WO2023123533A1 - 带吸湿排汗功能的全浸手套 - Google Patents
带吸湿排汗功能的全浸手套 Download PDFInfo
- Publication number
- WO2023123533A1 WO2023123533A1 PCT/CN2022/070419 CN2022070419W WO2023123533A1 WO 2023123533 A1 WO2023123533 A1 WO 2023123533A1 CN 2022070419 W CN2022070419 W CN 2022070419W WO 2023123533 A1 WO2023123533 A1 WO 2023123533A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- parts
- moisture
- layer
- absorbing
- Prior art date
Links
- 210000004243 sweat Anatomy 0.000 title abstract description 12
- 239000011248 coating agent Substances 0.000 claims abstract description 83
- 238000000576 coating method Methods 0.000 claims abstract description 83
- 229920002635 polyurethane Polymers 0.000 claims abstract description 63
- 239000004814 polyurethane Substances 0.000 claims abstract description 63
- 238000001035 drying Methods 0.000 claims abstract description 42
- 238000002360 preparation method Methods 0.000 claims abstract description 40
- 238000007598 dipping method Methods 0.000 claims abstract description 38
- 239000002994 raw material Substances 0.000 claims abstract description 38
- 238000010521 absorption reaction Methods 0.000 claims abstract description 36
- 239000002904 solvent Substances 0.000 claims abstract description 34
- 238000005406 washing Methods 0.000 claims abstract description 15
- 238000004806 packaging method and process Methods 0.000 claims abstract description 12
- 239000010410 layer Substances 0.000 claims description 204
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 82
- 229920005749 polyurethane resin Polymers 0.000 claims description 53
- 239000000463 material Substances 0.000 claims description 47
- 239000003795 chemical substances by application Substances 0.000 claims description 45
- 238000005187 foaming Methods 0.000 claims description 37
- 239000013530 defoamer Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 33
- 239000007787 solid Substances 0.000 claims description 30
- 239000000839 emulsion Substances 0.000 claims description 29
- 239000002562 thickening agent Substances 0.000 claims description 24
- 239000000080 wetting agent Substances 0.000 claims description 24
- 239000004088 foaming agent Substances 0.000 claims description 17
- 239000003292 glue Substances 0.000 claims description 16
- 230000000149 penetrating effect Effects 0.000 claims description 13
- 238000007654 immersion Methods 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 9
- 239000002344 surface layer Substances 0.000 claims description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 6
- 239000003973 paint Substances 0.000 claims description 5
- 239000012752 auxiliary agent Substances 0.000 claims description 4
- 239000002518 antifoaming agent Substances 0.000 claims 1
- 238000002955 isolation Methods 0.000 abstract description 4
- 230000029058 respiratory gaseous exchange Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 33
- 239000002002 slurry Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 15
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 239000003153 chemical reaction reagent Substances 0.000 description 12
- 238000000465 moulding Methods 0.000 description 12
- 238000007711 solidification Methods 0.000 description 10
- 230000008023 solidification Effects 0.000 description 10
- 238000009423 ventilation Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 7
- 230000035515 penetration Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 239000000701 coagulant Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000004800 polyvinyl chloride Substances 0.000 description 4
- 230000005653 Brownian motion process Effects 0.000 description 3
- 238000005411 Van der Waals force Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000005537 brownian motion Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000009916 joint effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- -1 accelerator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000002155 anti-virotic effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000002906 medical waste Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920006264 polyurethane film Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D31/00—Materials specially adapted for outerwear
- A41D31/04—Materials specially adapted for outerwear characterised by special function or use
- A41D31/12—Hygroscopic; Water retaining
- A41D31/125—Moisture handling or wicking function through layered materials
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D19/00—Gloves
- A41D19/0055—Plastic or rubber gloves
- A41D19/0058—Three-dimensional gloves
- A41D19/0065—Three-dimensional gloves with a textile layer underneath
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0002—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
- D06N3/0009—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using knitted fabrics
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0043—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by their foraminous structure; Characteristics of the foamed layer or of cellular layers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0043—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by their foraminous structure; Characteristics of the foamed layer or of cellular layers
- D06N3/005—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by their foraminous structure; Characteristics of the foamed layer or of cellular layers obtained by blowing or swelling agent
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/0086—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique
- D06N3/0088—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique by directly applying the resin
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/12—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
- D06N3/14—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/12—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
- D06N3/14—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
- D06N3/145—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes two or more layers of polyurethanes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/18—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials
- D06N3/183—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials the layers are one next to the other
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2209/00—Properties of the materials
- D06N2209/12—Permeability or impermeability properties
- D06N2209/121—Permeability to gases, adsorption
- D06N2209/123—Breathable
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2209/00—Properties of the materials
- D06N2209/12—Permeability or impermeability properties
- D06N2209/126—Permeability to liquids, absorption
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2209/00—Properties of the materials
- D06N2209/12—Permeability or impermeability properties
- D06N2209/126—Permeability to liquids, absorption
- D06N2209/128—Non-permeable
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2209/00—Properties of the materials
- D06N2209/14—Properties of the materials having chemical properties
- D06N2209/141—Hydrophilic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2209/00—Properties of the materials
- D06N2209/14—Properties of the materials having chemical properties
- D06N2209/142—Hydrophobic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2211/00—Specially adapted uses
- D06N2211/10—Clothing
- D06N2211/103—Gloves
Definitions
- the invention belongs to the field of labor protection appliances, in particular to a fully soaked glove with the function of moisture absorption and perspiration.
- the object of the present invention is to provide a fully soaked glove with moisture absorption and perspiration function.
- the principle of waterproof and moisture absorption and ventilation of the coating is: there are two ways of moisture absorption and ventilation of the film, one is non-porous and hydrophilic.
- Water molecules are composed of one oxygen atom and two hydrogen atoms. When the water molecules are in the gaseous state, there is almost no force between the molecules, and the water molecules can move freely.
- the hydrophilic groups contained in the film can absorb water molecules, and conduct from the inner layer with high concentration to the outer layer with low concentration through the molecular chain, and then volatilize into the air to complete an adsorption-transfer-- The complete process of desorption.
- the shielding layer produces moisture absorption and air permeability.
- concentration and temperature difference of water molecules inside and outside the shielding layer are the influencing factors of the conduction rate. The greater the difference, the faster the conduction rate.
- the bonding force between molecules is relatively large, including van der Waals force and hydrogen bonds, so although the hydrophilic groups in the film are in contact with liquid water, the shielding layer is not in contact with water.
- the adsorption force of molecules is smaller than the binding force between water molecules, so liquid water cannot be transmitted to the other side through the shielding layer, and the shielding layer plays a role of waterproofing at this time.
- the shielding layer is a non-porous design, bacteria and viruses cannot pass through the shielding layer, which is the principle that the shielding layer is not only breathable, but also waterproof and anti-virus.
- the second method of moisture absorption and ventilation of the film is the micropore dredging method.
- the moisture absorption and ventilation layer of the present invention adopts this method. When the wearer's hands produce sweat, the volume of gaseous water molecules is much smaller than the aperture of the micropores, so it can Freely contact the shielding layer through the moisture-absorbing and breathable layer, and then diffuse to the outside of the glove through the shielding layer.
- the microporous moisture-absorbing and breathable coating can temporarily absorb and store excess sweat.
- the moisture-absorbing and breathable coating of the present invention also has hydrophilic groups at the same time, so it has both microporous hydrophobic and hydrophilic moisture-absorbing functions, and can slow down or even eliminate the stuffy and wet feeling of hands caused by sweat as much as possible. .
- the hydrophilic properties of the coating in contact with the skin and the number of micropores are the key.
- the raw materials of full-immersion coating products on the market are nitrile or PVC. From the analysis of the structures of these two raw materials, the hydrophilicity is relatively poor, especially PVC materials, which do not have hydrophilicity at all. According to the analysis of the process, these two materials do not have a foaming process and a foaming section. Therefore, the hydrophilicity and micropores of the fully-immersed coated gloves produced with these two materials are not enough, or even not, resulting in gloves that do not have moisture absorption. effect, and the hand feel is relatively hard.
- This patent uses polyurethane as the raw material of the inner layer, which solves the problems of hydrophilicity, moisture absorption and perspiration from the chemical composition and physical structure.
- the polyurethane raw materials currently on the market are divided into two types, solvent-based and water-based, and no matter which type, they all have a certain number of hydrophilic groups-carboxyl, hydroxyl or amino groups. , these groups can strongly adsorb gaseous water molecules. From the point of view of physical structure, during the process of water-washing and film-forming of solvent-based polyurethane after dipping, due to the exchange of solvent and water, the resulting polyurethane film forms a large number of fine holes.
- the processing technology of physical foaming before, so that the water-based polyurethane also contains a large number of fine cells.
- These fine cells have two advantages.
- One is that the specific surface area of the coating is greatly increased, that is, the contact area between water molecules and hydrophilic materials is increased.
- the gaseous sweat can Maximize the contact with the hydrophilic groups of the coating and be absorbed, and then be channeled to the outside of the glove through the shielding layer. If the sweat is produced faster than it is discharged, the excess sweat will be attracted by a large number of microporous capillaries, And held by the coating and fibers, mechanically held in capillaries between fibers.
- Second because there are a large number of tiny holes, the softness of the coating is greatly improved. This is a very important indicator in the actual use of gloves. Soft gloves can well reduce hand fatigue during work and reduce labor intensity to the greatest extent.
- Fully dipped gloves with moisture absorption and perspiration function including a knitted hand core body, a moisture absorption and breathable layer fully dipped on the inner surface of the hand core body, a shielding layer fully dipped on the outer surface of the hand core body, and a moisture absorption and perspiration layer
- Both the shielding layer and the shielding layer are prepared with a coating whose main raw materials include water-based polyurethane or solvent-based polyurethane.
- the moisture-wicking layer is a foaming layer with a thickness of 0.1-0.3 mm; the shielding layer is a non-foaming layer with a thickness of 0.03-0.03 mm.
- the specific preparation process of the full-dipped gloves includes: hand core body molding ⁇ dipping to prepare a foamed moisture-absorbing and breathable layer ⁇ washing ⁇ drying ⁇ dipping to prepare a non-foaming shielding layer ⁇ drying ⁇ finished product stripping Mold ⁇ package, wherein: when dipping the second layer of glue, that is, the shielding layer, ensure that the moisture-absorbing and breathable layer of the first layer has been cured and dried to form a film, and ensure that the surface energy of the shielding layer coating that is still in liquid state is lower than that of the moisture-absorbing and breathable layer The surface energy of the barrier coating material can be wetted to the surface of the moisture-absorbing and breathable layer and even the micropores of the surface layer to the greatest extent.
