JP6985577B2 - コンデンサ感知を用いる共振整流器回路 - Google Patents

コンデンサ感知を用いる共振整流器回路 Download PDF

Info

Publication number
JP6985577B2
JP6985577B2 JP2019516996A JP2019516996A JP6985577B2 JP 6985577 B2 JP6985577 B2 JP 6985577B2 JP 2019516996 A JP2019516996 A JP 2019516996A JP 2019516996 A JP2019516996 A JP 2019516996A JP 6985577 B2 JP6985577 B2 JP 6985577B2
Authority
JP
Japan
Prior art keywords
wireless power
power receiver
capacitor
comparator
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019516996A
Other languages
English (en)
Other versions
JP2019530416A (ja
JP2019530416A5 (ja
Inventor
ムスタファ エル マルキ
オザレヴリ イーサン
デイク トゥリ
ドゥー ディンクン
リーシ ジャンパオロ
シュー ジンウェイ
Original Assignee
テキサス インスツルメンツ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テキサス インスツルメンツ インコーポレイテッド filed Critical テキサス インスツルメンツ インコーポレイテッド
Publication of JP2019530416A publication Critical patent/JP2019530416A/ja
Publication of JP2019530416A5 publication Critical patent/JP2019530416A5/ja
Application granted granted Critical
Publication of JP6985577B2 publication Critical patent/JP6985577B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/081Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters wherein the phase of the control voltage is adjustable with reference to the AC source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

