WO2023123646A1 - 可变光圈驱动马达、摄像装置及电子设备 - Google Patents

可变光圈驱动马达、摄像装置及电子设备 Download PDF

Info

Publication number
WO2023123646A1
WO2023123646A1 PCT/CN2022/077797 CN2022077797W WO2023123646A1 WO 2023123646 A1 WO2023123646 A1 WO 2023123646A1 CN 2022077797 W CN2022077797 W CN 2022077797W WO 2023123646 A1 WO2023123646 A1 WO 2023123646A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable aperture
lens support
driving
base
motor according
Prior art date
Application number
PCT/CN2022/077797
Other languages
English (en)
French (fr)
Inventor
龚高峰
王建华
项建军
Original Assignee
上海比路电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海比路电子股份有限公司 filed Critical 上海比路电子股份有限公司
Priority to EP22912952.3A priority Critical patent/EP4332675A1/en
Publication of WO2023123646A1 publication Critical patent/WO2023123646A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • G03B9/06Two or more co-operating pivoted blades, e.g. iris type
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the invention relates to the field of imaging devices, in particular to a variable aperture drive motor, imaging device and electronic equipment.
  • the main purpose of the present invention is to provide a variable aperture drive motor, a camera device and an electronic device to solve the problem that the aperture of the camera module of the electronic device cannot be changed in the prior art.
  • a variable aperture driving motor including: a base assembly, the base assembly has an accommodating cavity; a lens support, at least a part of the lens support is movably arranged in the accommodating cavity
  • the interior of the drive magnet, the drive magnet is multiple, the drive magnet is arranged on the circumferential side wall of the lens support body, and at least two drive magnets in the plurality of drive magnets are symmetrically arranged relative to the lens support body;
  • the drive coil, the drive coil There are a plurality of driving coils, and the corresponding driving magnet is arranged on the side wall of the base assembly, and the driving magnet and the driving coil are relatively induced so that the lens support body rotates relative to the base assembly;
  • the blade group the first end of the blade group is arranged on the base assembly At the top, the second end of the blade group is connected to the lens support body, so that the second end of the blade group can rotate relative to the first end of the blade group;
  • the first magnetic absorbing plate the first magnetic
  • variable aperture drive motor further includes a second magnet absorbing plate, the second magnet absorbing plate is arranged on the side of the driving coil away from the driving magnet corresponding to the driving magnet, and the second magnet absorbing plate is located on the side of the base assembly.
  • the distances from the center of the second magnet-absorbing plate to both ends of the driving magnet are equal.
  • variable aperture drive motor also includes an FPC board, the FPC board is arranged around the circumferential side wall of the base assembly, and the circumferential side wall of the base assembly has an installation opening, and the driving coil is arranged at the installation opening and connected to the FPC board, And the second magnetic absorbing board is arranged on the side of the FPC board away from the driving coil.
  • variable aperture driving motor also includes a capacitor and a Hall chip, and the capacitor and the Hall chip are both arranged on the side of the FPC board close to the driving coil corresponding to the driving magnet.
  • driving magnets and two driving coils there are two driving magnets and two driving coils, and one second magnetic-absorbing plate, one of which corresponds to the second magnetic-absorbing plate, and the other driving coil corresponds to the capacitor and the Hall chip.
  • variable aperture driving motor also includes a plurality of balls
  • the lens support has a plurality of accommodation grooves for accommodating the balls
  • the side wall of the base assembly is provided with a plurality of rotations along the lens support corresponding to the accommodation grooves.
  • the chute extends in the direction.
  • At least two balls are arranged in some of the multiple accommodating grooves, and the balls in the same accommodating groove are arranged along the axial direction of the lens support.
  • the plurality of accommodation grooves are in groups of two, and at least one group of accommodation grooves is symmetrically arranged on both sides of the same drive magnet.
  • accommodating grooves divided into three groups, the first group of accommodating grooves and the third group of accommodating grooves are arranged symmetrically with respect to the center of the lens support body, and the two accommodating grooves of the second group are respectively arranged on the first The two accommodating grooves of the group are on the side far away from each other; or the two accommodating grooves of the second group are respectively arranged on the sides where the two accommodating grooves of the first group are close to each other.
  • the included angle between the two accommodating grooves of the second group and the center of the lens support body is less than or equal to 130 degrees.
  • one ball is respectively arranged inside the accommodation grooves of the first group and the accommodation groove of the third group, and two balls are arranged inside the accommodation grooves of the second group.
  • the spherical center of the balls in the first group of accommodation grooves and the spherical center of the balls in the third group of accommodation grooves are located in the same plane, and the plane is perpendicular to the optical axis of the variable aperture driving motor.
  • first set of accommodating grooves is closer to the top of the base assembly relative to the bottom end of the base assembly; the third set of accommodating grooves is closer to the top of the base assembly relative to the bottom end of the base assembly.
  • the second magnetic absorbing plate includes a magnetic area and a non-magnetic area, and the area of the non-magnetic area is larger than that of the magnetic area, and the magnetic area and the non-magnetic area are arranged along the rotation direction of the lens support.
  • the base assembly includes: a base, the base has an accommodating cavity, and a peripheral side wall of the base has an installation opening; a frame, the frame is arranged on the base, and the blade group is connected to the frame.
  • the side of the base facing the frame has a first dispensing groove; and/or the side of the base facing the frame has a mounting hole, and the frame has a mounting post matched with the mounting hole; and/or the circumferential side wall of the base has a second A little glue groove; and/or the peripheral side wall of the base has a fixing column, and the FPC board has a fixing hole matched with the fixing column.
  • the base is cylindrical and arranged around the outer peripheral side of the lens support; and/or the frame is ring-shaped and arranged on the top of the base.
  • variable aperture drive motor also includes terminal pins, at least a part of the terminal pins is embedded in the base, the other part of the terminal pins protrudes from the end of the base away from the frame, and the other part of the terminal pins extends The out direction is the direction away from the frame.
  • the inner wall of the base away from the frame has a limiting boss
  • the lens support has a limiting groove cooperating with the limiting boss
  • the limiting groove extends along the rotation direction of the lens supporting body.
  • variable aperture drive motor also includes: a cover plate, the cover plate cover is arranged on the side of the frame away from the base, and the blade set is located between the cover plate and the frame, and the base assembly has a limit plate that is respectively matched with the cover plate and the blade set.
  • each driving magnet is formed by stacking at least two magnetic strips; or the driving magnet is a multi-level magnetized magnet.
  • variable aperture driving motor further includes a magnetic blocking sheet, and the magnetic blocking sheet is arranged between the lens support body and the driving magnet.
  • an imaging device is provided, and the imaging device includes the above variable aperture drive motor.
  • an electronic device is provided, and the electronic device includes the above camera device.
  • the driving motor of the variable aperture in the present application includes a base assembly, a lens support, a driving magnet, a driving coil, a blade group and a first magnet-absorbing plate.
  • the base assembly has an accommodating cavity; at least a part of the lens support body is movably arranged inside the accommodating cavity; there are a plurality of drive magnets, and the drive magnets are arranged on the circumferential side wall of the lens support body, and at least one of the multiple drive magnets
  • Two driving magnets are arranged symmetrically relative to the lens support body; there are multiple driving coils, and the driving coils are arranged on the side wall of the base assembly corresponding to the driving magnets, and the driving magnets and the driving coils are relatively induced so that the lens support body rotates relative to the base assembly; the blades
  • the first end of the group is arranged on the top of the base assembly, and the second end of the blade group is connected with the lens support so that the second end of the blade group can rotate relative to the first end of the blade