- the low surface energy can make the shielding coating material soak into the surface of the moisture-absorbing and air-permeable layer or even the micropores of the surface layer to the greatest extent, through sufficient interfacial contact, it will be absorbed by the moisture-absorbing and air-permeable layer.
- the moisture-absorbing and breathable layer molecules are closely combined, and the two-layer coating forms a stable state under the joint action of van der Waals force and hydrogen bonds. Therefore, strictly controlling the surface energy of the shielding layer is to make the two-layer coating have The key to high bond strength.
- the preparation material of the shielding layer mainly includes water-based polyurethane resin
- the solid content of the coating is controlled at 20-40%, and the viscosity is between 500-2000 centipoise
- the preparation material of the shielding layer mainly includes solvent-based polyurethane resin the solid content of the coating is controlled at 12-20%, and the viscosity is between 300-1500 centipoise.
- the prepared raw materials include the following components: water-based polyurethane emulsion, defoamer, thickener, curing agent, wetting agent;
- the raw materials prepared include the following components: dry-process polyurethane resin, DMF, defoamer, leveling agent, penetrating agent, and wetting agent.
- the prepared raw materials include the following components and parts by mass: 1000 parts by mass of water-based polyurethane emulsion, 4-7 parts by mass of defoamer, 3 parts by mass of thickener --8 parts by mass, 10-30 parts by mass of curing agent, 2--5 parts by mass of wetting agent;
- the preparation material of the shielding layer mainly includes solvent-based polyurethane resin the raw materials prepared include the following components and mass Parts: 1000 parts by mass of dry-process polyurethane resin, 800-2000 parts by mass of DMF, 3-10 parts by mass of defoamer, 3-8 parts by mass of leveling agent, 3-8 parts by mass of penetrating agent, wetting agent 2--5 parts by mass.
- the preparation material of the moisture-absorbing and air-permeable layer mainly includes water-based polyurethane resin
- the solid content of the coating is controlled at 20-40%, and the viscosity is at 500-2000 centimeters. Poise, the ratio of controlling foaming is between 1.15-1.8; because, for water-based polyurethane resin, the coating solid content is 20-40%, the viscosity is between 500-2000 centipoise, and the coating thickness can be freely adjusted. Controlled between 0.1-0.3 mm;
- the solid content of the coating is controlled to be 12--18%, and the viscosity is 500--1500 centipoise; because, according to the foaming principle of solvent-based resin, it can be adjusted Resin solid content, add solidification speed regulator and cell regulator, by adding solidification speed regulator, the solidification speed of the resin after entering the water can be changed, so that the resin density of the surface layer decreases, and at the same time, the cell adjustment agent is added to reduce the large
- the generation probability of pore size cells and the control range of the solid content of the coating are more appropriate to be controlled at 12-18%.
- the viscosity is controlled between 500--1500 centipoise, and the coating thickness can be freely controlled at 0.1 — between 0.3 mm.
- the raw materials prepared include the following components: water-based polyurethane emulsion, foaming agent and thickener, and the amount of foaming agent added is 5-15% of the mass;
- the prepared raw materials include the following components: wet-process polyurethane resin, DMF, defoamer, penetrating agent, cell auxiliary agent, accelerator, coating solid content control At 12-18%.
- the solidification speed of the resin after entering the water can be changed, so that the surface layer The density of the resin is reduced, and at the same time adding a cell adjustment agent to reduce the probability of large-diameter cells, and the control range of the solid content of the coating is more appropriate to control it at 12-18%.
- the prepared raw materials include the following components and parts by mass: 1000 parts by mass of water-based polyurethane emulsion, 50--150 parts by mass of foaming agent, 2 parts by mass of thickener --6 parts by mass;
- the prepared raw materials include the following components and parts by mass: wet-process polyurethane resin 1000 parts by mass, DMF 800--2000 parts by mass, defoamer 3--10 parts by mass, 3-8 parts by mass of penetrating agent, 2-8 parts by mass of cell aid, and 5-15 parts by mass of accelerator.
- the formulations of the raw materials used in the moisture-absorbing and sweat-wicking layer and the shielding layer can be combined arbitrarily according to needs when making full-immersion gloves.
- the size and number of cells The cells of the moisture-absorbing and breathable coating per unit volume are within a reasonable range. If the number is larger, the pore size is smaller, indicating that the specific surface area of the cells is larger, which is beneficial to moisture absorption and breathability, (need to be explained here The size of the cell aperture is not less than the range that hinders the free passage of water vapor molecules). If the moisture-absorbing and air-permeable layer is made of water-based polyurethane, we believe that the expansion rate is between 1.15 and 1.8, which is a reasonable range, and the number and diameter of cells can be controlled by the amount of foaming agent added. The amount of foaming agent added is generally 5-15% of the amount of resin.
- the moisture-absorbing and breathable layer is prepared with solvent-based polyurethane, according to the foaming principle of solvent-based resin, we can achieve our desired goal by adjusting the solid content of the coating, adding a solidification speed regulator and a cell regulator.
- Traditional solvent-based Polyurethane glove resin the solidification speed of the surface after entering the water is very fast, resulting in a very dense coating surface, similar to the plastic skin, by adding a solidification speed regulator, the solidification speed of the resin after entering the water can be changed, so that the resin density of the surface layer decreases.
- add cell adjustment additives to reduce the probability of large-diameter cells, and the control range of the solid content of the coating is more appropriate to be controlled at 12-18%. Combining the above three factors, the specific surface area of the entire moisture-absorbing and air-permeable layer can be controlled within a reasonable range.
- the thickness of the coating for the moisture-absorbing and breathable layer, because there are a large number of tiny holes, the thickness of the coating has a slight influence on the air permeability, because the thicker the thickness, the easier the path for water molecules to pass through the coating It will lengthen, which is not conducive to ventilation.
- the thicker the coating under the premise that the number of cells per unit volume is constant, the thicker the coating, that is, the more storage space can be used to absorb and lock moisture, so it is beneficial to moisture absorption, but it is different from the shielding layer.
- a thicker coating will also have a negative impact on the dexterity and touch of the fingers. Through certification, we believe that it is more appropriate to control the thickness of the coating between 0.1-0.3 mm.
- the thickness of the coating can be achieved by adjusting the viscosity and solid content of the coating.
- the solid content of the coating is 20-40%, the viscosity is between 500-2000 centipoise, and the foaming ratio is controlled between 1.15-1.8, so that the coating thickness can be freely controlled between 0.1-2000 centipoise. between 0.3mm.
- the solid content of the coating is 12-18%, the viscosity is between 500-1500 centipoise, and the coating thickness can be freely controlled between 0.1-0.3 mm.
- a thick coating is beneficial to the shielding effect, but the disadvantage is that for ventilation, the path of water molecules through the shielding layer is lengthened, which reduces the breathability of the coating. Finger dexterity and tactility are also negatively affected. With a thin coating, the path of water molecules passing through the shielding layer becomes shorter, which increases the breathability of the coating and is sensitive to touch. The disadvantage is that the continuous shielding effect may be reduced. In addition, the durability of the glove will also be affected. relatively serious negative impact. Therefore, it is more critical to select an appropriate coating thickness. Through certification, it is considered that the thickness of the coating should be controlled between 0.03-0.2 mm.
- the thickness of the coating can be achieved by adjusting the viscosity and solid content of the coating.
- the solid content of the coating is 20-40%, and the viscosity is between 500-2000 centipoise.
- the thickness of the coating can be freely controlled between 0.03-0.2 mm.
- the bonding strength between the moisture-absorbing breathable layer and the shielding layer is that after the two layers of adherends are in contact with each other, a force is generated between the molecules, so that the two adherends are combined.
- the second layer of glue shielding layer
- the first layer of moisture-absorbing and breathable layer has been cured and dried to form a film.
- the surface energy of the liquid shielding layer coating is lower than that of the moisture-absorbing and breathable layer, because the low surface energy can make the shielding coating material soak into the surface of the moisture-absorbing and breathable layer or even into the micropores of the surface layer to the greatest extent, and be moisture-absorbed through sufficient interface contact.
- the air-permeable layer is adsorbed.
- the rubber molecules of the shielding layer are closely combined with the molecules of the moisture-absorbing and air-permeable layer under the action of Brownian motion. State, so strictly controlling the surface energy of the shielding layer is the key to make the two-layer coating have high bonding strength.
- the fully soaked glove with moisture absorption and perspiration function of the present invention has an ingenious structure.
- the patent of the present invention adopts the method of secondary dipping to creatively achieve moisture absorption, ventilation and shielding isolation.
- the function is synthesized into one glove, which perfectly solves the pain points of the market.
- the glove production of this patent uses polyurethane as the coating raw material, and organically combines the foaming coating (mainly for moisture absorption and ventilation) and non-foaming coating (mainly for shielding and isolation functions), so that the product has both moisture absorption and ventilation It has the function of shielding and isolation, and it feels soft, which greatly reduces the fatigue of work. It has a wider application range and strong practicability. It is worth promoting.
- Fully dipped gloves with moisture absorption and perspiration function including a knitted hand core body, a moisture absorption and breathable layer fully dipped on the inner surface of the hand core body, a shielding layer fully dipped on the outer surface of the hand core body, and a moisture absorption and perspiration layer
- Both the shielding layer and the shielding layer are prepared with a coating whose main raw materials include water-based polyurethane or solvent-based polyurethane.
- the moisture-wicking layer is a foaming layer with a thickness of 0.1-0.3 mm; the shielding layer is a non-foaming layer with a thickness of 0.03-0.03 mm.
- the specific preparation process of the full-dipped gloves includes: hand core body molding ⁇ dipping to prepare a foamed moisture-absorbing and breathable layer ⁇ washing ⁇ drying ⁇ dipping to prepare a non-foaming shielding layer ⁇ drying ⁇ finished product stripping Mold ⁇ package, wherein: when dipping the second layer of glue, that is, the shielding layer, ensure that the moisture-absorbing and breathable layer of the first layer has been cured and dried to form a film, and ensure that the surface energy of the shielding layer coating that is still in liquid state is lower than that of the moisture-absorbing and breathable layer The surface energy of the barrier coating material can be wetted to the surface of the moisture-absorbing and breathable layer and even the micropores of the surface layer to the greatest extent.