エネルギーストレージデバイスを充電及び/又は電子デバイスを給電するためのワイヤレス電力伝送の支持率が急速に増している。例えば、モバイル電子デバイスは、現在広く用いられており、将来利用が増えるものと思われる。モバイルデバイスは概して、バッテリー、又は定期的に再充電される必要のあるその他のエネルギーストレージデバイスにより給電される。充電は、有線で、又は電源へのワイヤレス接続を介して達成され得る。有線による充電は、充電されているデバイスが、充電ケーブルを介して電源に接続されることを必要とし、これは不都合であることがある。これに対し、ワイヤレス再充電システムは、接続ケーブルなしに電力を搬送し、従って、有線の充電器よりも便利な充電を提供し得る。
ワイヤレス電力伝送は、利便性以外の理由でも有利である。例えば、ワイヤレス電力伝送は、有線充電器からの火花が爆発性気体に引火し得るインダストリアル環境に用いるため、及び無菌の機密ケースを要する生物医学的デバイスと共に用いるためによく適している。
より長い距離にわたる電力伝送を促進するため、及びシステム受動構成要素(例えば、インダクタ)のサイズの低減を許容するため、ワイヤレス充電システムの周波数のオペレーションが増大している。
ワイヤレス電力伝送システムの記載される例において、ワイヤレス電力伝送システムは、パワーレシーバ共振回路及び同期整流器を含む。パワーレシーバ共振回路は、インダクタ、及びインダクタと直列に接続されるコンデンサを含む。同期整流器は、コンデンサの電圧に基づいてインダクタを介して流れる交流のゼロ交差を識別し、ゼロ交差のタイミングに基づいて交流の同期整流を制御するように構成される。
別の例において、同期整流器が、コンパレータ、位相シフタ、及びブリッジを含む。同期整流器は、ブリッジの両端に接続される直列共振回路のコンデンサの電圧におけるゼロ交差を識別するように構成される。位相シフタは、コンパレータの出力に結合され、コンパレータにより識別されたゼロ交差に基づいて、共振回路を流れる交流のゼロ交差に時間的に対応するゼロ交差を有する信号を生成するように構成される。
更なる例において、ワイヤレス電力伝送のための方法が、共振回路のインダクタ及びコンデンサにおける電流フローを誘導することを含む。コンデンサの電圧が検出される。この電圧は、電流フローに関連付けられる。同期整流器のトランジスタが、コンデンサの両端で検出された電圧のタイミングに基づいて駆動される。
種々の実施例に従ったコンデンサ感知を備える共振整流器を含むワイヤレス電力伝送システムのための高レベル図を示す。
種々の実施例に従ったコンデンサ感知を含む共振整流器回路における電流及び電圧信号を示す。
種々の実施例に従ったコンデンサ感知を備える共振整流器回路を含むワイヤレスパワーレシーバのための概略図を示す。
種々の実施例に従ったコンデンサ感知を用いる共振整流のための方法のためのフローチャートを示す。
本記載において、「結合する(couple)」という用語は、間接的又は直接的接続のいずれかを意味する。そのため、第1のデバイスが第2のデバイスに結合する場合、その接続は、直接的接続を介し得、或いは、他のデバイス及び接続を介する間接的接続を介し得る。「〜に基づく」という記載は、「少なくとも部分的に〜に基づく」を意味する。従って、XがYに基づく場合、Xは、Yに及び任意の数の他の要因に基づき得る。
図面及びこれ以降の記載において、明確さ及び簡潔さのため、或る特徴が、寸法において誇張して又はいくらか概略的に示され得、従来の要素の詳細の一部が示されない可能性がある。これ以降の本明細書に記載される実施例の異なる教示及び構成要素は、所望の結果をもたらすために別個に又は任意の適切な組み合わせで用いられ得る。
共振ワイヤレス電力伝送システムにおいて、ブリッジ回路電界効果トランジスタ(FET)アクティベーションのタイミングは、効率を最適化するために慎重に制御される必要がある。共振整流器が、ブリッジFETアクティベーションタイミングを制御するフィードバックループを含む。従来の共振整流器において、フィードバックループは、感知電流を生成するため、ブリッジハイサイドパワーFETと並列の感知FETを含む。感知電流は、レシーバコイルを流れる電流のゼロ交差の検出を可能にするため、感知抵抗器を介して流れる。残念なことに、ブリッジFETの全ては、レシーバコイルにおける電流がゼロを交差する時オフであり、これは、ハイサイドブリッジFET電流にグリッチを導入しがちであり、それにより、ハイサイドブリッジFET電流を損傷させる。グリッチは、ループ制御回路要素に、共振周波数のサイクル内に複数パルスを生成させ得、及びフィードバックループの制御を最終的に失わせ得、その結果、パワー効率及び出力レギュレーションの劣化となる。また、このような従来のシステムにおける電流感知不正確さは、遅延及びジッタを誘発し得、これは、不適切なゼロ電流検出につながる。
