WO2023123705A1 - 一种内衬管气体渗透检测装置 - Google Patents

一种内衬管气体渗透检测装置 Download PDF

Info

Publication number
WO2023123705A1
WO2023123705A1 PCT/CN2022/083011 CN2022083011W WO2023123705A1 WO 2023123705 A1 WO2023123705 A1 WO 2023123705A1 CN 2022083011 W CN2022083011 W CN 2022083011W WO 2023123705 A1 WO2023123705 A1 WO 2023123705A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
steel pipe
ball valve
detection device
gas permeation
Prior art date
Application number
PCT/CN2022/083011
Other languages
English (en)
French (fr)
Inventor
霍福磊
陈江慧
刘跃明
裴整社
褚展鹏
金崇阳
王俊程
Original Assignee
临海伟星新型建材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 临海伟星新型建材有限公司 filed Critical 临海伟星新型建材有限公司
Publication of WO2023123705A1 publication Critical patent/WO2023123705A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Definitions

  • the invention belongs to the technical field of pipe performance detection, and in particular relates to a gas permeation detection device for an inner lining pipe.
  • a Pipeline Gas Permeability Test Device discloses a pipe gas permeability detection device, but this patent only tests the pressure of the permeated gas, the test data is single, the error is large, and it cannot be very accurate. It is good to explain the gas permeation per unit time of the pipe, and it has a large limit on the pipe specification, and the test efficiency is low.
  • the present invention provides a gas permeation detection device for lined pipes, which solves the technical problems of the existing gas permeation detection devices such as small application range, single test data, low test efficiency and inability to detect gas permeation of lined plastic pipes. .
  • a gas permeation detection device for a lined pipe characterized in that it includes a steel pipe, a lined plastic pipe, a welded nozzle, a test element bracket, a buffer tank, a first high-pressure ball valve, a second high-pressure ball valve, and a test element.
  • the plastic pipe is lined in the steel pipe.
  • Flange pieces are welded at both ends of the steel pipe.
  • a flange blind plate is connected to the flange piece.
  • a steel pipe outlet hole is opened at one end of the steel pipe close to the predetermined distance from the flange piece.
  • the welded nozzle is The cylindrical hollow structure is fixed at the concentric position with the steel pipe air outlet, the lower end of the test element support is connected to the welding nozzle, the upper end of the test element support is connected to the first high-pressure ball valve, and the buffer tank is an internal hollow structure , the lower part and the upper part of the buffer tank are respectively connected with the first high-pressure ball valve and the second high-pressure ball valve.
  • the test element includes a first temperature sensor, a first pressure sensor, and a first pressure gauge arranged on the test element bracket, and also includes a second temperature sensor arranged on the flange blind plate. sensor, a second pressure sensor, and a second pressure gauge.
  • the area between the steel pipe and the lined plastic pipe is an annular area, and the annular area communicates with the inside of the test element bracket, and the two ends of the annular area are sealed by flange blind plates .
  • the volume of the buffer tank is larger than the volume of the annular region.
  • the end face of one end of the welding nozzle is an arc end face, and the arc end face fits the outer diameter of the steel pipe.
  • the predetermined distance is 50 cm from the flange piece at one end, and the diameter of the air outlet of the steel pipe is 2-5 mm.
  • the flange blind plate and the flange piece are sealed and fixed by bolts and nuts.
  • the flange blind plate at one end of the steel pipe is also provided with a blind plate air inlet, which is used for passing the gas to be tested into the pipeline.
