理、电解铬酸盐处理、或涂布型铬酸盐处理,可选地为涂布型铬酸盐处理。其中,于进行涂布型铬酸盐处理之过程中,在脱脂处理之步骤上,是将磷酸金属盐做为主要成分的处理液,其中磷酸金属盐包含:磷酸铬盐、磷酸钛盐、磷酸锆盐、磷酸锌盐、或以上结合所制成的混合物;将磷酸非金属盐、以及磷酸非金属盐的混合物作为主要成分的处理液;或与合成树脂混合后作为处理液,且,通过辊涂法、凹版印刷法、或浸渍法进行涂布后,再进行干燥处理。于另一典型实施方式中,所使用之处理液包含:水、醇系溶剂、烃系溶剂、酮系溶剂、酯类化合物系溶剂、或醚系溶剂,可选地为水。于另一典型实施方式中,处理液中所使用的树脂成分包含:氨基化苯酚、或聚亚克力酸系树脂等水溶性聚合物。
在一典型实施方式中,防腐蚀层是将在磷酸中分散的氧化铝、氧化钛、氧化铈、或氧化锡;以及硫酸钡的微粒物质涂布于所述金属层1的表面后,再于150℃之温度条件下进行烧结处理而制成。于一典型实施方式中,通过涂布型防腐蚀处理所得到的薄膜,其成分包含:稀土元素的氧化物溶胶、阴离子性聚合物、阳离子性聚合物、或以上之结合。其中,在稀土类元素氧化物溶胶中,于液体分散媒中分散有稀土类元素氧化物的微粒,其中,在此所述之微粒是指平均粒径小于或等于100nm的粒子,且不以此为限。其中,所述稀土元素氧化物包含:氧化铈、氧化钇、氧化钕、或氧化镧,且不以此为限。于另一典型实施方式中,为了提高密着性,稀土元素氧化物可选地为氧化铈。其中可以理解地,所述防腐蚀层中可包含1种、或1种以上的稀土元素氧化物。
在一典型实施方式中,稀土元素氧化物溶胶包含一液体分散媒,包含:水、醇系溶剂、烃系溶剂、酮系溶剂、酯类化合物系溶剂、或醚系溶剂,其中,可选地为水。于一典型实施方式中,阳离子性聚合物包含:聚乙烯管亚胺;由具有聚乙烯管亚胺、和羧酸的聚合物所形成的络离子高分子络合物;在亚克力主链上接枝共聚合伯胺的伯胺格拉夫·托亚克力树脂;聚乙酸、或聚乙酸之衍生物;或氨基化苯酚,且不以此为限。其中,阴离子性聚合物可选地为聚甲基丙烯酸、或其盐;或甲基丙烯酸、或其盐为主要成分的共多聚体。于另一典型实施方式中,防腐蚀层之原料包含一交联剂,以使聚合物之间交联。其中,交联剂可选地为包含:异氰酸酯化学基、缩水甘油基化学基、羧基化学基、或恶唑啉化学基的化合物、或硅烷偶合剂。
在一典型实施方式中,所述防腐蚀液包含三价铬化合物、无机酸、氟化物、有机树脂、以及水。其中,将防腐蚀液涂布于所述金属层1上,以形成一防腐蚀层时,所涂布之防腐蚀液中,三价铬化合物、无机酸、氟化物、与有机树脂的重量比例为(19至60):(3至60):(0至10):(6至60),诸如(20至50):(5至50):(1至10):(10至60)、(25至55):(10至45):(2至8):(15至50)或(30至40):(20至35):(4至6):(20至40),其中,三价铬化合物与有机树脂的重量比例可选地为(3至100):10。于一典型实施方式中,三价铬化合物包含:硝酸铬、磷酸铬、氟化铬、氯化铬、或以上之结合;无机酸包含:硝酸、磷酸、或以上之结合;氟化物包含氟化铬;或有机树脂包含聚丙烯酸系树脂、或聚乙烯醇。其中,聚丙烯酸系树脂包含:聚丙烯酸、聚丙烯酸甲酯、丙烯酸、或马来酸之共聚物;或丙烯酸、或苯乙烯的共聚物及其钠盐、或铵盐之衍生物。于另一典型实施方式中,聚丙烯酸系树脂的重均分子量为10000至800000,且不以此为限。
在一典型实施方式中,所述防腐蚀液包含:三价铬化合物、无机酸、有机树脂、有机溶剂、与钛酸盐。其中,三价铬化合物、无机酸、有机树脂、钛酸盐的重量比例为(25至38):(1至8):(10至12):(0至5),且不以此为限, 其中,三价铬化合物与有机树脂的比例可选地为(2至4):1。于一典型实施方式中,所使用之防腐蚀液中的三价铬化合物包含:硝酸铬、氟化铬、氯化铬、磷酸铬、或以上之结合;无机酸包含:硝酸、氢氟酸、或以上之结合;以及有机树脂包含:聚乙烯醇。
在一典型实施方式中,所述防腐蚀液包含氨基化酚多聚体;以及三价铬化合物、与三价铬磷化合物之树脂。其中,所述金属层1是铝合金箔层,且,涂布于铝合金箔层上之防腐液中,是于每平方米(m 2)之树脂膜层的氨基化酚多聚体上涂布三价铬化合物、与三价铬磷化合物1至200mg,且不以此为限,其中,可选地为控制在三价铬化合物以铬换算为0.5至50mg,诸如1至45mg、5至40mg、10至35mg或20至20mg;或磷化合物以磷换算为0.5至50mg,诸如1至45mg、5至40mg、10至35mg或20至20mg的范围内。
在一典型实施方式中,第一防腐蚀层4包含:阳离子系、或阴离子系聚合物;或第二防腐蚀层5包含:氧化铈、磷酸、或磷酸盐。其中,于第二防腐蚀层5中,氧化铈与磷酸、或磷酸盐之重量比例为100:1至100,且不以此为限。
在一典型实施方式中,所述防腐蚀液包含一氟化物,其中所述氟化物包含:氢氟酸、氟化铬、氟化镁、氟化铁元素、氟化钴、氟化镍、氟化铵、氟化钛及其络合物、氟化锆盐或其络合物、氟化镁、或氟化氢铵,且不以此为限,其中,可选地为氟化铬。于一典型实施方式中,钛酸盐包含:硫酸亚钛、氧硫酸钛、硫酸钛铵、硝酸钛、硝酸钛铵、硫酸钛、氟钛酸及其络合物、乙酰乙酸乙酯、三甲基乙醇、三聚氰胺、正丁基对苯二酚、或以上之结合。于另一典型实施方式中,聚丙烯酸系树脂包含:聚丙烯酸、丙烯酸甲基丙烯酸酯共聚物、亚克力酸马来酸共多聚体、乙酸苯乙烯共聚物或其钠盐、铵盐、或胺盐之衍生物、或其结,其中,可选地为聚丙烯酸的铵盐、钠盐或胺盐之衍生物。
在一典型实施方式中,聚丙烯酸系树脂包含:丙烯酸与二羧酸、或二羧酸无水物的共多聚体,其中,可选地为丙烯酸和羧酸、或二硫酸酐的共聚物的铵盐、钠盐或胺盐。其中可以理解地,聚丙烯酸类树脂可包含以上所列举之1种、或1种以上。于一典型实施方式中,聚丙烯类树脂的重均分子量为1000至100万,诸如3000至90万、5000至80万、1万至70万或5万至60万,其中,可选地为3000至80万。其中可以理解地,当分子量越大时,防腐蚀层之防腐蚀性越高,但聚丙烯酸类树脂之水溶性低,因此用于调配防腐蚀液时缺乏稳定性。于另一典型实施方式中,当分子量越小时,防腐蚀层之防腐蚀性越低。在一些实施方式中,当聚丙烯酸类树脂的重均分子量在1000以上时,耐久性高;以及在100万以下时,拥有良好的稳定性,有利于进行制造。
在一典型实施方式中,所述防腐蚀层之形成步骤包含:一脱脂步骤,利用碱浸渍法、电解洗净法、酸洗净法、电解酸洗净法、氧活化法、或压延时的热处理法(退火处理),对所述金属层1的之至少一侧进行脱脂处理。于一典型实施方式中,所述防腐蚀层之形成步骤更包含:一形成步骤,于脱脂步骤完成后,使用防腐蚀液,以棒涂法、辊涂法、凹版涂布法、或浸渍法进行涂布,并于涂布完成后以高温化合反应作用于所述金属层1之表面。其中,已涂布防腐蚀液的金属层1在130至200℃的高温下进行热处理,持续时间0.5至5min后可形成所述防腐蚀层。于另一典型实施方式中,为考虑所述金属层1与其两侧接触之复合材料的密合性,所述防腐蚀层之厚度可选地为1nm至3.0μm,其中,可选地为1nm至1.5μm,且不以此为限。于又一典型实施方式中,防腐蚀层之铬含量为每平方米(㎡)面积含有8mg,其中,可选地为每平方米(㎡)面积含有10至30mg,且不以此为限。
请参阅图3,其用以表示本公开之第三实施方式之结构图,其中,如图3所示,其中更包含:一外基材层6,设置于所述金属层1相对于所述内层黏合层2之一侧。
5.外基材层6之相关实施方式。
在一典型实施方式中,所述外基材层6是设置于所述锂电池复合包装材料的最外侧,其作用包含:发挥所述锂电池复合包装材料的基材机能,因此可以理解地,所述外基材层6之原材料应至少具备绝缘性。于一典型实施方式中,外基材层6之制作方法包含:由树脂直接形成树脂膜品;或涂布树脂品,且不以此为限。其中,树脂膜包含:未延伸膜;或延伸膜,其中延伸膜包含一轴延伸膜、或二轴延伸膜,且不以此为限。于又一典型实施方式中,所述延伸模可选地为二轴延伸模,且,其制作方法包含:逐步二轴延伸法,吹膜法,或同步拉伸法,且不以此为限。所述涂布树脂品之制备方法包含:辊涂布法,微凹涂布法,或挤出涂布法,且不以此为限。
在一典型实施方式中,所述外基材层6之原料包含:聚酯、聚酰胺、聚烯烃、环氧树脂、丙烯酸树脂、氟树脂、聚氨酯、硅树脂、酚醛树脂、以上所列举之树脂的改性物、以上所列举之树脂的共聚物、以上所列举之树脂之共聚物的改性物、以上所列举之树脂的混合物、或其结合。于一典型实施方式中,所述外基材层6之原料可选地为聚酯、或聚酰胺。其中,所述聚酯包含:聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚间苯二甲酸乙二醇酯、或共聚聚酯,且不以此为限。在一些实施方式中,所述共聚聚酯是将对苯二甲酸乙二醇酯为重复单元的主体进行聚合;将对苯二甲酸乙二醇酯作为重复单元的主体与间苯二甲酸乙二醇酯进行聚合;将对苯二甲酸酯与间苯二甲酸酯进行聚合;将对苯二甲酸酯与己二酸酯进行聚合;将对苯二甲酸酯与间苯二甲酸钠进行聚合;将对苯二甲酸酯与苯基-二羧酸酯进行聚合;或将对苯二甲酸酯与癸烷二羧酸酯进行聚合而形成的共聚物聚酯。于一典型实施方式中,所述聚酯可单独使用一种;或将两种以上的聚酯组合使用。