例示の実施例は、直列共振回路のインダクタを介する電流ではなく、直列共振回路のコンデンサの電圧を監視することにより、従来のシステムが被るゼロ交差検出の問題を克服する。コンデンサの電圧はブリッジFETのスイッチングにより影響を受けないので、本明細書に記載の実施例において適用される感知波形には、従来の共振整流器において見られる欠陥がない。コンデンサの電圧は、インダクタの電流に対して位相が90度シフトされ、実施例は、共振回路のインダクタにおける電流のゼロ交差に時間的に対応する信号遷移を生成するため、コンデンサの両端で検出された電圧信号を90度シフトする。実施例は、ブリッジFETを制御するために、位相シフトされた信号を適用する。共振コンデンサ電圧に基づいてブリッジFETのタイミングを制御することにより、例示の実施例は、従来のワイヤレス電力伝送システムにおいて提供されるより更によりロバストな同期整流器を提供する。
図1は、種々の実施例に従ったコンデンサ感知を備える共振整流器を含むワイヤレス電力伝送システム100のための高レベル図を示す。システム100は、パワートランスミッタ102及びパワーレシーバ108を含む。パワートランスミッタ102は、インダクタ104及びコンデンサ106によって形成される共振回路を含む。パワートランスミッタ102は、明確にするために省略されている任意の数の付加的な構成要素を含み得る。例えば、パワートランスミッタ102は、電源、タイミング回路、及びインダクタ104及びコンデンサ106に印加される駆動信号を生成するための駆動回路を含み得る。パワートランスミッタ102は、共振周波数で発振磁場を生成するために、インダクタ104及びコンデンサ106の共振周波数でインダクタ104及びコンデンサ106を駆動する。幾つかの実施例において、パワートランスミッタ102により生成される発振磁場の周波数は、比較的高くし得る(例えば、6.78メガヘルツ又はそれ以上)。
パワーレシーバ108は、コンデンサ112と直列のインダクタ110によって形成される共振回路を含む。インダクタ110及びコンデンサ112の共振周波数は、パワートランスミッタ102により生成される発振磁場の周波数とほぼ同じであり得る。パワートランスミッタ102により生成される磁場は、磁場発振の周波数でのインダクタ110及びコンデンサ112における電流を誘導する。
パワーレシーバ108はまた、同期整流器120、コンパレータ116、クランピング/スケーリング回路要素114、及び位相シフト回路要素118を含む。コンパレータ116は、クランピング/スケーリング回路要素114を介してコンデンサ112の両端に接続される。より具体的には、コンパレータ116の一方の入力端子が、クランピング/スケーリング回路要素114を介してコンデンサ112の各端子に接続される。クランピング/スケーリング回路要素114は、コンパレータ116及び/又はダイオード、又は、コンパレータ116により受信される電圧信号を制限するためのその他の回路要素により受信される電圧信号の振幅を、所定の振幅(例えば、コンパレータ116を給電する電源の電圧)未満まで調節するため、抵抗器ネットワークを含み得る。
コンパレータ116は、コンデンサの正弦波電圧112のゼロ交差に時間的に対応するゼロ交差を有する矩形波を生成する。コンデンサ112の電圧が、インダクタ110を流れる電流に対して位相が90度シフトされ、そのため、ゼロ交差電圧のタイミングが、電流感知においてみられる歪みを受けないので、パワーレシーバ108は、ゼロ交差を感知するためのコンデンサ112の電圧を用いる。インダクタ電流とコンデンサ電圧との間の90度の位相シフトは、同じであるインダクタ110及びコンデンサ112を流れる電流(即ち、インダクタ110及びコンデンサ112が、直列に接続され、そのため、電流は同じになるはずである)に基づいて検証され得る。コンデンサ112を介する電流は、下記のように表すことができる。
=C(dv/dt) (1)
ここで、iは、コンデンサ112を流れる電流であり、vはコンデンサ112の電圧である。共振周波数では、コンデンサ112の電圧は正弦波である。従って、コンデンサ112の電圧及びコンデンサ112における電流は、下記のように表すことができる。
=Asin(ωt)+θ(2)、及び
=Aωcos(ωt) (3)
式(2)及び(3)におけるサイン及びコサイン項により、コンデンサ112の電圧及びコンデンサ112における電流は90度位相がずらされるので、インダクタ110における電流及びコンデンサ112の電圧も90度位相がずれている。コンパレータ116により生成される90度位相シフトされた感知信号の使用により、パワーレシーバ108は、インダクタ110における電流のゼロ交差において見られるスイッチングノイズ及びグリッチを避け得る。