  • the lower part and the upper part of the buffer tank are respectively connected to the first high-pressure ball valve and the second high-pressure ball valve through connecting pieces, and a flow meter is also connected to the upper part of the second high-pressure ball valve.
  • the technical scheme of the present invention by setting buffer tanks, welding nozzles, test element brackets, high-pressure ball valves, flow meters and other devices, and respectively setting test elements such as temperature sensors, pressure sensors, and pressure gauges in the annular area and inside the pipes, it is possible to detect the penetration
  • the temperature, pressure and permeation amount of the gas permeation of the plastic pipe are detected.
  • the device of the present invention has novel structure, convenient operation and high detection accuracy, which solves the problem that the existing gas permeation detection device cannot evaluate the gas permeation performance of the plastic pipe, and has great advantages. Great application prospects.
  • Fig. 1 is a schematic structural view of a liner pipe gas permeation detection device of the present invention
  • Fig. 2 is a cross-sectional view of a liner pipe gas permeation detection device of the present invention
  • Fig. 3 is a partially enlarged view of part A in Fig. 2;
  • a lined pipe gas permeation detection device includes a steel pipe 1, a plastic-lined pipe 2, a welded nozzle 3, a test component bracket 4, a buffer tank 5, a high-pressure ball valve and various test components.
  • the lined plastic pipe 2 is lined in the steel pipe 1, and the two ends of the steel pipe 1 are welded with flange pieces 6 for connecting the flange blind plate 7.
  • 50cm is provided with a 2-5mm steel pipe air outlet 8 (the steel pipe air outlet 8 cannot be too large, too large will cause the lined plastic pipe 2 to be damaged under high pressure), which can ensure that the lined plastic pipe 2 will not be damaged by the internal gas pressure.
  • the annular space area hereinafter referred to as the annular area 22
  • the welded nozzle 3 is a cylindrical hollow structure, which is fixedly arranged at a position concentric with the steel pipe outlet 8, and one end of the welded nozzle 3 is designed with a circular arc end face, and its arc corresponds to the outer diameter of the steel pipe 1, and is used to cling to the steel pipe
  • the outer wall is sealed and fixed on the surface of the steel pipe 1 by welding.
  • test element support 4 The lower end of the test element support 4 is threadedly connected to the upper end of the welding nozzle 3, and the surface of the test element support 4 is provided with three threaded holes for the installation of the test element, and the first temperature sensor 13 and the first pressure sensor are installed respectively. 14 and the first pressure gauge 15 are used to detect the temperature and pressure in the annular area 22.
  • the buffer tank 5 is a cylindrical hollow structure, and both ends are provided with threaded holes.
  • the lower part and the upper part of the buffer tank 5 are threadedly connected with the first high-pressure ball valve 10 and the second high-pressure ball valve 11 through the connecting piece 9 respectively, and its main function is Because the gas pressure in the annular region 22 and the test element support 4 area is too high, and the flow rate is small, in order to measure the flow rate of the gas more accurately, the gas pressure is released through the larger buffer tank 5 of the volume, (such as the original annular
  • the internal pressure of the domain 22 is 3MPa, and the pressure release reaches 0.5MPa through the buffer, and the internal volume of the buffer tank 5 is much larger than that of the annular domain 22).
  • the first high-pressure ball valve 10 is connected to the upper end of the test element bracket 4 through threads, and the upper end of the second high-pressure ball valve 11 is also connected with a flow meter 12 .