在一典型实施方式中,所述聚酰胺包含:尼龙6、尼龙66、尼龙610、尼龙12、尼龙46、尼龙6、或尼龙66共聚物。于一典型实施方式中,所述聚酰胺包含对苯二甲酸(t)或间苯二甲酸(I)之结构单元,在一些实施方式中为:尼龙6I、尼龙6T、尼龙6IT、或尼龙6I6T。于另一典型实施方式中,所述聚酰胺之聚合原料包含:六亚甲基二胺、间苯二甲酸、对苯二甲酸、或上述之结合,且不以此为限。于又一典型实施方式中,所述聚酰胺是包含:PA4T、PA6T、PA9T、PA10T、PA11T、PA12T、PA6I、PA9I、PA10I、PA12I、PA46、PA6、PA66、PA69、PA10、PA11、PA12、PA610、PA612、PA1010、PA1112、PA1011、PA1012、PA1212、PA MXD6、PA MXD9、PA MXD10、PA MXD12、PA PACM6、PA PACM9、PA PACM10、PA PACM12、PA6N、PA12N、PA10N、PA9N、或上述之结合。于又一典型实施方式中,所述聚酰胺为PA6T/61、PA6T/66、PA6T/610、PA6T/612、PA6T/12、PA6T/11、PA6T/6、PA6T/10T、PA6T/101、PA6T/106、PA6T/1010、PA6T/66/106、PA6T/MACM10、PA6T/MACM12、PA6T/MACM18、PA6T/MACM1、PA MACMT/61、PA6T/PACM6、PA6T/PACM10、PA6T/PACM12、PA6T/PACM18、PA6T/PACM1、PACMT/61、PA MPT/MP1、PA MPT/MP6、PA6T/MP1、PA6T/9T、PA6T/12T、PA6T/6I/66、PA6T/6I/6、PA6T/6I/12、PA6T/66/6、PA6T/66/12、PA6T/6I/MACM1、或PA6T/66/PACM6,但不以此为限。其中可以理解地,所述聚酰胺可包含上述所列举之1种、或2种以上之组合。
在一典型实施方式中,所述外基材层6包含:聚酯膜、聚酰胺膜、聚烯烃膜、或其结合。在更典型的实施方式中,外基材层6包含:拉伸聚酯膜、拉伸聚酰胺膜、拉伸聚烯烃膜、或其结合。在甚至更典型的实施方式中,外基材层6包含:拉伸聚对苯二甲酸乙二醇酯膜、拉伸聚对苯二甲酸丁二醇酯膜、拉伸尼龙膜、拉伸聚丙烯膜、或其结合。在甚至更典型的实施方式中,外基材层6包含:双向拉伸聚对苯二甲酸乙二醇酯膜、双向拉伸聚对苯二甲酸丁二醇酯膜、双向拉伸尼龙膜、双向拉伸聚丙烯膜、或其结合。
在一典型实施方式中,所述外基材层6为单层结构、或2层以上之多层结构所构成。其中,当所述外基材层6由2层以上之结构所构成时,所述外基材层6是以黏接剂与多层结构相互作用而形成的复合膜;或将树脂以「共挤出技术」制成之多层树脂复合膜,且不以此为限。于一典型实施方式中,所述多层树脂复合模可在未拉伸之状态下;单轴拉伸后;或双轴拉伸后作为所述外基材层6。于另一典型实施方式中,当所述外基材层6由2层以上之结构所构成时,其结构为:聚酯膜、与尼龙膜的复合膜;2层以上的尼龙膜所构成的复合膜;或2层以上的聚酯膜所构成的复合膜;可选地为拉伸尼龙膜、与拉伸聚酯膜所构成的复合膜、2层以上的拉伸尼龙膜所构成的复合膜、或2层以上的拉伸聚酯膜所构成的复合膜。在一些实施方式中,多层树脂复合膜是由聚酯树脂膜、与聚酯树脂膜所构成的复合膜;聚酰胺树脂膜、与聚酰胺树脂膜所构成的复合膜;或聚酯树脂膜、与聚酰胺树脂膜所构成的复合膜。于另一典型实施方式中,可选地为聚对苯二甲酸乙二醇酯膜、与聚对苯二甲酸乙二醇酯膜所构成的复合膜;聚对苯二甲酸丁二醇酯膜、与聚对苯二甲酸丁二醇酯膜所构成的复合膜;尼龙膜、与尼龙膜所构成的复合膜;或聚对苯二甲酸乙二醇酯膜、与尼龙膜所构成的复合膜,且不以此为限。
在一典型实施方式中,由于聚酯树脂在电解液附着于表面时会有难以变色之问题,为改善上述之缺点,其中,当所述外基材层6为两层以上的树脂复合膜时,可选地将聚酯树脂膜设置于所述外基材层6的最外层。于一典型实施方式中,两层以上的树脂膜可以通过与黏接剂作用来复合,其中所述黏接剂可选地为使用与所述外层黏合层7成分相同的胶液。
在一典型实施方式中,使两层以上的树脂膜复合之方法包含:干式复合法、夹层复合法、挤出复合法、热复合法、且不以此为限,其中,可选地为干式复合法。在一些实施方式中,通过干式复合法进行多层树脂膜之复合时,作为外层的反应型黏接剂可选地为使用反应型聚氨酯黏接,此时外层黏合层7的厚度大约为2至5μm。于一典型实施方式中,当使用树脂涂布法形成外基材层6时,可先将树脂溶解于有机溶剂中,再通过涂布的方式形成外基材层6。于另一典型实施方式中,于树脂涂布法所使用的涂布树脂为一种酚树脂,其种类包含:聚酰胺树脂、聚酰亚胺树脂、聚氨酯树脂、环氧树脂、丙烯酸树脂、聚酯树脂、聚酰胺树脂、聚酰亚胺树脂、氟系共聚合树脂、聚酯树脂等;或一种氨基树脂,其种类包含:聚酯树脂、聚碳酸酯树脂、脲树脂、或三聚氰胺树脂。
在一典型实施方式中,所述外基材层6的表面、或内部可以添加一种、或多种添加剂,其中,所述添加剂包含:润滑剂、阻燃剂、防黏连剂、抗氧化剂、光稳定剂、增黏剂、或抗静电剂。于一典型实施方式中,为了提高所述锂电池复合包装材料的成形性,可选地在所述外基材层6的表面形成由润滑剂所构成的层状结构。其中所述润滑剂可选地为酰胺系润滑剂,包含:饱和脂肪酸酰胺、不饱和脂肪酸酰胺、取代酰胺、羟甲基酰胺、饱和脂肪酸双酰胺、不饱和脂肪酸双酰胺、脂肪酸酰胺、或芳香族双酰胺。于另一典型实施方式中,饱和脂肪酸酰胺包含:月桂酸酰胺、棕榈酸酰胺、硬脂酸酰胺、山嵛酸酰胺、或羟基硬脂酸酰胺;不饱和脂肪酸酰胺包含:油酸酰胺、或芥酸酰胺;取代酰胺包含:N-油棕榈酸酰胺、N-硬脂酰胺、N-硬脂酰胺、N-油硬脂酰胺、或N-硬脂酰胺;羟甲基酰胺包含:羟甲基硬脂酸酰胺;饱和脂肪酸双酰胺包含:亚甲基双硬脂酸酰胺、亚乙基双辛酸酰胺、亚乙基双月桂酸酰胺、亚乙基双硬脂酸酰胺、亚乙基双羟基硬脂酸酰胺、亚乙基双山嵛酸酰胺、六亚甲基双硬脂酰胺、六亚甲基双山嵛酸酰胺、六亚甲基羟基硬脂酸酰胺、n,n’-二硬脂基己二酸酰胺、或n,n’-二硬脂基癸二酸酰胺;不饱和脂肪酸双酰胺包含:乙烯双油酸酰胺、乙烯双芥酸酰胺、六亚甲基双油酸酰胺、n,n’-二油基己二酸酰胺、或n,n’-二油基癸二酸酰胺;脂肪酸酯酰胺包含:硬脂酰胺乙基硬脂酸酯;芳香族双酰胺包含:间苯二甲基双硬脂酸酰胺、间苯二甲基双羟基硬脂酸酰胺、或n,n’-二硬脂基间苯二甲酸酰胺。于又一典型实施方式中,润滑剂可以包含以上所列举之1种、或2种以上,且不以此为限。
在一典型实施方式中,所述外基材层6的表面形成有润滑剂时,所述润滑剂之涂布量可选地为3mg/m 2以上,诸如3至50mg/m 2、4至40mg/m 2、或10至30mg/m 2。在一典型实施方式中,润滑剂之涂布量为4至30mg/m 2,且不以此为限。于一典型实施方式中,形成于所述外基材层6表面的润滑剂是由含有润滑剂的基材树脂层中所渗出;或在外基材层6的表面涂布润滑剂。于另一典型实施方式中,当所述外基材层6为2层以上的树脂复合膜时,构成各层的树脂膜厚度,可选地为2至30μm,其中,所述外基材层6之厚度可达成作为基材之基本要求即可,因此厚度不以此为限。
在一典型实施方式中,所述外基材层6为吹膜尼龙、同步双向拉伸尼龙、异步双向拉伸尼龙、同步双向拉伸聚对苯二甲酸乙二醇酯(PET)、异步双向拉伸聚对苯二甲酸乙二醇酯(PET)、同步双向拉伸聚对苯二甲酸丁二醇酯(PBT)、异步双向拉伸聚对苯二甲酸丁二醇酯(PBT)、聚酰亚胺(PI)、或上述所列举之高分子材料中的一种、或多种材料所形成的单层、或2层以上的复合膜。于一典型实施方式中,外基材层6可通过挤出、涂覆、复合、热贴、或以上方法之结合的方式黏接到所述金属层1上。于另一典型实施方式中,所述外基材层6的总厚度可选地为5至35μm,诸如10至35μm、10至30μm或15至25μm。在一些实施方式中,于厚度不足5μm时,所述外基材层6的成型性、与绝缘性较差;若厚度超过35μm,会使金属复合膜的总厚度过厚,导致金属复合膜的柔软性变差。
请参阅图4,其用以表示本公开之第四实施方式之结构图,其中,如图4所示,其中更包含:一外层黏合层7,形成于所述金属层1与所述外基材层6之间。
6.外层黏合层7之相关实施方式。
于所述外基材层6、与所述金属层1复合之状态下,为了提升两者之间的黏着性,可选地于两者之间形成一外层黏合层7。其中可以理解地,所述外层黏合层7是为一黏接剂,包含:双组分固化型黏接剂(双组分黏接剂)、或单组分固化型黏接剂(单组分黏接剂)。于一典型实施方式中,所述黏接剂之种类包含:化学反应型、溶剂挥发型、热熔融型、或热压型,且不以此为限。此外,所述外层黏合层7可为一单层结构、或1层以上之多层结构。
在一典型实施方式中,所述外层黏合层7之成分包含:主剂以及固化剂。在一些实施方式中,是以聚酯多元醇、与聚氨酯改性的多元醇作为二元醇主剂;以及芳香族、或脂肪族异氰酸酯作为固化剂所形成的双组份聚氨酯黏合剂。其中,所使用之主剂包含:聚酯树脂,包含:聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚间苯二甲酸乙二醇酯、或共聚聚酯;聚醚树脂;聚氨酯树脂;环氧树脂;酚醛树脂;聚酰胺树脂,包含:尼龙6、尼龙66、尼龙12、或共聚聚酰胺;聚烯烃系树脂,包含:聚烯烃、环状聚烯烃、酸改性聚烯烃、或酸改性环状聚烯烃;聚乙酸乙烯酯;纤维素;(甲基)丙烯酸树脂;聚酰亚胺树脂;聚碳酸酯;氨基树脂,包含:尿素树脂、或三聚氰胺树脂;橡胶,包含:氯丁橡胶、丁腈橡胶、或苯乙烯-丁二烯橡胶;或有机硅树脂。其中,所使用之固化剂可以根据黏接剂之成分所具有的官能团进行选择,包含:多官能环氧树脂、含有甲基磺酸的聚合物、泊里胺树脂、或无机酸。其中可以理解地,所述黏接剂之成分可以使用以上所列举之1种、或1种以上之组合。
在一典型实施方式中,所述外层黏合层7包含:二元、或多元的聚酯;聚氨酯改性聚酯的1种、2种、或2种以上;以及异氰酸酯。其中,异氰酸酯为分子中具有两个或多个异氰酸酯基的化合物,但不以此为限。在一些实施方式中,异氰酸酯包含:异佛尔酮二异氰酸酯(IPDI)、甲苯二异氰酸酯(TDI)、二苯甲烷-4,4’-二异氰酸酯(MDI)、1,6-己二异氰酸酯(HDI)、或以上聚合物之结合所形成的混合物。于一典型实施方式中,于不影响所述外层黏合层7之黏接性的前提下,所述外层黏合层7之原料可添加一添加成分,包含:着色剂、热塑性弹性体、增黏剂、或填料中的至少一种,且不以此为限。于一典型实施方式中,当外层黏合层7含有着色剂时,可以对所述锂电池复合包装材料进行着色。其中,着色剂可为颜料,包含:有机颜料,包含:偶氮系、酞菁系、喹吖啶酮系、蒽醌系、二恶嗪系、靛硫靛系、苝系、或异吲哚啉系颜料;以及无机颜料,包含:炭黑系、氧化钛系、镉系、铅系、或异吲哚啉系颜料;或染料,但不以此为限。此外,可以理解地,着色剂包含以上所列举之1种、或1种以上之组合。其中可以理解地,为了使所述锂电池复合包装材料之外观为黑色,所使用之颜料或染料之颜色可选地为碳黑。