図2は、システム100における代表的な電圧及び電流信号を示す。図2において、信号VC2はコンデンサ112の電圧を表し、信号IC2はコンデンサ112を流れる電流を表し、信号IL2はインダクタ110を流れる電流を表す。図2に示すように、コンデンサ112の電圧は、コンデンサ112及びインダクタ110を流れる電流に対して位相が90度シフトされる。コンパレータ出力信号122におけるゼロ交差は、コンデンサ112の電圧におけるゼロ交差に時間的に対応する。
再び図1を参照すると、コンパレータ116は、位相シフト回路要素118に結合され、コンパレータ出力信号122は位相シフト回路要素118に提供される。位相シフト回路要素118は、コンパレータ出力信号122を90度シフトする。位相シフト回路要素118は、位相ロックループ(PLL)、遅延ロックループ(DLL)、又は、位相が90度シフトされたコンパレータ出力信号122に対応する信号を生成することが可能なその他の位相シフト回路要素を含み得る。コンパレータ出力信号122を90度シフトすることにより、位相シフト回路要素118は、インダクタ110を流れる電流のゼロ交差に対応及び整合するゼロ交差を有する信号を生成する。
位相シフト回路要素118はまた、同期整流器120を駆動するための制御信号を生成するための回路要素を含み得る。制御信号のタイミングは、位相が90度シフトされたコンパレータ出力信号122のタイミング(例えば、ゼロ交差タイミング)に基づき得る。同期整流器120は、Hブリッジとして配されるパワーFETを含む。位相シフト回路要素118により生成される制御信号は、クロスコンダクションを防止するタイミングでパワーFETを駆動する。従って、制御信号は、接続されているハイサイドパワーFET及びローサイドパワーFETが同時にオンにならないようにするタイミングでパワーFETを駆動し得る。これにより、全てのパワーFETがオフにされる「デッドタイム」がつくられる。デッドタイムは、コンデンサ112の電圧のゼロ交差から導出されるようにインダクタ110を流れる電流におけるゼロ交差と一致する。
同期整流器120は、レギュレートされ、フィルタされ、一層高い又は下側DC電圧などに変換され得る、DC出力(VR)を生成し、システム100及び/又はシステム100のパワー回路要素のバッテリーを充電するために用いられる。
図3は、種々の実施例に従ったコンデンサ感知を備える共振整流器回路を含むワイヤレスパワーレシーバ300のための概略図を示す。ワイヤレスパワーレシーバ300は、ワイヤレスパワーレシーバ108の一実施例であり得る。図3において、パワートランスミッタのインダクタ104は、レシーバ300の一部ではないが、参照のため示されている。ワイヤレスパワーレシーバ300は、インダクタ110、コンデンサ112、コンパレータ116、PLL302、デューティサイクル制御及びドライバ回路要素304、及びパワーFET306、308、310、及び312を含む。ワイヤレスパワーレシーバ300は、クランピング/スケーリング回路要素114も含み得る。ワイヤレスパワーレシーバ300の幾つかの実施例において、PLL302は、DLL又はその他の位相シフト回路要素で置換され得る。
パワーFET306、308、310、及び312は、Hブリッジを形成するように接続される。インダクタ100及びコンデンサ112によって形成される共振回路は、Hブリッジの両端に接続される。パワートランスミッタのインダクタ104により生成される発振磁場は、インダクタ110及びコンデンサ112において電流フローを誘導する。コンパレータ116、PLL302、及びデューティサイクル制御及びドライバ回路要素304は、Hブリッジ及び共振回路に接続されて、パワーFET306、308、310、及び312を制御し、整流をインダクタ110において誘導される電流波形と同期させるフィードバックループを形成する。
コンパレータ116の入力端子は、パワーレシーバ108に関して本明細書に記載するようにコンデンサ112の両端に接続される。コンパレータ116は、コンデンサ112の正弦波電圧に周波数及び位相において対応する出力信号122(例えば、矩形波)を生成する。コンパレータ116の出力信号122は、PLL302のための基準クロックとして機能する。
PLL302は、電圧制御発振器、位相コンパレータ、チャージポンプ、ローパスフィルタ、周波数分周器、及び、PLLにコンパレータ116の出力信号122に位相ロックされる種々の周波数を生成させる他の構成要素を含み得る。PLL302は、コンパレータ116の出力信号122に対して位相が90度、180度、270度及び/又は360度シフトされた出力信号を生成する(例えば、順次ロジックによって形成される)遅延要素を含み得る。例えば、PLL302は、コンパレータ116の出力信号122の周波数の4倍の、及び、コンパレータ116の出力信号122に位相ロックされるクロックを生成し得、信号122の90度、180度、270度及び360度位相シフトされたバージョンを生成するためクロックを印加し得る。幾つかの実施例において、90度、180度、270度、及び360度位相シフトされたバージョンの一つ又は複数が、信号122の周波数の2倍で生成され得、50%デューティサイクルを確保するために2で除算され得る。