  • the sequence of the upper parts of the welding nozzle of the present invention is as follows: welding nozzle 3, test element support 4, first high-pressure ball valve 10, connecting piece 9, buffer tank 5, connecting piece 9, second high-pressure ball valve 11, flowmeter 12 , are connected and fixed with each other through threaded devices.
  • the flange blind plate 7 and the flange piece 6 of the present invention are sealed and fixed by bolts 19 and nuts 20, and the blind flange plate 7 is also provided with a blind plate air inlet 21, which is input into the plastic pipe through the blind plate air inlet 21. gas.
  • a second temperature sensor 16, a second pressure sensor 17, and a second pressure gauge 18 are installed on the blind flanges 7 at both ends of the steel pipe 1 to detect the temperature and pressure of the gas in the plastic pipe.
  • a gas permeation detection device for a lined pipe of the present invention specifically includes the following steps during operation: closing the first high-pressure ball valve 10 and the second high-pressure ball valve 11, and feeding the gas to be measured through the blind plate on the flange blind plate 7
  • the port 21 is injected into the interior of the lined plastic pipe 2, and the pressure is kept constant for a certain period of time.
  • the internal gas can be clearly read by observing and comparing the first pressure sensor 14 and the second pressure sensor 17 and the first pressure gauge 15 and the second pressure gauge 18. pressure.
  • the first high-pressure ball valve 10 When the gas in the plastic pipe permeates to the annular region 22 and the internal pressure of the plastic pipe is consistent, open the first high-pressure ball valve 10 so that the gas is charged to the buffer tank 5 to release the pressure (because the permeation is very slow and the process speed is fast, its influence can be ignored), After the pressure drops to within the pressure range of the flowmeter, the second high-pressure ball valve 11 is opened to measure the gas flow through the flowmeter 12 .
  • the device of the invention can test the permeation volume of plastic pipes of different materials to different gases at a certain temperature and pressure, and can test higher pressure gases due to the existence of the buffer. This device can evaluate the barrier performance of plastic pipes made of different materials to specific gases, so as to ensure the safe and reliable service operation of the lined pipe.
  • the technical solution of the present invention by setting buffer tanks, welding nozzles, test element brackets, high-pressure ball valves, flow meters and other devices, and respectively setting test elements such as temperature sensors, pressure sensors, and pressure gauges in the annular area and inside the pipe, It can monitor the temperature, pressure and other information of the permeated gas in the pipe and the outer annular area of the plastic pipe in real time.
  • test elements such as temperature sensors, pressure sensors, and pressure gauges in the annular area and inside the pipe.
  • the gas penetrates into the annular area and the internal pressure of the plastic pipe is consistent, it can be detected by measuring the gas pressure in the annular area.
  • the flow information of permeated gas is measured by flowmeter.
  • the device of the invention has novel structure, convenient operation and high detection accuracy, solves the problem that the existing gas permeation detection device cannot evaluate the gas permeation performance of plastic pipelines, and has great application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种内衬管气体渗透检测装置,包括钢管(1)、内衬塑料管(2)、焊接管嘴(3)、测试元件支架(4)、缓冲罐(5)、高压球阀(10,11)以及测试元件,钢管(1)两端焊接有法兰片(6),用于连接法兰盲板(7),在钢管(1)一端设有钢管出气孔(8),焊接管嘴(3)为圆柱中空结构,固定设置在与钢管出气孔(8)同心的位置上,测试元件支架(4)连接在焊接管嘴(3)上,测试元件支架(4)的表面设置有供测试元件安装的螺纹孔,缓冲罐(5)为内部中空结构,下部和上部分别通过连接件(9)与第一高压球阀(10)和第二高压球阀(11)连接,第一高压球阀(10)连接在测试元件支架(4)的上端部,第二高压球阀(11)还连接有流量计(12)。解决了现有气体渗透检测装置无法评价塑料管道气体渗透性能的问题。