  • variable aperture driving motor in the present application, since it has a driving coil and a driving magnet, and the driving coil is arranged on the base assembly, and the driving magnet is arranged on the lens support, after the drive coil is energized, the lens support can Under the interaction of the driving coil and the driving magnet, it rotates relative to the base component in the accommodating cavity. Moreover, during the rotation process of the lens support body, the lens support body can drive the blade group to rotate, so that the opening diameter of the blade group can be changed, and thus the aperture of the imaging device can be changed. Therefore, the variable aperture driving motor in the present application effectively solves the problem in the prior art that the aperture of the camera module of the electronic device cannot be changed.
  • variable aperture drive motor also has the first magnet absorbing plate, so the driving magnet can be attracted by the first magnet absorbing plate, so as to ensure that the lens support can keep in contact with the bottom surface of the base assembly, thereby preventing the camera device from When in an inverted state, the lens support moves toward the top of the base assembly due to its own weight.
  • Fig. 1 shows a schematic structural diagram of a variable aperture driving motor according to a specific embodiment of the present invention.
  • FIG. 2 shows an exploded view of the variable aperture driving motor in FIG. 1 .
  • FIG. 3 shows a schematic diagram of the positional relationship between the lens support body and the balls of the variable aperture drive motor in FIG. 1 .
  • FIG. 4 shows a schematic diagram of the positional relationship between the base of the variable aperture drive motor and the terminal pins in FIG. 1 .
  • FIG. 5 shows a schematic structural diagram of the frame of the variable aperture driving motor in FIG. 1 .
  • FIG. 6 shows a schematic diagram of the positional relationship between the base of the variable aperture driving motor and the FPC board in FIG. 1 .
  • FIG. 7 shows a schematic diagram of the positional relationship among the lens support body, the frame and the blade group of the variable aperture driving motor in FIG. 1 .
  • FIG. 8 shows a schematic diagram of the positional relationship among the lens support body, the base and the FPC board of the variable aperture driving motor in FIG. 1 .
  • FIG. 9 shows a simulation diagram of the thrust force of the drive magnet of the variable aperture drive motor after the magnetic blocking sheet is added in a specific embodiment of the present application.
  • FIG. 10 shows a simulation diagram of the magnetic attraction force of the drive magnet of the variable aperture drive motor to the bottom plate in a specific embodiment of the present application.
  • orientation words such as “upper, lower, top, bottom” are usually for the directions shown in the drawings, or for the parts themselves in the vertical, In terms of vertical or gravitational direction; similarly, for the convenience of understanding and description, “inner and outer” refer to the inner and outer relative to the outline of each component itself, but the above orientation words are not used to limit the present invention.
  • the application provides a variable aperture driving motor, an imaging device and an electronic equipment.
  • the electronic device in this application has an imaging device, and the imaging device in this application has the following variable aperture drive motor.
  • the variable aperture driving motor in the present application includes a base assembly 10 , a lens support 20 , a driving magnet 30 , a driving coil 40 , blade sets 50 and a first magnetic plate 60 .
  • the base assembly 10 has an accommodating chamber; at least a part of the lens support body 20 is movably arranged inside the accommodating chamber; there are a plurality of drive magnets 30, and the drive magnets 30 are arranged on the circumferential side wall of the lens support body 20, and a plurality of At least two drive magnets 30 in the drive magnets 30 are symmetrically arranged relative to the lens support body 20; there are a plurality of drive coils 40, and the drive coils 40 are arranged on the side wall of the base assembly 10 corresponding to the drive magnets 30, and the drive magnets 30 and the drive coils 40 relative induction to make the lens support body 20 rotate relative to the base assembly 10; the first end of the blade group 50 is arranged on the top of the base assembly 10, and the second end of the blade group 50 is
  • variable aperture driving motor when using the variable aperture driving motor in the present application, since there are driving coils 40 and driving magnets 30, and the driving coils 40 are arranged on the base assembly 10, and the driving magnets 30 are arranged on the lens support body 20, so the driving coils 40 After being energized, the lens support body 20 can rotate relative to the base assembly 10 in the accommodating cavity under the interaction of the driving coil 40 and the driving magnet 30 . Moreover, during the rotation of the lens support body 20 , the lens support body 20 can drive the blade set 50 to rotate, so that the opening diameter of the blade set 50 can be changed, and thus the aperture of the imaging device can be changed. Therefore, the variable aperture driving motor in the present application effectively solves the problem in the prior art that the aperture of the camera module of the electronic device cannot be changed.
  • variable aperture drive motor also has the first magnetic plate 60
  • the driving magnet 30 can be attracted by the first magnetic plate 60, so as to ensure that the lens support 20 can keep in contact with the bottom surface of the base assembly 10. , so as to prevent the camera device from moving toward the top of the base assembly 10 due to the weight of the lens support body 20 when it is in an upside-down state.
  • top and bottom ends of the base assembly 10 in this application are defined according to the optical axis direction of the imaging device, and the optical axis direction of the imaging device is the vertical direction in the following embodiments of the application. Moreover, the direction of the optical axis of the imaging device is the direction of the optical axis of the variable aperture driving motor.
  • the rotation gap here refers to the rotation gap between the lens support body 20 and the inner side wall of the base assembly 10 .
  • the first magnetic plate 60 is embedded in the bottom of the base assembly 10 .
  • variable aperture drive motor in the present application also includes a second magnet-absorbing plate 70, the second magnet-absorbing plate 70 is arranged on the side of the drive coil 40 away from the drive magnet 30 corresponding to the drive magnet 30, the second magnet-absorbing plate 70 is The plate 70 is located laterally of the base assembly 10 .
  • the second magnetic absorbing plate 70 By arranging the second magnetic absorbing plate 70, radial adsorption force can be provided for the lens support body 20, so that the bottom plate of the lens support body 20 can be formed by the first magnetic absorbing plate 60, the second magnetic absorbing plate 70 and the driving magnet 30.
  • the lateral dynamic "fixing" further solves the problem of eccentric rotation and sideways shaking of the lens support body 20, reduces lateral posture difference, improves the optical axis accuracy of the camera lens, and improves the overall performance of the camera device.
  • the distances from the center of the second magnet-absorbing plate 70 to both ends of the driving magnet 30 are equal. That is to say, in the present application, the second magnetic plate 70 is facing the driving magnet 30.
  • the driving coil 40 is not energized, the lens support 20 is positioned between the driving magnet 30 and the second magnetic plate. Under the action of the magnetic plate 70, it only moves in the radial direction. Therefore, it can be ensured that the lens support body 20 will not be flipped or tilted in the axial direction, thereby ensuring the imaging effect of the camera device.
  • the purpose of ensuring that the second magnetic plate 70 is facing the driving magnet 30 is to prevent the lens support body 20 from turning over during rotation.
  • the second magnetic plate 70 is facing the end of the driving magnet 30 in the rotation direction of the lens support body 20, and this end is at the end of the rotation direction of the lens support body 20. front end. Therefore, it is ensured that when the lens support body 20 rotates, the second magnetic plate 70 can still face the other parts of the driving magnet 30 , so as to ensure the adsorption effect of the second magnetic plate 70 on the driving magnet 30 .
  • variable aperture drive motor also includes an FPC board 80, the FPC board 80 is arranged around the circumferential side wall of the base assembly 10, and the circumferential side wall of the base assembly 10 has an installation opening 11, and the driving coil 40 is arranged in the installation opening 11 and connected to the FPC board 80 , and the second magnet-absorbing board 70 is disposed on the side of the FPC board 80 away from the drive coil 40 .
  • the variable aperture driving motor further includes a capacitor and a Hall chip 82 , and the capacitor and the Hall chip 82 are both arranged on the side of the FPC board 80 close to the driving coil 40 corresponding to the driving magnet 30 .
  • the second magnetic plate 70 , the driving coil 40 , the capacitor and the Hall chip 82 are all arranged on the FPC board 80 .
  • the driving magnet 30 and the driving coil 40 are two, and the second magnetic-absorbing plate 70 is one, wherein one driving coil 40 corresponds to the second magnetic-absorbing plate 70, and the other driving coil 40 Corresponding to the capacitor and the Hall chip 82 .
  • Such setting can effectively ensure that the second magnetic plate 70 , the Hall chip 82 and the capacitor will not interact with each other, thereby ensuring the detection effect of the capacitor and the Hall chip 82 on the rotational position of the lens support 20 .