- the low surface energy can make the shielding coating material soak into the surface of the moisture-absorbing and air-permeable layer or even the micropores of the surface layer to the greatest extent, through sufficient interfacial contact, it will be absorbed by the moisture-absorbing and air-permeable layer.
- the moisture-absorbing and breathable layer molecules are closely combined, and the two-layer coating forms a stable state under the joint action of van der Waals force and hydrogen bonds. Therefore, strictly controlling the surface energy of the shielding layer is to make the two-layer coating have The key to high bond strength.
- the preparation material of the shielding layer mainly includes water-based polyurethane resin
- the solid content of the coating is controlled at 20-40%, and the viscosity is between 500-2000 centipoise
- the preparation material of the shielding layer mainly includes solvent-based polyurethane resin the solid content of the paint is controlled at 12-20%, and the viscosity is between 300-1500 centipoise.
- the prepared raw materials include the following components: water-based polyurethane emulsion, defoamer, thickener, curing agent, and wetting agent;
- the prepared raw materials include the following components: dry-process polyurethane resin, DMF, defoamer, leveling agent, penetrating agent, and wetting agent.
- the prepared raw materials include the following components and parts by mass: 1000 parts by mass of water-based polyurethane emulsion, 4-7 parts by mass of defoamer, 3 parts by mass of thickener --8 parts by mass, 10-30 parts by mass of curing agent, 2--5 parts by mass of wetting agent;
- the preparation material of the shielding layer mainly includes solvent-based polyurethane resin the raw materials prepared include the following components and mass Parts: 1000 parts by mass of dry-process polyurethane resin, 800-2000 parts by mass of DMF, 3-10 parts by mass of defoamer, 3-8 parts by mass of leveling agent, 3-8 parts by mass of penetrating agent, wetting agent 2--5 parts by mass.
- the preparation material of the moisture-absorbing and air-permeable layer mainly includes water-based polyurethane resin
- the solid content of the coating is controlled at 20-40%, and the viscosity is 500-2000 centipoise.
- the foaming ratio is between 1.15 and 1.8;
- the preparation material of the moisture-absorbing and air-permeable layer mainly includes solvent-based polyurethane
- the solid content of the coating is controlled to be 12--18%, and the viscosity is 500--1500 centipoise;
- the preparation material of the moisture-absorbing and air-permeable layer mainly includes water-based polyurethane resin
- the prepared raw materials include the following components: water-based polyurethane emulsion, foaming agent and thickener, and the addition of foaming agent is 5-5% of the quality of water-based polyurethane emulsion. 15%;
- the prepared raw materials include the following components: wet-process polyurethane resin, DMF, defoamer, penetrating agent, cell auxiliary agent, accelerator, and the solid content is controlled at 12-18%.
- the prepared raw materials include the following components and parts by mass: 1000 parts by mass of water-based polyurethane emulsion, 50--150 parts by mass of foaming agent, 2 parts by mass of thickener --6 parts by mass;
- the prepared raw materials include the following components and parts by mass: wet-process polyurethane resin 1000 parts by mass, DMF 800--2000 parts by mass, defoamer 3--10 parts by mass, 3-8 parts by mass of penetrating agent, 2-8 parts by mass of cell aid, and 5-15 parts by mass of accelerator.
- the formulations of the raw materials used in the moisture-absorbing and sweat-wicking layer and the shielding layer can be combined arbitrarily according to needs when making full-immersion gloves.
- the used water-based polyurethane emulsion, dry-process polyurethane resin, and wet-process polyurethane resin are all commercially available materials.
- the basic formulations for preparing the moisture-absorbing and sweat-wicking layer and the shielding layer are respectively as follows.
- which raw material formulations are used for the moisture-wicking and sweat-wicking layer and the shielding layer can be combined arbitrarily according to needs, and the following parts by mass represent 1 gram:
- Basic formula 1 Water-based polyurethane emulsion full-immersion shielding layer formula: 1000 parts by mass of water-based polyurethane emulsion (XWB-7248 of Asahikawa Chemical Suzhou Co., Ltd.), 4-7 parts by mass of defoamer (BYK-016), thickener 3 --8 parts by mass (Digao Chemical Industry 3030), curing agent 10--30 parts by mass (Bayer 3100). Wetting agent 2--5 parts by mass (DuPont Chemical Capstone FS--63)
- Basic formula 2 water-based polyurethane emulsion full-immersion moisture-absorbing and breathable layer formula: water-based polyurethane emulsion 1000 parts by mass (XWB-7510B of Asahikawa Chemical Suzhou Co., Ltd.), foaming agent 50--150 parts by mass (BASF Glucopon 225DK), thickener 2 --6 parts by mass (Digo Chemical 3030).
- Basic formula 3 The formula of solvent-based polyurethane fully impregnated shielding layer: 1000 parts by mass of dry-process polyurethane resin (Asahikawa XCS-3030L), DMF800--2000 parts by mass (reagent), 3--10 parts by mass of defoamer (BYK— 016), 3--8 parts by mass of leveling agent (Digao Flow425), 3--8 parts by mass of penetrant (Cytec OT-75), 2--5 parts by mass of wetting agent (DuPont Chemical Capstone FS-- 63).
- Basic formula 4 Formula of solvent-based polyurethane fully impregnated moisture-absorbing and breathable layer: 1000 parts by mass of wet-process polyurethane resin (Huafeng JF-P-2930), 800--2000 parts by mass of DMF (reagent), 3--10 parts by mass of defoamer parts (BYK-016), penetrating agent 3--8 parts by mass (Cytec OT-75), cell aid 2--8 parts by mass (BYK-L9520), accelerator 5--15 parts by mass (BYK- L9525).
- Demonstration example 1 The process is as follows: hand core body molding ⁇ dipping in coagulant ⁇ dipping in glue (foaming layer) ⁇ washing ⁇ drying ⁇ dipping in glue (shielding layer) ⁇ drying ⁇ finished product demoulding ⁇ packaging.
- Moisture-absorbing and breathable layer formula 1000 parts by mass of water-based polyurethane emulsion (XWB-7510B of Asahikawa Chemical Suzhou Co., Ltd.), 60 parts by mass of foaming agent (BASF Glucopon 225DK), and 6 parts by mass of thickener (Digo 3030).
- the foaming ratio is 1.2 times. Measure the working slurry viscosity of 1000 centipoise.
- Shielding layer formula 1000 parts by mass of water-based polyurethane emulsion (XWB-7248 of Asahikawa Chemical Suzhou Co., Ltd.), 5 parts by mass of defoamer (BYK-016), 5 parts by mass of thickener (Digo Chemical 3030), 3 parts by mass of wetting agent Parts by mass (DuPont Chemical Capstone FS--63), 20 parts by mass of curing agent (Bayer 3100). Measure the working slurry viscosity of 1000 centipoise.
- Demonstration example 2 The process is as follows: hand core body molding ⁇ dipping in coagulant ⁇ dipping in glue (foaming layer) ⁇ washing ⁇ drying ⁇ dipping in glue (shielding layer) ⁇ drying ⁇ finished product demoulding ⁇ packaging.
- Moisture-absorbing and breathable layer formula 1000 parts by mass of water-based polyurethane emulsion (XWB-7510B of Asahikawa Chemical Suzhou Co., Ltd.), 120 parts by mass of foaming agent (BASF Glucopon 225DK), and 4 parts by mass of thickener (Digo 3030).
- the foaming ratio is 1.6 times.
- the viscosity of the working slurry was measured to be 980 centipoise.
- Shielding layer formula 1000 parts by mass of water-based polyurethane emulsion (XWB-7248 of Asahikawa Chemical Suzhou Co., Ltd.), 5 parts by mass of defoamer (BYK-016), 5 parts by mass of thickener (Digo Chemical 3030), 3 parts by mass of wetting agent Parts by mass (DuPont Chemical Capstone FS--63), 20 parts by mass of curing agent (Bayer 3100).
- the viscosity of the working slurry was measured to be 1020 centipoise.
- Demonstration example 3 The process is as follows: hand core body molding ⁇ dipping in coagulant ⁇ dipping in glue (foaming layer) ⁇ washing ⁇ drying ⁇ dipping in glue (shielding layer) ⁇ drying ⁇ finished product demoulding ⁇ packaging.
- Moisture-absorbing and breathable layer formula 1000 parts by mass of water-based polyurethane emulsion (XWB-7510B of Asahikawa Chemical Suzhou Co., Ltd.), 60 parts by mass of foaming agent (BASF Glucopon 225DK), and 6 parts by mass of thickener (Digo 3030).
- the foaming ratio is 1.2 times.
- the viscosity of the working slurry was measured to be 980 centipoise.
- Shielding layer formula 1000 parts by mass of dry-process polyurethane resin (Asahikawa XCS-3030L), 1000 parts by mass of DMF (reagent), 5 parts by mass of defoamer (BYK-016), 3 parts by mass of leveling agent (Digo Flow425), penetration 5 parts by mass of agent (Cytec OT-75), 3 parts by mass of wetting agent (DuPont Chemical Capstone FS-63). Measure the working slurry viscosity of 1000 centipoise.
- Demonstration example 4 The process is as follows: hand core body molding ⁇ dipping in coagulant ⁇ dipping in glue (foaming layer) ⁇ washing ⁇ drying ⁇ dipping in glue (shielding layer) ⁇ drying ⁇ finished product demoulding ⁇ packaging.
- Moisture-absorbing and breathable layer formula 1000 parts by mass of water-based polyurethane emulsion (XWB-7510B of Asahikawa Chemical Suzhou Co., Ltd.), 120 parts by mass of foaming agent (BASF Glucopon 225DK), and 4 parts by mass of thickener (Digo 3030).
- the foaming ratio is 1.6 times.
- the viscosity of the working slurry was measured to be 1010 centipoise.
- Shielding layer formula 1000 parts by mass of dry-process polyurethane resin (Asahikawa XCS-3030L), 1000 parts by mass of DMF (reagent), 5 parts by mass of defoamer (BYK-016), 3 parts by mass of leveling agent (Digo Flow425), penetration 5 parts by mass of agent (Cytec OT-75), 3 parts by mass of wetting agent (DuPont Chemical Capstone FS-63). The viscosity of the working slurry was measured to be 990 centipoise.