デューティサイクル制御及びドライバ回路要素304は、それぞれ、パワーFET308、306、312、及び310を制御するため、ゲート制御信号314、316、318、及び320を生成する。デューティサイクル制御及びドライバ回路要素304は、PLL302により生成された信号112の90度位相シフトされたバージョンを受け取り、PLL出力信号324によって提供されるように、インダクタ100における電流のゼロ交差に基づくタイミングでゲート制御信号314、316、318、及び320を生成する。上述したように、デューティサイクル制御及びドライバ回路要素304は、インダクタ110の電流におけるゼロ交差辺りにデッドタイムを提供するために、ゲート制御信号314、316、318、及び320を生成する。デューティサイクル制御及びドライバ回路要素304は、ゲート制御信号314、316、318、及び320のタイミングを生成するため、順次及び/又は組み合わせ論理を含み得る。ハイサイドFET310及び312はnチャネルFETであり得るので、デューティサイクル制御及びドライバ回路要素304は、ゲート制御信号318及び320を駆動するためのレベルシフタを含み得る。
ゲート制御信号314、316、318、及び320の一つが、PLL302のフィードバック入力322に接続され得る。幾つかの実施例において、制御信号318及び320の一つが、ハイサイドパワーFET310及び312を駆動するレベルシフタにおける遅延を補償するために、PLL302のフィードバック入力322に接続され得る。
図4は、種々の実施例に従った容量性感知を用いる共振整流のための方法400のフローチャートを示す。便宜上順次示されるが、少なくとも幾つかの行為が、異なる順で及び/又は並列して成され得る。また、幾つかの実施例が、示される行為の幾つかのみを実施し得る。幾つかの実施例において、方法400の少なくともの幾つかのオペレーションが、パワーレシーバ回路108又は300の構成要素により実装されてもよい。
ブロック402において、電流フローが、ワイヤレスパワーレシーバ108のインダクタ110及びコンデンサ112によって形成される共振回路において誘導される。幾つかの実施例において、ワイヤレスレシーバ108は、インダクタ110及びコンデンサ112におけるAC電流のフローを開始するためにワイヤレスパワートランスミッタ102により生成される発振磁場内に位置し得る。
ブロック404において、コンパレータ116は、コンデンサ112の電圧を感知する。コンデンサ112の電圧は正弦波である。コンパレータ116は、コンデンサ112の正弦波電圧のゼロ交差に時間的に対応するエッジを有する矩形波を生成する。
ブロック406において、コンパレータ116の出力122は、位相シフタ118によって位相が90度シフトされ、位相シフタ118は、PLL、DLL、又はその他の位相シフトデバイスであり得る。コンパレータ116の出力122の90度位相シフトされたバージョンにおける遷移は、共振回路を流れるAC電流におけるゼロ交差に対応する時間に起こる。
ブロック408において、ブリッジトランジスタ制御回路要素(例えば、デューティサイクル制御及びドライバ回路要素304)が、ブリッジトランジスタを制御するためタイミング信号を生成する。信号のタイミングは、90度位相シフトされたコンパレータ116の出力122に基づく。例えば、第1のハイサイドパワートランジスタ及び第1のローサイドパワートランジスタが、AC電流の正のハーフサイクルの間、タイミング信号によりイネーブルされ得、第2のハイサイドパワートランジスタ及び第2のローサイドパワートランジスタが、AC電流の負のハーフサイクルの間、タイミング信号によりイネーブルされ得る。タイミング信号は、90度位相シフトされたコンパレータ116の出力122における遷移の辺り(即ち、整流されるべきAC電流におけるゼロ交差の辺り)の時間期間の間、トランジスタの全てをディセーブルし得る。
ブロック410において、タイミング信号は、ブリッジを流れるAC電流の整流を制御するためブリッジ回路のトランジスタを駆動する。ブリッジの出力は、他の回路要素を給電するためにフィルタ及び/又はレギュレートされ得る。
ワイヤレスパワーレシーバ100、300の整流器ブリッジは、FETを含むように説明されてきたが、幾つかの実施例においてブリッジはバイポーラトランジスタを含み得る。
本発明の特許請求の範囲内で、説明した例示の実施例に改変が成され得、他の実施例が可能である。