  • the driving coil 40 acts with the driving magnet 30 to generate a magnetic thrust force, and the generated magnetic force is a thrust force tangentially along the circumference of the carrier, so the lens support body 20 can be pushed to rotate with the optical axis as the rotation axis, thereby Push the blade set 50 to open and close.
  • the Hall chip 82 detects the magnetic field strength of the drive magnet 30 arranged opposite to determine the rotation angle of the lens support 20, and then controls the drive coil 40 to feed a predetermined current so that the lens support 20 rotates to a specific angle, that is, controls the blade Group 50 opens and closes to a specific aperture size.
  • the second magnetic plate 70 , capacitor and Hall chip 82 can be arranged corresponding to the same driving magnet 30 .
  • variable aperture driving motor further includes a plurality of balls 90
  • the lens support body 20 has a plurality of accommodating grooves 21 for accommodating the balls 90
  • the side wall of the base assembly 10 is provided with corresponding accommodating grooves 21.
  • a plurality of slide grooves 12 extending along the rotation direction of the lens support body 20 . The friction force between the lens support body 20 and the side wall of the base assembly 10 can be further effectively reduced by disposing the ball 90 , thereby ensuring the sensitivity of the variable aperture driving motor.
  • At least two balls 90 are disposed in some of the multiple accommodating grooves 21 , and the balls 90 in the same accommodating groove 21 are arranged along the axial direction of the lens support 20 .
  • a plurality of accommodating grooves 21 are in groups of two, and at least one group of accommodating grooves 21 is symmetrically arranged on both sides of the same driving magnet 30 .
  • the accommodating grooves 21 are six and divided into three groups, the first group of accommodating grooves 21 and the third group of accommodating grooves 21 are arranged symmetrically about the center of the lens support body 20, the second group of accommodating grooves The two accommodating grooves 21 of the first group are respectively arranged on the sides away from each other of the two accommodating grooves 21 of the first group. Moreover, the included angle between the two accommodating grooves 21 of the second group and the center of the lens support body 20 is less than or equal to 130 degrees.
  • one ball 90 is provided inside the first set of accommodation grooves 21 and the third set of accommodation grooves 21 , and two balls 90 are arranged inside the second set of accommodation grooves 21 .
  • a driving magnet 30 is respectively arranged between the two accommodation grooves 21 of the first group and the two accommodation grooves 21 of the third group, and the driving magnet 30 between the two accommodation grooves 21 of the first group and the The second magnetic plate 70 corresponds, and the drive magnet 30 located between the two accommodation slots 21 of the third group corresponds to the capacitor and the Hall chip 82 .
  • the ball centers of the balls 90 in the first group of accommodation grooves 21 and the ball centers of the balls 90 in the third group of accommodation grooves 21 are located in the same plane, and the plane is perpendicular to the iris drive.
  • the optical axis of the motor is respectively arranged between the two accommodation grooves 21 of the first group and the two accommodation grooves 21 of the third group, and the driving magnet 30 between the two accommodation grooves 21 of the first group and the The second magnetic plate 70 corresponds, and the drive magnet 30 located between the two accommodation slots 21 of the third group corresponds to the capacitor and the Hall chip 82 .
  • the lens support body 20 when the lens support body 20 rotates relative to the base 13, the lens support body 20 will approach the second magnetic absorption plate 70 under the action of the driving magnet 30 and the second magnetic absorption plate 70, thereby ensuring that the lens support body 20
  • the optical axis is stable during the rotation process, and there is no shaking from side to side and no tilting of the optical axis.
  • it can also ensure that the two groups of vertical balls 90 of the third group of accommodation grooves 21 are simultaneously supported by the corresponding slide grooves 12 on the base 13, so that the lens support body 20 can be limited in the horizontal direction to prevent the lens from being supported.
  • the body 20 is tilted in the direction of the optical axis.
  • the balls 90 in the third group of accommodation grooves 21 may not be in contact with the inner wall surface of the base assembly 10, so that when the variable aperture driving motor is hit, the balls 90 in the third group of accommodation grooves 21 can pass through.
  • the ball 90 plays the role of anti-collision limit and cushioning for the lens support body 20 .
  • the two receiving grooves of the second group may also be respectively arranged on the sides where the two receiving grooves of the first group are close to each other.
  • the first set of accommodating grooves 21 is closer to the top of the base assembly 10 relative to the bottom end of the base assembly 10 ; the third set of accommodating grooves 21 is closer to the top of the base assembly 10 relative to the bottom end of the base assembly 10 .
  • Such arrangement can effectively ensure the concentricity and stability of the lens support body 20 during rotation.
  • the second magnetic plate 70 includes a magnetic area 71 and a non-magnetic area 72, and the area of the non-magnetic area 72 is larger than the area of the magnetic area 71, and the magnetic area 71 and the non-magnetic area 72 are arranged along the rotation direction of the lens support body 20 .
  • the purpose of such setting is to avoid excessive suction force generated between the second magnet-absorbing plate 70 and the driving magnet 30 , thereby affecting the rotation of the lens support body 20 .
  • the part without the magnetic region 72 can be used for marking the FPC board 80 .
  • the second magnetic plate 70 is a composite plate of SUS430 or SUS305 stainless steel, wherein the magnetic area 71 is made of SUS430 stainless steel, and the non-magnetic area 72 is made of SUS305 stainless steel.
  • the base assembly 10 includes a base 13 and a frame 14 .
  • the base 13 has an accommodating cavity, and the peripheral side wall of the base 13 has an installation opening 11 ; the frame 14 is disposed on the base 13 , and the blade set 50 is connected to the frame 14 .
  • the strength of the installation opening 11 can be effectively improved, so that the installation opening 11 has the advantage of not being easily deformed.
  • the frame 14 has the advantage of not being easily deformed by such arrangement, thereby ensuring the concentricity of the ball 90 .
  • the side of the base 13 facing the frame 14 has a first glue dispensing slot 131 .
  • the base 13 has a mounting hole 132 on a side facing the frame 14
  • the frame 14 has a mounting post 141 matched with the mounting hole 132 .
  • the circumferential side wall of the base 13 has a first glue dispensing groove 131 .
  • the peripheral side wall of the base 13 has fixing posts 133
  • the FPC board 80 has fixing holes 83 matching with the fixing posts 133 .
  • the base 13 is cylindrical and disposed around the outer peripheral side of the lens support 20 ; and/or the frame 14 is annular and disposed on the top of the base 13 .
  • variable aperture drive motor also includes a terminal pin 100, at least a part of the terminal pin 100 is embedded in the inside of the base 13, and the other part of the terminal pin 100 protrudes from the end of the base 13 away from the frame 14, and the wiring The direction in which the other part of the end leg 100 protrudes is away from the frame 14 . Setting the protruding direction of the terminal pin 100 away from the frame 14 can effectively reduce the space occupied by the variable aperture drive motor, thereby facilitating the miniaturization design of the variable aperture drive motor.
  • the inner wall of the base 13 away from the frame 14 has a limiting boss 134
  • the lens support 20 has a limiting groove 22 that cooperates with the limiting boss 134, and the limiting groove 22 rotates along the lens supporting body 20. direction extension.
  • the installation of the lens support body 20 can be positioned by setting the limiting boss 134 , and the rotation angle of the lens support body 20 can also be limited, thereby ensuring that the lens support body 20 can rotate within a preset angle range.
  • the lens support body 20 can also be supported by setting the limiting boss 134 .
  • variable aperture driving motor further includes a cover plate 200 and a spacer 300 .
  • the cover plate 200 is set on the side of the frame 14 away from the base 13, and the blade set 50 is located between the cover plate 200 and the frame 14, and the base assembly 10 has a limit column 142 respectively matched with the cover plate 200 and the blade set 50; pad
  • the sheet 300 is disposed between the blade set 50 and the lens support body 20 , and the lens support body 20 has a second glue slot 23 corresponding to the spacer 300 .
  • each driving magnet 30 is formed by stacking at least two magnetic strips; or the driving magnet 30 is a multi-level magnetized magnet.
  • the variable aperture driving motor further includes a magnetic blocking sheet 400 , and the magnetic blocking sheet 400 is disposed between the lens support body 20 and the driving magnet 30 .
  • the driving magnet is formed by stacking two magnetic strips.
  • FIG. 9 it is a thrust simulation diagram of the driving magnet 30 in this embodiment after the magnetic blocking piece 400 is added.
  • FIG. 10 it is a simulated line graph of the magnetic attraction force of the driving magnet 30 on the bottom plate in this embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Diaphragms For Cameras (AREA)
  • Lens Barrels (AREA)

