WO2023123678A1 - 一种超声波发生器和超声波系统 - Google Patents

一种超声波发生器和超声波系统 Download PDF

Info

Publication number
WO2023123678A1
WO2023123678A1 PCT/CN2022/080410 CN2022080410W WO2023123678A1 WO 2023123678 A1 WO2023123678 A1 WO 2023123678A1 CN 2022080410 W CN2022080410 W CN 2022080410W WO 2023123678 A1 WO2023123678 A1 WO 2023123678A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
main
generator
oscillator
auxiliary
Prior art date
Application number
PCT/CN2022/080410
Other languages
English (en)
French (fr)
Inventor
周宏建
黄玮芯
Original Assignee
上海骄成超声波技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海骄成超声波技术股份有限公司 filed Critical 上海骄成超声波技术股份有限公司
Publication of WO2023123678A1 publication Critical patent/WO2023123678A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations

Definitions

  • the invention relates to the technical field of ultrasonic welding, in particular to an ultrasonic generator and an ultrasonic system.
  • Ultrasonic welding technology is a very mature welding technology, which is widely used in various applications of plastic welding and metal welding
  • a typical application of ultrasonic metal welding is the welding of multi-layer tabs of power batteries.
  • a 20KHz ultrasonic system is used.
  • the welding of battery tabs with a foil thickness of 6-10um and 20-80 layers is completed at one time, which has become a standard manufacturing process for power battery manufacturing in this link.
  • a 20KHz ultrasonic system is used.
  • the ultrasonic output power is 1000-5000W, it can be within 0.3-2.0 seconds.
  • the wire diameter is 3mm 2 ⁇ 45mm 2 at one time, corresponding to the welding of wire harness terminals with a thickness of 0.2mm ⁇ 2mm, which has also become the standard manufacturing process of wire harness/terminal manufacturing in this link.
  • the ultrasonic welding system that is maturely used in the market usually has a maximum output power of less than 6000W.
  • the main bottleneck that limits the maximum power output of the ultrasonic system lies in its core component - the ultrasonic transducer. Due to the physical properties of the piezoelectric ceramic sheet, the core part of the transducer Due to the limitations, it is difficult for the maximum output power of a single commercial ultrasonic transducer to exceed 6000W, and the demand for ultrasonic output power of the above-mentioned new applications has been expanded to 8000-12000W or even higher.
  • each single-channel ultrasonic transducer can also control the size of the single-channel output power by setting different output amplitudes according to the size of its workload. So as to achieve the technical effect of multi-channel ultrasonic precision control amplitude.
  • an aspect of the present invention provides an ultrasonic generator.
  • the sonotrode includes a plurality of sonotrode branches for driving a corresponding plurality of ultrasonic transducers, each sonotrode branch includes a DC power supply, an ultrasonic oscillator for outputting an oscillating signal, and an ultrasonic oscillator for
  • the resonant frequency and oscillation amplitude indicated by the oscillating signal are a DC/AC converter that converts the DC voltage source provided by the DC power supply into a high-frequency AC power supply, and is used to convert the high-frequency AC power supply into a high-frequency high-voltage excitation signal for output
  • the multiple ultrasonic generator branches include one ultrasonic main generator and at least one ultrasonic auxiliary generator, and the ultrasonic main oscillator of the ultrasonic main generator is based on the corresponding ultrasonic transducer
  • the oscillating signal source generates an auxiliary oscillating signal whose resonant frequency is consistent with the main oscillating signal to control the DC/AC converter of the ultrasonic auxiliary generator.
  • the above-mentioned ultrasonic generator further includes a phase shifter, which is used for phase-shifting the main oscillation signal for each ultrasonic auxiliary generator, and using the phase-shifted main oscillation signal as an oscillation signal source
  • the ultrasonic auxiliary oscillator provided to the ultrasonic auxiliary generator of the channel.
  • the phase shifter in the above-mentioned ultrasonic generator is arranged on the main ultrasonic generator.
  • the phase difference between the oscillation signal source of the ultrasonic auxiliary oscillator of each ultrasonic auxiliary generator in the ultrasonic generator and the main oscillation signal is based on the multiple ultrasonic auxiliary generators It is set according to the welding application requirements of the ultrasonic transducer corresponding to the transducer branch.
  • the phase difference in the above-mentioned ultrasonic generator ranges from 0 to 359°.
  • the ultrasonic oscillator in each branch of the ultrasonic generator in the above-mentioned ultrasonic generator all includes an amplitude controller, and the amplitude controller is collected based on the impedance matching output network of the branch.
  • the oscillation amplitude of the oscillation signal output by the ultrasonic oscillator is adjusted corresponding to the feedback voltage of the ultrasonic transducer.
  • the main ultrasonic oscillator of the main ultrasonic generator in the above-mentioned ultrasonic generator includes a phase-locked loop, and the phase-locked loop collects data based on the impedance matching output network of the main ultrasonic generator.
  • the phase difference between the feedback voltage and the feedback current corresponding to the ultrasonic transducer adjusts the resonant frequency of the main oscillation signal output by the ultrasonic main oscillator.
  • the ultrasonic oscillators in each ultrasonic generator branch in the above-mentioned ultrasonic generators all include a signal synthesizer, and the signal synthesizer in the ultrasonic main oscillator is based on the amplitude control
  • the oscillation amplitude output by the oscillator and the resonance frequency output by the phase-locked loop generate the main oscillation signal
  • the signal synthesizer in the ultrasonic auxiliary oscillator is based on the oscillation amplitude output by the amplitude controller and the oscillation signal source provided by the phase shifter
  • the resonant frequency and phase shift angle generate auxiliary oscillation signals.
  • the ultrasonic system includes the above-mentioned ultrasonic generators, and ultrasonic transducers corresponding to each ultrasonic generator.
  • the ultrasonic system under the condition that the maximum output power of a single ultrasonic transducer is limited, multiple ultrasonic transducers can work together on the same workpiece to be welded, thereby increasing the maximum ultrasonic output power.
  • each single The single-channel ultrasonic transducer can also control the size of the single-channel output power by setting different output amplitudes according to the size of its workload, so as to achieve the technical effect of multi-channel ultrasonic precision control amplitude.
  • Fig. 1 shows a system structure diagram of a two-way ultrasonic generator according to an embodiment of the present invention
  • Fig. 2 shows a system structure diagram of a multi-channel ultrasonic generator according to an embodiment of the present invention
  • Fig. 3 shows the internal structure diagram of the main ultrasonic oscillator of the dual/multi-channel ultrasonic generator according to an embodiment of the present invention
  • Fig. 4 shows the output signal schematic diagram of the phase shifter of the multi-channel ultrasonic generator according to an embodiment of the present invention.
  • Fig. 5 shows the internal structure diagram of the auxiliary ultrasonic oscillator of the dual/multi-channel ultrasonic generator according to an embodiment of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • first”, “second”, “third”, etc. may be used herein to describe various components, regions, layers and/or sections, these components, regions, layers and/or sections It should not be limited by these terms, and these terms are only used to distinguish different components, regions, layers and/or sections. Thus, a first component, region, layer and/or section discussed below could be termed a second component, region, layer and/or section without departing from some embodiments of the present invention.
  • the mature ultrasonic welding system currently on the market usually has a maximum output power lower than 6000W.