- Demonstration example 5 The process is as follows: hand core body molding ⁇ dipping (foaming layer) ⁇ washing ⁇ drying ⁇ dipping (shielding layer) ⁇ drying ⁇ finished product demoulding ⁇ packaging;
- Moisture-absorbing and breathable layer formula 1000 parts by mass of wet-process polyurethane resin (Huafeng JF-P-2930), 1200 parts by mass of DMF (reagent), 5 parts by mass of defoamer (BYK-016), 5 parts by mass of penetrant (Cytec OT -75), 2 parts by mass of cell aid (BYK-L9520), 10 parts by mass of accelerator (BYK-L9525). Measured working pulp viscosity 1300 centipoise;
- Shielding layer formula 1000 parts by mass of water-based polyurethane emulsion (XWB-7248 of Asahikawa Chemical Suzhou Co., Ltd.), 5 parts by mass of defoamer (BYK-016), 5 parts by mass of thickener (Digo Chemical 3030), 3 parts by mass of wetting agent Parts by mass (DuPont Chemical Capstone FS--63), 20 parts by mass of curing agent (Bayer 3100).
- the viscosity of the working slurry was measured to be 950 centipoise.
- Demonstration example 6 The process is as follows: hand core body molding ⁇ dipping (foaming layer) ⁇ washing ⁇ drying ⁇ dipping (shielding layer) ⁇ drying ⁇ finished product demoulding ⁇ packaging;
- Moisture-absorbing and breathable layer formula 1000 parts by mass of wet-process polyurethane resin (Huafeng JF-P-2930), 1500 parts by mass of DMF (reagent), 5 parts by mass of defoamer (BYK-016), 5 parts by mass of penetrant (Cytec OT —75), 5 parts by mass of cell aid (BYK-L9520), and 10 parts by mass of accelerator (BYK-L9525). Measure the working slurry viscosity of 800 centipoise.
- Shielding layer formula 1000 parts by mass of water-based polyurethane emulsion (XWB-7248 of Asahikawa Chemical Suzhou Co., Ltd.), 5 parts by mass of defoamer (BYK-016), 5 parts by mass of thickener (Digo Chemical 3030), 3 parts by mass of wetting agent Parts by mass (DuPont Chemical Capstone FS--63), 20 parts by mass of curing agent (Bayer 3100).
- the viscosity of the working slurry was measured to be 1020 centipoise.
- Demonstration example 7 The process is as follows: hand core body molding ⁇ dipping (foaming layer) ⁇ washing ⁇ drying ⁇ dipping (shielding layer) ⁇ drying ⁇ finished product demoulding ⁇ packaging;
- Moisture-absorbing and breathable layer formula 1000 parts by mass of wet-process polyurethane resin (Huafeng JF-P-2930), 1200 parts by mass of DMF (reagent), 5 parts by mass of defoamer (BYK-016), 5 parts by mass of penetrant (Cytec OT -75), 2 parts by mass of cell aid (BYK-L9520), 10 parts by mass of accelerator (BYK-L9525).
- the viscosity of the working slurry was measured to be 1350 centipoise.
- Shielding layer formula 1000 parts by mass of dry-process polyurethane resin (Asahikawa XCS-3030L), 1500 parts by mass of DMF (reagent), 5 parts by mass of defoamer (BYK-016), 3 parts by mass of leveling agent (Digo Flow425), penetration 5 parts by mass of agent (Cytec OT-75) and 3 parts by mass of wetting agent (DuPont Chemical Capstone FS--63), the viscosity of the working pulp was measured to be 800 centipoise.
- Demonstration example 8 The process is as follows: hand core body molding ⁇ dipping (foaming layer) ⁇ washing ⁇ drying ⁇ dipping (shielding layer) ⁇ drying ⁇ finished product demoulding ⁇ packaging;
- Moisture-absorbing and breathable layer formula 1000 parts by mass of wet-process polyurethane resin (Huafeng JF-P-2930), 1800 parts by mass of DMF (reagent), 5 parts by mass of defoamer (BYK-016), 5 parts by mass of penetrant (Cytec OT —75), 5 parts by mass of cell aid (BYK-L9520), and 10 parts by mass of accelerator (BYK-L9525).
- the measured working slurry viscosity is 850 centipoise;
- Shielding layer formula 1000 parts by mass of dry-process polyurethane resin (Asahikawa XCS-3030L), 1500 parts by mass of DMF (reagent), 5 parts by mass of defoamer (BYK-016), 3 parts by mass of leveling agent (Digo Flow425), penetration 5 parts by mass of agent (Cytec OT-75), 3 parts by mass of wetting agent (DuPont Chemical Capstone FS--63), the measured viscosity of the working pulp is 780 centipoise.
- Demonstration example 9 The process is as follows: hand core body molding ⁇ dipping in coagulant ⁇ dipping in glue (foaming layer) ⁇ washing ⁇ drying ⁇ dipping in glue (shielding layer) ⁇ drying ⁇ finished product demoulding ⁇ packaging.
- Moisture-absorbing and breathable layer formula 1000 parts by mass of water-based polyurethane emulsion (XWB-7510B of Asahikawa Chemical Suzhou Co., Ltd.), 120 parts by mass of foaming agent (BASF Glucopon 225DK), and 4 parts by mass of thickener (Digo 3030).
- the foaming ratio is 2 times.
- the viscosity of the working slurry was measured to be 1010 centipoise.
- Shielding layer formula 1000 parts by mass of dry-process polyurethane resin (Asahikawa XCS-3030L), 2000 parts by mass of DMF (reagent), 5 parts by mass of defoamer (BYK-016), 3 parts by mass of leveling agent (Digo Flow425), penetration 5 parts by mass of agent (Cytec OT-75), 3 parts by mass of wetting agent (DuPont Chemical Capstone FS-63). The viscosity of the working slurry was measured to be 990 centipoise.