Abstract

本发明提供了一种可变光圈驱动马达、摄像装置及电子设备。可变光圈驱动马达,包括:底座组件,底座组件具有容置腔;透镜支撑体,透镜支撑体的至少一部分活动设置在容置腔的内部;驱动磁石,驱动磁石为多个,驱动磁石设置在透镜支撑体的周向侧壁上;驱动线圈,驱动线圈为多个,且驱动线圈对应驱动磁石设置在底座组件的侧壁上,驱动磁石和驱动线圈相对感应以使透镜支撑体相对底座组件转动;叶片组,叶片组的第一端设置在底座组件的顶端,叶片组的第二端与透镜支撑体连接;第一吸磁板,第一吸磁板为多个,多个第一吸磁板对应驱动磁石设置在底座组件的底端。本发明解决了现有技术中电子设备的摄像头模组的光圈不能改变的问题。

Description

可变光圈驱动马达、摄像装置及电子设备 技术领域
本发明涉及摄像装置领域,具体而言,涉及一种可变光圈驱动马达、摄像装置及电子设备。
背景技术
目前,智能手机、平板电脑等电子设备已经成为人们生活中不可或缺的电子产品。随着电子设备行业的不断发展,电子设备的功能逐渐趋于多样化和智能化,其中拍摄功能已经成为电子设备的必备功能之一。现有的电子设备中,摄像头模组可以实现上述拍摄功能。然而,该摄像头模组的光圈固定不变,导致摄像头模组的拍摄效果较差。
因此,现有技术中存在电子设备的摄像头模组的光圈不能改变的问题。
技术解决方案
本发明的主要目的在于提供一种可变光圈驱动马达、摄像装置及电子设备,以解决现有技术中电子设备的摄像头模组的光圈不能改变的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种可变光圈驱动马达,包括:底座组件,底座组件具有容置腔;透镜支撑体,透镜支撑体的至少一部分活动设置在容置腔的内部;驱动磁石,驱动磁石为多个,驱动磁石设置在透镜支撑体的周向侧壁上,且多个驱动磁石中的至少两个驱动磁石相对透镜支撑体对称设置;驱动线圈,驱动线圈为多个,且驱动线圈对应驱动磁石设置在底座组件的侧壁上,驱动磁石和驱动线圈相对感应以使透镜支撑体相对底座组件转动;叶片组,叶片组的第一端设置在底座组件的顶端,叶片组的第二端与透镜支撑体连接,以使叶片组的第二端能够相对叶片组的第一端转动;第一吸磁板,第一吸磁板为多个,多个第一吸磁板对应驱动磁石设置在底座组件的底端。
进一步地,透镜支撑体与底座组件之间具有转动间隙。
进一步地,可变光圈驱动马达还包括第二吸磁板,第二吸磁板对应驱动磁石设置在驱动线圈远离驱动磁石的一侧,第二吸磁板位于底座组件的侧向。
进一步地,在可变光圈驱动马达的光轴方向上,第二吸磁板的中心到驱动磁石的两端的距离相等。
进一步地,可变光圈驱动马达还包括FPC板,FPC板绕底座组件的周向侧壁设置,且底座组件的周向侧壁具有安装开口,驱动线圈设置在安装开口处并与FPC板连接,且第二吸磁板设置在FPC板远离驱动线圈的一侧。
进一步地,可变光圈驱动马达还包括电容和霍尔芯片,电容和霍尔芯片均对应驱动磁石设置在FPC板靠近驱动线圈的一侧。
进一步地,驱动磁石和驱动线圈均为两个,第二吸磁板为一个,其中一个驱动线圈与第二吸磁板对应,另一个驱动线圈与电容和霍尔芯片对应。
进一步地,可变光圈驱动马达还包括多个滚珠,透镜支撑体具有多个用于容置滚珠的容置槽,且底座组件的侧壁对应容置槽设置有多个沿透镜支撑体的转动方向延伸的滑槽。
进一步地,多个容置槽中的部分容置槽内设置有至少两个滚珠,且同一容置槽内的滚珠沿透镜支撑体的轴向排列。
进一步地,多个容置槽两两一组,且同一个驱动磁石的两侧对称设置有至少一组容置槽。
进一步地,容置槽为六个并分为三组,第一组容置槽和第三组容置槽关于透镜支撑体中心对称设置,第二组的两个容置槽分别设置在第一组的两个容置槽相互远离的一侧;或者第二组的两个容置槽分别设置在第一组的两个容置槽相互靠近的一侧。
进一步地,第二组的两个容置槽与透镜支撑体的中心的连线的夹角小于等于130度。
进一步地,第一组的容置槽和第三组的容置槽的内部分别设置有一个滚珠,第二组的容置槽的内部设置有两个滚珠。
进一步地,第一组的容置槽内的滚珠的球心与第三组的容置槽内的滚珠的球心位于同一平面内,且平面垂直于可变光圈驱动马达的光轴。
进一步地,第一组的容置槽相对底座组件的底端靠近底座组件的顶端;第三组的容置槽相对底座组件的底端靠近底座组件的顶端。
进一步地,第二吸磁板包括有磁区和无磁区,且无磁区的面积大于有磁区的面积,且有磁区与无磁区沿透镜支撑体转动的方向排列设置。
进一步地,底座组件包括:底座,底座具有容置腔,且底座的周向侧壁具有安装开口;框架,框架设置在底座上,且叶片组与框架连接。
进一步地,底座朝向框架的一侧具有第一点胶槽;和/或底座朝向框架的一侧具有安装孔,框架具有与安装孔配合的安装柱;和/或底座的周向侧壁具有第一点胶槽;和/或底座的周向侧壁具有固定柱,FPC板具有与固定柱配合的固定孔。
进一步地,底座呈筒状并包围设置在透镜支撑体的外周侧;和/或框架呈环状并设置在底座的顶端。
进一步地,可变光圈驱动马达还包括接线端脚,接线端脚的至少一部分嵌埋在底座的内部,接线端脚的另一部分由底座远离框架的一端伸出,且接线端脚的另一部分伸出的方向为远离框架的方向。
进一步地,底座远离框架的一侧的内壁具有限位凸台,透镜支撑体具有与限位凸台配合的限位槽,且限位槽沿透镜支撑体的转动方向延伸。
进一步地,可变光圈驱动马达还包括:盖板,盖板盖设在框架远离底座的一侧,且叶片组位于盖板和框架之间,底座组件具有分别与盖板和叶片组配合的限位柱;垫片,垫片设置在叶片组和透镜支撑体之间,透镜支撑体对应垫片具有第二点胶槽。
进一步地,每个驱动磁石由至少两个磁条叠加形成;或者驱动磁石为多级充磁磁石。
进一步地,可变光圈驱动马达还包括挡磁片,挡磁片设置在透镜支撑体与驱动磁石之间。
根据本发明的另一方面,提供了一种摄像装置,摄像装置包括上述的可变光圈驱动马达。
根据本发明的另一方面,提供了一种电子设备,电子设备包括上述的摄像装置。
应用本发明的技术方案,本申请中的可变光圈驱动马达包括底座组件、透镜支撑体、驱动磁石、驱动线圈、叶片组以及第一吸磁板。底座组件具有容置腔;透镜支撑体的至少一部分活动设置在容置腔的内部;驱动磁石为多个,驱动磁石设置在透镜支撑体的周向侧壁上,且多个驱动磁石中的至少两个驱动磁石相对透镜支撑体对称设置;驱动线圈为多个,且驱动线圈对应驱动磁石设置在底座组件的侧壁上,驱动磁石和驱动线圈相对感应以使透镜支撑体相对底座组件转动;叶片组的第一端设置在底座组件的顶端,叶片组的第二端与透镜支撑体连接,以使叶片组的第二端能够相对叶片组的第一端转动;第一吸磁板为多个,多个第一吸磁板对应驱动磁石设置在底座组件的底端。