  • the main bottleneck that limits the maximum power output of the ultrasonic system lies in its core component—the ultrasonic transducer.
  • the limitation of the physical properties of the ceramic sheet makes it difficult for the maximum output power of a single commercial ultrasonic transducer to exceed 6000W.
  • the demand for ultrasonic output power of new applications has expanded to 8000-12000W or even higher.
  • the present invention provides an ultrasonic generator and an ultrasonic system that can work together through multiple ultrasonic transducers under the condition that the maximum output power of a single ultrasonic transducer is limited. On the same workpiece to be welded, the maximum ultrasonic output power is increased. At the same time, each single-channel ultrasonic transducer can also control the size of the single-channel output power by setting different output amplitudes according to the size of its work load, thereby Achieve the technical effect of multi-channel ultrasonic precision control amplitude.
  • the ultrasonic generator protected by the first aspect of the present invention is applied to the ultrasonic system protected by another aspect of the present invention, and the ultrasonic generator protected by the present invention and the ultrasonic system including the ultrasonic generator are introduced in detail.
  • the ultrasonic generator provided by the present invention includes a multi-channel ultrasonic generator.
  • the multi-channel ultrasonic generator may include a dual-channel ultrasonic generator with two ultrasonic generating channels, and a multi-channel phase-shifting synchronous ultrasonic generator with more than two ultrasonic generating channels.
  • Figure 1 shows a system structure diagram of a dual-channel ultrasonic generator according to an embodiment of the present invention
  • Figure 2 shows a multi-channel ultrasonic generator according to an embodiment of the present invention system structure diagram.
  • the internal structures of the dual-channel ultrasonic generator 100 and the multi-channel ultrasonic generator 200 both include a main ultrasonic generator 110 , 210 and at least one auxiliary ultrasonic generator 120 , 220 .
  • the dual-channel ultrasonic generator 100 in the embodiment shown in FIG. 1 includes a main ultrasonic generator 110 and an auxiliary ultrasonic generator 120 .
  • the multi-channel ultrasonic generator 200 in the embodiment shown in FIG. 2 includes a main ultrasonic generator 210 and multiple auxiliary ultrasonic generators 220 .
  • the main ultrasonic generator 110 , 210 and the at least one auxiliary ultrasonic generator 120 , 220 are connected through phase shifters 116 , 216 for communication.
  • the multi-channel ultrasonic generator 200 includes the dual-channel ultrasonic generator 100, both of which have similar structures and the same working principle, only the number of internal ultrasonic auxiliary generators 120, 220 is different. Taking the two-way ultrasonic generator 100 with two ultrasonic generating channels as an example, the ultrasonic generator protected by the present invention will be described in detail below.
  • a dual-channel ultrasonic generator 100 includes a main ultrasonic generator 110 and an auxiliary ultrasonic generator 120 .
  • the main ultrasonic generator 110 and the auxiliary ultrasonic generator 120 respectively drive an ultrasonic transducer.
  • the ultrasonic main generator 110 drives an ultrasonic transducer 115 so that the welding head configured on the ultrasonic transducer 115 can output a specific resonant frequency and oscillation amplitude to meet welding requirements.
  • the ultrasonic auxiliary generator 120 drives an ultrasonic transducer 125 so that the welding head configured on the ultrasonic transducer 125 outputs a resonant frequency consistent with the output of the ultrasonic transducer 115, but the output oscillation amplitude can be regulated separately To meet different welding needs.
  • the ultrasonic transducers 115 , 125 do not belong to the main ultrasonic generator 110 and the auxiliary ultrasonic generator 120 . It is the working object of the excitation signal output of the ultrasonic main/auxiliary generator 110 , 120 .
  • the ultrasonic transducers 115 and 125 use the piezoelectric effect to convert the received excitation signal into mechanical vibration, that is, ultrasonic waves, and finally act on the mechanical vibration on the workpiece to be welded through the amplifier, welding head and other acoustic components, thereby completing the welding work .
  • the ultrasonic main generator 110 and the ultrasonic auxiliary generator 120 in the dual-channel ultrasonic generator 100 jointly include a DC power supply 111, 121, a DC/AC converter 112, 122, and an impedance matching output network 113, 123.
  • the main ultrasonic generator 110 may also include a main ultrasonic oscillator 114 and a phase shifter 116 .
  • the ultrasonic auxiliary generator 120 may also include an ultrasonic auxiliary oscillator 124 .
  • the functional modules included in the ultrasonic main/auxiliary generator 110, 120 are introduced, and the DC power supply 111, 121 is used to receive input power frequency alternating current (for example, 220VAC/50Hz or 380VAC/50Hz), and convert it to A DC voltage source for supplying the DC/AC converters 112 and 122 to work.
  • the DC/AC converters 112 and 122 convert the received DC voltage source into high-frequency AC power for subsequent driving of the respective ultrasonic transducers 115 and 125 separately.
  • the high-frequency AC power supply includes two important parameters: resonant frequency (Fp) and oscillation amplitude (Amp).
  • the resonant frequency determines the output frequency of the high-frequency AC power supply
  • the oscillation amplitude determines the duty cycle of the high-frequency AC power supply.
  • the impedance matching output network 113, 123 receives the high-frequency AC power (usually a square wave) output by the DC/AC converter 112, 122, and converts it into the high-frequency high voltage required by the subsequent ultrasonic transducers 115, 125 Excitation signal (usually a sine wave). Since the equivalent electrical impedance of the ultrasonic transducers 115, 125 is capacitive, because the impedance matching output network 113, 123 can be inductive through a reasonable circuit configuration.
  • the circuit of the impedance matching output network 113, 123 with the inductive feature is combined with the ultrasonic transducer 115, 125 with the capacitive feature connected to it, so that the frequency of the output signal of the impedance matching output network 113, 123 can be matched with the ultrasonic wave.
  • the natural resonant frequencies of the transducers 115, 125 may remain the same.
  • the impedance matching output network 113 , 123 can also be capable of sampling the working voltage and working current of the high-frequency high-voltage excitation signal output to the ultrasonic transducer 115 , 125 .
  • the impedance matching output network 113 in the ultrasonic main generator 110 transmits the operating voltage and operating current of the high-frequency and high-voltage excitation signal after the sampling process to the ultrasonic main and auxiliary oscillator 114 as a feedback signal, and the ultrasonic auxiliary generator
  • the impedance matching output network 123 in 120 transmits the sampled and processed working voltage of the high-frequency and high-voltage excitation signal to the auxiliary ultrasonic oscillator 124 as a feedback signal.
  • the main ultrasonic oscillator 114 in the main ultrasonic generator 100 will be described in detail below.
  • the ultrasonic master oscillator 114 is the control center of the entire two-way ultrasonic generator 100 .
  • the main ultrasonic oscillator 114 simultaneously realizes the control of the high-frequency and high-voltage ultrasonic excitation signals finally output by the main ultrasonic generator 110 and the auxiliary ultrasonic generator 120 in the dual-channel ultrasonic generator 100 .
  • FIG. 3 shows an internal structural diagram of a main ultrasonic oscillator of a dual/multi-channel ultrasonic generator according to an embodiment of the present invention.
  • the main ultrasonic oscillator 300 includes a phase-locked loop 330 , an amplitude controller 310 , and a signal synthesizer 320 .
  • the phase-locked loop 330 inside the ultrasonic master oscillator 300 is a closed loop that is used to adjust the frequency of the output oscillation signal at all times, so that the frequency of the oscillation signal it outputs is the same as the constantly changing resonance frequency of the ultrasonic transducer 115 in the loaded state control mechanism.