在一典型实施方式中,所使用之颜料的平均粒径为0.05至5μm,诸如0.08至4μm、0.1至3.5μm或1.2至2.5μm,可选地为0.08至2μm,但不以此为限。于一典型实施方式中,颜料的平均粒径是由激光衍射/散射式粒径分布测定装置所测定的粒径大小的中间值。于另一典型实施方式中,所述外层黏合层7中的颜料含量为5至60%,诸如10至60%、10至50%或20至40%,可选地为10至40%,但不以此为限,只要能使所述锂电池复合包装材料被着色即可。于另一典型实施方式中,所述外层黏合层7的厚度只要能够黏接所述外基材层6、以及金属层1即可,可选地为1至10μm,诸如2至8μm、3至7μm或4至6μm,还可选地为2至5μm,且不以此为限。
请参阅图5,其用以表示本公开之第五实施方式之结构图,其中,如图5所示,其中更包含:一着色层8,形成于所述金属层1与所述外基材层6之间。
7.着色层8之相关实施方式。
在一典型实施方式中,可根据着色之要求,于所述外基材层6、与所述金属层1之间形成一着色层8。其中,可透过把着色剂加入到外层黏合层7中而形成着色层8;在所述外基材层6与所述外层黏合层7之间形成着色层8;或于所述外基材层6相对于金属层1之一侧设置一着色层8,且不以此为限。在一些实施方式中,可以透过将含有着色剂的油墨涂布于所述外基材层6的表面;所述外层黏合层7的表面;或所述金属层1的表面而形成一着色层8。由于有关「着色剂」之相关实施方式已揭露于外层黏合层7之说明中,因此在此不多做赘述。
8.本公开之其他实施方式。
请参阅图6,其用以表示本公开第六实施方式之结构图,其中,如图6所示,本公开另提供一种锂电池复合包装材料,包含:一第一锂电池复合包装材料9、以及一第二锂电池复合包装材料10,其中:所述第一锂电池复合包装材料9包含:一外基材层6;一金属层1,设置于所述外基材层6之一侧;一内层黏合层2,形成于所述金属层1相对于所述外基材层6之一侧;以及一内热熔接层3,形成于所述内层黏合层2相对于所述金属层1之一侧;以及所述第二锂电池复合包装材料10之结构与所述第一锂电池复合包装材料9相同,且,所述第二锂电池复合包装材料10与所述第一锂电池复合包装材料9相对应地设置,以界定出一容置空间11,其中:所述容置空间11与所述内热熔接层3接触,且,所述容置空间11可容纳一电解液,其中,经过热封后,当所述内层黏合层2与所述内热熔接层3之残存率为50%以上,且,于温度条件为23±5℃、以及湿度条件为50±5%Rh之环境下加压250v时,所述金属层1和所述内热熔接层3的电阻值为1.0GΩ/μm以上。
请参阅图7,其用以表示本公开第七实施方式之结构图,其中,如图7所示,本公开另提供一种锂电池,包含:一第一锂电池复合包装材料9、一第二锂电池复合包装材料10、以及一电解液12,其中:所述第一锂电池复合包装材料9包含:一外基材层6;一金属层1,设置于所述外基材层6之一侧;一内层黏合层2,形成于所述金属层1相对于所述外基材层6之一侧;以及一内热熔接层3,形成于所述内层黏合层2相对于所述金属层1之一侧;所述第二锂电池复合包装材料10之结构与所述第一锂电池复合包装材料9相同,且,所述第二锂电池复合包装材料10与所述第一锂电池复合包装材料9相对应地设置,以界定出一容置空间11,其中:所述容置空间11与所述内热熔接层3接触;以及所述电解液12容置于所述容置空间11中,且,其含有:一混合溶剂,包含:碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、与碳酸二乙酯(DEC);以及1Mol的LiPF6(六氟磷酸锂),其中,经过热封后,所述内层黏合层2与所述内热熔接层3之残存率为50%以上,且,所述电解液12于85℃之温度条件下放置24小时后,再于温度条件为23±5℃、以及湿度条件为50±5%Rh之环境下加压250v时,所述金属层1和所述电解液12间的电阻率为200MΩ以上。
9.锂电池复合包装材料之复合流程。
(1)以下详细说明金属层1之脱油处理条件、与制程:
其中,所述金属层1之表面的润湿性可选地为65mN/m,且,还可选地为70mN/m以上;以及蒸馏水的滴定接触角角度可选地为15度以下,且,还可选地为10度以下。在一些实施方式中,若所述金属层1表面之润湿性、或滴定接触角之角度超出上述之范围,会导致于制造阶段中所使用之压延油仍残留于所述金属层1之表面,并造成所述金属层1与所述防腐蚀层之间;或所述内热熔接层3之间的接口附着能力变差。其中,当附着能力变差时,会导致电池于长期使用、或保存过程中,所述金属层1与所述内热熔接层3间产生剥离、或脱落之风险,而发生电池漏液之情况。为了避免上述之状况发生,可进行150℃以上的退火处理;或以等离子体、电晕法、或碱液进行脱油。其中,以碱液 脱油之方法依序包含:一浸泡步骤,将所述金属层1浸渍于50至65℃的碱液中;一清洗步骤,用去离子水清洗所述金属层1两次;以及一干燥步骤,将所述金属层1干燥,以完成脱油处理。
(2)于所述金属层1与所述内热熔接层3接触之一面形成第一防腐蚀层4时,其形成步骤包含:先于所述金属层1与所述内热熔接层3接触之一面涂布一防腐蚀液;再以一高温进行热处理一段时间。
(3)以下具体描述外层黏合层7的形成和复合之方法:依序包含:一涂布步骤,于所述金属层1和所述外基材层6间涂布一由有机溶剂溶解的聚氨酯系胶黏着剂;一加热步骤,在一定温度下加热一段时间,使黏着剂中之有机溶剂挥发,并形成所述外层黏合层7。于一典型实施方式中,所述金属层1、所述外层黏合层7、与所述外基材层6间之复合方式包含:在一定温度和压力下使外基材层6、外层黏合层7和金属层1复合,并在一定温度下存放处理一定时间后,使外层黏合层7发生固化反应,以得到由外基材层6、外层黏合层7、以及金属层1所组成的复合树脂层。于另一典型实施方式中,所述外基材层6和所述金属层1间之复合可不使用外层黏合层7,其中,所述金属层1与所述外基材层6之复合方法是通过加热、与加压之方式进行复合,并通过加热处理、紫外线处理、电子线处理外基材层6,使其膜化。
(4)以下具体描述内热熔接层3的形成和复合之方法:其中,内热熔接层3之复合方法包含:一涂布步骤,将一溶液型内层黏合层2涂布于所述金属层1相对于所述外基材层6之一侧,其中:所述内热熔接层3包含:一主剂、一固化剂、与一有机溶剂;一干燥步骤,将所述溶液型内层黏合层2进行干燥,以形成一内层黏合层2;一复合步骤,于一定温度和压力下将所述内层黏合层2与所述内热熔接层3之黏接面进行复合,并进行熟化处理。其中可以理解地,所述内热熔接层3与所述内层黏合层2相接触的一面需先进行电晕处理。
10.本公开可选的技术方案。
在一典型实施方式中,在具有内热熔接层3之金属复合膜中,热熔融型之内层黏合层2、和内热熔接层3之厚度比为2至1:1至3。其中,于以下之实施方式5至11;以及除了对比例4以外之其他对比例中,皆是以「热法」来制成所述锂电池复合包装材料,其中,热熔融型之内层黏合层2为「热法」的a层31,且,热熔融型之内层黏合层2之熔点为140至155℃;以及内热熔接层3之熔点为135℃。在一些实施方式中,热熔融型之内层黏合层2于230℃下之MFR为5至12g/10分钟;以及内热熔接层3之MFR为12g/10分钟。
在一典型实施方式中,在具有内热熔接层3之金属复合膜中,内热熔接层3为多层结构,可选为具有三层结构,依序包含一a层31、一b层32、与一c层33,其中,a层31相对于b层32之一侧与内层黏合层2相黏接,且,a层31之厚度:b层32之厚度:c层33之厚度为1至2:2至8:1至3。其中,a层31的熔点为135至152℃;b层32的熔点为140至160℃;c层33的熔点为130至145℃。在一些实施方式中,a层31于230℃下之MFR为3至7g/10分钟;b层32于230℃下之MFR为3至10g/10分钟;c层33于230℃下之MFR为7至15g/10分钟。
在一典型实施方式中,内热熔接层3之材料包含:50wt%以上之聚丙烯的共聚物、或50wt%以上之聚丙烯的混合物;或内热熔接层3之树脂于合成时,所使用的催化剂所产生的残渣离子可选地为300ppm以下。此外,进行一第一电阻值测定,当内热熔接层3与内层黏合层2之厚度大于25μm以上时,于温度条件为23±5℃、以及湿度条件为50±5%Rh的环境下加压250v时,所测得的电阻值应为2.5GΩ/μm以上。其中,当电阻值小于2.5GΩ/μm时,会导致金属层1与内热熔接层3间;或金属层1、内层黏合层2、与内热熔接层3间的绝缘性下降。其中可以理解地,当绝缘性降低之情况下,包覆于锂电池复合包装材料中之电解液和内热熔接层3接触时,会增加金属层1和电解液电连接的可能性。其中,由于电气连接会降低电池的内部电阻,因此长时间使用电池之状态下,会缩短电池的寿命,且,为了从电池取出电力而安装的外部端子(tab)之部分的电阻亦会变小。如果发生上述金属层1与电解液电连接的现象、和外部端子部的电阻降低之情形,则会导致电池内部与锂电池复合包装材料之间形成电路,而造成金属层1发生腐蚀之现象;电解液漏液;或电池着火的风险。
在一典型实施方式中,为了避免产生上述之风险,进行一第二电阻值测定,其中:准备两张锂电池复合包装材料,其中,至少包含外基材层6、金属层1、内层黏合层2、与内热熔接层3,且,将两张锂电池复合包装材料以内热熔接层3相对应之方式进行热封,其中:当热封后的内层黏合层2和内热熔接层3的层迭体之残存率为50%以上;以及在温度条件为23±5℃、以及湿度条件为50±5%Rh之环境下加压250V时,金属层1和内热熔接层3的电阻值可选地为1.0GΩ/μm以上。其中,当电阻值小于1.0GΩ/μm时,金属层1与内热熔接层3间;或金属层1、内层黏合层2、与内热熔接层3间的绝缘性将降低,导致金属层1和电解液电连接的可能性增高,而产生上述之风险。