使用本申请中的可变光圈驱动马达时,由于具有驱动线圈和驱动磁石,并且驱动线圈设置在底座组件上,而驱动磁石设置在透镜支撑体上,所以在驱动线圈通电后,透镜支撑体能够在驱动线圈和驱动磁石的相互作用下,在容置腔内相对底座组件转动。并且,在透镜支撑体转动的过程中,透镜支撑体能够带动叶片组转动,从而能够改变叶片组的开口直径,进而能够改变摄像装置的光圈。因此,本申请中的可变光圈驱动马达有效地解决了现有技术中电子设备的摄像头模组的光圈不能改变的问题。并且,又由于可变光圈驱动马达还具有第一吸磁板,所以能够通过第一吸磁板对驱动磁石产生吸力,以保证透镜支撑体能够与底座组件的底面保持接触状态,从而防止摄像装置处于倒置状态时,因透镜支撑体的自重而向底座组件的顶端窜动。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中。
图1示出了根据本发明的一个具体实施例的可变光圈驱动马达的结构示意图。
图2示出了图1中的可变光圈驱动马达的爆炸图。
图3示出了图1中的可变光圈驱动马达的透镜支撑体和滚珠的位置关系示意图。
图4示出了图1中的可变光圈驱动马达的底座和接线端脚的位置关系示意图。
图5示出了图1中的可变光圈驱动马达的框架的结构示意图。
图6示出了图1中的可变光圈驱动马达的底座和FPC板的位置关系示意图。
图7示出了图1中的可变光圈驱动马达的透镜支撑体、框架以及叶片组的位置关系示意图。
图8示出了图1中的可变光圈驱动马达的透镜支撑体、底座以及FPC板的位置关系示意图。
图9示出了本申请的一个具体实施例中可变光圈驱动马达的驱动磁石在增加挡磁片后的推力模拟图。
图10示出了本申请的一个具体实施例中可变光圈驱动马达的驱动磁石对底板的磁吸力模拟图。
其中,上述附图包括以下附图标记。
10、底座组件;11、安装开口;12、滑槽;13、底座;131、第一点胶槽;132、安装孔;133、固定柱;134、限位凸台;14、框架;141、安装柱;142、限位柱;20、透镜支撑体;21、容置槽;22、限位槽;23、第二点胶槽;30、驱动磁石;40、驱动线圈;50、叶片组;60、第一吸磁板;70、第二吸磁板;71、有磁区;72、无磁区;80、FPC板;82、霍尔芯片;83、固定孔;90、滚珠;100、接线端脚;200、盖板;300、垫片;400、挡磁片。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本发明。
为了解决现有技术中电子设备的摄像头模组的光圈不能改变的问题,本申请提供了一种可变光圈驱动马达、摄像装置及电子设备。
需要说明的是,在本申请中的电子设备具有摄像装置,并且本申请中的摄像装置具有下述的可变光圈驱动马达。
如图1至图8所示,本申请中的可变光圈驱动马达包括底座组件10、透镜支撑体20、驱动磁石30、驱动线圈40、叶片组50以及第一吸磁板60。底座组件10具有容置腔;透镜支撑体20的至少一部分活动设置在容置腔的内部;驱动磁石30为多个,驱动磁石30设置在透镜支撑体20的周向侧壁上,且多个驱动磁石30中的至少两个驱动磁石30相对透镜支撑体20对称设置;驱动线圈40为多个,且驱动线圈40对应驱动磁石30设置在底座组件10的侧壁上,驱动磁石30和驱动线圈40相对感应以使透镜支撑体20相对底座组件10转动;叶片组50的第一端设置在底座组件10的顶端,叶片组50的第二端与透镜支撑体20连接,以使叶片组50的第二端能够相对叶片组50的第一端转动;第一吸磁板60为多个,多个第一吸磁板60对应驱动磁石30设置在底座组件10的底端。
使用本申请中的可变光圈驱动马达时,由于具有驱动线圈40和驱动磁石30,并且驱动线圈40设置在底座组件10上,而驱动磁石30设置在透镜支撑体20上,所以在驱动线圈40通电后,透镜支撑体20能够在驱动线圈40和驱动磁石30的相互作用下,在容置腔内相对底座组件10转动。并且,在透镜支撑体20转动的过程中,透镜支撑体20能够带动叶片组50转动,从而能够改变叶片组50的开口直径,进而能够改变摄像装置的光圈。因此,本申请中的可变光圈驱动马达有效地解决了现有技术中电子设备的摄像头模组的光圈不能改变的问题。并且,又由于可变光圈驱动马达还具有第一吸磁板60,所以能够通过第一吸磁板60对驱动磁石30产生吸力,以保证透镜支撑体20能够与底座组件10的底面保持接触状态,从而防止摄像装置处于倒置状态时,因透镜支撑体20的自重而向底座组件10的顶端窜动。
需要说明的是,本申请中底座组件10的顶端和底端是根据摄像装置的光轴方向进行定义的,及在本申请的下述实施例中摄像装置的光轴方向为竖直方向。并且,摄像装置的光轴方向即为可变光圈驱马达的光轴方向。
具体地,透镜支撑体20与底座组件10之间具有转动间隙。需要说明的是,这里的转动间隙指的是透镜支撑体20与底座组件10的内侧壁之间的转动间隙。通过设置转动间隙,在透镜支撑体20相对底座组件10转动的过程中能够有效地减少透镜支撑体20与底座组件10之间的摩擦力,从而能够保证可变光圈驱动马达的灵敏度。
在本申请的一个具体实施例中,第一吸磁板60嵌埋在底座组件10的底端。
需要指出的是,本申请中的可变光圈驱动马达还包括第二吸磁板70,第二吸磁板70对应驱动磁石30设置在驱动线圈40远离驱动磁石30的一侧,第二吸磁板70位于底座组件10的侧向。通过设置第二吸磁板70,能够为透镜支撑体20提供径向的吸附力,从而通过第一吸磁板60、第二吸磁板70以及驱动磁石30能够对透镜支撑体20形成底板加侧向的动态“固定”,进而解决了透镜支撑体20旋转偏心、左右晃动的问题,降低侧向姿势差,提高摄像装置镜头光轴精度,以提高摄像装置的整体性能。
具体地,在可变光圈驱动马达的光轴方向上,第二吸磁板70的中心到驱动磁石30的两端的距离相等。也就是说,在本申请中第二吸磁板70与驱动磁石30是正对的,当所述驱动线圈40未通电时,所述透镜支撑体20在所述驱动磁石30和所述第二吸磁板70的作用下仅沿径向运动。从而能够保证透镜支撑体20不会产生翻转或者轴向的倾斜,进而保证摄像装置的成像效果。在本申请中,保证第二吸磁板70与驱动磁石30正对的目的是为了防止透镜支撑体20在转动的过程中出现翻转。
优选地,当透镜支撑体20处于初始状态时,第二吸磁板70与驱动磁石30在透镜支撑体20的转动方向的端部正对,并且这个端部为透镜支撑体20转动方向上的前端。从而保证在透镜支撑体20转动时,第二吸磁板70仍然能够与驱动磁石30的其他部分正对,以保证第二吸磁板70对驱动磁石30的吸附效果。
具体地,可变光圈驱动马达还包括FPC板80,FPC板80绕底座组件10的周向侧壁设置,且底座组件10的周向侧壁具有安装开口11,驱动线圈40设置在安装开口11处并与FPC板80连接,且第二吸磁板70设置在FPC板80远离驱动线圈40的一侧。并且,可变光圈驱动马达还包括电容和霍尔芯片82,电容和霍尔芯片82均对应驱动磁石30设置在FPC板80靠近驱动线圈40的一侧。也就是说,在本申请中第二吸磁板70、驱动线圈40、电容以及霍尔芯片82均是设置在FPC板80上。在本申请的一个优选实施例中,驱动磁石30和驱动线圈40均为两个,第二吸磁板70为一个,其中一个驱动线圈40与第二吸磁板70对应,另一个驱动线圈40与电容和霍尔芯片82对应。通过这样设置,可以有效地保证第二吸磁板70与霍尔芯片82和电容不会相互影响,从而保证电容和霍尔芯片82对透镜支撑体20的转动位置的检测效果。