  • a phase-locked loop 330 (PLL, Phase-Locked Loop) is a feedback control circuit.
  • the feature of the phase-locked loop 330 is that the frequency and phase of the internal oscillation signal of the loop can be controlled by using an externally input reference signal. Because the phase-locked loop 330 can automatically track the frequency of the output signal to the frequency of the input signal, the phase-locked loop 330 is usually used in a closed-loop tracking circuit.
  • the output voltage and the input voltage maintain a fixed phase difference, that is, the phase of the output voltage and the input voltage is locked, thereby realizing " phase lock" effect.
  • the phase-locked loop 330 generally includes three parts: a phase detector 331 (PD, Phase Detector), a filter 332 (LP, Loop Filter) and a voltage-controlled oscillator 333 (VCO, Voltage Controlled Oscillator).
  • PD Phase detector
  • LP Phase Detector
  • VCO Voltage Controlled Oscillator
  • the phase detector 231 is also called a phase comparator, and its function is to detect the phase difference between the input signal and the output signal, and convert the detected phase difference signal into a voltage signal for output.
  • the filter 332 in the phase locked loop 330 is usually used as a loop filter in the loop.
  • filter 332 may be selected as a low-pass filter.
  • the low pass filter 332 is an electronic filtering device that allows signals below the cutoff frequency to pass but not above the cutoff frequency, ie passes low frequencies and blocks high frequencies.
  • the actual control system often has interference, including signal sampling interference, voltage or current fluctuations, etc., and the main form of these interferences is medium and high frequency noise (generally above 500Hz). Therefore, the low-pass filter 332 can filter out these high-frequency resonances and noises around them, and can pass useful low-frequency signals basically without attenuation. Therefore, for an actual control system, it is necessary to add a filter 332 in the control system, otherwise it may cause high-frequency oscillation of the system.
  • the voltage-controlled oscillator 333 is an oscillation circuit whose output frequency corresponds to the input control voltage.
  • the voltage-controlled oscillator 333 can be selected from LC voltage-controlled oscillator, RC voltage-controlled oscillator and crystal voltage-controlled oscillator. The difference lies in the components used, but what they have in common is that they all use varactor diodes to achieve the purpose of controlling the oscillation frequency by changing the voltage.
  • the working principle of the phase-locked loop 330 in the ultrasonic main oscillator 300 is that the impedance matching output network 113 feeds back the operating voltage signal and the operating current signal input to the ultrasonic transducer 115 to the phase-locked loop 330
  • the phase detector 331 inside.
  • the phase detector 331 compares and calculates the waveforms of the two operating voltage signals and operating current signals. If the ultrasonic transducer 115 is detuned, the phases of the two signals must be different, and a phase difference will occur.
  • the phase detector 331 converts the detected phase difference signal between the operating voltage signal and the operating current signal into a voltage signal for output.
  • the output voltage signal is mixed with noisy interference signals
  • the high-frequency components can be filtered out by the low-pass filter 332 .
  • the voltage signal is filtered by the low-pass filter 332 and then input to the voltage-controlled oscillator 333 to form a control voltage of the voltage-controlled oscillator 333 .
  • the control voltage is used to adjust the oscillation frequency generated by the voltage-controlled oscillator 333 in real time, so that the phase difference between the sampled operating voltage signal and the operating current signal at the end of the ultrasonic transducer 115 is zero, thereby realizing the voltage-controlled oscillator.
  • the frequency of the output signal of 333 is the same as the resonant frequency of the ultrasonic transducer 115 , that is, the frequency of the signal output by the main ultrasonic generator 110 is the same as the resonant frequency of the ultrasonic transducer 115 .
  • the frequency of the output signal of the ultrasonic main oscillator 114 (300) is completely consistent with the actual resonance frequency after the current ultrasonic transducer 115 is loaded, so that the whole
  • the dual-channel ultrasonic generator 100 system works in a resonant state.
  • the electroacoustic conversion efficiency of the ultrasonic transducer 115 is the highest, and the ultrasonic vibration energy used for welding is also the largest.
  • the amplitude controller 310 inside the ultrasonic main oscillation 300 is a closed-loop control module for ensuring that the ultrasonic vibration amplitude is always stable during the welding loading process.
  • the operating principle of the amplitude controller 310 is to compare the set external reference voltage signal with the working voltage signal input by the impedance matching output network 113 to obtain a deviation signal between the two, and then convert the deviation signal to As an amplitude control signal to adjust the amplitude of the output signal in time, that is, the duty cycle of the output signal.
  • the larger the oscillation amplitude control signal the wider the duty cycle of the output, and the more power supplied by the output.
  • the signal synthesizer 320 inside the ultrasonic master oscillator 300 is used to receive the output signal of the above-mentioned phase-locked loop 330 and the amplitude controller 310, and combine the resonance frequency in the output signal of the phase-locked loop 330 and the oscillation in the output signal of the amplitude controller 310 The amplitude is synthesized into a main oscillation signal output.
  • the main ultrasonic oscillator 114 ( 300 ) outputs the synthesized main oscillation signal to the phase shifter 116 .
  • a phase shifter 116 is provided inside the main ultrasonic generator 110 .
  • a plurality of phase shifters 116 may also be provided and configured inside each dual-channel ultrasonic auxiliary generator 120 .
  • one or more phase shifters 116 can also be configured separately outside the main ultrasonic generator 110 and the auxiliary ultrasonic generator 120 .
  • phase shifter 116 (including the phase shifter 126 in FIG. 2 ) is only a module for phase-shifting the main oscillation signal output by the dual/multi-channel ultrasonic main oscillator 114, 214 , which is mainly used to clearly demonstrate the concept of the present invention and provide a specific solution that is convenient for the public to implement, but not to limit the protection scope of the present invention, and its configuration position and quantity are not limited to the above-mentioned embodiments of the present invention Several situations provided in .
  • the phase shifter 116 is used to receive the oscillating signal that contains the resonance frequency information exactly the same as the control DC/AC converter 112 output by the above-mentioned ultrasonic master oscillator 114 (300), and passes through the phase shifting in the phase shifter 116
  • the circuit outputs an oscillating signal for the externally connected dual-channel ultrasonic auxiliary generator 120 .
  • the oscillating signal can also Requirements to produce the same resonant frequency as the ultrasonic master oscillator 114 (300), but the phase difference is oscillating signal.
  • the signal output by the phase shifter 116 can be referred to as shown in FIG.
  • the phase difference between the signals ranges from 0 to 359°.
  • 4A shows the resonance frequency of the main oscillation signal output by the ultrasonic main oscillator 114 .
  • 4B shows that the main oscillating signal output by the ultrasonic main oscillator 114 passes through the phase shifter 116 and outputs an oscillating signal with a phase shift angle of 0°, that is, the oscillating signal output by the phase shifter 116 is the same as that output by the ultrasonic main oscillator 114.
  • the phase difference of the main oscillating signal is 0°.
  • 4C shows that the main oscillation signal output by the ultrasonic main oscillator 114 passes through the phase shifter 116 and then outputs an oscillation signal with a phase shift angle of 90°, that is, the oscillation signal output by the phase shifter 116 is the same as that output by the ultrasonic main oscillator 114.