Claims (20)

  1. ワイヤレス電力レシーバであって、
    インダクタ、前記インダクタ直列に接続されるコンデンサを含む、共振回路
    前記共振回路に結合される同期整流器
    前記共振回路と前記同期整流器とに結合される回路要素であって、
    前記コンデンサの電圧に基づいて前記インダクタを介して流れる交流のゼロ交差を識別し、
    前記ゼロ交差のタイミングに基づいて前記交流の同期整流を制御する、
    ように構成される、前記回路要素と、
    を含む、ワイヤレス電力レシーバ
  2. 請求項1に記載のワイヤレス電力レシーバであって、
    前記回路要素がコンパレータを含み、
    前記コンパレータの第1の入力端子が前記コンデンサの第1の端子に結合され、前記コンデンサの第2の入力端子が前記コンパレータの第2の端子に結合される、ワイヤレス電力レシーバ
  3. 請求項2に記載のワイヤレス電力レシーバであって、
    前記コンパレータが、前記コンデンサの電圧のゼロ交差を識別するように構成される、ワイヤレス電力レシーバ
  4. 請求項2に記載のワイヤレス電力レシーバであって、
    前記回路要素が、前記コンパレータの出力に結合される位相シフタを更に含み、
    前記位相シフタが、90度位相がシフトされた前記コンパレータの出力における信号に対応する出力信号を生成するように構成される、ワイヤレス電力レシーバ
  5. 請求項4に記載のワイヤレス電力レシーバであって、
    前記位相シフタが、位相ロックループ遅延ロックループの一方を含む、ワイヤレス電力レシーバ
  6. 請求項4に記載のワイヤレス電力レシーバであって、
    前記同期整流器が、ブリッジとして接続される、2つのハイサイド電力トランジスタ2つのローサイド電力トランジスタを含み、
    前記ハイサイド電力トランジスタのうちのつのハイサイド電力トランジスタの制御端子が、前記位相シフタのフィードバック入力に結合される、ワイヤレス電力レシーバ
  7. 請求項4に記載のワイヤレス電力レシーバであって、
    前記同期整流器が、ブリッジとして接続される、2つのハイサイド電力トランジスタ2つのローサイド電力トランジスタとを含み
    前記回路要素が、前記位相シフタの出力前記ブリッジに結合されるスイッチング制御回路を更に含み、
    前記スイッチング制御回路が、前記ブリッジに前記同期整流器を介して流れる前記交流を整流させるために、前記ブリッジの各トランジスタに対応する駆動信号を生成するように構成される、ワイヤレス電力レシーバ
  8. ワイヤレス電力レシーバであって、
    コンパレータ位相シフタブリッジを含み、
    前記コンパレータが、前記ブリッジの両端に接続される直列共振回路のコンデンサの電圧におけるゼロ交差を識別するように構成され、
    前記位相シフタが、前記コンパレータの出力に結合され、前記コンパレータにより識別された前記ゼロ交差に基づいて、前記直列共振回路を流れる交流のゼロ交差に時間的に対応するゼロ交差を有する信号を生成するように構成される、ワイヤレス電力レシーバ
  9. 請求項8に記載のワイヤレス電力レシーバであって、
    前記位相シフタが、前記コンパレータの出力を90度位相シフトすることによって前記信号を生成するように更に構成される、ワイヤレス電力レシーバ
  10. 請求項8に記載のワイヤレス電力レシーバであって、
    前記位相シフタが、位相ロックループ遅延ロックループの一方を含む、ワイヤレス電力レシーバ
  11. 請求項8に記載のワイヤレス電力レシーバであって、
    前記ブリッジが、2つのハイサイド電力トランジスタ2つのローサイド電力トランジスタを含む、ワイヤレス電力レシーバ