在一典型实施方式中,为了避免产生上述之风险,进行一电阻率测定,其中,准备两张锂电池复合包装材料,其中,至少包外基材层6、金属层1、内层黏合层2、与内热熔接层3,且,将两张锂电池复合包装材料以内热熔接层3相对应之方式进行热封,其中:以电解液不泄漏的方式形成为袋状之热封条件为:于内层黏合层2、和内热熔接层3之层迭体的残存率为50%以上之条件下,向其袋状内部加入电解液,其中,电解液的组成包含:混合溶剂,包含:碳酸亚乙酯[EC]、碳酸二甲酯[DMC]、和碳酸二乙酯[DEC];以及1Mol的LiPF6(六氟磷酸锂)。其中,电解液于85℃下放置24小时后,于温度条件为23±5℃、以及湿度条件为50±5%Rh的环境下,加压250V时,所测得的电解液与金属层1之间的电阻率为200MΩ以上。其中,若电阻值小于200MΩ,金属层1与内热熔接层3间;或金属层1、内层黏合层2、与内热熔接层3间的绝缘性会降低,而导致如上所述之风险。
11.锂电池复合外包装材料之构造、与制备流程。
其中,本公开之锂电池复合外包装材料包含:外基材层6、防腐蚀层、外层黏合层7、与金属层1。
其中,将各层进行层迭之方法如下:首先,使用厚度为25μm的双向拉伸尼龙作为外基材层6,并将外基材层6与外层黏合层7接触之一面进行电晕处理。
接着,在外基材层6上用干式复合法复合金属层1,其中金属层1为铝合金箔。在一些实施方式中,于经过退火处理、与脱脂处理后之铝合金箔的两面涂上防腐蚀液,以形成一防腐蚀层,其中,经退火处理、与脱脂处理后之铝合金箔的表面接触角为15;以及厚度为40μm。
然后,外层黏合层7之形成方法包含:于防腐蚀层相对于金属层1之一侧涂布一外层黏接液,其中:外层黏接液之制备方法依序包含:一混合步骤,将一重均分子量为5000、Tg为50℃、以及羟基值为25mg KOH/g的非结晶性聚酯多元醇;与一重均分子量为20000、Tg为-17℃、以及羟基值为8mg KOH/g的非结晶性聚酯多元醇,以重量比为3:2 之比例混合,以形成一混合液;一添加步骤,于所述混合液中加入甲苯二异氰酸酯(TDI),以形成NCO/OH之比值为6.2的所述外层黏合层7。于一典型实施方式中,所述外层黏合层7之厚度为3μm。于另一典型实施方式中,所述外层黏合层7之形成方法更包含:一熟化步骤,于添加步骤后,将金属层1、外层黏合层7、与外基材层6于80℃之温度条件下熟化3天。于又一典型实施方式中,所述外基材层6之厚度为25μm;以及外层黏合层7之厚度为3μm。
在一典型实施方式中,防腐蚀液包含:硝酸铬、磷酸、硝酸、聚丙烯酸(PAA)、与水,其重量比例依序为58:4:0.7:5:3。于一典型实施方式中,防腐蚀层之铬含量为15mg/㎡。
综上,本公开满足内热熔接层于原始状态下的绝缘性、内热熔接层于热封后之绝缘性、以及当内热熔接层包覆电解液时之绝缘性,使所述锂电池复合包装材料于长期储存、或使用状态下皆可提供稳定之热封性能、与稳定之绝缘性能,使依所述锂电池复合包装材料所制成之锂电池能够拥有更长之使用寿命,且稳定性和安全性更高。
包装材料的性能测试方法:
以下针对下述实施例1-11和对比例1-8制备的包装材料进行性能测试表征,其测试方法如下:
(I)「残存率」的测定方法。
其中,所述残存率=(热封后之内层黏合层2、与内热熔接层3之厚度总和)/(热封前之内层黏合层2、与内热熔接层3之厚度总和)。
其中,(热封前整体锂电池复合包装材料之厚度)-(外基材层6、与金属层1之厚度总和)=(热封前内层黏合层2、与内热熔接层3之厚度总和);以及(热封后整体锂电池复合包装材料之厚度总和)-(外基材层6、与金属层1之厚度总和)=(热封后内层黏合层2、与内热熔接层3之厚度总和)。
(II)「绝缘性」的测定方法。
其中,有关绝缘性之测定是将待测定样品在温度条件为23±5℃、以及湿度条件为50±5%Rh的环境中放置12小时后,再于同样之环境中进行测定。
(1)第一电阻值测定:内热熔接层3原始状态下之电阻值测定。
首先,从内热熔接层3中裁切一样品,其中样品是以MD方向200mm;与TD方向76mm之范围裁切。然后,将样品放置于一测试仪器中,将一负极、与一正极相互间隔地与样品接触,并加压250v以测定电阻。其中,于后述所提供之实施方式中,是以精度为1μm的测量器来测定内热熔接层3、或内层黏合层2的电阻值,其中,当电阻值为2.5GΩ/μm以上时,视为正常,标记为「OK」;当电阻值小于2.5GΩ/μm时,视为异常,标记为「NG」。
(2)第二电阻值测定:热封后之内热熔接层3之电阻值测定。
首先,从内热熔接层3中裁切一样品,其中样品是以MD方向200mm;与TD方向76mm之范围裁切。然后,依序将样品沿MD方向对折;将一极耳设置于样品之中间部;以及对极耳依MD之方向进行热封,其中,极耳的材质为Ni。其中,热封之条件为:于190℃之温度条件;以及1.0MPa之压力条件下,热封持续3秒钟。于热封完成后,以一砂纸将极耳热封部位、及其周围进行打磨,使铝合金箔露出,并将负极与极耳接触;以及正极与露出的铝合金箔接触后,以250V电压之条件下测定电阻值。其中,为了使正极能更好的与打磨部位的铝合金箔接触,可以滴管滴一滴纯水于两者之接触区域。其中,于后述所提供之实施方式中,是以精度为1μm的测量器来测定内热熔接层3、或内层黏合层2的电阻值,其中,当电阻值为1GΩ/μm以上时,视为正常,标记为「OK」;当电阻值小于1GΩ/μm时,视为异常,标记为「NG」。
(3)电阻率测定:于电解液注液后之内热熔接层3的电阻率测定。
首先,从内热熔接层3中裁切一样品,其中样品是以MD方向200mm;与TD方向76mm之范围裁切。然后,依序将样品沿MD方向对折;将一极耳设置于样品之中间部;以及对极耳依MD之方向进行热封,其中,极耳的材质为Ni。其中,于样品底部开口注入4ml的电解液进行热封,且,热封之条件为:于190℃之温度条件;以及1.0MPa之压力条件下,热封持续3秒钟,且,于热封完成后,以一砂纸将极耳热封部位、及其周围进行打磨,使铝合金箔露出。接着将注入电解液的样品在60℃之环境条件下保存24H,并静置冷却至室温。再来,将负极与极耳接触;以及正极与露出的铝合金箔接触,并于250V之电压条件下测定电阻率。其中,为了使正极更好的与打磨部位的铝合金箔接触,可于两者接触之部分以滴管滴一滴纯水。其中,于后述所提供之实施方式中,是以精度为1μm的测量器来测定内热熔接层3、或内层黏合层2的电阻率,其中,当电阻率为200mΩ以上时,视为正常,标记为「OK」;当电阻率小于200mΩ时,视为异常,标记为「NG」。
(III)催化剂的残留含量测定:
采用灰度测试方法,方法如下:
把一定量的样品经炭化后放入高温炉内灼烧,使有机物质被氧化分解,以二氧化碳、氮的氧化物及水等形式逸出,而无机物质以无机盐和金属氧化物的形式残留下来,这些残留物即为灰分,称量残留物的重量即可计算出样品中总灰分的含量。
方法步骤:
步骤一:把坩埚放在马弗炉内,在实验温度下加热至恒重。将其放入干燥器内至少1h,使其冷却至室温,并在分析天平上称量,精确到0.1mg。
步骤二:将按相关材料规范规定进行预干燥的或已知其挥发物含量的试样放入已知质量的称量瓶中。称重,精确至0.1mg或试样量的0.1%,试样量的多少以能产生5mg至50mg灰分为准。
步骤三:如果坩埚足够大,能容纳相当于5mg至50mg灰分的试样,则可直接把试样放在坩埚内称重。对体积较大的材料可先压成小块,然后再破碎成尺寸合适的碎片。
步骤四:将试样放入坩埚中,不能超过坩埚高度的一半,然后直接在本生灯或其他合适的加热源上加热,使其缓慢的燃烧。燃烧不可太剧烈,以免灰分粒子损失。冷却后再其余的试样。重复上述操作直至烧完全部试样。
步骤五:把坩埚放入已预热至规定温度的马弗炉中,煅烧30min。
步骤六:把坩埚放入干燥器内冷却1h,或使其冷却至室温,并在分析天平上称量,精确至0.1mg。在相同条件下再煅烧30min,直至恒重,即相继两次称量结果之差不大于0.5mg。
(IV)内层黏合层厚度测定:
厚度的测定采用千分尺,方法如下:
分别测量涂布前后的厚度,记作h1、h2
步骤一:将被测物擦干净,千分尺使用时轻拿轻放;
步骤二:松开千分尺锁紧装置,校准零位,转动旋钮,使测砧与测微螺杆之间的距离略大于被测物体;
步骤三:一只手拿千分尺的尺架,将待测物置于测砧与测微螺杆的端面之间,另一只手转动旋钮,当螺杆要接近物体时,改旋测力装置直至听到喀喀声后再轻轻转动0.5~1圈;
步骤四:旋紧锁紧装置(防止移动千分尺时螺杆转动),即可读数。
读数后h2-h1即为内层黏合层厚度。
实施例
以下列举实施例1-11以及比较对比例1-8以示例性的说明本公开所提供的锂电池复合包装材料的性能。
实施例1 锂电池复合包装材料的制备和性能表征
用前述之方法,制成锂电池复合外包装材料,参照附图4的锂电池复合外包装材料的结构示意图,其中,所述锂电池复合外包装材料之结构依序包含:外基材层6、3μm厚之外层黏合层7;以及铝合金箔层。在此实施例中,是于铝合金箔层相对于外基材层6之相对侧依序形成一内层黏合层2、以及一内热熔接层3后进行复合,以制成本公开之锂电池复合包装材料。其中,于铝合金箔层上形成内层黏合层2前,已预先于铝合金箔层相对于外基材层6之一侧形成有防腐蚀层;内层黏合层2是为溶液型内层黏合层2;以及内热熔接层3于进行复合前已进行过电晕处理。其中,于以下之实施例中,于实施例1至4;以及对比例4皆是以此所述之前提下,进行后续之步骤,因此,于后续之实施例或对比例中不多做赘述。
在一些实施方式中,本实施例1是把重均分子量为80000、熔点为80℃、以及酸值为2mg KOH/g的无水马来酸酐改性聚丙环溶液、和芳香族异氰酸脂(HDI,二甲基异氰酸脂)溶液,以重量比例20:1进行混合,以形成厚度为3.5μm的内层黏合层2,将后述的内热熔接层3复合后,在60℃下进行3天的熟化处理,以制成本实施例之锂电池复合包装材料。
其中,如表1所示,内热熔接层3为一3层结构(结合参照图1B),依序包含a层31、b层32、与c层33,其中,a、b、c三层之厚度比例为1:8:1。a层31包含:无规聚丙烯(r-pp)树脂,其熔点为135℃;以及MFR为7.0g/10分(230℃);b层32原料包含:乙烯含有率5%之嵌段聚丙烯(b-pp)65重量份、乙烯-聚丙烯弹性体10重量份、和丙烯-乙烯弹性体25重量份,其中b层32原料所制成之混合树脂之熔点为160℃;以及MFR为3.0g/10分(230℃);以及c层33与a层31之成分相同。
此外,内热熔接层3的厚度为80μm;所述三层结构之内热熔接层3是预先用挤出机以螺杆挤出之方式将三层结构的薄膜进行卷取;于三层结构中,是以a层31与内层黏合层2接触。其中,内层黏合层2与内热熔接层3复合,以形成所述锂电池复合包装材料之内层。本公开之锂电池复合包装材料为一种铝塑膜,且,铝塑膜的内层可用来阻隔电解液,以提供铝塑膜之绝缘性、与耐液性能。