- Demonstration example 10 The process is as follows: hand core body molding ⁇ dipping (foaming layer) ⁇ washing ⁇ drying ⁇ dipping (shielding layer) ⁇ drying ⁇ finished product demoulding ⁇ packaging;
- Moisture-absorbing and breathable layer formula 1000 parts by mass of wet-process polyurethane resin (Huafeng JF-P-2930), 2000 parts by mass of DMF (reagent), 5 parts by mass of defoamer (BYK-016), 5 parts by mass of penetrant (Cytec OT —75), 5 parts by mass of cell aid (BYK-L9520), and 10 parts by mass of accelerator (BYK-L9525). Measure the working slurry viscosity of 550 centipoise.
- Shielding layer formula 1000 parts by mass of water-based polyurethane emulsion (XWB-7248 of Asahikawa Chemical Suzhou Co., Ltd.), 800 parts by mass of purified water, 5 parts by mass of defoamer (BYK-016), 10 parts by mass of thickener (Digao Chemical 3030 ), 3 parts by mass of wetting agent (DuPont Chemical Capstone FS--63), 20 parts by mass of curing agent (Bayer 3100). The viscosity of the working slurry was measured to be 980 centipoise.
- the gloves prepared in Example 1 to Example 8 of the present invention have the functions of moisture absorption, ventilation and shielding insulation, and are wear-resistant, have low bacterial penetration rate, and have good protection effect, while the gloves of Example 9 are moisture-absorbing and breathable.
- the foaming ratio of the layer is too high, and the effect of Example 10 is not good because the coating is too thin, so it shows that the technical solution of this application has a good effect.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Laminated Bodies (AREA)
- Gloves (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
一种带吸湿排汗功能的全浸手套,包括手芯本体和吸湿透气层和屏蔽层,吸湿排汗层和屏蔽层均采用主要原料包括水性聚氨酯或溶剂型聚氨酯的涂料制备,吸湿排汗层为发泡层,厚度为0.1-0.3毫米;屏蔽层为不发泡层,厚度为0.03-0.2毫米;全浸手套的具体制备工艺包括:手芯本体套模→浸胶制备发泡的吸湿透气层→水洗→烘干→浸胶制备不发泡的屏蔽层→烘干→成品脱模→包装,全浸手套采用聚氨酯作为涂层原料,把发泡涂层和不发泡涂层有机结合在一起,从而兼具吸湿透气和屏蔽隔绝功能,而且手感柔软,实用性强。
Description
本发明属于劳保用具领域,尤其涉及一种带吸湿排汗功能的全浸手套。
众所周知,在现代化的工业生产中,安全防护是相当重要的,而佩戴防护手套就是安全防护的的一个重要组成部分。目前市场所售涂层型劳保安防手套,分为全浸型和掌浸型。掌浸型劳防手套,涂层主要成分有丁腈,天然乳胶,PVC和聚氨酯。佩戴此类手套可以起到一定的防护作用,但因手背没有涂层,因而对于外界的液体或细菌侵入则无能为力。针对某些特殊场合,比如工作环境比较潮湿甚至有润滑油之类的油污,或者接触医疗废弃物等等有细菌或病毒侵入风险的场合,均需要在手部和外界物体之间保持良好的屏蔽隔绝涂层,掌浸型涂层手套显然不适合,必须佩戴全浸型手套。全浸型手套的涂层主要原料有丁腈,天然乳胶,PVC,正因为需要屏蔽外界液体或细菌侵入,因此目前所有此类市售产品均无吸湿透气的功能,且手感比较疆硬,佩戴时会有非常不舒服的体验感,长时间使用,手部皮肤浸泡在汗液中,容易使皮肤产生褶皱,而且还非常容易滋生细菌,同时增加了工作的疲劳强度。
发明内容
本发明的目的是提供一种带吸湿排汗功能的全浸手套。
发明人经过研究发现:涂层的防水与吸湿透气的原理为:薄膜的吸湿透气方式有二种,一是无孔亲水方式。水分子都是由一个氧原子和二个氢原子组成的,当水分子处于气态时,分子与分子之间几乎没有作用力,水分子可以自由运动,当屏蔽层内部的水分子以气态形式与薄膜接触时,薄膜中所含的亲水基团可以吸附水分子,并通过分子链由浓度高的内层传导到浓度低的外层,进而挥发到空气中,完成一个吸附--转移--解吸附的完整过程。此时屏蔽层就产生了吸湿透气现象,屏蔽层内外部水分子的浓度和温度差异是传导速率的影响因素,差异越大,传导速度越快。但是当水分子处于液态时,分子与分子之间的 结合力是比较大的,既有范德华力,又有氢键,因此薄膜中的亲水基团与液态水虽然接触,但屏蔽层与水分子的吸附力小于水分子相互之间的结合力,因此液态水是无法通过屏蔽层传导到另一面的,此时屏蔽层就起到了防水的作用。另外,因为屏蔽层是无孔设计,细菌和病毒无法通过屏蔽层,这就是屏蔽层既能透气,又能防水和防病毒的原理。薄膜吸湿透气的第二种方式是微孔疏通方式,本发明的吸湿透气层就是采用这个方式,当佩戴者手部产生汗气时,由于气态水分子的体积远小于微孔的孔径,所以可以自由通过吸湿透气层与屏蔽层接触,进而通过屏蔽层扩散至手套外部,但时,如果产生的汗气量大于屏蔽层的扩散速度时,微孔型的吸湿透气涂层就可以暂时吸附和贮存多余的汗气。另外本发明的吸湿透气涂层同时自身也带有亲水基团,因此它是同时兼备微孔疏水和亲水吸湿功能的,尽可能减缓甚至消除由于汗气导致的手部闷和湿的感觉。
根据以上原理,与皮肤接触的涂层的亲水性能以及微孔数量是关键。目前市售全浸型涂层产品的原料为丁腈或PVC,从这二种原料本身的结构来分析,亲水性比较差,特别是PVC材料,根本就不具备亲水性,再从加工工艺来分析,这两种材料也没有发泡工艺和发泡工段,因此用这二种原料生产的全浸理型涂层手套的亲水性及微孔不够,甚至没有,导致手套不具备吸湿效果,且手感比较疆硬。
本专利采用聚氨酯为内层原料,从化学组成和物理结构上很好地解决了亲水和吸湿排汗的问题。首先从化学组成来看,目前市场所售的聚氨酯原料分为二种类型,溶剂型和水性型,而不论哪一种类型,他们都具有一定数量的亲水基团--羧基、羟基或氨基,这些基团可以强烈吸附气态的水分子。从物理结构来看,溶剂型聚氨酯在浸胶后的水洗成膜过程中,由于溶剂和水和交换,所成的聚氨酯膜形成了大量的细微孔洞,而对水性型聚氨酯,我们采用了在成型前就物理发泡的加工工艺,从而使水性聚氨酯也含有大量的细微泡孔。这些细微的泡孔有二个好处,一是极大地增加了涂层的比表面积,也就是增加了水分子和亲水材料的接触面积,这样,在手套的使用过程中,气态的汗水,可以最大程度地和涂层的亲水基团接触并被吸附,进而通过屏蔽层疏导到手套外部,如 果汗水产生的速度大于被排出的速度,那么多余的汗水就会被大量的微孔毛细管引力,并被涂层和纤维握持,机械地保持在纤维间的毛细管中。二是因为有大量的细微孔洞,极大地提升了涂层的柔软度。这在手套的实际使用过程中是一个相当重要的指标,柔软的手套可以很好的减轻工作中手部的疲劳感,最大程度减轻劳动强度。
本发明是通过以下技术方案来实现的:
带吸湿排汗功能的全浸手套,包括针织的手芯本体和全浸涂覆于手芯本体内表面的吸湿透气层和全浸涂覆于手芯本体外表面的屏蔽层,吸湿排汗层和屏蔽层均采用主要原料包括水性聚氨酯或溶剂型聚氨酯的涂料制备,所述吸湿排汗层为发泡层,厚度为0.1—0.3毫米;所述屏蔽层为不发泡层,厚度为0.03—0.2毫米;所述全浸手套的具体制备工艺包括:手芯本体套模→浸胶制备发泡的吸湿透气层→水洗→烘干→浸胶制备不发泡的屏蔽层→烘干→成品脱模→包装,其中:在浸第二层胶即屏蔽层时,确保第一层的吸湿透气层已经固化并且烘干成膜,确保让还处于液态的屏蔽层涂料的表面能低于吸湿透气层的表面能,以使屏蔽涂层料最大程度地浸润到吸湿透气层表面甚至表层微孔内。因为低表面能可以使屏蔽涂层料最大程度地浸润到吸湿透气层表面甚至表层微孔内,通过充分的界面接触,被吸湿透气层吸附,在随后的加热过程中,屏蔽层胶料分子在布朗运动的作用下,和吸湿透气层分子紧密结合在一起,二层涂层在范德华力和氢键的共同作用下形成一个稳定状态,因此严格控制屏蔽层的表面能是使两层涂层具有高粘接强度的关键。
作为优选,为确保所述屏蔽层的厚度为0.03—0.2毫米,当所述屏蔽层的制备材料主要包括水性聚氨酯树脂时,控制涂料固含量在20-40%,粘度在500—2000厘泊之间;当所述屏蔽层的制备材料主要包括溶剂型聚氨酯树脂时,控制涂料固含量在12-20%,粘度在300—1500厘泊之间。
更优地,当所述屏蔽层的制备材料主要包括水性聚氨酯树脂时,制备的原料包括如下组分:水性聚氨酯乳液,消泡剂,增稠剂,固化剂,润湿剂;
当所述屏蔽层的制备材料主要包括溶剂型聚氨酯树脂时,制备的原料包括 如下组分:干法聚氨酯树脂,DMF,消泡剂,流平剂,渗透剂,润湿剂。
进一步地,当所述屏蔽层的制备材料主要包括水性聚氨酯树脂时,制备的原料包括如下组分及质量份:水性聚氨酯乳液1000质量份,消泡剂4--7质量份,增稠剂3--8质量份,固化剂10--30质量份,润湿剂2--5质量份;当所述屏蔽层的制备材料主要包括溶剂型聚氨酯树脂时,制备的原料包括如下组分及质量份:干法聚氨酯树脂1000质量份,DMF 800--2000质量份,消泡剂3--10质量份,流平剂3--8质量份,渗透剂3--8质量份,润湿剂2--5质量份。
作为优选,为确保所述吸湿透气层的厚度为0.1—0.3毫米,当所述吸湿透气层的制备材料主要包括水性聚氨酯树脂时,控制涂料固含量在20—40%,粘度在500—2000厘泊,控制发泡的倍率在1.15—1.8之间;因为,对水性聚氨酯树脂来说,涂料固含量在20—40%,粘度在500—2000厘泊之间,就可以实现将涂层厚度自由控制在0.1—0.3毫米之间;
当所述吸湿透气层的制备材料主要包括溶剂型聚氨酯时,控制涂料固含量为12--18%,粘度在500--1500厘泊;因为,根据溶剂型树脂的发泡原理,可以通过调整树脂固含量,加入凝固速度调整剂和泡孔调整剂来,通过加入凝固速度调整剂,可以改变树脂入水后的凝固速度,使得表面层树脂致密度下降,同时加入泡孔调整助剂,减少大孔径泡孔的产生概率,而涂料固含量的控制范围,则控制在12—18%是比较合适的,同时控制粘度在500--1500厘泊之间,可以实现将涂层厚度自由控制在0.1—0.3毫米之间。
更优地,当所述吸湿透气层的制备材料主要包括水性聚氨酯树脂时,制备的原料包括如下组分:水性聚氨酯乳液、发泡剂和增稠剂,发泡剂的加入量为水性聚氨酯乳液质量的5—15%;