  12. 請求項11に記載のワイヤレス電力レシーバであって、
    前記位相シフタがフィードバック入力を含み、前記フィードバック入力が、前記ハイサイド電力トランジスタうちのつのハイサイド電力トランジスタの制御端子に結合される、ワイヤレス電力レシーバ
  13. 請求項8に記載のワイヤレス電力レシーバであって、
    前記位相シフタの出力と前記ブリッジとに結合されるスイッチング制御回路を更に含み、
    前記スイッチング制御回路が、前記ブリッジに前記交流を整流させるために、前記ブリッジの各トランジスタに対応する駆動信号を生成するように構成され、前記ゼロ交差に基づく前記駆動信号のタイミングが前記コンパレータにより識別される、ワイヤレス電力レシーバ。
  14. 請求項13に記載のワイヤレス電力レシーバであって、
    前記位相シフタが、前記コンデンサの電圧に対して、90、180、270及び360度の位相シフトを有する信号を生成するように更に構成され、
    前記スイッチング制御回路が、前記位相シフタにより生成される前記信号における遷移のあたりに前記駆動信号におけるデッドタイムを提供するように更に構成される、ワイヤレス電力レシーバ
  15. ワイヤレス電力伝送のための方法であって、
    共振回路のインダクタコンデンサにおいて電流フローを誘導すること
    前記コンデンサの電圧を検出することであって、前記電圧が前記電流フローに関連付けられている、前記検出すること
    前記コンデンサの検出された電圧に基づいて前記インダクタを介する電流フローにおけるゼロ交差を識別することと、
    前記ゼロ交差のタイミングに基づいて同期整流器のトランジスタを駆動すること
    を含む、方法。
  16. 請求項15に記載の方法であって、
    前記コンデンサの電圧のゼロ交差を識別することを更に含む、方法。
  17. 請求項15に記載の方法であって、
    前記コンデンサの検出された電圧の周波数を有し、前記コンデンサの検出された電圧に対して90度位相がシフトされた第1の信号を生成することを更に含む、方法。
  18. 請求項17に記載の方法であって、
    位相ロックループ遅延ロックループの一方によって前記第1の信号を生成することを更に含む、方法。
  19. 請求項17に記載の方法であって、
    前記第1の信号を生成する位相シフタに前記同期整流器のハイサイドに配置される前記トランジスタのうちのつのトランジスタの制御端子から駆動信号をフィードバックすることを更に含む、方法。
  20. 請求項15に記載の方法であって、
    前記駆動することが、ブリッジに前記同期整流器を介して流れる交流を整流させるために、前記同期整流器における前記ブリッジとして接続される前記トランジスタの各々に対応する駆動信号を生成することを含む、方法。
JP2019516996A 2016-09-28 2017-09-28 コンデンサ感知を用いる共振整流器回路 Active JP6985577B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/279,094 2016-09-28
US15/279,094 US10439502B2 (en) 2016-09-28 2016-09-28 Resonant rectifier circuit with capacitor sensing
PCT/US2017/054095 WO2018064378A1 (en) 2016-09-28 2017-09-28 Resonant rectifier circuit with capacitor sensing

Publications (3)

Publication Number Publication Date
JP2019530416A JP2019530416A (ja) 2019-10-17
JP2019530416A5 JP2019530416A5 (ja) 2020-11-12
JP6985577B2 true JP6985577B2 (ja) 2021-12-22

Family

ID=61686758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019516996A Active JP6985577B2 (ja) 2016-09-28 2017-09-28 コンデンサ感知を用いる共振整流器回路

Country Status (5)

Country Link
US (2) US10439502B2 (ja)
EP (1) EP3520197A4 (ja)
JP (1) JP6985577B2 (ja)
CN (1) CN109792164B (ja)
WO (1) WO2018064378A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018065330A1 (de) * 2016-10-07 2018-04-12 Mitsubishi Hitec Paper Europe Gmbh Wärmeempfindliches aufzeichnungsmaterial
US10530186B2 (en) * 2017-08-10 2020-01-07 Texas Instruments Incorporated Wireless power transmission with fractional timing resolution
US10511232B2 (en) * 2017-10-06 2019-12-17 Pr Electronics A/S Adaptive control of synchronous rectifier
CN116961250A (zh) * 2019-08-26 2023-10-27 韦特里西提公司 无线电力系统中的有源整流控制
JP7269858B2 (ja) * 2019-10-08 2023-05-09 東洋電機製造株式会社 同期整流制御装置及び受電装置
US11876383B1 (en) * 2020-12-10 2024-01-16 Apple Inc. Wireless power system with voltage regulation
JP7100734B1 (ja) 2021-02-25 2022-07-13 マクセル株式会社 ワイヤレス受電装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301128B1 (en) * 2000-02-09 2001-10-09 Delta Electronics, Inc. Contactless electrical energy transmission system
US7212418B1 (en) * 2005-11-02 2007-05-01 Niko Semiconductor Co., Ltd. Synchronous rectifier control circuit
KR101344835B1 (ko) * 2006-12-11 2013-12-26 삼성디스플레이 주식회사 게이트 구동 신호 지연을 감소시키는 방법 및 액정 표시장치
CN101505558B (zh) * 2008-02-04 2012-06-13 通嘉科技股份有限公司 具有补偿机制的发光元件驱动电路
US20110285211A1 (en) * 2010-05-20 2011-11-24 Advantest Corporation Wireless power supply system
EP2421122A1 (en) * 2010-08-13 2012-02-22 Hochschule Für Angewandte Wissenschaften FH München Wireless energy transmission with weakly coupled resonators
JP5634280B2 (ja) * 2011-01-27 2014-12-03 Fdk株式会社 極性検出回路
WO2013024396A1 (en) * 2011-08-16 2013-02-21 Koninklijke Philips Electronics N.V. Dynamic resonant matching circuit for wireless power receivers
US20140035525A1 (en) * 2012-07-31 2014-02-06 Electric Transportation Engineering Corp., dba ECOtality North America System to control when electricity is provided to an inductive load and method of providing and using the same
CN103683523B (zh) * 2012-09-07 2018-04-13 捷通国际有限公司 用于双向无线功率传输的系统和方法
JP5978905B2 (ja) * 2012-10-11 2016-08-24 Tdk株式会社 非接触受電装置および非接触電力伝送システム
KR102139841B1 (ko) 2012-10-29 2020-07-31 애플 인크. 유도 전력 전송 시스템용 수신기 및 유도 전력 전송 시스템용 수신기를 제어하는 방법
US9755534B2 (en) * 2013-02-14 2017-09-05 Nuvolta Technologies, Inc. High efficiency high frequency resonant power conversion
EP2797199B1 (en) 2013-04-26 2019-09-25 USE System Engineering Holding B.V. Power transfer system
US9871459B2 (en) * 2013-05-30 2018-01-16 Enphase Energy, Inc. Method and apparatus for deriving current for control in a resonant power converter
KR101440120B1 (ko) * 2013-06-03 2014-09-12 주식회사 맵스 트랜지스터 턴 오프 제어 방식이 개선된 능동 다이오드
US9825553B2 (en) * 2014-04-17 2017-11-21 Linear Technology Corporation Voltage regulation in resonant power wireless receiver
WO2016072865A1 (en) * 2014-11-05 2016-05-12 Powerbyproxi Limited An inductive power receiver
WO2017070009A1 (en) * 2015-10-22 2017-04-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems

Also Published As

Publication number Publication date
JP2019530416A (ja) 2019-10-17
CN109792164A (zh) 2019-05-21
CN109792164B (zh) 2023-10-20
US11283361B2 (en) 2022-03-22
US10439502B2 (en) 2019-10-08
WO2018064378A1 (en) 2018-04-05
EP3520197A4 (en) 2019-10-30
US20180090993A1 (en) 2018-03-29
US20190386575A1 (en) 2019-12-19
EP3520197A1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6985577B2 (ja) コンデンサ感知を用いる共振整流器回路
JP7089619B2 (ja) Pwmコンデンサの制御
US10651689B2 (en) Dynamic tuning in wireless energy transfer systems
US10923953B2 (en) Received wireless power regulation
US10243408B2 (en) Wireless power receiver
US10608470B2 (en) Receiver for an inductive power transfer system and a method for controlling the receiver
WO2016080045A1 (ja) ワイヤレス給電システム
JP2017514436A (ja) 共振型ワイヤレス受電器における電圧調整
US11128172B2 (en) Power transmitter and method for wirelessly transferring power
JP2019507572A (ja) 高周波数マルチレベル整流
Jeong et al. Single-stage PWM converter for dual-mode control of capacitive wireless power transmission
JPH0746903B2 (ja) 共振型スイッチング電源回路
KR102146484B1 (ko) 전력 생성 장치, 무선 전력 송신 장치 및 무선 전력 전송 시스템
JP2001118693A (ja) 放電灯点灯装置
KR20080026170A (ko) Dc 전압을 정류 전압으로 변환하기 위한 제어 장치 및회로 장치

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200926

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211104

R150 Certificate of patent or registration of utility model

Ref document number: 6985577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150