此外,调整树脂于合成时所使用的催化剂所产生的残渣离子至300ppm以下,且,于以下实施例2至实施例7中也执行同样之步骤。
表1
Figure PCTCN2022092579-appb-000001
实施例2 锂电池复合包装材料的制备和性能表征
于本实施例中,所使用之溶液型内层黏合层2之制备方法包含:将一重均分子量为60000、熔点为100℃、以及酸值为5mg KOH/g无水马来酸酐改性聚丙烯;与一重均分子量为80000、熔点为80℃、以及酸值为3mg KOH/g的无水马来酸改性聚丙烯以重量比例8∶2进行混合,以取得一混合物。然后将所获得之混合物、与直链脂肪族多异氰酸酯(PDI,五亚甲基二异氰酸酯)以重量比例10:1进行混合,以形成内层黏合层2,其中内层黏合层2之厚度为3.5μm。将后述的内热熔接层3复合后,于60℃之温度条件下熟化处理3天,得到本实施例之锂电池复合包装材料。
于本实施例中,如表2所示,并如参照附图1B的锂电池复合外包装材料的结构示意图所示,内热熔接层3为三层之结构,依序为a层31、b层32、与c层33,其中,a层31、b层32、与c层33之厚度比为2:5:3,且,a层31包含无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为7.0g/10分钟。b层32是由熔点为160℃、以及于230℃下之MFR为2.0g/10分钟的嵌段聚丙烯(b-pp)树脂30重量份;熔点为124℃、以及于230℃下之MFR为10g/10分的无规聚丙烯(r-pp)树脂30重量份;与熔点为124℃的乙烯-聚丙烯弹性体40重量份相混合所制成之混合树脂,其中:b层32混合树脂之熔点为142℃;以及230℃下之MFR为5.0g/10分。c层33包含无规聚丙烯(r-pp)树脂,其熔点 为135℃;以及于230℃下之MFR为15.0g/10分钟。
此外,内热熔接层3的厚度为40μm;所述三层结构之内热熔接层3是预先用挤出机以螺杆挤出之方式将三层结构的薄膜进行卷取;于三层结构中,是以a层31与内层黏合层2接触。其中,内层黏合层2与内热熔接层3复合,以形成所述锂电池复合包装材料之内层。本公开之锂电池复合包装材料为一种铝塑膜,且,铝塑膜的内层可用来阻隔电解液,以提供铝塑膜之绝缘性、与耐液性能。
表2
Figure PCTCN2022092579-appb-000002
实施例3 锂电池复合包装材料的制备和性能表征
用前述之方法,制成锂电池复合外包装材料,参照附图4的锂电池复合外包装材料的结构示意图,其中,所述锂电池复合外包装材料之结构依序包含:外基材层6、3μm厚之外层黏合层7;以及铝合金箔层。在此实施例中,是于铝合金箔层相对于外基材层6之一侧依序形成一内层黏合层2、以及一内热熔接层3后进行复合,以制成本公开之锂电池复合包装材料。其中,于铝合金箔层上形成内层黏合层2前,已预先于铝合金箔层相对于外基材层6之一侧形成有防腐蚀层。
其中,内层黏合层2之形成方法包含:将一重均分子量为130000、熔点为88℃、以及酸值为1mg KOH/g的无水马来酸酐改性聚丙烯溶液;与环氧树脂(双酚A二缩水甘油醚和对氨基苯酚三缩水甘油的混合体系)溶液以重量比例100:1.9的比例进行混合,以形成一混合溶液,并将混合溶液涂布到防腐蚀层相对于铝合金箔层之一侧。其中,当混合溶液干燥后,即形成厚度为2μm的内层黏合层2。
于形成内层黏合层2之后,首先,于80℃之温度条件下,将40μm厚之内内热熔接层3与内层黏合层2黏接、并进行热复合;然后;于60℃的温度条件下熟化处理72小时,即完成本实施例之锂电池复合包装材料。
于本实施例中,如表3所示,并结合参照图1B,其中:内热熔接层3为三层之结构,依序为a层31、b层32、与c层33,其中,a层31、b层32、与c层33之厚度比为1:2:1,且,a层31包含无规聚丙烯(r-pp)树脂,其熔点为150℃;以及于230℃下之MFR为5.0g/10分钟;b层32包含无规聚丙烯(r-pp)树脂,其熔点为140℃;以及于230℃下之MFR为10.0g/10分钟;以及c层33包含无规聚丙烯(r-pp)树脂,其熔点为130℃;以及于230℃下之MFR为12.0g/10分钟。
此外,于此实施例中,内热熔接层3的厚度为80μm;所述三层结构之内热熔接层3是预先用挤出机以螺杆挤出之方式将三层结构的薄膜进行卷取;于三层结构中,是以a层31与内层黏合层2接触。其中,内层黏合层2与内热熔接层3复合,以形成所述锂电池复合包装材料之内层。本公开之锂电池复合包装材料为一种铝塑膜,且,铝塑膜的内层可用来阻隔电解液,以提供铝塑膜之绝缘性、与耐液性能。
表3
Figure PCTCN2022092579-appb-000003
实施例4 锂电池复合包装材料的制备和性能表征
用前述之方法,制成锂电池复合外包装材料,参照附图4的锂电池复合外包装材料的结构示意图,其中,所述锂电池复合外包装材料之结构依序包含:外基材层6、3μm厚之外层黏合层7;以及铝合金箔层。在此实施例中,是于铝合金箔层相对于外基材层6之一侧依序形成一内层黏合层2、以及一内热熔接层3后进行复合,以制成本公开之锂电池复合包装材料。其中,内层黏合层2是为溶液型。
其中,内层黏合层2之形成方法包含:将一重均分子量为70000、熔点为145℃、以及酸值为4.5mg KOH/g的甲基丙烯酸改性聚丙烯树脂;与固化剂,包含:三乙胺、N,N-二甲基乙醇胺组成的混合物涂布到防腐蚀层相对于铝合金 箔层之一侧,且,于160℃之温度条件下干燥2分钟,以形成厚度为2μm的内层黏合层2。
于形成内层黏合层2之后,使用挤出法将内热熔接层与内层黏合层2层迭。然后,于190℃之温度条件下、进行30秒的热处理。
于本实施例中,如表4所示,并结合参照图1B,其中:内热熔接层3为三层之结构,依序为a层31、b层32、与c层33,其中,a层31、b层32、与c层33之厚度比为1:8:1,且,a层31是由熔点为142℃、以及于230℃下之MFR为10.0g/10分钟的马来酸酐改性的无规聚丙烯(r-pp)65重量份;低密度聚乙烯3重量份;非结晶性聚丙烯弹性体20重量份;以及嵌段型聚丙烯弹性体12重量份所组成之混合树脂,其中,a层31混合树脂之熔点为135℃;以及于230℃下之MFR为7.0g/10分钟。b层32是由乙烯含有率5%的嵌段聚丙烯(b-pp)65重量份、乙烯-聚丙烯弹性体10重量份、和丙烯-乙烯弹性体25重量份所组成的混合树脂,其中,b层32混合树脂之熔点为160℃;以及于230℃下之MFR为3.0g/10分钟。c层33包含无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为7.0g/10分钟。
此外,于此实施例中,内热熔接层3的厚度为30μm;所述三层结构之内热熔接层3是预先用挤出机以螺杆挤出之方式将三层结构的薄膜进行卷取;于三层结构中,是以a层31与内层黏合层2接触。其中,内层黏合层2与内热熔接层3复合,以形成所述锂电池复合包装材料之内层。本公开之锂电池复合包装材料为一种铝塑膜,且,铝塑膜的内层可用来阻隔电解液,以提供铝塑膜之绝缘性、与耐液性能。
表4
Figure PCTCN2022092579-appb-000004
实施例5 锂电池复合包装材料的制备和性能表征
本实施例之锂电池复合包装材料之制造方法包含:首先:利用前述之方法,制成锂电池复合外包装材料,参照附图4的锂电池复合外包装材料的结构示意图,其中,所述锂电池复合外包装材料之结构依序包含:外基材层6、3μm厚之外层黏合层7;以及铝合金箔层;再来,于铝合金箔层相对于外基材层6之一侧依序形成一内层黏合层2、以及一内热熔接层3,其中:内层黏合层2、与内热熔接层3是以热法层迭。内层黏合层2、与内热熔接层3是用挤出机,以共挤出法形成,并且于层迭内热熔接层3后,于180℃之温度条件下热处理30秒。由于实施例5至11中,所使用之制造方法皆为相同,因此于以下实施例之说明中不多做赘述;以及于对比例1至8中,除了对比例4是使用干法之外,其余对比例皆使用此述之制造方法,因此于以下之对比例中,不多做赘述。
如表5所示,结合参照图1A,其中,于本实施例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为45μm,且,a层与b层之厚度比为1:1。其中,a层为酸改性聚丙烯(mpp)树脂,且,a层是由熔点为142℃、以及于230℃下之MFR为10g/10分的无规聚丙烯18重量份;熔点为162℃、以及于230℃下之MFR为3g/10分的均聚聚丙烯42重量份;低密度聚乙烯8重量份;以及结晶性丙烯弹性体32重量份所组成之混合树脂,其中:无规聚丙烯、与均聚聚丙烯是用马来酸酐改性而成的酸改性聚丙烯;以及a层混合树脂之熔点为155℃;以及于230℃下之MFR为5.0g/10分钟。其中,b层包含无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为12.0g/10分钟。
其中,a、b两层是以挤出流延之方式贴合于铝合金箔层,且,是以a层相对于b层之一侧与铝合金箔层接触。其中,于复合完毕后所制成之铝塑膜可阻隔电解液,避免电解液直接与铝合金箔层接触、增强绝缘性、以及增强耐液性能。于实施例5至11中;以及除了对比例4之外之其他对比例中,皆是使用挤出流延之方式将a层与b层贴合于铝合金箔层,因此,于复合完毕后所制成之铝塑膜共同具有:可阻隔电解液,避免电解液直接与铝合金箔层接触、增强绝缘性、以及增强耐液性能等功效,因此,于以下实施例之说明中不多做赘述。
表5
Figure PCTCN2022092579-appb-000005
实施例6 锂电池复合包装材料的制备和性能表征