并且,在本申请中驱动线圈40通电后,与驱动磁石30作用产生磁推力,产生的磁力为沿载体圆周切向的推力,因此能够推动透镜支撑体20以光轴为旋转轴进行旋转,从而推动叶片组50开合。同时霍尔芯片82检测对向设置的驱动磁石30磁场强度,以判断透镜支撑体20的旋转角度,进而控制驱动线圈40通入既定的电流,使透镜支撑体20旋转到特定角度,即控制叶片组50开合到特定的光圈大小。
当然,当底座组件10的内部空间或者可变光圈驱动马达的整体结构受到限制时,可以使第二吸磁板70、电容以及霍尔芯片82对应同一驱动磁石30设置。
在本申请中,可变光圈驱动马达还包括多个滚珠90,透镜支撑体20具有多个用于容置滚珠90的容置槽21,且底座组件10的侧壁对应容置槽21设置有多个沿透镜支撑体20的转动方向延伸的滑槽12。通过设置滚珠90能够进一步有效地减少透镜支撑体20与底座组件10的侧壁之间的摩擦力,从而保证可变光圈驱动马达的灵敏度。
可选地,多个容置槽21中的部分容置槽21内设置有至少两个滚珠90,且同一容置槽21内的滚珠90沿透镜支撑体20的轴向排列。并且,多个容置槽21两两一组,且同一个驱动磁石30的两侧对称设置有至少一组容置槽21。
在本申请的一个优选实施例中,容置槽21为六个并分为三组,第一组容置槽21和第三组容置槽21关于透镜支撑体20中心对称设置,第二组的两个容置槽21分别设置在第一组的两个容置槽21相互远离的一侧。并且,第二组的两个容置槽21与透镜支撑体20的中心的连线的夹角小于等于130度。同时,第一组的容置槽21和第三组的容置槽21的内部分别设置有一个滚珠90,第二组的容置槽21的内部设置有两个滚珠90。第一组的两个容置槽21和第三组的两个容置槽21之间分别设置有一个驱动磁石30,且位于第一组的两个容置槽21之间的驱动磁石30与第二吸磁板70对应,位于第三组的两个容置槽21之间的驱动磁石30与电容和霍尔芯片82对应。还需要指出的是,第一组的容置槽21内的滚珠90的球心与第三组的容置槽21内的滚珠90的球心位于同一平面内,且平面垂直于可变光圈驱动马达的光轴。在本实施例中,当透镜支撑体20相对底座13旋转时,透镜支撑体20在驱动磁石30和第二吸磁板70的作用下会向第二吸磁板70靠近,从而保证透镜支撑体20转动过程中光轴的稳定,不会左右晃动以及不会出现光轴的倾斜。同时,还能够确保使第三组容置槽21的两组竖向滚珠90同时与底座13上对应的滑槽12进行接触支撑,从而可以对透镜支撑体20进行水平方向限位,防止透镜支撑体20在光轴方向出现倾斜。并且,此时第三组容置槽21内的滚珠90可以是不与底座组件10的内壁面接触的,从而在可变光圈驱动马达受到撞击时,能够通过第三组容置槽21内的滚珠90起到对透镜支撑体20进行防撞限位以及缓冲的作用。
当然,在本申请中第二组的两个容置槽也可以分别设置在第一组的两个容置槽相互靠近的一侧。
可选地,第一组的容置槽21相对底座组件10的底端靠近底座组件10的顶端;第三组的容置槽21相对底座组件10的底端靠近底座组件10的顶端。通过这样设置可以有效地保证透镜支撑体20在转动过程中的同心度以及稳定性。
可选地,第二吸磁板70包括有磁区71和无磁区72,且无磁区72的面积大于有磁区71的面积,且有磁区71与无磁区72沿透镜支撑体20转动的方向排列设置。这样设置的目的是为了避免第二吸磁板70和驱动磁石30之间产生过大的吸力,从而影响透镜支撑体20的转动。并且,在本申请中无磁区72的部分可以用于FPC板80的打标。优选地,第二吸磁板70为SUS430、SUS305不锈钢复合板,其中有磁区71为SUS430不锈钢材质,无磁区72为SUS305不锈钢材质。
在本申请中,底座组件10包括底座13和框架14。底座13具有容置腔,且底座13的周向侧壁具有安装开口11;框架14设置在底座13上,且叶片组50与框架14连接。通过这样设置,可以有效地提高安装开口11的强度,使得安装开口11具有不易变形的优点。同时通过这样设置还能够使框架14具有不易变形的优点,从而保证滚珠90的同心度。
可选地,底座13朝向框架14的一侧具有第一点胶槽131。
可选地,底座13朝向框架14的一侧具有安装孔132,框架14具有与安装孔132配合的安装柱141。
可选地,底座13的周向侧壁具有第一点胶槽131。
可选地,底座13的周向侧壁具有固定柱133,FPC板80具有与固定柱133配合的固定孔83。
在本申请的一个具体实施例中,底座13呈筒状并包围设置在透镜支撑体20的外周侧;和/或框架14呈环状并设置在底座13的顶端。
具体地,可变光圈驱动马达还包括接线端脚100,接线端脚100的至少一部分嵌埋在底座13的内部,接线端脚100的另一部分由底座13远离框架14的一端伸出,且接线端脚100的另一部分伸出的方向为远离框架14的方向。通过将接线端脚100的伸出方向设置成远离框架14的方向能够有效地降低可变光圈驱动马达占用的空间,从而有利于可变光圈驱动马达的小型化设计。
具体地,底座13远离框架14的一侧的内壁具有限位凸台134,透镜支撑体20具有与限位凸台134配合的限位槽22,且限位槽22沿透镜支撑体20的转动方向延伸。通过设置限位凸台134不仅能够对透镜支撑体20的安装进行定位,而且还能够对透镜支撑体20的转动角度进行限制,从而保证透镜支撑体20能够在预设的角度范围内转动。并且,通过设置限位凸台134还能够对透镜支撑体20起到支撑作用。
在本申请中,可变光圈驱动马达还包括盖板200和垫片300。盖板200盖设在框架14远离底座13的一侧,且叶片组50位于盖板200和框架14之间,底座组件10具有分别与盖板200和叶片组50配合的限位柱142;垫片300设置在叶片组50和透镜支撑体20之间,透镜支撑体20对应垫片300具有第二点胶槽23。
可选地,每个驱动磁石30由至少两个磁条叠加形成;或者驱动磁石30为多级充磁磁石。优选地,可变光圈驱动马达还包括挡磁片400,挡磁片400设置在透镜支撑体20与驱动磁石30之间。通过这样设置,可以使驱动磁石30的磁场分布更均匀、更集中,充分利用有限磁石空间的磁场饱和度,磁场强度更大,不仅能产生更大的推力,同时也能形成稳定的磁吸力。在本申请的一个具体实施例中,驱动磁石由两个磁条叠加形成。如图9所示,为本实施例中驱动磁石30在增加挡磁片400后的推力模拟图。如图10所示,为本实施例中驱动磁石30对底板的磁吸力模拟折线图。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果。
1、 有效地解决了现有技术中电子设备的摄像头模组的光圈不能改变的问题。
2、 结构简单,性能稳定。
显然,上述所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (26)