Description

一种内衬管气体渗透检测装置 技术领域
本发明属于管材性能检测技术领域,具体涉及一种内衬管气体渗透检测装置。
背景技术
在油田领域中,油气田地面集输管道HTPO内穿插防护累计用量越来越多,约占总管线应用量的16.9%,在油田地面集输管道中应用效果良好,使管道腐蚀穿孔数降为0.26次/百公里/年。据统计,HTPO内衬管塌陷失效占内衬管防护管道累计失效总次数的24%。HTPO内衬管因地势高程起伏、接头连接、小分子气体渗透至夹层等原因致使内衬管发生塌陷失效。因此需结合国内外非金属内衬管防坍塌技术应用经验及效果,开展HTPO内衬管夹层气体的排气工艺研究,并制定方案进行现场试验,以保障HTPO内衬管安全可靠服役运行。
现有气体渗透检测装置常用于薄膜、片材类材料,如G2/131气体渗透仪测试仪、VAC-V2透气仪、GDP-C气体渗透性测试仪等,测试样品面积小,且薄膜厚度较小,对具有一定壁厚和长度较大的管材类气体渗透性能参考意义较小,仪器对测试气体种类要求高,可测试气体种类少,测试压力小,普遍在0.2-0.6MPa之间,而油气田地面集输管道输送压力在2MPa以上,仪器测试压力难以与实际应用相结合。针对管材类,现有产品多为管材气密性检测装置,针对渗透量检测减少。专利《一种管材气体渗透性测试装置》,公开号:CN203811338U,公开了一种管道气体渗透量检测装置,但是该专利仅仅对渗透气体的压力进行测试,测试数据单一,误差较大,不能很好说明管材的单位时间气体渗透量,且对管材规格限制较大,测试效率低。
发明内容
针对上述问题情况,本发明提供一种内衬管气体渗透检测装置,解决现有的气体渗透检测装置应用范围小,测试数据单一,测试效率低并且无法检测内衬塑料管气体渗透量等技术问题。
为了实现上述目的,本发明采取的技术方案为:
一种内衬管气体渗透检测装置,其特征在于,包括钢管、内衬塑料管、焊接管嘴、测试元件支架、缓冲罐、第一高压球阀、第二高压球阀以及测试元件,所述内衬塑料管内衬在钢管内,所述钢管两端焊接法兰片,法兰片上连接有法兰盲板,在钢管一端靠近法兰片预定距离 处开设有钢管出气孔,所述焊接管嘴为圆柱中空结构,固定设置在与钢管出气孔同心的位置上,所述测试元件支架的下端连接在焊接管嘴上,测试元件支架的上端连接有第一高压球阀,所述缓冲罐为内部中空结构,缓冲罐的下部和上部分别与第一高压球阀和第二高压球阀连接。
作为本发明的技术方案,进一步的,所述测试元件包含设置在测试元件支架上的第一温度传感器、第一压力传感器以及第一压力表,还包含设置在法兰盲板上的第二温度传感器、第二压力传感器以及第二压力表。
作为本发明的技术方案,进一步的,所述钢管和内衬塑料管之间的区域为环形域,所述环形域与测试元件支架内部连通,环形域的两端部通过法兰盲板进行密封。
作为本发明的技术方案,进一步的,所述缓冲罐的体积大于环形域的体积。
作为本发明的技术方案,进一步的,所述焊接管嘴一端的端面为圆弧端面,所述圆弧端面与钢管外径相贴合。
作为本发明的技术方案,进一步的,所述预定距离为距离一端的法兰片50cm,所述钢管出气孔的直径为2-5mm。
作为本发明的技术方案,进一步的,所述法兰盲板和法兰片通过螺栓和螺母进行密封固定。
作为本发明的技术方案,进一步的,所述钢管一端的法兰盲板上还设置有盲板进气孔,用于往管道内通入待测试的气体。
作为本发明的技术方案,进一步的,缓冲罐的下部和上部分别通过连接件与第一高压球阀和第二高压球阀连接,第二高压球阀上部还连接有流量计。
本发明技术方案,通过设置缓冲罐、焊接管嘴、测试元件支架、高压球阀、流量计等装置以及分别在环形域及管材内部分别设置温度传感器、压力传感器、压力表等测试元件,能够对渗透塑料管的气体渗透的温度、压力以及渗透量等信息进行检测,本发明装置结构新颖、操作便捷、检测精度高,解决了现有气体渗透检测装置无法评价塑料管道气体渗透性能的难题,具有很大的应用前景。
附图说明
图1为本发明的一种内衬管气体渗透检测装置结构示意图;
图2为本发明的一种内衬管气体渗透检测装置剖视图;
图3为图2中A部分局部放大图;