如表6所示,结合参照图1A,其中,于本实施例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为45μm,且,a层与b层之厚度比为1:1。其中,a层为酸改性聚丙烯(mpp)树脂,且,a层是由熔点为142℃、以及于230℃下之MFR为7.5g/10分的无规聚丙烯75重量份;低密度聚乙烯3重量份;以及丙烯弹性体20重量份所组成之混合树脂,其中:无规聚丙烯是用甲基丙烯酸改性而成的改性聚丙烯;以及a层混合树脂之熔点为140℃;以及于230℃下之MFR为9.0g/10分钟。其中,b层包含无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为12.0g/10分钟。
表6
Figure PCTCN2022092579-appb-000006
实施例7 锂电池复合包装材料的制备和性能表征
如表7所示,结合参照图1A,其中,于本实施例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为60μm,且,a层与b层之厚度比为1:1。其中,a层包含马来酸酐改性的酸改性聚丙烯(mpp)树脂,其熔点为140℃;以及于230℃下之MFR为12.0g/10分钟。其中,b层是由熔点137℃、以及于230℃下之MFR为10.0g/10分钟的无规聚丙烯(r-pp)树脂65重量份;低密度聚乙烯3重量份;与结晶丙烯弹性体32重量份所组成之混合树脂,其中,b层混合树脂之熔点为135℃;以及于230℃下之MFR为12.0g/10分钟。
表7
Figure PCTCN2022092579-appb-000007
实施例8 锂电池复合包装材料的制备和性能表征
如表8所示,结合参照图1A,其中,于本实施例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为45μm,且,a层与b层之厚度比为1:3。其中,a层为酸改性聚丙烯(mpp)树脂,且,a层是由熔点为142℃、以及于230℃下之MFR为10g/10分的无规聚丙烯18重量份;熔点为162℃、以及于230℃下之MFR为3g/10分的均聚聚丙烯42重量份;低密度聚乙烯8重量份;以及结晶性丙烯弹性体32重量份所组成之混合树脂,其中:无规聚丙烯、与均聚聚丙烯是用马来酸酐改性而成的酸改性聚丙烯;以及a层混合树脂之熔点为155℃;以及于230℃下之MFR为5.0g/10分钟。其中,b层包含无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为12.0g/10分钟。
表8
Figure PCTCN2022092579-appb-000008
实施例9 锂电池复合包装材料的制备和性能表征
如表9所示,结合参照图1A,其中,于本实施例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为45μm,且,a层与b层之厚度比为2:1。其中,a层为酸改性聚丙烯(mpp)树脂,且,a层是由熔点为142℃、以及于230℃下之MFR为10g/10分的无规聚丙烯18重量份;熔点为162℃、以及于230℃下之MFR为3g/10分的均聚聚丙烯42重量份;低密度聚乙烯8重量份;以及结晶性丙烯弹性体32重量份所组成之混合树脂,其中:无规聚丙烯、与均聚聚丙烯是用马来酸酐改性而成的酸改性聚丙烯;以及a层混合树脂之熔点为155℃;以及于230℃下之MFR为5.0g/10分钟。其中,b层包含无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为12.0g/10分钟。
表9
Figure PCTCN2022092579-appb-000009
实施例10 锂电池复合包装材料的制备和性能表征
如表10所示,结合参照图1A,其中,于本实施例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为45μm,且,a层与b层之厚度比为1:1。其中,a层为酸改性聚丙烯(mpp)树脂,其熔点为140℃;以及于230℃下之MFR为7.0g/10分钟。其中,b层包含无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为12.0g/10分钟。
表10
Figure PCTCN2022092579-appb-000010
实施例11 锂电池复合包装材料的制备和性能表征
如表11所示,结合参照图1A,其中,于本实施例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为45μm,且,a层与b层之厚度比为1:1。其中,a层为酸改性聚丙烯(mpp)树脂,其熔点为150℃;以及于230℃下之MFR为10.0g/10分钟。其中,b层包含无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为12.0g/10分钟。
表11
Figure PCTCN2022092579-appb-000011
对比例1 锂电池复合包装材料的制备和性能表征
如表12所示,其中,于本对比例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为 45μm,且,a层与b层之厚度比为1∶9。其中,a层为酸改性聚丙烯(mpp)树脂,且,a层是由熔点为142℃、以及于230℃下之MFR为10g/10分的无规聚丙烯(r-pp)18重量份;熔点为162℃、以及于230℃下之MFR为3g/10分的均聚聚丙烯(h-pp)42重量份;低密度聚乙烯8重量份;以及结晶性丙烯弹性体32重量份所组成之混合树脂,其中:无规聚丙烯、与均聚聚丙烯是用马来酸酐改性而成的酸改性聚丙烯;以及a层混合树脂之熔点为155℃;以及于230℃下之MFR为5.0g/10分钟。其中,b层包含无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为12.0g/10分钟。
依以上之成分、与比例来形成a层、与b层时,结果发现:使用之无规聚丙烯中残留有树脂合成时所使用之催化剂的残渣1000ppm,其中,催化剂残渣包含:钛、钙、铝离子。
将本对比例1与实施例5进行比对,其中,实施例5提高了材料的耐热性能和绝缘性能等特性,其中,当a层与b层的厚度比为1:9时,由于a层的厚度较薄,会导致其耐热性能较差,其中,由于电池于使用时,在电池之充电、或放电过程中会产生热,若是a层之耐热性能不足,则会导致金属层1和内热熔接层3在高温下作用下产生剥离之情形。此外,当b层之MFR较高时,会使内热熔接层3的流动性提升,其中,于在热封时,使用之热封机所设定的热封条件为温度190℃、压力1.0Mpa、与热封时间3秒,在此热封条件下,会造成b层于热封时之厚度严重变薄,具体而言,于电解液存在之状态下,当b层变薄时,热封时之高温会使电解液气化,电解液气化的作用力会使厚度变薄的b层部分产生瑕疵、或裂纹,而使电解液穿过b层,并与金属层1接触,导致绝缘性能降低。另外,于电池加压时,会使电池内部被挤压部分之树脂流向没有被挤压的边缘部分,因此,当电池受到膨胀收缩、或弯曲加工等外力作用而引起裂缝时,亦会造成电解液通过裂缝而渗透至与金属层1接触,造成内热熔接层3(b层)的绝缘电阻下降,而发生漏电现象、或导致电池寿命会缩短。
此外,由于本对比例的催化剂残渣去除不充分,会导致内热熔接层3于厚度为30μm时,其绝缘破坏电压下降,绝缘破坏电压NG。因此可以推定热封后及电解液注液后更严苛的条件下的电阻也会有下降趋势。
表12
Figure PCTCN2022092579-appb-000012
对比例2 锂电池复合包装材料的制备和性能表征
如表13所示,本对比例2与对比例1之差别在于:对比例1的催化剂残渣较多,但低于1000ppm。其中,当催化剂残渣较多但低于1000ppm时,内热熔接层于30μm厚时的第一电阻值测定为「OK」,但第二电阻值、与电阻率测定结果为「NG」。
表13
Figure PCTCN2022092579-appb-000013
对比例3 锂电池复合包装材料的制备和性能表征
如表14所示,其中,于本对比例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为45μm,且,a层与b层之厚度比为4∶1。其中,a层为均聚聚丙烯(h-pp),其熔点为162℃、以及于230℃下之MFR为40g/10分钟,其中,均聚聚丙烯(h-pp)为用马来酸酐改性的聚丙烯。其中,b层为无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为12.0g/10分钟。
对比实施例5,对比例3之a层是使用高MFR的均聚聚丙烯(h-pp),且,无添加其他树脂,其中,当热封残存率为50%以上时,在电解液注入试验中绝缘破坏电压降低。30μm时,绝缘破坏电压、热封时的电阻没有问题,但电解液注液后的电阻也下降了。
表14
Figure PCTCN2022092579-appb-000014
对比例4 锂电池复合包装材料的制备和性能表征
其中,本对比例4之内层黏合层2的形成方法包含:把重均分子量为80000、熔点为80℃、以及酸值为2mg KOH/g的无水马来酸酐改性聚丙环溶液、和芳香族异氰酸脂(HDI,二甲基异氰酸脂)溶液以重量比例20:1进行混合,将所制成之混合溶液涂布于金属层1上干燥后,获得厚度为0.5μm的内层黏合层2。其中,于完成内层黏合层2后,使其与内热熔接层3复合,并在60℃之温度条件下进行3天的熟化处理,以获得本对比例之锂电池复合包装材料。
于本实施例中,如表15所示,其中:内热熔接层3为三层之结构,依序为a层31、b层32、与c层33,其中,a层31、b层32、与c层33之厚度比为1:8:1。其中,a层31为无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为7.0g/10分钟。b层32是由:乙烯含有率5%的嵌段聚丙烯(b-pp)65重量份;乙烯-聚丙烯弹性体10重量份;和丙烯-乙烯弹性体25重量份所组成的混合树脂,其熔点为160℃;以及于230℃下之MFR为3.0g/10分钟。c层33包含无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为7.0g/10分钟。