  1. 一种可变光圈驱动马达,其特征在于,包括:
    底座组件(10),所述底座组件(10)具有容置腔;
    透镜支撑体(20),所述透镜支撑体(20)的至少一部分活动设置在所述容置腔的内部;
    驱动磁石(30),所述驱动磁石(30)为多个,所述驱动磁石(30)设置在所述透镜支撑体(20)的周向侧壁上,且多个所述驱动磁石(30)中的至少两个所述驱动磁石(30)相对所述透镜支撑体(20)对称设置;
    驱动线圈(40),所述驱动线圈(40)为多个,且所述驱动线圈(40)对应所述驱动磁石(30)设置在所述底座组件(10)的侧壁上,所述驱动磁石(30)和所述驱动线圈(40)相对感应以使所述透镜支撑体(20)相对所述底座组件(10)转动;
    叶片组(50),所述叶片组(50)的第一端设置在所述底座组件(10)的顶端,所述叶片组(50)的第二端与所述透镜支撑体(20)连接,以使所述叶片组(50)的第二端能够相对所述叶片组(50)的第一端转动;
    第一吸磁板(60),所述第一吸磁板(60)为多个,多个所述第一吸磁板(60)对应所述驱动磁石(30)设置在所述底座组件(10)的底端。
  2. 根据权利要求1所述的可变光圈驱动马达,其特征在于,所述透镜支撑体(20)与所述底座组件(10)之间具有转动间隙。
  3. 根据权利要求1所述的可变光圈驱动马达,其特征在于,所述可变光圈驱动马达还包括第二吸磁板(70),所述第二吸磁板(70)对应所述驱动磁石(30)设置在所述驱动线圈(40)远离所述驱动磁石(30)的一侧,所述第二吸磁板(70)位于所述底座组件(10)的侧向。
  4. 根据权利要求3所述的可变光圈驱动马达,其特征在于,在所述可变光圈驱动马达的光轴方向上,所述第二吸磁板(70)的中心到所述驱动磁石(30)的两端的距离相等。
  5. 根据权利要求3所述的可变光圈驱动马达,其特征在于,所述可变光圈驱动马达还包括FPC板(80),所述FPC板(80)绕所述底座组件(10)的周向侧壁设置,且所述底座组件(10)的周向侧壁具有安装开口(11),所述驱动线圈(40)设置在所述安装开口(11)处并与所述FPC板(80)连接,且所述第二吸磁板(70)设置在所述FPC板(80)远离所述驱动线圈(40)的一侧。
  6. 根据权利要求5所述的可变光圈驱动马达,其特征在于,所述可变光圈驱动马达还包括电容和霍尔芯片(82),所述电容和所述霍尔芯片(82)均对应所述驱动磁石(30)设置在所述FPC板(80)靠近所述驱动线圈(40)的一侧。
  7. 根据权利要求6所述的可变光圈驱动马达,其特征在于,所述驱动磁石(30)和所述驱动线圈(40)均为两个,所述第二吸磁板(70)为一个,其中一个所述驱动线圈(40)与所述第二吸磁板(70)对应,另一个所述驱动线圈(40)与所述电容和所述霍尔芯片(82)对应。
  8. 根据权利要求1所述的可变光圈驱动马达,其特征在于,所述可变光圈驱动马达还包括多个滚珠(90),所述透镜支撑体(20)具有多个用于容置所述滚珠(90)的容置槽(21),且所述底座组件(10)的侧壁对应所述容置槽(21)设置有多个沿所述透镜支撑体(20)的转动方向延伸的滑槽(12)。
  9. 根据权利要求8所述的可变光圈驱动马达,其特征在于,多个所述容置槽(21)中的部分所述容置槽(21)内设置有至少两个所述滚珠(90),且同一所述容置槽(21)内的所述滚珠(90)沿所述透镜支撑体(20)的轴向排列。
  10. 根据权利要求8所述的可变光圈驱动马达,其特征在于,多个所述容置槽(21)两两一组,且同一个所述驱动磁石(30)的两侧对称设置有至少一组所述容置槽(21)。
  11. 根据权利要求10所述的可变光圈驱动马达,其特征在于,所述容置槽(21)为六个并分为三组,第一组所述容置槽(21)和第三组所述容置槽(21)关于所述透镜支撑体(20)中心对称设置,
    第二组的两个所述容置槽(21)分别设置在第一组的两个所述容置槽(21)相互远离的一侧;或者
    第二组的两个所述容置槽(21)分别设置在第一组的两个所述容置槽(21)相互靠近的一侧。
  12. 根据权利要求11所述的可变光圈驱动马达,其特征在于,第二组的两个所述容置槽(21)与所述透镜支撑体(20)的中心的连线的夹角小于等于130度。
  13. 根据权利要求11所述的可变光圈驱动马达,其特征在于,第一组的所述容置槽(21)和第三组的所述容置槽(21)的内部分别设置有一个滚珠(90),第二组的所述容置槽(21)的内部设置有两个滚珠(90)。
  14. 根据权利要求11所述的可变光圈驱动马达,其特征在于,第一组的所述容置槽(21)内的所述滚珠(90)的球心与第三组的所述容置槽(21)内的所述滚珠(90)的球心位于同一平面内,且所述平面垂直于所述可变光圈驱动马达的光轴。
  15. 根据权利要求11所述的可变光圈驱动马达,其特征在于,
    第一组的所述容置槽(21)相对所述底座组件(10)的底端靠近所述底座组件(10)的顶端;
    第三组的所述容置槽(21)相对所述底座组件(10)的底端靠近所述底座组件(10)的顶端。
  16. 根据权利要求3所述的可变光圈驱动马达,其特征在于,所述第二吸磁板(70)包括有磁区(71)和无磁区(72),且所述无磁区(72)的面积大于所述有磁区(71)的面积,且所述有磁区(71)与所述无磁区(72)沿所述透镜支撑体(20)转动的方向排列设置。
  17. 根据权利要求1至16中任一项所述的可变光圈驱动马达,其特征在于,所述底座组件(10)包括:
    底座(13),所述底座(13)具有所述容置腔,且所述底座(13)的周向侧壁具有安装开口(11);
    框架(14),所述框架(14)设置在所述底座(13)上,且所述叶片组(50)与所述框架(14)连接。
  18. 根据权利要求17所述的可变光圈驱动马达,其特征在于,
    所述底座(13)朝向所述框架(14)的一侧具有第一点胶槽(131);和/或
    所述底座(13)朝向所述框架(14)的一侧具有安装孔(132),所述框架(14)具有与所述安装孔(132)配合的安装柱(141);和/或
    所述底座(13)的周向侧壁具有第一点胶槽(131);和/或
    所述底座(13)的周向侧壁具有固定柱(133),FPC板(80)具有与所述固定柱(133)配合的固定孔(83)。
  19. 根据权利要求17所述的可变光圈驱动马达,其特征在于,
    所述底座(13)呈筒状并包围设置在所述透镜支撑体(20)的外周侧;和/或
    所述框架(14)呈环状并设置在所述底座(13)的顶端。
  20. 根据权利要求17所述的可变光圈驱动马达,其特征在于,所述可变光圈驱动马达还包括接线端脚(100),所述接线端脚(100)的至少一部分嵌埋在所述底座(13)的内部,所述接线端脚(100)的另一部分由所述底座(13)远离所述框架(14)的一端伸出,且所述接线端脚(100)的另一部分伸出的方向为远离所述框架(14)的方向。
  21. 根据权利要求17所述的可变光圈驱动马达,其特征在于,所述底座(13)远离所述框架(14)的一侧的内壁具有限位凸台(134),所述透镜支撑体(20)具有与所述限位凸台(134)配合的限位槽(22),且所述限位槽(22)沿所述透镜支撑体(20)的转动方向延伸。
  22. 根据权利要求17所述的可变光圈驱动马达,其特征在于,所述可变光圈驱动马达还包括:
    盖板(200),所述盖板(200)盖设在所述框架(14)远离所述底座(13)的一侧,且所述叶片组(50)位于所述盖板(200)和所述框架(14)之间,所述底座组件(10)具有分别与所述盖板(200)和所述叶片组(50)配合的限位柱(142);
    垫片(300),所述垫片(300)设置在所述叶片组(50)和所述透镜支撑体(20)之间,所述透镜支撑体(20)对应所述垫片(300)具有第二点胶槽(23)。
  23. 根据权利要求1至16中任一项所述的可变光圈驱动马达,其特征在于,
    每个所述驱动磁石(30)由至少两个磁条叠加形成;或者
    所述驱动磁石(30)为多级充磁磁石。
  24. 根据权利要求1至16中任一项所述的可变光圈驱动马达,其特征在于,所述可变光圈驱动马达还包括挡磁片(400),所述挡磁片(400)设置在所述透镜支撑体(20)与所述驱动磁石(30)之间。
  25. 一种摄像装置,其特征在于,所述摄像装置包括权利要求1至24中任一项所述的可变光圈驱动马达。
  26. 一种电子设备,其特征在于,所述电子设备包括权利要求25中所述的摄像装置。
PCT/CN2022/077797 2021-12-30 2022-02-25 可变光圈驱动马达、摄像装置及电子设备 WO2023123646A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22912952.3A EP4332675A1 (en) 2021-12-30 2022-02-25 Iris diaphragm driving motor, photographing apparatus, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111670322.3 2021-12-30
CN202111670322.3A CN114285242B (zh) 2021-12-30 2021-12-30 可变光圈驱动马达、摄像装置及电子设备