当所述吸湿透气层的制备材料主要包括溶剂型聚氨酯时,制备的原料包括如下组分:湿法聚氨酯树脂,DMF,消泡剂,渗透剂,泡孔助剂,促进剂,涂料固含量控制在12—18%。因为,根据溶剂型树脂的发泡原理,可以通过调整树脂固含量,加入凝固速度调整剂和泡孔调整助剂来,通过加入凝固速度调整剂, 可以改变树脂入水后的凝固速度,使得表面层树脂致密度下降,同时加入泡孔调整助剂,减少大孔径泡孔的产生概率,而涂料固含量的控制范围,则控制在12—18%是比较合适的。
进一步地,当所述吸湿透气层的制备材料主要包括水性聚氨酯时,制备的原料包括如下组分及质量份:水性聚氨酯乳液1000质量份,发泡剂50--150质量份,增稠剂2--6质量份;
当所述吸湿透气层的制备材料主要包括溶剂型聚氨酯时,制备的原料包括如下组分及质量份:湿法聚氨酯树脂1000质量份,DMF 800--2000质量份,消泡剂3--10质量份,渗透剂3--8质量份,泡孔助剂2--8质量份,促进剂5--15质量份。
制作全浸手套时吸湿排汗层和屏蔽层各采用何种原料配方可以根据需要任意组合。
之所以选择如上的参数,原因如下:
一:对于吸湿透气层来说,需要注意二个要点。
1:泡孔的大小和数量。单位体积的吸湿透气涂层的泡孔在合理的范围内,如果数量越多,则孔径越小,说明泡孔的比表面积越大,这对吸湿透气来说是有利的,(这里需要说明的是泡孔孔径的小是不小于阻碍水气分子自由通过的范围)。如果吸湿透气层是用水性聚氨酯来制备,我们认为发泡的倍率在1.15—1.8之间是比较合理的范围,泡孔的数量和孔径可以通过发泡剂的加入量来控制。发泡剂的加入量一般为树脂量的5—15%。如果吸湿透气层是用溶剂型聚氨酯来制备,根据溶剂型树脂的发泡原理,可以通过调整涂料固含量,加入凝固速度调整剂和泡孔调整剂来实现我们所需的目标,传统的溶剂型聚氨酯手套用树脂,入水后表面的凝固速度非常快,导致涂层表面非常致密,类似于塑料表皮,通过加入凝固速度调整剂,可以改变树脂入水后的凝固速度,使得表面层树脂致密度下降,同时加入泡孔调整助剂,减少大孔径泡孔的产生概率,而涂料固含量的控制范围,则控制在12—18%是比较合适的。综合上述三个因素,可以使得整个吸湿透气层的比表面积控制在比较合理的范围内。
2:涂层的厚度,对于吸湿透气层来说,因为有数量极多的细微孔洞,对于透气度来说涂层的厚薄稍有影响,因为厚度越厚,水分子穿过涂层的路径就会加长,不利于透气。对于吸湿度来说,在单位体积泡孔数量恒定的前提下,涂层越厚,也就是可以用来吸收和锁定水份的贮存空间就越多,因此对吸湿是有利的,但是和屏蔽层一样,越厚的涂层对于手指的灵活度和触感也起负面影响,通过认证,我们认为涂层的厚度控制在0.1—0.3毫米之间是比较合适的。在具体制定生产工艺时,涂层厚度可以通过调整涂料的粘度和固含量来实现,同样的粘度,涂料的固含量越高,涂层的厚度越厚。同样的固含量,涂料的粘度越高,涂层越厚。对水性聚氨酯树脂来说,涂料固含量在20—40%,粘度在500—2000厘泊之间,控制发泡的倍率在1.15—1.8之间,就可以实现将涂层厚度自由控制在0.1—0.3毫米之间。而对于溶剂型聚氨酯来说,涂料固含量在12--18%,粘度在500--1500厘泊之间,可以实现将涂层厚度自由控制在0.1—0.3毫米之间。
二:对于屏蔽层来说,我们需要严格控制涂层的厚度。厚的涂层,对屏蔽效果是有利的,缺点是对于透气来说,水分子通过屏蔽层的路径就加长,降低了涂层的透气性能,另外佩戴者在工作过程中,厚的涂层对于手指的灵活度和触感也起负面影响。薄的涂层,水分子通过屏蔽层的路径就变短,增加了涂层的透气性能,而且触觉灵敏,缺点是持续的屏蔽效果有降低的可能性,另外,对于手套的耐用性也会产生比较严重的负面影响。因此选取一个合适的涂层厚度是比较关键的,通过认证,认为涂层的厚度控制在0.03—0.2毫米之间是比较合适的。具体生产工艺制定中,涂层厚度同理可以通过调整涂料的粘度和固含量来实现,对水性聚氨酯树脂来说,涂料固含量在20-40%,粘度在500—2000厘泊之间,对溶剂型聚氨酯来说,涂料固含量在12-20%,粘度在300—1500厘泊之间,就可以实现将涂层厚度自由控制在0.03—0.2毫米之间。
三:吸湿透气层和屏蔽层的粘接强度。粘接的原理是二层被粘物相互接触后,分子间产生作用力,从而使二个被粘物结合在一起。具体到本发明工艺, 在浸第二层胶(屏蔽层)时,第一层吸湿透气层已经固化并且烘干成膜,要提高吸湿透气层和屏蔽层的结合强度,就必须要让还处于液态的屏蔽层涂料的表面能低于吸湿透气层的表面能,因为低表面能可以使屏蔽涂层料最大程度地浸润到吸湿透气层表面甚至表层微孔内,通过充分的界面接触,被吸湿透气层吸附,在随后的加热过程中,屏蔽层胶料分子在布朗运动的作用下,和吸湿透气层分子紧密结合在一起,二层涂层在范德华力和氢键的共同作用下形成一个稳定状态,因此严格控制屏蔽层的表面能是使两层涂层具有高粘接强度的关键。
本发明的有益效果是:
本发明的带吸湿排汗功能的全浸手套,结构巧妙,针对目前市场上各种手套存在的不足之处,本发明专利采用二次浸胶的方式,创造性地做到把吸湿透气和屏蔽隔绝功能合成到一个手套上,完美解决市场痛点。本专利手套产用聚氨酯作为涂层原料,把发泡涂层(主要起到吸湿透气功能)和不发泡涂层(主要起到屏蔽隔绝功能)有机结合在一起,从而使产品兼具吸湿透气和屏蔽隔绝功能,而且手感柔软,大大减轻了工作的疲劳感,适用范围更广,实用性强,值得推广。
带吸湿排汗功能的全浸手套,包括针织的手芯本体和全浸涂覆于手芯本体内表面的吸湿透气层和全浸涂覆于手芯本体外表面的屏蔽层,吸湿排汗层和屏蔽层均采用主要原料包括水性聚氨酯或溶剂型聚氨酯的涂料制备,所述吸湿排汗层为发泡层,厚度为0.1—0.3毫米;所述屏蔽层为不发泡层,厚度为0.03—0.2毫米;所述全浸手套的具体制备工艺包括:手芯本体套模→浸胶制备发泡的吸湿透气层→水洗→烘干→浸胶制备不发泡的屏蔽层→烘干→成品脱模→包装,其中:在浸第二层胶即屏蔽层时,确保第一层的吸湿透气层已经固化并且烘干成膜,确保让还处于液态的屏蔽层涂料的表面能低于吸湿透气层的表面能,以使屏蔽涂层料最大程度地浸润到吸湿透气层表面甚至表层微孔内。因为低表面能可以使屏蔽涂层料最大程度地浸润到吸湿透气层表面甚至表层微孔内,通 过充分的界面接触,被吸湿透气层吸附,在随后的加热过程中,屏蔽层胶料分子在布朗运动的作用下,和吸湿透气层分子紧密结合在一起,二层涂层在范德华力和氢键的共同作用下形成一个稳定状态,因此严格控制屏蔽层的表面能是使两层涂层具有高粘接强度的关键。
为确保所述屏蔽层的厚度为0.03—0.2毫米,当所述屏蔽层的制备材料主要包括水性聚氨酯树脂时,控制涂料固含量在20-40%,粘度在500—2000厘泊之间;当所述屏蔽层的制备材料主要包括溶剂型聚氨酯树脂时,控制涂料固含量在12-20%,粘度在300—1500厘泊之间。
当所述屏蔽层的制备材料主要包括水性聚氨酯树脂时,制备的原料包括如下组分:水性聚氨酯乳液,消泡剂,增稠剂,固化剂,润湿剂;
当所述屏蔽层的制备材料主要包括溶剂型聚氨酯树脂时,制备的原料包括如下组分:干法聚氨酯树脂,DMF,消泡剂,流平剂,渗透剂,润湿剂。
具体地,当所述屏蔽层的制备材料主要包括水性聚氨酯树脂时,制备的原料包括如下组分及质量份:水性聚氨酯乳液1000质量份,消泡剂4--7质量份,增稠剂3--8质量份,固化剂10--30质量份,润湿剂2--5质量份;当所述屏蔽层的制备材料主要包括溶剂型聚氨酯树脂时,制备的原料包括如下组分及质量份:干法聚氨酯树脂1000质量份,DMF 800--2000质量份,消泡剂3--10质量份,流平剂3--8质量份,渗透剂3--8质量份,润湿剂2--5质量份。
为确保所述吸湿透气层的厚度为0.1—0.3毫米,当所述吸湿透气层的制备材料主要包括水性聚氨酯树脂时,控制涂料固含量在20—40%,粘度在500—2000厘泊,控制发泡的倍率在1.15—1.8之间;
当所述吸湿透气层的制备材料主要包括溶剂型聚氨酯时,控制涂料固含量为12--18%,粘度在500--1500厘泊;
当所述吸湿透气层的制备材料主要包括水性聚氨酯树脂时,制备的原料包括如下组分:水性聚氨酯乳液、发泡剂和增稠剂,发泡剂的加入量为水性聚氨酯乳液质量的5—15%;
当所述吸湿透气层的制备材料主要包括溶剂型聚氨酯时,制备的原料包括 如下组分:湿法聚氨酯树脂,DMF,消泡剂,渗透剂,泡孔助剂,促进剂,固含量控制在12—18%。
具体地,当所述吸湿透气层的制备材料主要包括水性聚氨酯时,制备的原料包括如下组分及质量份:水性聚氨酯乳液1000质量份,发泡剂50--150质量份,增稠剂2--6质量份;
当所述吸湿透气层的制备材料主要包括溶剂型聚氨酯时,制备的原料包括如下组分及质量份:湿法聚氨酯树脂1000质量份,DMF 800--2000质量份,消泡剂3--10质量份,渗透剂3--8质量份,泡孔助剂2--8质量份,促进剂5--15质量份。
制作全浸手套时吸湿排汗层和屏蔽层各采用何种原料配方可以根据需要任意组合。
其中,所用的水性聚氨酯乳液、干法聚氨酯树脂、湿法聚氨酯树脂均为市售材料。
具体实施例:
制备吸湿排汗层和屏蔽层的基础配方分别如下,制作全浸手套时吸湿排汗层和屏蔽层各采用何种原料配方可以根据需要任意组合,且以下一个质量份代表1克:
基础配方1:水性聚氨酯乳液全浸屏蔽层的配方:水性聚氨酯乳液1000质量份(旭川化学苏州有限公司XWB—7248),消泡剂4--7质量份(BYK—016),增稠剂3--8质量份(迪高化工3030),固化剂10--30质量份(拜耳公司3100)。润湿剂2--5质量份(杜邦化学Capstone FS--63)
基础配方2:水性聚氨酯乳液全浸吸湿透气层配方:水性聚氨酯乳液1000质量份(旭川化学苏州有限公司XWB—7510B),发泡剂50--150质量份(巴斯夫Glucopon 225DK),增稠剂2--6质量份(迪高化学3030)。
基础配方3:溶剂型聚氨酯全浸屏蔽层的配方:干法聚氨酯树脂1000质量份(旭川XCS-3030L),DMF800--2000质量份(试剂),消泡剂3--10质量份(BYK—016),流平剂3--8质量份(迪高Flow425),渗透剂3--8质量份(氰特 OT—75),润湿剂2--5质量份(杜邦化学Capstone FS--63)。
基础配方4:溶剂型聚氨酯全浸吸湿透气层的配方:湿法聚氨酯树脂1000质量份(华峰JF-P-2930),DMF800--2000质量份(试剂),消泡剂3--10质量份(BYK—016),渗透剂3--8质量份(氰特OT—75),泡孔助剂2--8质量份(BYK—L9520),促进剂5--15质量份(BYK—L9525)。
示范例一:工艺如下:手芯本体套模→浸凝固剂→浸胶(发泡层)→水洗→烘干→浸胶(屏蔽层)→烘干→成品脱模→包装。
吸湿透气层配方:水性聚氨酯乳液1000质量份(旭川化学苏州有限公司XWB—7510B),发泡剂60质量份(巴斯夫Glucopon 225DK),增稠剂6质量份(迪高3030)。发泡比例1.2倍。测得工作浆粘度1000厘泊。
屏蔽层配方:水性聚氨酯乳液1000质量份(旭川化学苏州有限公司XWB—7248),消泡剂5质量份(BYK—016),增稠剂5质量份(迪高化工3030),润湿剂3质量份(杜邦化学Capstone FS--63),固化剂20质量份(拜耳公司3100)。测得工作浆粘度1000厘泊。
示范例二:工艺如下:手芯本体套模→浸凝固剂→浸胶(发泡层)→水洗→烘干→浸胶(屏蔽层)→烘干→成品脱模→包装。
吸湿透气层配方:水性聚氨酯乳液1000质量份(旭川化学苏州有限公司XWB—7510B),发泡剂120质量份(巴斯夫Glucopon 225DK),增稠剂4质量份(迪高3030)。发泡比例1.6倍。测得工作浆粘度980厘泊。
屏蔽层配方:水性聚氨酯乳液1000质量份(旭川化学苏州有限公司XWB—7248),消泡剂5质量份(BYK—016),增稠剂5质量份(迪高化工3030),润湿剂3质量份(杜邦化学Capstone FS--63),固化剂20质量份(拜耳公司3100)。测得工作浆粘度1020厘泊。