此外,于此对比例中,内热熔接层3的厚度为80μm;所述三层结构之内热熔接层3是预先用挤出机以螺杆挤出之方式将三层结构的薄膜进行卷取;于三层结构中,是以a层31与内层黏合层2接触。其中,内层黏合层2与内热熔接层3复合,以形成所述锂电池复合包装材料之内层。本公开之锂电池复合包装材料为一种铝塑膜,且,铝塑膜的内层可用来阻隔电解液,以提供铝塑膜之绝缘性、与耐液性能。但是,于本对比例中,催化剂残渣残留有500ppm。
将本对比例4对比实施例1,实施例1的材料的耐热性能提高、且在高温下保持避免发生剥离的可能,同时在进行热封,避免短路的可能,同时具有更少的催化剂残留;其中,本对比例之内层黏合层2的厚度为0.5μm,由于厚度较低,导致其耐热性能较低。由于电池在使用、和充放电过程中会产生热,若是耐热性能低则金属层1和内热熔接层3在高温下会发生剥离的情况。另外,当交联形成的内层黏合层2厚度较薄时,于进行热封时,极耳上的毛刺容易穿透内热熔接层、和内层黏合层2,而导致金属层1与极耳有一定接触的可能性,而造成短路。此外,本对比例之催化剂残渣除去不充分,当催化剂残渣较多,但低于1000ppm;且热封残存率在70%以上时,于第一、与第二电阻值测定之结果为「OK」,但是在第三电阻值之测定中,电阻会下降,因此测定之结果为「NG」。
表15
Figure PCTCN2022092579-appb-000015
对比例5 锂电池复合包装材料的制备和性能表征
如表16所示,为本案之对比例5,其中,于本对比例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为45μm,且,a层与b层之厚度比为1:1。其中,a层为酸改性聚丙烯(mpp)树脂,其熔点为130℃;以及于230℃之温度条件下的MFR为5.0g/10分钟。其中,b层为无规聚丙烯(r-pp)树脂,其熔点为120℃;以及于230℃下之MFR为12.0g/10分钟。
将本对比例5对比实施例5,实施例5的材料具有提高的耐热性能,可有效避免电池在使用、或充放电过程中产生热时,金属层1和内热熔接层3于高温下的剥离;其中,本对比例之a层的熔点低于140℃;以及b层的熔点低于135℃,由于本对比例之耐热性能较低,因此,当电池在使用、或充放电过程中产生热时,会造成金属层1和内热熔接层3于高温下产生剥离。
表16
Figure PCTCN2022092579-appb-000016
对比例6 锂电池复合包装材料的制备和性能表征
如表17所示,为本案之对比例6,其中,于本对比例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为45μm,且,a层与b层之厚度比为1:1。其中,a层为酸改性聚丙烯(mpp)树脂,其熔点为160℃;以及于230℃下之MFR为5.0g/10分钟。其中,b层为无规聚丙烯(r-pp),其熔点为145℃;以及于230℃下之MFR为12.0g/10分钟。
将本对比例6对比实施例5,其中,本对比例之a层的熔点高于155℃;以及b层的熔点高于135℃,造成本对比例于热封时,对起封之温度要求高,使得电池厂商于现有技术之热封条件下将本对比例热封时,无法保证热封的强度。由于电池在使用、或充放电过程中会产生热,因此,当热封强度低时,将会有电池之内容物泄漏的风险。
表17
Figure PCTCN2022092579-appb-000017
对比例7 锂电池复合包装材料的制备和性能表征
如表18所示,为本案之对比例7,其中,于本对比例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为45μm,且,a层与b层之厚度比为3:1。
其中,a层为酸改性聚丙烯(mpp)树脂,且,a层是由:熔点为142℃、以及于230℃下之MFR为10g/10分钟的无规聚丙烯18重量份;熔点为162℃、以及于230℃下之MFR为3g/10分钟的均聚聚丙烯42重量份;低密度聚乙烯8重量份;和结晶性丙烯弹性体32重量份所组成的混合树脂。其中,所使用之无规聚丙烯、与均聚聚丙烯,是用马来酸酐改性而成的酸改性聚丙烯,且,a层混合树脂之熔点为155℃;以及于230℃下之MFR为5.0g/10分钟。其中,b层包含无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为12.0g/10分钟。
将本对比例7与实施例5比较,实施例5具有更少的催化剂残留,并且具有提高的耐液剥离强度;其中,本对比例之内层黏合层2和内热熔接层3的层比为3:1,超出2至1:1至3,因此,于内层黏合层2中之催化剂残留占比较多。由于内层黏合层2之成分包含由马来酸酐改性的聚丙烯,因此其极性基团含量高,其中,一部分之极性基团是用于捕捉氢氟酸;而其余部分之极性基团会与内层黏合层2之溶剂成分反应,导致内层黏合层2之耐液剥离强度下降,使得电池于使用过程中,于高温之状态下,金属层1与内热熔接层3间会产生剥离。
表18
Figure PCTCN2022092579-appb-000018
对比例8 锂电池复合包装材料的制备和性能表征
如表19所示,为本案之对比例8,其中,于本对比例中,以内层黏合层2为a层:以及内热熔接层3为b层,其中:两层之厚度合为45μm,且,a层与b层之厚度比为1:1。其中,a层包含:酸改性聚丙烯(mpp)树脂,其熔点为155℃;以及于230℃下之MFR为3.0g/10分钟。其中,b层包含:无规聚丙烯(r-pp)树脂,其熔点为135℃;以及于230℃下之MFR为8.0g/10分钟。
以本对比例8对比实施例5,实施例5具有提高的电池复合包装材料之强度;其中,本对比例之内层黏合层2、和内热熔接层3的MFR较低,因此树脂之流动性较差,由于在热封时无法很好的将内层黏合层2、和内热熔接层3熔融,导致热封后所获得之整体锂电池复合包装材料之强度较低。
但是热封残存在残存率在70%以上,绝缘破坏电压OK,但是在电解液注液后更严苛的条件下的电阻下降。
表19
Figure PCTCN2022092579-appb-000019
与现有技术相比,本公开相对于先前技术之功效在于:通过调整内层黏合层2和内热熔接层3中所含之树脂成分的种类、与比例,而调整内层黏合层2和内热熔接层3树脂之熔点、与MFR;通过调整内层黏合层2中所使用之固化剂的种类、控制于树脂合成时,所使用之催化剂所产生的残渣量;以及控制内层黏合层2和内热熔接层3之厚度比,使内层黏合层2和内热熔接层3之厚度合为30μm以上,且在温度条件为23±5℃、以及湿度条件为50±5%Rh的环境下加压250v时,所测得的电阻值为2.5GΩ/μm以上。
其中,于第二电阻值测定中,当热封过后之内层黏合层2和内热熔接层3的层迭体的残存率为50%以上时,且,在温度条件为23±5℃、以及湿度条件为50±5%Rh的环境下加压250v时,金属层1和内热熔接层3的电阻值为1.0GΩ/μm以上。以及,于电阻率测定中,当于温度条件为23±5℃、以及湿度条件为50±5%Rh之环境下加压250V时,所测得的电阻率在200MΩ以上。本公开提供稳定之热封性能、与绝缘性能,使依本公开所制成之锂电池能够拥有更长之使用寿命,且,稳定性和安全性更高。
惟以上所述者,仅为本公开的典型实施方式,但不能以此限定本公开的专利保护范围;故,凡依本公开的专利保护范围及说明书内容所作的简单的等效改变与修饰,皆仍落入本公开的专利保护范围内。
工业实用性
本公开提供的锂电池复合包装材料具备高稳定之热封性能、与绝缘性能,使依本公开所制成之锂电池能够拥有更长之使用寿命,并且稳定性和安全性更高,因此具有优异的工业实用性能。

Claims (13)

  1. 一种锂电池复合包装材料,包含:
    一金属层;
    一内层黏合层,形成于所述金属层之一侧;以及
    一内热熔接层,形成于所述内层黏合层相对于所述金属层之一侧,其中,所述内热熔接层是与锂电池中之电解液直接接触,且,所述内层黏合层与所述内热熔接层之厚度总和≥25μm,且,于温度条件为23±5℃、以及湿度条件为50±5%Rh之环境下加压250v时,所述内热熔接层之电阻值≥2.5GΩ/μm。
  2. 依据权利要求1的锂电池复合包装材料,其中,所述内层黏合层与所述内热熔接层之厚度比为2至1:1至3。
  3. 依据权利要求1或2的锂电池复合包装材料,其中,所述内层黏合层之熔点为:140至155℃;以及所述内热熔接层之熔点为135℃。
  4. 依据权利要求1-3中任一项的锂电池复合包装材料,其中,所述内层黏合层于230℃下之MFR为5至12g/10分钟;以及所述内热熔接层于230℃下之MFR为12g/10分钟。
  5. 依据权利要求1-4中任一项的锂电池复合包装材料,其中,所述内热熔接层为三层结构,依序包含一a层、一b层、与一c层,其中,所述a层相对于所述b层之一侧与所述内层黏合层接触,且,所述a层之厚度:所述b层之厚度:所述c层之厚度为1至2:2至8:1至3。
  6. 依据权利要求5的锂电池复合包装材料,其中,所述a层之熔点为135至152℃;所述b层之熔点为140至160℃;以及所述c层之熔点为130至145℃。
  7. 依据权利要求5的锂电池复合包装材料,其中,所述a层于230℃下之MFR为3至7g/10分钟;所述b层于230℃下之MFR为3至10g/10分钟;以及所述c层于230℃下之MFR为7至15g/10分钟。
  8. 依据权利要求1-7中任一项的锂电池复合包装材料,其中,所述内热熔接层之材料包含:50wt%以上之聚丙烯的共聚物、或50wt%以上之聚丙烯的混合物。
  9. 依据权利要求1-8中任一项的锂电池复合包装材料,更包含:一外基材层,设置于所述金属层相对于所述内层黏合层之一侧。
  10. 依据权利要求9的锂电池复合包装材料,其中,所述外基材层之原料包含:聚酯、聚酰胺、聚烯烃、环氧树脂、丙烯酸树脂、氟树脂、聚氨酯、硅树脂、或酚醛树脂。
  11. 依据权利要求9或10的锂电池复合包装材料,更包含:一外层黏合层,形成于所述金属层与所述外基材层之间。
  12. 一种锂电池复合包装材料,包含:一第一锂电池复合包装材料、以及一第二锂电池复合包装材料,其中:
    所述第一锂电池复合包装材料包含:
    一外基材层;
    一金属层,设置于所述外基材层之一侧;
    一内层黏合层,形成于所述金属层相对于所述外基材层之一侧;以及
    一内热熔接层,形成于所述内层黏合层相对于所述金属层之一侧;以及
    所述第二锂电池复合包装材料之结构与所述第一锂电池复合包装材料相同,且,所述第二锂电池复合包装材料与所述第一锂电池复合包装材料相对应地设置,以界定出一容置空间,其中:所述容置空间与所述内热熔接层接触,且,所述容置空间可容纳一电解液,其中,经过热封后,当所述内层黏合层与所述内热熔接层之残存率为50%以上,且,于温度条件为23±5℃、以及湿度条件为50±5%Rh之环境下加压250v时,所述金属层和所述内热熔接层的电阻值为1.0GΩ/μm以上。
  13. 一种锂电池复合包装材料,包含:一第一锂电池复合包装材料、一第二锂电池复合包装材料、以及一电解液,其中:
    所述第一锂电池复合包装材料包含:
    一外基材层;
    一金属层,设置于所述外基材层之一侧;
    一内层黏合层,形成于所述金属层相对于所述外基材层之一侧;以及
    一内热熔接层,形成于所述内层黏合层相对于所述金属层之一侧;
    所述第二锂电池复合包装材料之结构与所述第一锂电池复合包装材料相同,且,所述第二锂电池复合包装材料与所述第一锂电池复合包装材料相对应地设置,以界定出一容置空间,其中:所述容置空间与所述内热熔接层接触;以及
    所述电解液容置于所述容置空间中,且,其含有:一混合溶剂,包含:碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、与碳酸二乙酯(DEC);以及1Mol的LiPF6(六氟磷酸锂),其中,经过热封后,所述内层黏合层与所述内热熔接层之残存率为50%以上,且,所述电解液于85℃之温度条件下放置24小时后,再于温度条件为23±5℃、以及湿度条件为50±5%Rh之环境下加压250v时,所述金属层和所述电解液间的电阻率为200MΩ以上。
PCT/CN2022/092579 2021-12-30 2022-05-13 锂电池复合包装材料 WO2023123817A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111651437.8A CN114300792A (zh) 2021-12-30 2021-12-30 锂电池复合包装材料
CN202111651437.8 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023123817A1 true WO2023123817A1 (zh) 2023-07-06

Family

ID=80972713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092579 WO2023123817A1 (zh) 2021-12-30 2022-05-13 锂电池复合包装材料

Country Status (2)

Country Link
CN (1) CN114300792A (zh)
WO (1) WO2023123817A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284637B (zh) * 2021-12-30 2024-06-07 江苏睿捷新材料科技有限公司 金属复合膜及其制备方法
CN114300792A (zh) * 2021-12-30 2022-04-08 江苏睿捷新材料科技有限公司 锂电池复合包装材料
CN114678637B (zh) * 2022-04-18 2023-12-08 江苏睿捷新材料科技有限公司 一种锂离子电池包装用铝塑复合膜及电池
CN115000596A (zh) * 2022-06-10 2022-09-02 江苏睿捷新材料科技有限公司 具有高耐腐蚀性的锂电池复合包装材料与锂电池
CN115534463A (zh) * 2022-10-10 2022-12-30 苏州融达信新材料科技有限公司 一种马口铁的内外层复合膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1702885A (zh) * 2001-06-20 2005-11-30 大日本印刷株式会社 电池用包装材料
CN102969463A (zh) * 2011-09-01 2013-03-13 昭和电工包装株式会社 电池用包装材料及锂二次电池
JP2019117701A (ja) * 2017-12-26 2019-07-18 大日本印刷株式会社 電池用包装材料及び電池
CN114300792A (zh) * 2021-12-30 2022-04-08 江苏睿捷新材料科技有限公司 锂电池复合包装材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220101016A (ko) * 2017-04-20 2022-07-18 다이니폰 인사츠 가부시키가이샤 전지용 포장 재료, 그의 제조 방법 및 전지
WO2019074016A1 (ja) * 2017-10-11 2019-04-18 大日本印刷株式会社 ポリブチレンテレフタレートフィルム、電池用包装材料、電池用包装材料の製造方法、及び電池
JP7325926B2 (ja) * 2017-12-26 2023-08-15 大日本印刷株式会社 電池用包装材料及び電池
CN113059884A (zh) * 2021-03-17 2021-07-02 上海恩捷新材料科技有限公司 一种电池元件用高成型且耐久性优异的外包装材料及电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1702885A (zh) * 2001-06-20 2005-11-30 大日本印刷株式会社 电池用包装材料
CN102969463A (zh) * 2011-09-01 2013-03-13 昭和电工包装株式会社 电池用包装材料及锂二次电池
JP2019117701A (ja) * 2017-12-26 2019-07-18 大日本印刷株式会社 電池用包装材料及び電池
CN114300792A (zh) * 2021-12-30 2022-04-08 江苏睿捷新材料科技有限公司 锂电池复合包装材料

Also Published As

Publication number Publication date
CN114300792A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2023123817A1 (zh) 锂电池复合包装材料
KR101494589B1 (ko) 전지용 포장 재료
JP6648863B2 (ja) 電池用包装材料、その製造方法、及び電池
JP7205547B2 (ja) アルミニウム合金箔、蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2023092957A1 (zh) 金属复合膜层及其制备方法
CN113059884A (zh) 一种电池元件用高成型且耐久性优异的外包装材料及电池
WO2023093072A1 (zh) 一种耐电解液锂离子电池装置用外包装材料及电池
WO2016159190A1 (ja) 電池用包装材料、その製造方法及び電池
JP2024063170A (ja) 蓄電デバイス用外装材、蓄電デバイス用外装材の製造方法、及び蓄電デバイス
JP6555454B1 (ja) 電池用包装材料、その製造方法、電池及びアルミニウム合金箔
JP7367645B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2017188445A1 (ja) 電池用包装材料及び電池
JP7367646B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JPWO2018066671A1 (ja) 電池用包装材料、その製造方法、及び電池
CN113927973A (zh) 一种高冲深电池装置用外包装材料
CN109964333B (zh) 电池用包装材料、其制造方法和电池
JP6690800B1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
CN112912982A (zh) 蓄电器件用外装材料、其制造方法和蓄电器件
US20230223620A1 (en) Outer packaging for electrical storage devices, method for manufacturing said outer packaging, and electrical storage device
WO2023190997A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2023058701A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP2024075583A (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
CN115000593A (zh) 具有高耐腐蚀性的锂电池复合包装材料与锂电池
CN115000596A (zh) 具有高耐腐蚀性的锂电池复合包装材料与锂电池
CN117136458A (zh) 蓄电器件用外包装材料、其制造方法和蓄电器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913113

Country of ref document: EP

Kind code of ref document: A1