  • the phase difference of the main oscillating signal is 90°.
  • 4D shows that the main oscillating signal output by the ultrasonic main oscillator 114 passes through the phase shifter 116 and outputs an oscillating signal with a phase shift angle of 180°, that is, the oscillating signal output by the phase shifter 116 is the same as that output by the ultrasonic main oscillator 114.
  • the phase difference of the main oscillating signal is 180°.
  • phase shifter 116 shows that the main oscillation signal output by the ultrasonic main oscillator 114 passes through the phase shifter 116 and outputs an oscillation signal with a phase shift angle of 270°, that is, the oscillation signal output by the phase shifter 116 is the same as that output by the ultrasonic main oscillator 114.
  • the phase difference of the main oscillating signal is 270°.
  • the phase shifters 116, 126 in the embodiments shown in Fig. 1 and Fig. 2 can be set according to actual requirements of welding applications.
  • the number and position of the ultrasonic transducers 115, 125, 215, 225 connected to the ultrasonic main generators 110, 210 and the ultrasonic auxiliary generators 120, 220 are individually controlled to input the main oscillation signal to each ultrasonic auxiliary generator 120, 220
  • the phase of the ultrasonic transducer 115, 125, 215, 225 makes the welding effect between the two or more welding torch heads connected to the object to be welded ideal.
  • the main ultrasonic generator 110 drives an ultrasonic transducer 115
  • the auxiliary ultrasonic generator 120 drives an ultrasonic transducer 125 .
  • the two welding heads connected to the ultrasonic transducers 115 and 125 are respectively located on the upper and lower sides of the object to be welded. In order to obtain the superposition of the vibrations generated by the two ultrasonic transducers 115 and 125, the amplitude is doubled to achieve the effect of doubling the power.
  • the phase shifter 116 can be set in the phase shifter 116 to output the oscillation signal to the ultrasonic auxiliary oscillator 124
  • the phase difference with the main oscillating signal input from the ultrasonic main oscillator 114 to the phase shifter 116 is 180°, so as to achieve an ideal welding effect.
  • the ultrasonic transducer 115 and the ultrasonic transducer 125 are arranged on the same side of a certain welding head to provide the vibration source for the welding head together, the other side of the welding head is in contact with the object to be welded, in order to obtain the vibration After the superposition, the amplitude is doubled, and the power is also doubled.
  • the oscillation signal output to the ultrasonic auxiliary oscillator 124 and the main oscillation signal input from the ultrasonic main oscillator 114 to the phase shifter 116 can be set in the phase shifter 116.
  • the phase difference is 0°, so as to achieve the ideal welding effect.
  • Each channel of the phase-shifted main oscillation signal output by the above-mentioned phase shifter 116 is individually input into one channel of the ultrasonic generator.
  • the above-mentioned phase shifter 116 can only output the main oscillation signal after one-way phase shifting to the one-way dual-channel ultrasonic auxiliary generator 120, as the auxiliary ultrasonic generator of the road The oscillation signal used by the ultrasonic secondary oscillator 124 in 120 .
  • the above-mentioned phase shifter 216 can output multiple phase-shifted oscillation signals to the multi-channel ultrasonic auxiliary generator 220 as the multi-channel ultrasonic auxiliary generator 220.
  • the oscillation signal used by the ultrasonic secondary oscillator 224 can be set and controlled individually.
  • the phase shifter 216 inside the main ultrasonic generator 210 can provide n-1 outputs at the same time, which are respectively provided to the auxiliary ultrasonic oscillators 224 inside the n-1 auxiliary ultrasonic generators 220 as oscillation signals.
  • the frequency of each oscillation signal received by the n ⁇ 1 ultrasonic auxiliary oscillators 224 is exactly the same, which is completely consistent with the resonance frequency of the oscillation signal output by the ultrasonic main oscillator 214 inside the ultrasonic main generator 210 .
  • the dual/multi-channel ultrasonic generators 100, 200 shown in some embodiments of the present invention in order to be able to simultaneously drive the dual/multi-channel ultrasonic main generators 110, 210 and Two or more ultrasonic transducers 115, 125, 215, 225 connected to the at least one dual/multi-channel ultrasonic auxiliary generator 120, 220, except the dual-channel ultrasonic main generator 110 or the multi-channel ultrasonic main generator
  • the ultrasonic generator 210 for a complete dual-channel phase-shifting synchronous ultrasonic generator 100 or multiple phase-shifting synchronous ultrasonic generators 200, one additional ultrasonic generator 120 or multiple ultrasonic auxiliary generators 220 are required.
  • Each ultrasonic auxiliary generator 120 , 220 can be solely responsible for driving an independent ultrasonic transducer 125 , 225 .
  • each auxiliary ultrasonic generator 120, 220 is relatively similar to that of the main ultrasonic generators 114, 214, which has been introduced above and will not be repeated here.
  • the difference from the ultrasonic main generator 114 , 214 is that the ultrasonic auxiliary generator 120 , 220 includes an ultrasonic auxiliary oscillator 124 , 224 inside.
  • FIG. 5 shows an internal structure diagram of an ultrasonic auxiliary oscillator of a dual/multi-channel ultrasonic generator according to an embodiment of the present invention.
  • the ultrasonic auxiliary oscillator 500 ( 124 , 224 ) includes an amplitude controller 520 and a signal synthesizer 520 .
  • the ultrasonic auxiliary oscillator 500 cannot actively generate an oscillation signal, but directly accepts the main oscillation signal output from the main ultrasonic generator 110, 210 after phase shifting by the phase shifter 116, 216 as It is the oscillation signal of the ultrasonic auxiliary oscillator 500 itself.
  • the ultrasonic auxiliary oscillator 500 (124, 224) still retains a complete amplitude controller 510 inside.
  • the working principle of the amplitude controller 510 is the same as that of the amplitude controller 310 in the above-mentioned ultrasonic master oscillator 300 , and will not be repeated here.
  • the signal synthesizer 520 in the ultrasonic auxiliary oscillator 500 (124, 224) is used to receive the signal output by the amplitude controller 510 and the phase shifter 116, 126, and the oscillation amplitude in the output signal of the amplitude controller 510 and the The resonant frequency and the phase shift angle in the output signals of the phase shifters 116 and 126 are combined to output an auxiliary oscillation signal.
  • the function of ultrasonic power synthesis is realized, so that the entire multi-channel ultrasonic generator can output 2 times or n times
  • the maximum output power of a single transducer can reach the required output power of 8000-12000W or even higher.
  • the present invention provides an ultrasonic generator and an ultrasonic system, which break through the power limit of the maximum output power of a single transducer for the entire ultrasonic system, and can well support two or more transducers It is an "extended" ultrasonic system composed of transducers, and the maximum output power of this ultrasonic system is doubled or even multiple times the maximum output power of a single transducer.
  • all two or more ultrasonic transducers can work under the control state of "phase-shift synchronization", which ensures that the output dual-channel or multi-channel ultrasonic oscillations can be effectively superimposed according to the requirements of the application. So as to achieve the best welding application effect.
  • each ultrasonic generator can control the output amplitude of the working output signal of its corresponding ultrasonic transducer alone, when each individual transducer When the workload is different, this control can precisely control each transducer to work under the required oscillation amplitude of different sizes, and output the required ultrasonic power of different sizes, so that the welding application can be more precisely controlled. Effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

本发明公开了一种超声波发生器,包括多个超声波发生器支路以用于驱动相应的多个超声波换能器,每个超声波发生器支路中包括直流电源、超声波振荡器、直流/交流变换器,以及阻抗匹配输出网络,该多个超声波发生器支路中包括一路超声波主发生器和至少一路超声波辅发生器,该超声波主发生器的超声波主振荡器基于对应超声波换能器的反馈信号生成用以控制该超声波主发生器的直流/交流变换器的主振荡信号,每一路该超声波辅发生器的超声波辅振荡器使用基于该超声波主振荡器输出的该主振荡信号的振荡信号源生成谐振频率与该主振荡信号相一致的辅振荡信号以控制该路超声波辅发生器的该直流/交流变换器。

Description

一种超声波发生器和超声波系统 技术领域
本发明涉及超声波焊接技术领域,尤其涉及一种超声波发生器和一种超声波系统。
背景技术
超声波焊接技术是一种十分成熟的焊接技术,它广泛应用于塑料焊接和金属焊接的各种应用场合
在动力电池行业,一种超声波金属焊接的典型应用为动力电池多层极耳的焊接,通常使用20KHz的超声波系统,在超声输出功率为2000~5000W时,能够在短短0.1~0.3秒的时间内,一次完成箔材厚度6~10um,层数为20~80层的电池极耳的焊接,这已成为动力电池生产制造在此环节的标准制造工艺。在线束行业,另一种超声波金属焊接的典型应用发生在线束和端子之间的焊接,通常使用20KHz的超声波系统,在超声输出功率为1000~5000W时,能够在0.3~2.0秒的时间内,一次完成线径3mm 2~45mm 2,对应于厚度为0.2mm~2mm的线束端子的焊接,这也成为线束/端子生产制造在此环节的标准制造工艺。
然而随着电动汽车和其他相关产业的大发展,对于动力电池和充电设备的技术要求也越来越高。如在动力电池行业中,出于对电池大容量储能能力的追求,迫切需要能够一次焊接更多层数的电池极耳,更大的焊接面积;而在线束行业,出于对于大电流通过性的追求,也迫切需要能够一次焊接更大线径,更厚端子,更大焊接面积的线束和端子。这些新技术的追求也转化为对相应超声波焊接系统拓展焊接能力的需求,即要求超声波系统最大输出功率越来越大,超声波焊接过程中的各参数控制越来越精确等等。
目前市场上成熟使用的超声波焊接系统,通常最大输出功率低于6000W,限制超声系统最大功率输出的主要瓶颈在于其核心部件——超声波换能器,由于换能器核心零件压电陶瓷片物理性能的限制,使得商用单件超声波换能器的最大输出功率很难超过6000W,而上述新应用对于超声波输出功率的需求,已拓展到8000~12000W甚至更高。
综上所述,为了解决现有技术中存在的上述问题,本领域亟需一种超声波功率合成技术,在单件超声波换能器最大输出功率受到限制条件下,通过多路超声波换能器共同作用于同一被焊工件上,从而提升最大超声输出功率,同时每个单路超声波换能器还可以根据其工作负载大小的不同,通过设定不同的输出振幅,控制单路输出功率的大小,从而达到多路超声波精密控制振幅的技术效果。
发明内容
以下给出一个或多个方面的简要概述以提供对这些方面的基本理解。此概述不是所有构想到的方面的详尽综览,并且既非旨在指认出所有方面的关键性或决定性要素亦非试图界定任何或所有方面的范围。其唯一的目的是要以简化形式给出一个或多个方面的一些概念以为稍后给出的更加详细的描述之前序。
为了解决现有技术中存在的上述问题,本发明的一方面提供一种超声波发生器。该超声波发生器包括多个超声波发生器支路以用于驱动相应的多个超声波换能器,每个超声波发生器支路中包括直流电源、用于输出振荡信号的超声波振荡器、用于基于该振荡信号指示的谐振频率和振荡幅度将该直流电源提供的直流电压源转换为高频交流电源的直流/交流变换器,以及用于将该高频交流电源转换为高频高压激励信号以输出至相应超声波换能器的阻抗匹配输出网络,该多个超声波发生器支路中包括一路超声波主发生器和至少一路超声波辅发生器,该超声波主发生器的超声波主振荡器基于对应超声波换能器的反馈信号生成用以控制该超声波主发生器的直流/交流变换器的主振荡信号,每一路该超声波辅发生器的超声波辅振荡器使用基于该超声波主振荡器输出的该主振荡信号的振荡信号源生成谐振频率与该主振荡信号相一致的辅振荡信号以控制该路超声波辅发生器的该直流/交流变换器。通过采用上述的超声波发生器,能够在单件超声波换能器最大输出功率受到限制条件下,通过多路超声波换能器共同作用于同一被焊工件上,从而提升最大超声输出功率,同时每个单路超声波换能器还可以根据其工作负载大小的不同,通过设定不同的输出振幅,控制单路输出功率的大小,从而达到多路超声波精密控制振幅的技术效果。
优选地,在一实施例中,上述超声波发生器还包括移相器,用于针对每一路超声波辅发生器对该主振荡信号进行移相,并将经过移相的主振荡信号作为振荡信号源提供给该路超声波辅发生器的该超声波辅振荡器。
可选地,在一实施例中,上述的超声波发生器中的该移相器设置于该超声波主发生器。
可选地,在一实施例中,上述的超声波发生器中的该每一路超声波辅发生器的该超声波辅振荡器的振荡信号源相对于该主振荡信号的相位差基于该多个超声波辅发生器支路对应的超声波换能器的焊接应用需求来设定。
可选地,在一实施例中,上述的超声波发生器中的该相位差的范围介于0至359°。
优选地,在一实施例中,上述的超声波发生器中的每个超声波发生器支路中的超声波振荡器皆包括幅度控制器,该幅度控制器基于所在支路的该阻抗匹配输出网络采集的对应超声波换能器的反馈电压调节该超声波振荡器输出的振荡信号的振荡幅度。
优选地,在一实施例中,上述的超声波发生器中的该超声波主发生器的该超声波主振荡器中包括锁相环,该锁相环基于该超声波主发生器的该阻抗匹配输出 网络采集的对应超声波换能器的反馈电压和反馈电流之间的相位差,调节该超声波主振荡器输出的该主振荡信号的谐振频率。
可选地,在一实施例中,上述的超声波发生器中的每个超声波发生器支路中的超声波振荡器皆包括信号合成器,该超声波主振荡器中的该信号合成器基于该幅度控制器输出的振荡幅度和该锁相环输出的谐振频率生成该主振荡信号,该超声波辅振荡器中的该信号合成器基于该幅度控制器输出的振荡幅度和该移相器提供的振荡信号源的谐振频率和移相角生成辅振荡信号。
本发明的另一方面还提供了一种超声波系统。该超声波系统包括上述的超声波发生器,以及与每个该超声波发生器相对应的超声波换能器。通过使用上述的超声波系统,能够在单件超声波换能器最大输出功率受到限制条件下,通过多路超声波换能器共同作用于同一被焊工件上,从而提升最大超声输出功率,同时每个单路超声波换能器还可以根据其工作负载大小的不同,通过设定不同的输出振幅,控制单路输出功率的大小,从而达到多路超声波精密控制振幅的技术效果。
附图说明
在结合以下附图阅读本公开的实施例的详细描述之后,能够更好地理解本发明的上述特征和优点。在附图中,各组件不一定是按比例绘制,并且具有类似的相关特性或特征的组件可能具有相同或相近的附图标记。
图1示出了根据本发明的一实施例的双路超声波发生器的系统结构图;
图2示出了根据本发明的一实施例的多路超声波发生器的系统结构图;
图3示出了根据本发明的一实施例的双/多路超声波发生器的超声波主振荡器的内部结构图;
图4示出了根据本发明的一实施例的多路超声波发生器的移相器的输出信号示意图;以及
图5示出了根据本发明的一实施例的双/多路超声波发生器的超声波辅振荡器的内部结构图。
附图标记:
100:双路超声波发生器;
200:多路超声波发生器;
110、210:超声波主发生器;
120、220:超声波辅发生器;
116、216:移相器;
111、121、211、221:直流电源;
112、122、212、222:直流/交流变换器;
113、123、213、223:阻抗匹配输出网络;
115、125、215、225:超声波换能器;
114、214、300:超声波主振荡器;
124、224、500:超声波辅振荡器;
310、510:幅度控制器;
320、520:信号合成器;
330:锁相环;
331:鉴相器;
332:滤波器;以及
333:压控振荡器。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。虽然本发明的描述将结合优选实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
另外,在以下的说明中所使用的“上”、“下”、“左”、“右”、“顶”、“底”、“水平”、“垂直”应被理解为该段以及相关附图中所绘示的方位。此相对性的用语仅是为了方便说明之用,其并不代表其所叙述的装置需以特定方位来制造或运作,因此不应理解为对本发明的限制。
能理解的是,虽然在此可使用用语“第一”、“第二”、“第三”等来叙述各种组件、区域、层和/或部分,这些组件、区域、层和/或部分不应被这些用语限定,且这些用语仅是用来区别不同的组件、区域、层和/或部分。因此,以下讨论的第一组件、区域、层和/或部分可在不偏离本发明一些实施例的情况下被称为第二组件、区域、层和/或部分。
如上所述,目前市场上成熟使用的超声波焊接系统,通常最大输出功率低于6000W,限制超声系统最大功率输出的主要瓶颈在于其核心部件——超声波换能器,由于换能器核心零件压电陶瓷片物理性能的限制,使得商用单件超声波换能器的最大输出功率很难超过6000W而上节新应用对于超声波输出功率的需求,已 拓展到8000~12000W甚至更高。
为了解决现有技术中存在的上述问题,本发明提供了一种超声波发生器和一种超声波系统可以在单件超声波换能器最大输出功率受到限制条件下,通过多路超声波换能器共同作用于同一被焊工件上,从而提升最大超声输出功率,同时每个单路超声波换能器还可以根据其工作负载大小的不同,通过设定不同的输出振幅,控制单路输出功率的大小,从而达到多路超声波精密控制振幅的技术效果。
以下将本发明第一方面所保护的超声波发生器应用于本发明另一方面所保护的超声波系统中,具体介绍本发明所保护的超声波发生器和包含该超声波发生器的超声波系统。
本发明所提供的超声波发生器包括多路超声波发生器。该多路超声波发生器可以包括超声波发生通道数量为两路的双路超声波发生器,和超声波发生通道大于两路的多路移相同步超声波发生器。
具体请参看图1和图2,图1示出了根据本发明的一实施例的双路超声波发生器的系统结构图,图2示出了根据本发明的一实施例的多路超声波发生器的系统结构图。
如图1和图2所示,双路超声波发生器100和多路超声波发生器200的内部结构都包括一个超声波主发生器110、210和至少一个超声波辅发生器120、220。具体地,在图1所示的实施例中的双路超声波发生器100中包括一个超声波主发生器110和一个超声波辅发生器120。在图2所示的实施例中的多路超声波发生器200中包括一个超声波主发生器210和多个超声波辅发生器220。且如图1和图2所示,超声波主发生器110、210和该至少一个超声波辅发生器120、220之间通过移相器116、216进行通信连接。
由于多路超声波发生器200包括了双路超声波发生器100,且两者结构相似且工作原理相同,只是内部的超声波辅发生器120、220的数量不同。下面以超声波发生通道为两路的双路超声波发生器100为例,具体介绍本发明所保护的超声波发生器。
如图1所示,在本发明的一些实施例中,双路超声波发生器100包括一超声波主发生器110和一超声波辅发生器120。超声波主发生器110和超声波辅发生器120分别单独驱动一个超声波换能器。该超声波主发生器110驱动一超声波换能器115以使得配置于该超声波换能器115上的焊头能够输出特定的谐振频率和振荡幅度以满足焊接需求。该超声波辅发生器120驱动一超声波换能器125以使得配置于该超声波换能器125上的焊头输出与上述超声波换能器115输出一致的谐振频率,但是输出的振荡幅度可以另外单独调控以满足不同的焊接需求。
超声波换能器115、125不属于超声波主发生器110和超声波辅发生器120。它是超声波主/辅发生器110、120的激励信号输出的工作对象。超声波换能器115、125利用压电效应将接收到的激励信号转化成机械振动,即超声波,并通过变幅 器、焊头等声学部件将机械振动最终作用在被焊工件上,从而完成焊接工作。由于不同超声波换能器115、125之间的等效电路参数差异很大,所以在实际应用中需要选择不同的超声波主/辅发生器110、120与其进行匹配,才能最大程度地充分发挥超声波换能器115、125的超声波声源效果。
在本发明的一些实施例中,双路超声波发生器100中的超声波主发生器110和超声波辅发生器120共同包括直流电源111、121,直流/交流变换器112、122,和阻抗匹配输出网络113、123。但是超声波主发生器110中还可以包括超声波主振荡器114和移相器116。超声波辅发生器120还可以包括超声波辅振荡器124。
首先介绍在该超声波主/辅发生器110、120中共同包括的功能模块,直流电源111、121用于接收输入的工频交流电(例如,220VAC/50Hz或380VAC/50Hz),并将其转换为供给直流/交流变换器112、122工作的直流电压源。直流/交流变换器112、122将接收到直流电压源转换为高频交流电源以供后续单独驱动各自的超声波换能器115、125使用。该高频交流电源包括两个重要参数:谐振频率(Fp)和振荡幅度(Amp)。谐振频率决定了该高频交流电源的输出频率,振荡幅度决定了该高频交流电源的占空比。通常振荡幅度控制信号越大,输出的占空比也越宽,相应的供给的电能也越多。
阻抗匹配输出网络113、123接收到该直流/交流变换器112、122输出的高频交流电源(通常为方波),并将其转换为后续超声波换能器115、125所需要的高频高压激励信号(通常为正弦波)。由于该超声波换能器115、125的等效电阻抗表现为容性,因为该阻抗匹配输出网络113、123可以通过合理的电路配置表现为感性。通过该具有感性特征的阻抗匹配输出网络113、123的电路配合其连接的具有容性特征的超声波换能器115、125组合,使得该阻抗匹配输出网络113、123输出信号的频率可以与该超声波换能器115、125固有的谐振频率可以保持一致。
同时,该阻抗匹配输出网络113、123还可以具备采样该用于输出至该超声波换能器115、125的高频高压激励信号的工作电压和工作电流的能力。经过适当的处理,超声波主发生器110中的阻抗匹配输出网络113将该采样处理后的高频高压激励信号的工作电压和工作电流作为反馈信号传递给超声波主辅振荡器114,超声波辅发生器120中的阻抗匹配输出网络123将该采样处理后的高频高压激励信号的工作电压作为反馈信号传递给超声波辅振荡器124。
以下将具体介绍超声波主发生器100中的超声波主振荡器114。该超声波主振荡器114是整个双路超声波发生器100中的控制中心。通过该超声波主振荡器114同时实现对于双路超声波发生器100中的超声波主发生器110和超声波辅发生器120各自最终输出的高频高压超声波激励信号的控制。
请参看图3,图3示出了根据本发明的一实施例的双/多路超声波发生器的超声波主振荡器的内部结构图。
如图3所示,在本发明的一些实施例中,超声波主振荡器300的内部包括锁 相环330、幅度控制器310、和信号合成器320。
超声波主振荡器300内部的锁相环330是用于时刻调整输出振荡信号的频率,使得其输出的该振荡信号的频率与带载状态下的超声波换能器115不断变化的谐振频率相同的闭环控制机构。
锁相环330(PLL,Phase-Locked Loop)是一种反馈控制电路。锁相环330的特点是,可以利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因为锁相环330可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环330通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,由此实现“锁相”的效果。
继续如图3所示,锁相环330通常包括鉴相器331(PD,Phase Detector)、滤波器332(LP,Loop Filter)和压控振荡器333(VCO,Voltage Controlled Oscillator)三部分。
鉴相器231又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成电压信号输出。
锁相环330中的滤波器332通常使用在环路中为环路滤波器。在本发明的一些实施例中,滤波器332可以选择低通滤波器。低通滤波器332是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子滤波装置,即通过低频并阻塞高频。实际控制系统往往会存在干扰,包括信号采样的干扰、电压或电流的波动等,而这些干扰主要表现形式是中高频噪声(一般在500Hz以上)。所以低通滤波器332可以滤除这些高频谐振及其附近的噪声,而对有用的低频信号可以基本无衰减通过。所以对于一个实际的控制系统而言,在控制系统中加入滤波器332是必要的,否则可能会引起系统高频振荡。
压控振荡器333是输出频率与输入控制电压有对应关系的振荡电路。压控振荡器333可以选择的类型有LC压控振荡器、RC压控振荡器和晶体压控振荡器。其区别在于使用的元件,但是它们的共同点在于都使用变容二级管实现通过改变电压控制振荡频率的目的。
在本发明的上述实施例中,超声波主振荡器300内的锁相环330的工作原理为,阻抗匹配输出网络113反馈输入超声波换能器115端的工作电压信号和工作电流信号至锁相环330内的鉴相器331。鉴相器331对这两个工作电压信号和工作电流信号的波形进行比较、计算,如果超声波换能器115处于失谐,这两个信号的相位必定不同,会产生相位差。鉴相器331将检测出的工作电压信号和工作电流信号之间的相位差信号转换为电压信号输出。由于实际应用中,输出的该电压信号中混有嘈杂干扰信号,可以通过低通滤波器332将其中的高频成分滤掉。该电压信号经过低通滤波器332滤波后输入至压控振荡器333,形成压控振荡器333的控制电压。该控制电压用于实时调整压控振荡器333产生的振荡频率,使 得采样到的超声波换能器115端的工作电压信号和工作电流信号二者之间的相位差为零,从而实现压控振荡器333输出信号的频率与超声波换能器115的谐振频率相同,也就是说,实现超声波主发生器110输出的信号频率和超声波换能器115的谐振频率相同。
通过该超声波主振荡器300内的锁相环330技术,使得该超声波振主荡器114(300)输出信号的频率与当前超声波换能器115带载工作后的实际谐振频率完全一致,从而整个双路超声波发生器100系统工作在谐振状态,此时超声波换能器115的电声转换效率最高,用于焊接的超声振动能量也最大。
请继续参看图3,超声波主振荡300内部的幅度控制器310是用于保证在焊接带载过程中超声振动幅度始终保持稳定的闭环控制模块。幅度控制器310的工作原理是,通过比较已设定好的外部基准电压信号和该阻抗匹配输出网络113输入的工作电压信号,由此得出两者之间的偏差信号,再将此偏差信号作为幅度控制信号以实现及时调整输出信号的幅值,也就是输出信号的占空比。通常振荡幅度控制信号越大,输出的占空比也越宽,输出的供给电能也越多。
超声波主振荡器300内部的信号合成器320用于接收上述锁相环330和幅度控制器310的输出信号,并将锁相环330输出信号中的谐振频率和幅度控制器310输出信号中的振荡幅度合成一个主振荡信号输出。
请继续回到图1,超声波主振荡器114(300)将合成后的主振荡信号输出至移相器116。为了驱动超声波主发生器110和超声波辅发生器120各自所对应的超声波换能器115、125,本发明的一些实施例中,在超声波主发生器110的内部设置了移相器116。在另一些实施例中,还可以设置多个移相器116,并配置于每个双路超声波辅发生器120内部。可选地,还可以单独配置一个或多个移相器116于该超声波主发生器110和超声波辅发生器120的外部。
本领域技术人员可以理解,上述移相器116(包括图2中的移相器126)只是一种用于将双路/多路超声波主振荡器114、214输出的主振荡信号移相的模块,主要用于清楚地展示本发明的构思,并提供一种便于公众实施的具体方案,而非用于限制本发明的保护范围,它的配置位置和数量并不受限于本发明上述实施例中提供的几种情况。
移相器116用于接收上述超声波主振荡器114(300)输出的与控制直流/交流变换器112完全相同的包含有谐振频率信息的振荡信号,并通过该移相器116中的通过移相电路输出供给外部连接的双路超声波辅发生器120使用的振荡信号。该振荡信号除了仍然包含有谐振频率信息之外,还可根据外部设定的相位差
Figure PCTCN2022080410-appb-000001
的要求,产生与该超声波主振荡器114(300)同样谐振频率,但是相位差为
Figure PCTCN2022080410-appb-000002
的振荡信号。在本发明的一些实施例中,移相器116输出的信号可以参看图4所示,经过移相器116后输出的振荡信号与进入该移相器116的超声波主振荡器114产生的主振荡信号之间相位差的范围介于0至359°。
图4所示的实施例中,4A示出了超声波主振荡器114输出的主振荡信号的谐振频率。4B示出了超声波主振荡器114输出的该主振荡信号经过移相器116后输出的移相角为0°的振荡信号,即移相器116输出的振荡信号与超声波主振荡器114输出的主振荡信号的相位差
Figure PCTCN2022080410-appb-000003
为0°。4C示出了超声波主振荡器114输出的该主振荡信号经过移相器116后输出的移相角为90°的振荡信号,即移相器116输出的振荡信号与超声波主振荡器114输出的主振荡信号的相位差
Figure PCTCN2022080410-appb-000004
为90°。4D示出了超声波主振荡器114输出的该主振荡信号经过移相器116后输出的移相角为180°的振荡信号,即移相器116输出的振荡信号与超声波主振荡器114输出的主振荡信号的相位差
Figure PCTCN2022080410-appb-000005
为180°。4E示出了超声波主振荡器114输出的该主振荡信号经过移相器116后输出的移相角为270°的振荡信号,即移相器116输出的振荡信号与超声波主振荡器114输出的主振荡信号的相位差
Figure PCTCN2022080410-appb-000006
为270°。
在图1和图2所示的实施例中的移相器116、126可以根据焊接应用的实际需求进行设定。超声波主发生器110、210和超声波辅发生器120、220连接的超声波换能器115、125、215、225的个数和位置单独控制输入至每路超声波辅发生器120、220的主振荡信号的相位,使得该超声波换能器115、125、215、225连接的两个或多个焊枪头与被焊对象之间产生的焊接效果最理想。
例如,在包括双路超声波发生器100的超声波系统结构的一实施例中,超声波主发生器110驱动一超声波换能器115,超声波辅发生器120驱动一超声波换能器125。超声波换能器115、125连接的两个焊头分别位于被焊对象的上下两侧。为获得两个超声波换能器115、125产生的振动叠加后,振幅翻倍以达到功率也翻倍的效果,此时可以在移相器116中设定输出至超声波辅振荡器124的振荡信号与超声波主振荡器114输入至移相器116的主振荡信号的相位差为180°,从而实现理想好的焊接效果。
例如,在包括双路超声波发生器100的超声波系统结构的另一实施例中,
当超声波换能器115和超声波换能器125设置于在某一焊头的同侧,用于共同为该焊头提供振动源时,焊头的另一侧与被焊对象接触,为了获得振动叠加后振幅翻倍,功率也翻倍的效果,此时可以在移相器116中设定输出至超声波辅振荡器124的振荡信号与超声波主振荡器114输入至移相器116的主振荡信号的相位差为0°,从而实现理想的焊接效果。
上述移相器116输出的每一路移相后的该主振荡信号都单独输入至一路超声波发生器通道中。如图1中的双路超声波发生器100的实施例中,上述移相器116可以只输出一路移相后的主振荡信号至一路双路超声波辅发生器120,以作为该路超声波辅发生器120中的超声波辅振荡器124使用的振荡信号。
而在图2中的多路超声波发生器200的实施例中,上述移相器216可以输出多路移相后的振荡信号至多路超声波辅发生器220,以作为该多路超声波辅发生器220中的超声波辅振荡器224使用的振荡信号。并且,每路超声波辅振荡器224 接收到的移相后的振荡信号和该超声波主振荡器214输出的主振荡信号之间的相位差
Figure PCTCN2022080410-appb-000007
均可以单独设定和控制。
为了详细介绍包括多个超声波辅发生器220的多路超声波发生器200,请参看图2。该超声波主发生器210内部的移相器216可以同时提供n-1路输出,分别提供给n-1个超声波辅发生器220内部的超声波辅振荡器224作为振荡信号使用。该n-1个超声波辅振荡器224接收到的每路振荡信号的频率完全相同,都是与该超声波主发生器210内部的超声波主振荡器214输出的振荡信号的谐振频率完全一致。
同时,该n-1个超声波辅振荡器224接收到的每路振荡信号与该超声波主振荡器214输出的振荡信号之间,由于可以通过移相器216设定一个范围在0°至359°之间的相位差,如第一路超声通道的相位差为
Figure PCTCN2022080410-appb-000008
第二路超声通道的相位差为
Figure PCTCN2022080410-appb-000009
依次类推,第(n-1)路超声通道的相位差为
Figure PCTCN2022080410-appb-000010
所以移相器216输出的(n-1)路的振荡信号均保持有一个固定被设定的相位差
Figure PCTCN2022080410-appb-000011
请继续参看图1或图2,在本发明一些实施例中所示的双路/多路超声波发生器100、200中,为了能够同时驱动该双路/多路超声波主发生器110、210和该至少一个双路/多路超声波辅发生器120、220连接的两个或多个超声波换能器115、125、215、225,除该双路超声波主发生器110或该多路超声波主发生器210之外,对于一个完整的双路移相同步超声波发生器100或多路移相同步超声波发生器200,还需配备一路超声波辅发生器120或多路超声波辅发生器220。每一路超声波辅发生器120、220都可以单独负责驱动一个独立的超声波换能器125、225。
每路超声波辅发生器120、220的内部结构与超声波主发生器114、214较为相似,上述已经介绍,此处就不再赘述。与超声波主发生器114、214的不同点在于超声波辅发生器120、220的内部包括超声波辅振荡器124、224。
请参看图5,图5示出了根据本发明的一实施例的双/多路超声波发生器的超声波辅振荡器的内部结构图。超声波辅振荡器500(124、224)中包括幅度控制器520和信号合成器520。
如图5所示,该超声波辅振荡器500内部不能主动产生振荡信号,而是直接接受经过移相器116、216移相后的来自超声波主发生器110、210内部的输出的主振荡信号作为其该超声波辅振荡器500自身的振荡信号。该超声波辅振荡器500(124、224)内部仍然保留了完整的幅度控制器510。该幅度控制器510的工作原理和上述超声波主振荡器300中的幅度控制器310相同,此处就不再赘述。
在超声波辅振荡器500(124、224)中的信号合成器520用于接收幅度控制器510和移相器116、126输出的信号,并将该幅度控制器510输出信号中的振荡幅度和该移相器116、126输出信号中的谐振频率和移相角合成辅振荡信号输出。
通过上述实施例,首先,实现了本发明所保护的一种超声波发生器中“同步”的技术特征,即输入各路超声波辅振荡器124、224的振荡信号的频率均与该超声 波主振荡器114、214输出信号的谐振频率相同,从而使得各路超声波发生器输出的谐振频率完全一致,整个超声波系统处于工作在谐振状态,此时超声波换能器的电声转换效率最高,用于焊接的超声振动能量也最大。而且,通过同时驱动至少两个超声波换能器共同作用于一个或是多个声学工具头上,从而实现了超声波功率合成的功能,使得整个多路超声波发生器能够输出2倍或是n倍的单个换能器最大输出功率,从而达到需要的输出功率8000~12000W甚至更高。
综上所述,本发明提供了一种超声波发生器和一种超声波系统,突破了单个换能器最大输出功率对于整个超声波系统地功率限制,可以很好地支持两个或是多个换能器组成的“扩展”的超声波系统,并将此超声波系统的最大输出功率扩大为两倍甚至多倍单个换能器最大输出功率。同时,所有两个或是多个超声波换能器可以工作在“移相同步”控制状态下,这样就保证了其输出的双路或是多路超声波振荡可以按照应用的要求进行有效的叠加,从而达到最佳的焊接应用效果。另外,得益于每路超声波辅发生器保留的单独的幅度控制模块,每路超声波发生器均可以控制其单独驱动对应的超声波换能器工作输出信号的输出幅度,当每个单独换能器工作负载大小不同的时候,此项控制可以精准控制每路换能器工作在所需要的不同大小的振荡幅度之下,输出所需要的不同大小的超声功率,使得可以更为精准控制焊接应用的效果。
提供对本公开的先前描述是为使得本领域任何技术人员皆能够制作或使用本公开。对本公开的各种修改对本领域技术人员来说都将是显而易见的,且本文中所定义的普适原理可被应用到其他变体而不会脱离本公开的精神或范围。由此,本公开并非旨在被限定于本文中所描述的示例和设计,而是应被授予与本文中所公开的原理和新颖性特征相一致的最广范围。