Publications (1)

Publication Number Publication Date
WO2023123646A1 true WO2023123646A1 (zh) 2023-07-06

Family

ID=80879765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077797 WO2023123646A1 (zh) 2021-12-30 2022-02-25 可变光圈驱动马达、摄像装置及电子设备

Country Status (3)

Country Link
EP (1) EP4332675A1 (zh)
CN (1) CN114285242B (zh)
WO (1) WO2023123646A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117278663A (zh) * 2023-11-22 2023-12-22 荣耀终端有限公司 电子器件和电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814457B (zh) 2022-05-26 2023-09-01 大立光電股份有限公司 通光孔模組、相機模組與電子裝置
CN115657399B (zh) * 2022-09-30 2024-02-13 华为技术有限公司 可变光圈、摄像模组以及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090295983A1 (en) * 2008-05-27 2009-12-03 Sharp Kabushiki Kaisha Camera module and electronic device including the same
US20090296183A1 (en) * 2008-05-29 2009-12-03 Sony Corporation Light quantity adjusting device, lens barrel and image pickup apparatus
CN105763017A (zh) * 2016-05-19 2016-07-13 深圳市世尊科技有限公司 自动对焦音圈马达
CN110703534A (zh) * 2019-10-28 2020-01-17 上海比路电子股份有限公司 一种连续可变光圈装置
CN111856689A (zh) * 2020-08-28 2020-10-30 上海比路电子股份有限公司 透镜驱动马达、相机及移动终端
CN112666774A (zh) * 2020-12-31 2021-04-16 上海比路电子股份有限公司 防抖结构、防抖系统及摄像装置
CN112965317A (zh) * 2021-02-26 2021-06-15 北京可利尔福科技有限公司 光学防抖马达及摄像模组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100565801B1 (ko) * 2004-01-20 2006-03-29 삼성전자주식회사 렌즈셔터 구동용 스테핑모터 및 렌즈셔터 구동장치 및이를 가지는 렌즈유닛
TW201007245A (en) * 2008-08-07 2010-02-16 Ind Tech Res Inst Voice coil motor and optical device
CN103280941B (zh) * 2012-09-29 2016-03-02 深圳市光控数码光电有限公司 一种微型驱动电机
KR102179952B1 (ko) * 2013-11-25 2020-11-17 삼성전자주식회사 광학조절장치
KR102071925B1 (ko) * 2017-03-31 2020-01-31 삼성전기주식회사 카메라 모듈
CN109597182A (zh) * 2018-12-27 2019-04-09 上海比路电子股份有限公司 透镜驱动马达、相机及移动终端装置
CN211530978U (zh) * 2020-01-16 2020-09-18 成都易迅光电科技有限公司 一种vcm马达的z轴变焦组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090295983A1 (en) * 2008-05-27 2009-12-03 Sharp Kabushiki Kaisha Camera module and electronic device including the same
US20090296183A1 (en) * 2008-05-29 2009-12-03 Sony Corporation Light quantity adjusting device, lens barrel and image pickup apparatus
CN105763017A (zh) * 2016-05-19 2016-07-13 深圳市世尊科技有限公司 自动对焦音圈马达
CN110703534A (zh) * 2019-10-28 2020-01-17 上海比路电子股份有限公司 一种连续可变光圈装置
CN111856689A (zh) * 2020-08-28 2020-10-30 上海比路电子股份有限公司 透镜驱动马达、相机及移动终端
CN112666774A (zh) * 2020-12-31 2021-04-16 上海比路电子股份有限公司 防抖结构、防抖系统及摄像装置
CN112965317A (zh) * 2021-02-26 2021-06-15 北京可利尔福科技有限公司 光学防抖马达及摄像模组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117278663A (zh) * 2023-11-22 2023-12-22 荣耀终端有限公司 电子器件和电子设备
CN117278663B (zh) * 2023-11-22 2024-03-22 荣耀终端有限公司 电子器件和电子设备

Also Published As

Publication number Publication date
CN114285242A (zh) 2022-04-05
CN114285242B (zh) 2022-08-19
EP4332675A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
WO2023123646A1 (zh) 可变光圈驱动马达、摄像装置及电子设备
US10641984B2 (en) Driving mechanism
CN105190429A (zh) 照相机透镜模块
CN110703534A (zh) 一种连续可变光圈装置
WO2018076141A1 (zh) 一种相机模块
CN115421345A (zh) 可变光圈驱动马达、摄像装置及电子设备
CN113833941A (zh) 微云台防抖装置
WO2023221336A1 (zh) 光学元件驱动装置、摄像装置及移动终端
WO2023070545A1 (zh) 变焦镜头系统、摄像装置及移动终端
CN113572933B (zh) 镜头模组、摄像头模组及电子设备
CN114911025A (zh) 一种潜望式镜头驱动装置、摄像装置及移动终端
CN220629154U (zh) 透镜驱动装置、摄像装置及移动终端
CN114244977A (zh) 摄像结构
TWM602213U (zh) 超微型投影光學致動器
CN219533486U (zh) 镜头驱动机构
CN220381426U (zh) 驱动马达、摄像装置以及电子设备
CN220419656U (zh) 镜头驱动装置及其框架组件
WO2023104084A1 (zh) 可变光圈装置以及摄像模组
CN220603766U (zh) 镜头驱动装置
CN218824911U (zh) 棱镜马达
CN218767521U (zh) 镜头驱动机构
TWI767480B (zh) 音圈馬達裝置、鏡頭模組及電子裝置
CN116819849A (zh) 驱动马达、摄像装置以及电子设备
WO2023232001A1 (zh) 一种驱动装置及摄像模组
CN217034422U (zh) 底座组件和镜头驱动机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022912952

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022912952

Country of ref document: EP

Effective date: 20231130