图中:1、钢管;2、内衬塑料管;3、焊接管嘴;4、测试元件支架;5、缓冲罐;6、法兰片;7、法兰盲板;8、钢管出气孔;9、连接件;10、第一高压球阀;11、第二高压球阀;12、流量计;13、第一温度传感器;14、第一压力传感器;15、第一压力表;16、第二温度传感器;17、第二压力传感器;18、第二压力表;19、螺栓;20、螺母;21、盲板进气孔;22、环形域。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-2所示,一种内衬管气体渗透检测装置,包括钢管1、内衬塑料管2、焊接管嘴3、测试元件支架4、缓冲罐5、高压球阀以及多种测试元件,其中内衬塑料管2内衬在钢管1内,所述钢管1两端焊接有法兰片6,用于连接法兰盲板7,在钢管1一端靠近法兰片处(如离法兰片50cm处)开设有一个2-5mm钢管出气孔8(钢管出气孔8不能过大,过大会导致内衬塑料管2在高压下损坏),既能保证内衬塑料管2不会因内部气体压力而损坏,又能保证内衬塑料管2与钢管1之间的环形空间区域(以下简称环形域22)与测试元件支架4内部互通;
所述焊接管嘴3为圆柱中空结构,固定设置在与钢管出气孔8同心的位置上,焊接管嘴3一端为圆弧端面设计,其弧度与钢管1外径相对应,用以贴紧钢管外壁,采用焊接的方式密封固定在钢管1表面。
所述测试元件支架4的下端通过螺纹连接在焊接管嘴3的上端,测试元件支架4的表面设置有供测试元件安装的三个螺纹孔,分别安装有第一温度传感器13、第一压力传感器14以及第一压力表15,用于对环形域22内的温度和压力进行检测。
所述缓冲罐5为圆柱形中空结构,两端面都设置有螺纹孔,缓冲罐5的下部和上部分别通过连接件9与第一高压球阀10和第二高压球阀11螺纹连接,其主要作用是由于环形域22以及测试元件支架4区域内气体压力过高,而流量较小,为更准确的测得气体的流量,将气体压力通过体积较大的缓冲罐5进行泄压,(比如原先环形域22内部压力3MPa,通过缓冲器泄压达到0.5MPa,缓冲罐5内部体积远大于环形域22体积)。
第一高压球阀10通过螺纹连接在测试元件支架4的上端部,第二高压球阀11上端还连接有流量计12。
本发明的焊接管嘴的上部部件顺序依次为:焊接管嘴3、测试元件支架4、第一高压 球阀10、连接件9、缓冲罐5、连接件9、第二高压球阀11、流量计12,彼此之间通过螺纹装置进行连接固定。
本发明法兰盲板7和法兰片6通过螺栓19和螺母20进行密封固定,法兰盲板7上还设置有盲板进气孔21,通过盲板进气孔21往塑料管道内输入气体。钢管1两端的法兰盲板7上安装有第二温度传感器16、第二压力传感器17以及第二压力表18等测试元件,用于对塑料管内气体的温度和压力进行检测。
本发明的一种内衬管气体渗透检测装置,具体在操作时包括如下步骤:关闭第一高压球阀10和第二高压球阀11,将待测气体通过法兰盲板7上的盲板进气口21注入内衬塑料管2内部,恒定压力,维持一定时间,可通过观察对比第一压力传感器14和第二压力传感器17以及第一压力表15和第二压力表18可清楚读得内部气体压力。待塑料管内气体渗透至环形域22与塑料管内部压力一致时,打开第一高压球阀10使得气体充至缓冲罐5泄压(由于渗透非常缓慢而此过程速度较快,可忽略其影响),待压力降至流量计压力量程内,打开第二高压球阀11通过流量计12测得气体流量。
通过本发明装置可测试不同材质塑料管材在一定温度、压力下对不同气体的渗透量,而且由于缓冲器的存在可测试较高压力的气体。此装置可以评价出不同材质塑料管对特定气体的阻隔性能,从而保证内衬内衬管安全可靠的服役运行。
综上,本发明技术方案,通过设置缓冲罐、焊接管嘴、测试元件支架、高压球阀、流量计等装置以及分别在环形域及管材内部分别设置温度传感器、压力传感器、压力表等测试元件,能够实时对渗透塑料管的管内及管外环形域的渗透气体的温度、压力等信息进行监控,当待气体渗透至环形域与塑料管内部压力一致时进行检测,通过测量环形域的气体压力进行管道渗透性能的检测,通过流量计测得渗透气体流量信息。
本发明装置结构新颖、操作便捷、检测精度高,解决了现有气体渗透检测装置无法评价塑料管道气体渗透性能的难题,具有很大的应用前景。

Claims (9)

  1. 一种内衬管气体渗透检测装置,其特征在于,包括钢管(1)、内衬塑料管(2)、焊接管嘴(3)、测试元件支架(4)、缓冲罐(5)、第一高压球阀(10)、第二高压球阀(11)以及测试元件,所述内衬塑料管(2)内衬在钢管(1)内,所述钢管(1)两端焊接法兰片(6),法兰片(6)上连接有法兰盲板(7),在钢管(1)一端靠近法兰片(6)预定距离处开设有钢管出气孔(8),所述焊接管嘴(3)为圆柱中空结构,固定设置在与钢管出气孔(8)同心的位置上,所述测试元件支架(4)的下端连接在焊接管嘴(3)上,测试元件支架(4)的上端连接有第一高压球阀(10),所述缓冲罐(5)为密封的内部中空结构,缓冲罐(5)的下部和上部开设有连接口分别与第一高压球阀(10)和第二高压球阀(11)连接。
  2. 根据权利要求1所述的一种内衬管气体渗透检测装置,其特征在于,所述测试元件包含设置在测试元件支架(4)上的第一温度传感器(13)、第一压力传感器(14)以及第一压力表(15),还包含设置在法兰盲板(7)上的第二温度传感器(16)、第二压力传感器(17)以及第二压力表(18)。
  3. 根据权利要求2所述的一种内衬管气体渗透检测装置,其特征在于,所述钢管(1)和内衬塑料管(2)之间的区域为环形域(22),所述环形域(22)与测试元件支架(4)内部连通,环形域(22)的两端部通过法兰盲板(7)进行密封。
  4. 根据权利要求3所述的一种内衬管气体渗透检测装置,其特征在于,所述缓冲罐(5)的体积大于环形域(22)的体积。
  5. 根据权利要求1所述的一种内衬管气体渗透检测装置,其特征在于,所述焊接管嘴(3)一端的端面为圆弧端面,所述圆弧端面与钢管(1)外径相贴合。
  6. 根据权利要求1所述的一种内衬管气体渗透检测装置,其特征在于,所述钢管出气孔(8)的直径为2-5mm。
  7. 根据权利要求1所述的一种内衬气体渗透检测装置,其特征在于,所述法兰盲板(7)和法兰片(6)通过螺栓(19)和螺母(20)进行密封固定。
  8. 根据权利要求7所述的一种内衬气体渗透检测装置,其特征在于,所述钢管(1)一端的法兰盲板(7)上还设置有盲板进气孔(21),用于往管道内通入待测试的气体。
  9. 根据权利要求1所述的一种内衬气体渗透检测装置,其特征在于,缓冲罐(5) 的下部和上部分别通过连接件(9)与第一高压球阀(10)和第二高压球阀(11)连接,第二高压球阀(11)上部还连接有流量计(12)。
PCT/CN2022/083011 2021-12-28 2022-03-25 一种内衬管气体渗透检测装置 WO2023123705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111617615.5 2021-12-28
CN202111617615.5A CN114324109A (zh) 2021-12-28 2021-12-28 一种内衬管气体渗透检测装置

Publications (1)

Publication Number Publication Date
WO2023123705A1 true WO2023123705A1 (zh) 2023-07-06

Family

ID=81015248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083011 WO2023123705A1 (zh) 2021-12-28 2022-03-25 一种内衬管气体渗透检测装置

Country Status (2)

Country Link
CN (1) CN114324109A (zh)
WO (1) WO2023123705A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201266131Y (zh) * 2008-08-28 2009-07-01 西安向阳航天材料股份有限公司 复合管衬管气密检测装置
CN103674808A (zh) * 2013-12-17 2014-03-26 中国石油天然气集团公司 全尺寸非金属管材气体渗透性能的测试装置及其测试方法
CN107606488A (zh) * 2017-10-30 2018-01-19 中国石油天然气集团公司管材研究所 一种热塑性塑料内衬钢管环空内渗透气体检测控制系统
CN210487482U (zh) * 2019-04-28 2020-05-08 中国石油化工股份有限公司 一种测试内衬管耐温耐介质性能的实验装置
US20200200329A1 (en) * 2017-06-12 2020-06-25 Uti Limited Partnership Pipe apparatus, pipe system, and method of detecting a leak in a conduit
CN112903562A (zh) * 2021-01-25 2021-06-04 北京临近空间飞行器系统工程研究所 一种树脂基复合材料渗透率测试装置及测试方法
CN113188978A (zh) * 2021-06-10 2021-07-30 中国石油天然气集团有限公司 一种非金属复合管材全尺寸气体渗透检测装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141504B (zh) * 2011-01-27 2013-06-12 中国商用飞机有限责任公司 在铺层厚度方向上测试气体渗透率的测试装置及其方法
CN203811338U (zh) * 2014-03-12 2014-09-03 武汉纺织大学 一种管材气体渗透性测试装置
CN106268347A (zh) * 2016-09-26 2017-01-04 天津大学 一种低温膜分离装置性能测试系统
CN106644886A (zh) * 2016-12-28 2017-05-10 中国石油天然气集团公司 一种测试热塑性塑料混合气体渗透性能的方法及试验装置
CN107789991A (zh) * 2017-12-04 2018-03-13 南京九思高科技有限公司 优先透有机物气体分离膜渗透性能的检测装置及检测方法
CN109444346A (zh) * 2018-12-18 2019-03-08 河南省日立信股份有限公司 气体在线监测系统及监测方法
CN111122416B (zh) * 2020-01-17 2021-12-07 同济大学 测量多场多相耦合条件下超低渗介质气体渗透参数的试验系统
CN213274736U (zh) * 2020-10-14 2021-05-25 广州信邦智能装备股份有限公司 一种联合服气密性实验台
CN215004871U (zh) * 2021-03-24 2021-12-03 国合通用测试评价认证股份公司 一种用于管样氢渗透率测试的套管装置
CN113281187A (zh) * 2021-06-25 2021-08-20 临海伟星新型建材有限公司 一种管材耐压测试装置及其测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201266131Y (zh) * 2008-08-28 2009-07-01 西安向阳航天材料股份有限公司 复合管衬管气密检测装置
CN103674808A (zh) * 2013-12-17 2014-03-26 中国石油天然气集团公司 全尺寸非金属管材气体渗透性能的测试装置及其测试方法
US20200200329A1 (en) * 2017-06-12 2020-06-25 Uti Limited Partnership Pipe apparatus, pipe system, and method of detecting a leak in a conduit
CN107606488A (zh) * 2017-10-30 2018-01-19 中国石油天然气集团公司管材研究所 一种热塑性塑料内衬钢管环空内渗透气体检测控制系统
CN210487482U (zh) * 2019-04-28 2020-05-08 中国石油化工股份有限公司 一种测试内衬管耐温耐介质性能的实验装置
CN112903562A (zh) * 2021-01-25 2021-06-04 北京临近空间飞行器系统工程研究所 一种树脂基复合材料渗透率测试装置及测试方法
CN113188978A (zh) * 2021-06-10 2021-07-30 中国石油天然气集团有限公司 一种非金属复合管材全尺寸气体渗透检测装置

Also Published As

Publication number Publication date
CN114324109A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN101960303B (zh) 基于超声波、音频及温度差检测管路流体泄漏的装置以及利用该装置的流体泄漏检测方法
WO2023123706A1 (zh) 一种内穿插管道气体渗透检测装置及操作方法
CN207263399U (zh) 一种多工位阀门气密性检测装置
CN202075022U (zh) 天然气小流量计在线实流检定装置
CN104197205A (zh) 一种管网堵塞检测装置
CN1920498A (zh) 天然气流量计的在线实流检定装置
CN103383302A (zh) 直接作用式安全阀整定压力在线检测、调整装置
CN207074106U (zh) 一种双活塞阀门检漏装置
CN112414630A (zh) 氦罩法长距离管道漏点排查定位装置及排查方法
CN204314033U (zh) 管道法兰紧密性测试系统
WO2023123705A1 (zh) 一种内衬管气体渗透检测装置
CN209014221U (zh) 管道试压装置
CN201600128U (zh) 用于超声测厚和探伤检测的快门式喷水探头装置
WO2024051234A1 (zh) 压力变送器在线标定系统及方法
CN200947054Y (zh) 天然气流量计的在线实流检定装置
CN2867304Y (zh) 一体化节流装置
CN114593366B (zh) 一种加氢站氢气泄漏的监控系统及监控方法
CN214066499U (zh) 一种流量流阻试验台
CN113959514A (zh) 一种用于环保的自动检测水资源流量计
CN107990956A (zh) 一种多用途管
CN206627243U (zh) 压力变送器取样系统和差压变送器取样系统
CN207585729U (zh) 一种大口径液体流量计在线校准装置
CN208171542U (zh) 一种移动式油管检漏器
CN106441849A (zh) 流量控制阀检验装置
CN112067200A (zh) 一种压力管道检验检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913011

Country of ref document: EP

Kind code of ref document: A1