Claims (9)

  1. 一种超声波发生器,其特征在于,包括多个超声波发生器支路以用于驱动相应的多个超声波换能器,每个超声波发生器支路中包括直流电源、用于输出振荡信号的超声波振荡器、用于基于所述振荡信号指示的谐振频率和振荡幅度将所述直流电源提供的直流电压源转换为高频交流电源的直流/交流变换器,以及用于将所述高频交流电源转换为高频高压激励信号以输出至相应超声波换能器的阻抗匹配输出网络,
    所述多个超声波发生器支路中包括一路超声波主发生器和至少一路超声波辅发生器,所述超声波主发生器的超声波主振荡器基于对应超声波换能器的反馈信号生成用以控制所述超声波主发生器的直流/交流变换器的主振荡信号,
    每一路所述超声波辅发生器的超声波辅振荡器使用基于所述超声波主振荡器输出的所述主振荡信号的振荡信号源生成谐振频率与所述主振荡信号相一致的辅振荡信号以控制所述路超声波辅发生器的所述直流/交流变换器。
  2. 如权利要求1所述的超声波发生器,其特征在于,还包括移相器,用于针对每一路超声波辅发生器对所述主振荡信号进行移相,并将经过移相的主振荡信号作为振荡信号源提供给所述路超声波辅发生器的所述超声波辅振荡器。
  3. 如权利要求2所述的超声波发生器,其特征在于,所述移相器设置于所述超声波主发生器。
  4. 如权利要求2所述的超声波发生器,其特征在于,所述每一路超声波辅发生器的所述超声波辅振荡器的振荡信号源相对于所述主振荡信号的相位差基于所述多个超声波发生器支路对应的超声波换能器的焊接应用需求设定。
  5. 如权利要求4所述的超声波发生器,其特征在于,所述相位差的范围介于0至359°。
  6. 如权利要求2所述的超声波发生器,其特征在于,每个超声波发生器支路中的超声波振荡器皆包括幅度控制器,所述幅度控制器基于所在支路的所述阻抗匹配输出网络采集的对应超声波换能器的反馈电压调节所述超声波振荡器输出的振荡信号的振荡幅度。
  7. 如权利要求6所述的超声波发生器,其特征在于,所述超声波主发生器的所述超声波主振荡器中包括锁相环,所述锁相环基于所述超声波主发生器的所述 阻抗匹配输出网络采集的对应超声波换能器的反馈电压和反馈电流之间的相位差,调节所述超声波主振荡器输出的所述主振荡信号的谐振频率。
  8. 如权利要求7所述的超声波发生器,其特征在于,每个超声波发生器支路中的超声波振荡器皆包括信号合成器,所述超声波主振荡器中的所述信号合成器基于所述幅度控制器输出的振荡幅度和所述锁相环输出的谐振频率生成所述主振荡信号,
    所述超声波辅振荡器中的所述信号合成器基于所述幅度控制器输出的振荡幅度和所述移相器提供的振荡信号源的谐振频率和移相角生成辅振荡信号。
  9. 一种超声波系统,其特征在于,包括如权利要求1~8任一项所述的超声波发生器,以及与每个所述超声波发生器相对应的超声波换能器。
PCT/CN2022/080410 2021-12-30 2022-03-11 一种超声波发生器和超声波系统 WO2023123678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111657736.2A CN114290685B (zh) 2021-12-30 2021-12-30 一种超声波发生器和超声波系统
CN202111657736.2 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023123678A1 true WO2023123678A1 (zh) 2023-07-06

Family

ID=80972803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080410 WO2023123678A1 (zh) 2021-12-30 2022-03-11 一种超声波发生器和超声波系统

Country Status (2)

Country Link
CN (1) CN114290685B (zh)
WO (1) WO2023123678A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102535064A (zh) * 2012-02-22 2012-07-04 杭州智能染整设备有限公司 超声波染色机
CN103657997A (zh) * 2012-09-05 2014-03-26 赵铁军 一种超声波装置
CN104105588A (zh) * 2012-02-10 2014-10-15 潘特克股份公司 借助超声波焊接方法制造薄塑料膜构成的管状袋的方法和装置
CN109108506A (zh) * 2018-09-30 2019-01-01 中车青岛四方机车车辆股份有限公司 超声波辅助装置及焊接系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2813729C2 (de) * 1978-03-30 1979-08-16 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren und Schaltungsanordnung zur Anregung von Ultraschallschwingern, die in der Impuls-Echo-Technik eingesetzt werden
DD217088A1 (de) * 1983-08-29 1985-01-02 Adw Ddr Verfahren zur einstellung eines optimalen arbeitsbereiches beim ultraschallbonden
DE4438876B4 (de) * 1994-10-31 2004-04-01 Pi Ceramic Piezoelektrischer Motor
DE102004026826B4 (de) * 2004-05-28 2010-01-14 Schunk Ultraschalltechnik Gmbh Ultraschallschweißvorrichtung und Konverter einer Ultraschallschweißvorrichtung
CN201147869Y (zh) * 2007-05-25 2008-11-12 江苏科技大学 大功率超声波金属焊接机自适应信号源
JP2012086135A (ja) * 2010-10-19 2012-05-10 Ptc Engineering:Kk 超音波発振器及び超音波洗浄装置
CN102274053B (zh) * 2011-05-19 2013-05-29 天津迈达医学科技有限公司 一种用于白内障超声乳化仪中超声手柄的调谐方法
DE102012215993A1 (de) * 2012-09-10 2014-03-13 Weber Ultrasonics Gmbh Ultraschallsystem, Ultraschallgenerator und Verfahren zum Betreiben eines solchen
KR101339614B1 (ko) * 2012-09-27 2014-01-03 조경근 초음파 발진기
CN103252314B (zh) * 2013-05-13 2015-09-16 河海大学常州校区 超声电源的动态匹配装置及其方法
CN103567134B (zh) * 2013-11-11 2016-01-13 河海大学常州校区 超声电源的匹配装置及其匹配方法
CN104549979B (zh) * 2014-12-29 2017-08-04 东莞市优超精密技术有限公司 基于移相全桥大功率超声波发生器
EP3355819A1 (en) * 2015-09-30 2018-08-08 Ethicon LLC Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
WO2018143410A1 (ja) * 2017-02-03 2018-08-09 三菱電機株式会社 超音波接合装置、超音波接合検査方法および超音波接合部の製造方法
CN106936386B (zh) * 2017-04-14 2020-09-29 北京工业大学 一种谐振式双电源供电航空电磁发射装置
CN107694892A (zh) * 2017-11-17 2018-02-16 杭州成功超声设备有限公司 一种超大功率的棒式超声系统结构
CN111570242B (zh) * 2019-02-19 2021-07-09 中国石油化工股份有限公司 用于稠油降粘的超声换能器及超声换能装置
CN110702971B (zh) * 2019-09-10 2021-11-26 天津大学 自动跟踪换能器串联谐振频率的超声驱动电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105588A (zh) * 2012-02-10 2014-10-15 潘特克股份公司 借助超声波焊接方法制造薄塑料膜构成的管状袋的方法和装置
CN102535064A (zh) * 2012-02-22 2012-07-04 杭州智能染整设备有限公司 超声波染色机
CN103657997A (zh) * 2012-09-05 2014-03-26 赵铁军 一种超声波装置
CN109108506A (zh) * 2018-09-30 2019-01-01 中车青岛四方机车车辆股份有限公司 超声波辅助装置及焊接系统

Also Published As

Publication number Publication date
CN114290685B (zh) 2024-02-06
CN114290685A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
JP6607289B2 (ja) 無線電力伝送システムおよび送電装置
JP2936232B2 (ja) 圧電気トランスデューサ作動用電力供給装置
CN103828212A (zh) 电力变换装置
CN107112921B (zh) 电网耦合逆变器、逆变器装置和用于逆变器装置的运行方法
JP5202354B2 (ja) D級増幅装置
JP6985577B2 (ja) コンデンサ感知を用いる共振整流器回路
CN107006113A (zh) 高频电源
CN103378658A (zh) 电力传输装置、非接触电力传输系统以及信号生成方法
EP3197013A1 (en) Regeneration circulator, high-frequency power supply device, and high-frequency power regeneration method
Namadmalan Universal tuning system for series-resonant induction heating applications
WO2023123678A1 (zh) 一种超声波发生器和超声波系统
JP2017220990A (ja) 超音波非接触給電システム
Rong et al. A misalignment-tolerant fractional-order wireless charging system with constant current or voltage output
CN109483038B (zh) 一种自动追频超声波焊接电源装置及其控制方法
Qu et al. Wireless power transfer system with high-order compensation network based on parity-time-symmetric principle and relay coil
EP2639932B1 (en) Wireless electrical power transmission system and its control method
RU2634232C1 (ru) Транзисторный генератор для резонансных нагрузок
CN1421987B (zh) 直流-交流电压转换电路及控制方法
JPH06121778A (ja) スイッチング周波数発生器
JP4124036B2 (ja) Pwm搬送波の同期方法及び電力変換システム
TWM599704U (zh) 電力供應系統及震動加工裝置
RU2458454C1 (ru) Транзисторный генератор для резонансных нагрузок
Li et al. Pulse density modulation control of LCC-s compensated WPT system with switch-controlled capacitors for constant output voltage of frequency-selective receivers
RU2510919C1 (ru) Транзисторный генератор для резонансных нагрузок
Pavlov et al. Optimizing the Operation of Charging Self-Generating Resonant Inverters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912984

Country of ref document: EP

Kind code of ref document: A1