示范例三:工艺如下:手芯本体套模→浸凝固剂→浸胶(发泡层)→水洗→烘干→浸胶(屏蔽层)→烘干→成品脱模→包装。
吸湿透气层配方:水性聚氨酯乳液1000质量份(旭川化学苏州有限公司 XWB—7510B),发泡剂60质量份(巴斯夫Glucopon 225DK),增稠剂6质量份(迪高3030)。发泡比例1.2倍。测得工作浆粘度980厘泊。
屏蔽层配方:干法聚氨酯树脂1000质量份(旭川XCS-3030L),DMF1000质量份(试剂),消泡剂5质量份(BYK—016),流平剂3质量份(迪高Flow425),渗透剂5质量份(氰特OT—75),润湿剂3质量份(杜邦化学Capstone FS--63)。测得工作浆粘度1000厘泊。
示范例四:工艺如下:手芯本体套模→浸凝固剂→浸胶(发泡层)→水洗→烘干→浸胶(屏蔽层)→烘干→成品脱模→包装。
吸湿透气层配方:水性聚氨酯乳液1000质量份(旭川化学苏州有限公司XWB—7510B),发泡剂120质量份(巴斯夫Glucopon 225DK),增稠剂4质量份(迪高3030)。发泡比例1.6倍。测得工作浆粘度1010厘泊。
屏蔽层配方:干法聚氨酯树脂1000质量份(旭川XCS-3030L),DMF1000质量份(试剂),消泡剂5质量份(BYK—016),流平剂3质量份(迪高Flow425),渗透剂5质量份(氰特OT—75),润湿剂3质量份(杜邦化学Capstone FS--63)。测得工作浆粘度990厘泊。
示范例五:工艺如下:手芯本体套模→浸胶(发泡层)→水洗→烘干→浸胶(屏蔽层)→烘干→成品脱模→包装;
吸湿透气层配方:湿法聚氨酯树脂1000质量份(华峰JF-P-2930),DMF1200质量份(试剂),消泡剂5质量份(BYK—016),渗透剂5质量份(氰特OT—75),泡孔助剂2质量份(BYK—L9520),促进剂10质量份(BYK—L9525)。测得工作浆粘度1300厘泊;
屏蔽层配方:水性聚氨酯乳液1000质量份(旭川化学苏州有限公司XWB—7248),消泡剂5质量份(BYK—016),增稠剂5质量份(迪高化工3030),润湿剂3质量份(杜邦化学Capstone FS--63),固化剂20质量份(拜耳公司3100)。测得工作浆粘度950厘泊。
示范例六:工艺如下:手芯本体套模→浸胶(发泡层)→水洗→烘干→浸胶(屏蔽层)→烘干→成品脱模→包装;
吸湿透气层配方:湿法聚氨酯树脂1000质量份(华峰JF-P-2930),DMF1500质量份(试剂),消泡剂5质量份(BYK—016),渗透剂5质量份(氰特OT—75),泡孔助剂5质量份(BYK—L9520),促进剂10质量份(BYK—L9525)。测得工作浆粘度800厘泊。
屏蔽层配方:水性聚氨酯乳液1000质量份(旭川化学苏州有限公司XWB—7248),消泡剂5质量份(BYK—016),增稠剂5质量份(迪高化工3030),润湿剂3质量份(杜邦化学Capstone FS--63),固化剂20质量份(拜耳公司3100)。测得工作浆粘度1020厘泊。
示范例七:工艺如下:手芯本体套模→浸胶(发泡层)→水洗→烘干→浸胶(屏蔽层)→烘干→成品脱模→包装;
吸湿透气层配方:湿法聚氨酯树脂1000质量份(华峰JF-P-2930),DMF1200质量份(试剂),消泡剂5质量份(BYK—016),渗透剂5质量份(氰特OT—75),泡孔助剂2质量份(BYK—L9520),促进剂10质量份(BYK—L9525)。测得工作浆粘度1350厘泊。
屏蔽层配方:干法聚氨酯树脂1000质量份(旭川XCS-3030L),DMF1500质量份(试剂),消泡剂5质量份(BYK—016),流平剂3质量份(迪高Flow425),渗透剂5质量份(氰特OT—75)润湿剂3质量份(杜邦化学Capstone FS--63),测得工作浆粘度800厘泊。
示范例八:工艺如下:手芯本体套模→浸胶(发泡层)→水洗→烘干→浸胶(屏蔽层)→烘干→成品脱模→包装;
吸湿透气层配方:湿法聚氨酯树脂1000质量份(华峰JF-P-2930),DMF1800质量份(试剂),消泡剂5质量份(BYK—016),渗透剂5质量份(氰特OT—75),泡孔助剂5质量份(BYK—L9520),促进剂10质量份(BYK—L9525)。测得工作浆粘度850厘泊;
屏蔽层配方:干法聚氨酯树脂1000质量份(旭川XCS-3030L),DMF1500质量份(试剂),消泡剂5质量份(BYK—016),流平剂3质量份(迪高Flow425),渗透剂5质量份(氰特OT—75),润湿剂3质量份(杜邦化学Capstone FS--63), 测得工作浆粘度780厘泊。
示范例九:工艺如下:手芯本体套模→浸凝固剂→浸胶(发泡层)→水洗→烘干→浸胶(屏蔽层)→烘干→成品脱模→包装。
吸湿透气层配方:水性聚氨酯乳液1000质量份(旭川化学苏州有限公司XWB—7510B),发泡剂120质量份(巴斯夫Glucopon 225DK),增稠剂4质量份(迪高3030)。发泡比例2倍。测得工作浆粘度1010厘泊。
屏蔽层配方:干法聚氨酯树脂1000质量份(旭川XCS-3030L),DMF2000质量份(试剂),消泡剂5质量份(BYK—016),流平剂3质量份(迪高Flow425),渗透剂5质量份(氰特OT—75),润湿剂3质量份(杜邦化学Capstone FS--63)。测得工作浆粘度990厘泊。
示范例十:工艺如下:手芯本体套模→浸胶(发泡层)→水洗→烘干→浸胶(屏蔽层)→烘干→成品脱模→包装;
吸湿透气层配方:湿法聚氨酯树脂1000质量份(华峰JF-P-2930),DMF2000质量份(试剂),消泡剂5质量份(BYK—016),渗透剂5质量份(氰特OT—75),泡孔助剂5质量份(BYK—L9520),促进剂10质量份(BYK—L9525)。测得工作浆粘度550厘泊。
屏蔽层配方:水性聚氨酯乳液1000质量份(旭川化学苏州有限公司XWB—7248),纯净水800质量份,消泡剂5质量份(BYK—016),增稠剂10质量份(迪高化工3030),润湿剂3质量份(杜邦化学Capstone FS--63),固化剂20质量份(拜耳公司3100)。测得工作浆粘度980厘泊。
性能检测标准:
吸水值:GB/T 1540-2002
透气度:JIS-L-1096
透湿性:JIS-L-1099
细菌穿透率:EN374-5
耐水压:GB/T 4744-2013
耐磨测试:EN388-2016。
各示范例的全浸手套的性能检测的结果如表1所示:
表1
从表1的对比可见,本发明示范例一到示范例八制得的手套兼具吸湿透气和屏蔽隔绝功能,而且耐磨,细菌穿透率低,保护效果好,而示范例九因为吸湿透气层发泡比例过高、示范例十因为涂层太薄导致了效果不够好,故说明本申请的技术方案效果好。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。
Claims (7)
- 带吸湿排汗功能的全浸手套,其特征在于,包括针织的手芯本体和全浸涂覆于手芯本体内表面的吸湿透气层和全浸涂覆于手芯本体外表面的屏蔽层,吸湿排汗层和屏蔽层均采用主要原料包括水性聚氨酯或溶剂型聚氨酯的涂料制备,所述吸湿排汗层为发泡层,厚度为0.1—0.3毫米;所述屏蔽层为不发泡层,厚度为0.03—0.2毫米;所述全浸手套的具体制备工艺包括:手芯本体套模→浸胶制备发泡的吸湿透气层→水洗→烘干→浸胶制备不发泡的屏蔽层→烘干→成品脱模→包装,其中:在浸第二层胶即屏蔽层时,确保第一层的吸湿透气层已经固化并且烘干成膜,确保让还处于液态的屏蔽层涂料的表面能低于吸湿透气层的表面能,以使屏蔽涂层料最大程度地浸润到吸湿透气层表面甚至表层微孔内。
- 根据权利要求1所述的带吸湿排汗功能的全浸手套,其特征在于,为确保所述屏蔽层的厚度为0.03—0.2毫米,当所述屏蔽层的制备材料主要包括水性聚氨酯树脂时,控制涂料固含量在20-40%,粘度在500—2000厘泊之间;当所述屏蔽层的制备材料主要包括溶剂型聚氨酯树脂时,控制涂料固含量在12-20%,粘度在300—1500厘泊之间。
- 根据权利要求2所述的带吸湿排汗功能的全浸手套,其特征在于,当所述屏蔽层的制备材料主要包括水性聚氨酯树脂时,制备的原料包括如下组分:水性聚氨酯乳液,消泡剂,增稠剂,固化剂,润湿剂;当所述屏蔽层的制备材料主要包括溶剂型聚氨酯树脂时,制备的原料包括如下组分:干法聚氨酯树脂,DMF,消泡剂,流平剂,渗透剂,润湿剂。
- 根据权利要求3所述的带吸湿排汗功能的全浸手套,其特征在于,当 所述屏蔽层的制备材料主要包括水性聚氨酯树脂时,制备的原料包括如下组分及质量份:水性聚氨酯乳液1000质量份,消泡剂4--7质量份,增稠剂3--8质量份,固化剂10--30质量份,润湿剂2--5质量份;当所述屏蔽层的制备材料主要包括溶剂型聚氨酯树脂时,制备的原料包括如下组分及质量份:干法聚氨酯树脂1000质量份,DMF 800--2000质量份,消泡剂3--10质量份,流平剂3--8质量份,渗透剂3--8质量份,润湿剂2--5质量份。
- 根据权利要求1所述的带吸湿排汗功能的全浸手套,其特征在于,为确保所述吸湿透气层的厚度为0.1—0.3毫米,当所述吸湿透气层的制备材料主要包括水性聚氨酯树脂时,控制涂料固含量在20—40%,粘度在500—2000厘泊,控制发泡的倍率在1.15—1.8之间;当所述吸湿透气层的制备材料主要包括溶剂型聚氨酯时,控制涂料固含量为12--18%,粘度在500--1500厘泊。
- 根据权利要求5所述的带吸湿排汗功能的全浸手套,其特征在于,当所述吸湿透气层的制备材料主要包括水性聚氨酯树脂时,制备的原料包括如下组分:水性聚氨酯乳液、发泡剂和增稠剂,发泡剂的加入量为水性聚氨酯乳液质量的5—15%;当所述吸湿透气层的制备材料主要包括溶剂型聚氨酯时,制备的原料包括如下组分:湿法聚氨酯树脂,DMF,消泡剂,渗透剂,泡孔助剂,促进剂,固含量控制在12—18%。
- 根据权利要求6所述的带吸湿排汗功能的全浸手套,其特征在于,所述吸湿透气层的制备材料主要包括水性聚氨酯时,制备的原料包括如下组分及质量份:水性聚氨酯乳液1000质量份,发泡剂50--150 质量份,增稠剂2--6质量份;当所述吸湿透气层的制备材料主要包括溶剂型聚氨酯时,制备的原料包括如下组分及质量份:湿法聚氨酯树脂1000质量份,DMF800--2000质量份,消泡剂3--10质量份,渗透剂3--8质量份,泡孔助剂2--8质量份,促进剂5--15质量份。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22862374.0A EP4230790A1 (en) | 2021-12-27 | 2022-01-06 | Fully dipped gloves having moisture-absorbing and sweat wicking functions |
JP2023518261A JP7554350B2 (ja) | 2021-12-27 | 2022-01-06 | 吸湿吸汗機能を有する全面コーティング手袋 |
US18/024,752 US20240277089A1 (en) | 2021-12-27 | 2022-01-06 | Fully coated glove having moisture wicking property |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111612123.7A CN114318892B (zh) | 2021-12-27 | 2021-12-27 | 带吸湿排汗功能的全浸手套 |
CN202111612123.7 | 2021-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023123533A1 true WO2023123533A1 (zh) | 2023-07-06 |
Family
ID=81012813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/070419 WO2023123533A1 (zh) | 2021-12-27 | 2022-01-06 | 带吸湿排汗功能的全浸手套 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240277089A1 (zh) |
EP (1) | EP4230790A1 (zh) |
JP (1) | JP7554350B2 (zh) |
CN (1) | CN114318892B (zh) |
WO (1) | WO2023123533A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100104762A1 (en) * | 2008-10-28 | 2010-04-29 | Midas Safety Inc. | Method for manufacturing a flexible and breathable matt finish glove |
US20150374052A1 (en) * | 2014-06-26 | 2015-12-31 | Ansell Limited | Glove having durable ultra-thin polymeric coating |
CN206165886U (zh) * | 2013-11-26 | 2017-05-17 | 安塞尔有限公司 | 具有用于汗液管理的泡沫衬里的手套 |
CN108289519A (zh) * | 2015-09-03 | 2018-07-17 | 迪肯大学 | 单向芯吸基材 |
CN108912654A (zh) * | 2018-07-20 | 2018-11-30 | 张家港思淇科技有限公司 | 一种ppu胶及利用该ppu胶制备浸胶手套的生产工艺 |
CN109457489A (zh) * | 2018-09-23 | 2019-03-12 | 南通嘉得利安全用品有限公司 | 一种发泡手套及其生产方法 |
CN109721890A (zh) * | 2019-01-24 | 2019-05-07 | 山东星宇手套有限公司 | 一种pvc发泡手套的制备方法 |
CN113400543A (zh) * | 2021-06-28 | 2021-09-17 | 山东星宇手套有限公司 | 一种表面有微孔的涂层手套的制备方法及涂层手套 |
CN214630175U (zh) * | 2020-12-02 | 2021-11-09 | 苏州市龙崴纺织有限公司 | 一种防滑防磨损手套 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5832539A (en) * | 1992-10-09 | 1998-11-10 | Williams; Cole | Waterproof, breathable articles of apparel |
US20060143767A1 (en) * | 2004-12-14 | 2006-07-06 | Kaiyuan Yang | Breathable protective articles |
CN101828780A (zh) * | 2009-03-09 | 2010-09-15 | 沙晓林 | 水性pu发泡手套生产工艺 |
WO2011140487A2 (en) * | 2010-05-07 | 2011-11-10 | Windisch Theresa A | Thermal regulating compression garments |
CA2823731A1 (en) * | 2010-12-30 | 2012-07-05 | Saint-Gobain Performance Plastics Corporation | Glove having barrier properties |
US9339068B2 (en) * | 2013-12-05 | 2016-05-17 | Lf Fashion Pte. Ltd. | Glove with laminate construction |
CN104911922B (zh) * | 2015-06-30 | 2016-10-26 | 陕西科技大学 | 一种采用水性聚氨酯干式发泡技术生产二层移膜革的工艺 |
CN108819065A (zh) * | 2018-05-18 | 2018-11-16 | 山东星宇手套有限公司 | 一种一遍发泡二遍磨砂面手套的制备方法 |
TWI727178B (zh) * | 2018-06-08 | 2021-05-11 | 儀城企業股份有限公司 | 複合膜材及複合式紡織製品 |
CN110195357B (zh) * | 2019-05-30 | 2021-10-19 | 陕西科技大学 | 一种环保型微纳米发泡水性聚氨酯合成革及其制造方法 |
CN110983811B (zh) * | 2019-12-31 | 2023-02-03 | 上海华峰新材料研发科技有限公司 | 防臭透气水性聚氨酯鞋革的制备方法和应用 |
US11632991B2 (en) * | 2020-02-11 | 2023-04-25 | Summit Glove Inc. | Ambidextrous glove having widened glove body and method of producing the same |
-
2021
- 2021-12-27 CN CN202111612123.7A patent/CN114318892B/zh active Active
-
2022
- 2022-01-06 EP EP22862374.0A patent/EP4230790A1/en active Pending
- 2022-01-06 JP JP2023518261A patent/JP7554350B2/ja active Active
- 2022-01-06 WO PCT/CN2022/070419 patent/WO2023123533A1/zh active Application Filing
- 2022-01-06 US US18/024,752 patent/US20240277089A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100104762A1 (en) * | 2008-10-28 | 2010-04-29 | Midas Safety Inc. | Method for manufacturing a flexible and breathable matt finish glove |
CN206165886U (zh) * | 2013-11-26 | 2017-05-17 | 安塞尔有限公司 | 具有用于汗液管理的泡沫衬里的手套 |
US20150374052A1 (en) * | 2014-06-26 | 2015-12-31 | Ansell Limited | Glove having durable ultra-thin polymeric coating |
CN108289519A (zh) * | 2015-09-03 | 2018-07-17 | 迪肯大学 | 单向芯吸基材 |
CN108912654A (zh) * | 2018-07-20 | 2018-11-30 | 张家港思淇科技有限公司 | 一种ppu胶及利用该ppu胶制备浸胶手套的生产工艺 |
CN109457489A (zh) * | 2018-09-23 | 2019-03-12 | 南通嘉得利安全用品有限公司 | 一种发泡手套及其生产方法 |
CN109721890A (zh) * | 2019-01-24 | 2019-05-07 | 山东星宇手套有限公司 | 一种pvc发泡手套的制备方法 |
CN214630175U (zh) * | 2020-12-02 | 2021-11-09 | 苏州市龙崴纺织有限公司 | 一种防滑防磨损手套 |
CN113400543A (zh) * | 2021-06-28 | 2021-09-17 | 山东星宇手套有限公司 | 一种表面有微孔的涂层手套的制备方法及涂层手套 |
Also Published As
Publication number | Publication date |
---|---|
US20240277089A1 (en) | 2024-08-22 |
JP2024504535A (ja) | 2024-02-01 |
EP4230790A1 (en) | 2023-08-23 |
JP7554350B2 (ja) | 2024-09-19 |
CN114318892A (zh) | 2022-04-12 |
CN114318892B (zh) | 2023-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108486902B (zh) | 一种石墨烯覆膜橡胶手套及其制备方法 | |
CN108978241B (zh) | 一种金属丝蛋白质超软革 | |
WO2017088667A1 (zh) | 一种用于制备变壁厚手套的阴模模具及其制备的手套 | |
CN206165886U (zh) | 具有用于汗液管理的泡沫衬里的手套 | |
CN101756395B (zh) | 内衬发泡橡胶手套的制备方法 | |
CN106079633A (zh) | 纺织面料用透气复合薄膜 | |
WO2023123533A1 (zh) | 带吸湿排汗功能的全浸手套 | |
CN107385928A (zh) | 一种防水透气新材料 | |
CN108867090A (zh) | 一种透湿布及该布的制作工艺 | |
KR100683897B1 (ko) | 폴리우레탄 이중 코팅 장갑 및 이의 제조방법 | |
CN106079760A (zh) | 一种防渗高透气超柔尿不湿复合底膜及其制备工艺 | |
CN202577004U (zh) | 一种防水透湿皮革 | |
CN204622705U (zh) | 一种具有防水透湿与防污功能的丝绸面料 | |
CN104894874A (zh) | 一种防风透气透湿的涂料的制备方法 | |
JP5490190B2 (ja) | 手袋およびその製造方法 | |
CN204600906U (zh) | 尿不湿 | |
GB2611251A (en) | Fabric resistant to liquid penetration | |
CN110951126A (zh) | 一种发泡丁腈检查手套及其制备方法 | |
CN207855277U (zh) | 一种粉扑及粉扑盒 | |
CN205885661U (zh) | 一种便于固定的创可贴 | |
CN103857304A (zh) | 手套 | |
CN104988770A (zh) | 一种外表面防水单向导湿的服装面料及其制作方法 | |
CN104213431A (zh) | 一种防水人造革的制备方法 | |
CN106750157A (zh) | 一种防水微孔膜的制备方法 | |
CN108357159A (zh) | 一种以经编织物复合防水透湿鞋材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 18024752 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023518261 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2022862374 Country of ref document: EP Effective date: 20230309 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |