WO2023123139A1 - 一种复合微球的制备方法及由其制备的复合微球和应用 - Google Patents

一种复合微球的制备方法及由其制备的复合微球和应用 Download PDF

Info

Publication number
WO2023123139A1
WO2023123139A1 PCT/CN2021/142738 CN2021142738W WO2023123139A1 WO 2023123139 A1 WO2023123139 A1 WO 2023123139A1 CN 2021142738 W CN2021142738 W CN 2021142738W WO 2023123139 A1 WO2023123139 A1 WO 2023123139A1
Authority
WO
WIPO (PCT)
Prior art keywords
attapulgite
cellulose
composite microspheres
preparation
cadmium
Prior art date
Application number
PCT/CN2021/142738
Other languages
English (en)
French (fr)
Inventor
李博
郭丽莉
王蓓丽
李书鹏
熊静
徐宏伟
樊强
杨旭
李亚秀
Original Assignee
北京建工环境修复股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京建工环境修复股份有限公司 filed Critical 北京建工环境修复股份有限公司
Priority to PCT/CN2021/142738 priority Critical patent/WO2023123139A1/zh
Publication of WO2023123139A1 publication Critical patent/WO2023123139A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically

Definitions

  • the invention relates to the technical field of remediation of heavy metal polluted soil, in particular to a magnetic attapulgite cellulose composite microsphere and a preparation method and application thereof.
  • Attapulgite is a mineral mainly composed of hydrous magnesium-rich aluminum silicate, which belongs to silicate minerals. porous material.
  • Cellulose the most abundant and renewable organic biopolymer in the world, is widely recognized as an important source of sustainable materials due to its strong mechanical strength, biocompatibility and thermal stability.
  • Attapulgite and cellulose are abundant in my country, low in price, and have strong ion exchange capacity and good adsorption performance.
  • the specific surface area of cellulose is small, and attapulgite is easy to accumulate, so its use efficiency in soil remediation is low and it is difficult to recycle. Therefore, it is usually necessary to modify it to make it have higher adsorption efficiency and be easy to recycle.
  • Magnetic organic modification overcomes the shortcomings of ordinary organic modification, which is difficult to recycle and separate, and achieves the effect of saving cost and time.
  • the preparation method of the existing magnetic modification materials generally adopts the co-precipitation method, and the loading material uses cellulose to prepare microspheres, which are soft and easy to lose the spherical structure. At the same time, cellulose is used to prepare microspheres. It is beneficial to the subsequent modification and the adsorption of heavy metal cadmium.
  • the purpose of the present invention is to overcome the existing method of preparing carrier microspheres by using cellulose, the microspheres obtained are soft, and the pores of the microspheres are less, which is not conducive to the subsequent adsorption and the adsorption of heavy metal cadmium, and then provide a magnetic Attapulgite cellulose composite microspheres, preparation method and application thereof.
  • the present invention adopts the following technical solutions:
  • a preparation method of magnetic attapulgite cellulose composite microspheres comprising the steps of:
  • the dropping rate in step 2) is 2mL/min-3mL/min;
  • the acid solution is a hydrochloric acid solution, and the concentration of the hydrochloric acid solution is 0.5mol/L-1mol/L.
  • the mass ratio of the mixed solution to the acid solution in step 2) is 1:(4-8).
  • the mass ratio of the cellulose, attapulgite, magnetic particles and ionic liquid is 1:(0.5-1):(0.5-1):(30-40);
  • the amount of pore-forming agent added is 10%-50% of the total mass of cellulose and attapulgite;
  • the mass ratio of composite microspheres, solvent, acrylamide, initiator and acid in step 3) is 1:(200-300):(3-7):(0.2-0.5):(0.2-0.5).
  • the heating temperature in step 1) is 90°C-120°C, and the heating time is 1h-2h;
  • step 2) the acid solution is continuously stirred during the dropwise addition, and the stirring is continued after the dropwise addition is completed, the stirring speed is 150-200r/min, and the total stirring time is 0.5h-1h;
  • step 3 the reaction temperature is 35°C-40°C, the reaction time is 2h-4h, the drying temperature is 40°C-45°C, and the drying time is 8-12h.
  • step 2) also includes the steps of washing the composite microspheres with water and freeze-drying;
  • step 3 The mixing and stirring reaction steps described in step 3) are all carried out under nitrogen or inert gas.
  • the present invention does not specifically limit the types of cellulose and ionic liquid.
  • the cellulose is selected from one of microcrystalline cellulose, cotton cellulose, straw cellulose or paper cellulose;
  • the ionic liquid is selected from From 1-allyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium chloride.
  • the pore forming agent is calcium carbonate
  • the magnetic particles are ferric oxide, preferably, the magnetic particles are nano ferric oxide;
  • the solvent is water
  • the initiator is cerium ammonium nitrate
  • the acid is nitric acid
  • the concentration of nitric acid is 4mol/L-6mol/L.
  • the attapulgite is activated attapulgite
  • the preparation method of the activated attapulgite includes the following steps: mixing attapulgite with acid, heating and activating, filtering, cleaning, and drying to obtain the Activated attapulgite.
  • the mass ratio of attapulgite to acid is 1:(8-10)
  • the heating activation temperature is 80°C-120°C
  • the heating activation time is 3h-5h
  • the drying temperature is 60°C-80°C
  • the drying time is 8h-12h.
  • the acid is hydrochloric acid, and the concentration of hydrochloric acid is 2mol/L-4mol/L;
  • the steps of washing, drying and sieving the attapulgite are also included.
  • the specific surface area of the attapulgite is 200-800m 2 /g
  • the particle diameter of the magnetic attapulgite cellulose composite microsphere is 2-3mm.
  • the invention adopts the particle diameter of the microspheres (2-3mm) to facilitate uniform spreading in actual soil implementation, and also facilitates magnetic separation recovery after restoration.
  • the present invention also provides a magnetic attapulgite cellulose composite microsphere, which is prepared by the above-mentioned preparation method.
  • the present invention also provides an application of the above-mentioned magnetic attapulgite cellulose composite microspheres in remediation of heavy metal polluted soil.
  • the heavy metal is metal cadmium.
  • the preparation method of magnetic attapulgite cellulose composite microspheres comprises the following steps: mixing cellulose and ionic liquid, heating to obtain a cellulose solution; mixing the cellulose solution, attapulgite, magnetic particles and pore-forming agent, then add the resulting mixture dropwise into the acid solution, filter to obtain composite microspheres; mix composite microspheres, solvent, and acrylamide, then add initiator and acid, stir for reaction, filter, and dry to obtain The magnetic attapulgite cellulose composite microspheres.
  • the invention uses ionic liquid to dissolve cellulose, then directly adds attapulgite, magnetic particles and pore-forming agent to the cellulose solution, and dissolves cellulose through ionic liquid, breaking through the limitation of traditional urea/lye solution in low temperature environment for dissolving cellulose , the process of dissolving cellulose by ionic liquid is fast, safe, simple and easy to operate, and the direct addition of nano-ferric oxide can better control the content of ferric oxide in the material and thus control the saturation magnetization of the material. Modification can introduce a large number of amine groups, and then effectively solidify the heavy metal cadmium ions in the soil.
  • the present invention adopts the method of adding the mixed solution to the acid solution to obtain composite microspheres, and then performs acrylamide on the composite microspheres.
  • Modification when the mixed solution is dripped into the acid solution, the pore-forming agent reacts with the acid to release gas so that the composite microspheres have a porous structure, and at the same time the porous structure increases the grafting rate of acrylamide, which is beneficial to the restoration of cadmium-contaminated soil;
  • the cellulose, attapulgite, magnetic particles and pore-forming agent cooperate with each other, and the synergistic effect of the compound system of cellulose and attapulgite solves the shortcomings of small specific surface area of cellulose and easy enrichment of attapulgite.
  • the prepared microspheres are hard and will not lose their spherical structure in practical applications.
  • the addition of the pore-forming agent makes the composite microspheres have a porous structure, which is beneficial to the subsequent modification and the adsorption of cadmium as a soil remediation agent.
  • the raw material source of the present invention is extensive, is the material of low cost, green environmental protection, can not bring toxic effect to soil environment.
  • the magnetic attapulgite cellulose composite microspheres of the present invention can effectively solidify and stabilize cadmium ions in the soil, reduce its biologically available content, reduce the absorption of soil heavy metals by crops, effectively improve soil physical and chemical properties, and improve soil fertility and water retention Ability, easy to promote and apply.
  • This embodiment provides a method for preparing magnetic attapulgite cellulose composite microspheres, comprising the following steps:
  • Attapulgite (the specific surface area of attapulgite is 800m2 /g) is washed with water to remove impurities, dried and passed through a 400-mesh sieve, then 30g of attapulgite after sieving is weighed, and added to 300g concentration of In 4mol/L hydrochloric acid, stir and activate at 90°C for 4h, filter with suction, wash the product with water until neutral, and then dry at 60°C for 12h to obtain activated attapulgite;
  • step 3 Add 0.5 g of activated attapulgite, 0.2 g of nano-ferric oxide and 0.15 g of calcium carbonate to the cellulose solution obtained in step 2), stir evenly, place the mixed solution in a constant pressure funnel, Then slowly add it dropwise to 150g 1mol/L hydrochloric acid solution, the rate of addition is 2mL/min, during the dropwise addition process, the hydrochloric acid solution is continuously stirred, and after the dropwise addition, continue to stir, the stirring speed is 150r/min, the total stirring time For 1h, filter after stirring, then wash the obtained microspheres to neutrality, freeze-dry to obtain composite microspheres;
  • step 4) Add 1g of the composite microspheres prepared in step 3) to a 250mL three-necked flask, add 200g of deionized water, 5g of acrylamide, and under the protection of N2 , stir at a constant speed until the mixture is uniform, and then add 0.3507g to the three-necked flask Ammonium cerium nitrate, 0.4g of nitric acid (concentration of nitric acid is 6mol/L), stirred and reacted at 35°C for 3h, filtered with suction, and dried at 45°C for 12h in a blast drying oven to obtain functionalized magnetic attapulgite cellulose Composite microspheres, the particle diameter of the magnetic attapulgite cellulose composite microspheres is 3mm.
  • the functionalized magnetic attapulgite cellulose composite microspheres prepared in the above examples are tested for the remediation effect of cadmium-contaminated soil in the effective state of cadmium.
  • Test group 1 get 1kg of cadmium-contaminated soil (the content of effective cadmium in the cadmium-contaminated soil is 6.48mg/kg), and then uniformly mix the functionalized magnetic attapulgite cellulose composite microspheres prepared in the above examples in the In the cadmium-contaminated soil, the addition of composite microspheres was 1% of the mass of the cadmium-contaminated soil, and then watered the cadmium-contaminated soil so that the water content of the cadmium-contaminated soil was 40%. After 5 weeks, an external magnetic field was applied to the soil, and the The magnetic attapulgite cellulose composite microspheres are separated from the soil, the soil is sampled, and the effective cadmium content in the soil is determined.
  • Test Group 2 The test method is the same as that of Test Group 1, except that the amount of composite microspheres added is 3% of the mass of cadmium-contaminated soil.
  • Test Group 3 The test method is the same as that of Test Group 1, except that the amount of composite microspheres added is 5% of the mass of cadmium-contaminated soil.
  • Blank control group the test method is the same as that of test group 1, the difference is that no composite microspheres are added to the cadmium-contaminated soil.
  • test method of effective state cadmium content is Tessier continuous extraction method, and concrete test process is to accurately weigh 1.0g soil sample to be tested and place in 50mL plastic centrifuge tube, extract according to following five-step extraction method: 1, exchangeable state ( EX) Extraction: Shake 8mL of 1mol/L magnesium chloride (MgCl 2 ⁇ 6H 2 O) solution and 1g of the soil sample to be tested in a water bath at room temperature at 200r/min for 1h, centrifuge for 10min, and take the supernatant to measure the concentration of cadmium ions; 2.
  • EX exchangeable state
  • the exchangeable state and the carbonate binding state are called biologically available states, that is, the effective state cadmium content is the extraction of the exchangeable state (EX) in step 1
  • EX exchangeable state
  • CB carbonate-bound state
  • This embodiment provides a method for preparing magnetic attapulgite cellulose composite microspheres, comprising the following steps:
  • Attapulgite (the specific surface area of attapulgite is 800m2 /g) is washed with water to remove impurities, dried and passed through a 400-mesh sieve, then 30g of attapulgite after sieving is weighed, and added to 300g concentration of In 4mol/L hydrochloric acid, stir and activate at 90°C for 4h, filter with suction, wash the product with water until neutral, and then dry at 60°C for 12h to obtain activated attapulgite;
  • step 3 Add 1g of activated attapulgite to the cellulose solution obtained in step 2), 0.5g of nano-ferric oxide and 0.2g of calcium carbonate, stir evenly, place the mixed solution in a constant pressure funnel, and then Slowly add it dropwise into 150g1mol/L hydrochloric acid solution, the dropping rate is 2mL/min, keep stirring the hydrochloric acid solution during the dropping process, continue stirring after the dropping, the stirring speed is 150r/min, and the total stirring time is 1h , filtering after the stirring is completed, then washing the obtained microspheres with water to neutrality, and freeze-drying to obtain composite microspheres;
  • step 4) Add 1g of the composite microspheres prepared in step 3) to a 250mL three-necked flask, add 200g of deionized water, 5g of acrylamide, and under the protection of N2 , stir at a constant speed until the mixture is uniform, and then add 0.3507g to the three-necked flask Ammonium cerium nitrate, 0.4g of nitric acid (concentration of nitric acid is 6mol/L), stirred and reacted at 35°C for 3h, filtered with suction, and dried at 45°C for 12h in a blast drying oven to obtain functionalized magnetic attapulgite cellulose Composite microspheres, the particle diameter of the magnetic attapulgite cellulose composite microspheres is 3 mm.
  • the functionalized magnetic attapulgite cellulose composite microspheres prepared in the above examples were tested for their effect on remediation of effective cadmium in cadmium-contaminated soil.
  • Test group 1 get 1kg of cadmium-contaminated soil (the content of effective cadmium in the cadmium-contaminated soil is 6.48mg/kg), and then uniformly mix the functionalized magnetic attapulgite cellulose composite microspheres prepared in the above examples in the In the cadmium-contaminated soil, the addition of composite microspheres is 1% of the mass of the cadmium-contaminated soil, and then water the cadmium-contaminated soil so that the water content of the cadmium-contaminated soil is 30%. After 5 weeks, an external magnetic field is applied to the soil, and the The magnetic attapulgite cellulose composite microspheres are separated from the soil, the soil is sampled, and the effective cadmium content in the soil is determined.
  • Test Group 2 The test method is the same as that of Test Group 1, except that the amount of composite microspheres added is 3% of the mass of cadmium-contaminated soil.
  • Test Group 3 The test method is the same as that of Test Group 1, except that the amount of composite microspheres added is 5% of the mass of cadmium-contaminated soil.
  • Blank control group the test method is the same as that of test group 1, the difference is that no composite microspheres are added to the cadmium-contaminated soil.
  • test method of effective state cadmium content is the same as embodiment 1, and test result is as shown in table 2.
  • This embodiment provides a method for preparing magnetic attapulgite cellulose composite microspheres, comprising the following steps:
  • Attapulgite (the specific surface area of attapulgite is 800m2 /g) is washed with water to remove impurities, dried and passed through a 400-mesh sieve, then 30g of attapulgite after sieving is weighed, and added to 300g concentration of In 4mol/L hydrochloric acid, stir and activate at 90°C for 4h, filter with suction, wash the product with water until neutral, and then dry at 60°C for 12h to obtain activated attapulgite;
  • step 3 Add 1g of activated attapulgite to the cellulose solution obtained in step 2), 0.5g of nano-ferric oxide and 0.6g of calcium carbonate, stir evenly, place the mixed solution in a constant pressure funnel, and then Slowly add dropwise in the hydrochloric acid solution of 150g 1mol/L, the rate of addition is 3mL/min, in the process of dropping, the hydrochloric acid solution is continuously stirred, after the dropwise addition, continue to stir, the stirring speed is 200r/min, and the total stirring time is 1h, after the stirring is completed, filter, then wash the obtained microspheres to neutrality, freeze-dry to obtain composite microspheres;
  • step 4) Add 1g of the composite microspheres prepared in step 3) to a 250mL three-necked flask, add 200g of deionized water, 5g of acrylamide, and under the protection of N2 , stir at a constant speed until the mixture is uniform, and then add 0.3507g to the three-necked flask Ceric ammonium nitrate, 0.4g of nitric acid (the concentration of nitric acid is 4mol/L), stirred and reacted at 35°C for 3h, filtered with suction, and dried at 45°C for 12h in a blast drying oven to obtain functionalized magnetic attapulgite cellulose Composite microspheres, the particle diameter of the magnetic attapulgite cellulose composite microspheres is 2mm.
  • the functionalized magnetic attapulgite cellulose composite microspheres prepared in the above examples were tested for their effect on remediation of effective cadmium in cadmium-contaminated soil.
  • Test group 1 get 1kg of cadmium-contaminated soil (the content of effective cadmium in the cadmium-contaminated soil is 6.48mg/kg), and then uniformly mix the functionalized magnetic attapulgite cellulose composite microspheres prepared in the above examples in the In the cadmium-contaminated soil, the amount of composite microspheres added is 1% of the mass of the cadmium-contaminated soil, and then water is poured into the cadmium-contaminated soil to make the water content of the cadmium-contaminated soil be 50%. After 5 weeks, an external magnetic field is applied to the soil, and the The magnetic attapulgite cellulose composite microspheres are separated from the soil, the soil is sampled, and the effective cadmium content in the soil is determined.
  • Test Group 2 The test method is the same as that of Test Group 1, except that the amount of composite microspheres added is 3% of the mass of cadmium-contaminated soil.
  • Test Group 3 The test method is the same as that of Test Group 1, except that the amount of composite microspheres added is 5% of the mass of cadmium-contaminated soil.
  • Blank control group the test method is the same as that of test group 1, the difference is that no composite microspheres are added to the cadmium-contaminated soil.
  • test method of effective state cadmium content is the same as embodiment 1, and test result is as shown in table 3.
  • This embodiment provides a method for preparing magnetic attapulgite cellulose composite microspheres, comprising the following steps:
  • Attapulgite (the specific surface area of attapulgite is 800m2 /g) is washed with water to remove impurities, dried and passed through a 400-mesh sieve, then 30g of attapulgite after sieving is weighed, and added to 300g concentration of In 4mol/L hydrochloric acid, stir and activate at 90°C for 4h, filter with suction, wash the product with water until neutral, and then dry at 60°C for 12h to obtain activated attapulgite;
  • step 3 Add 1g of activated attapulgite to the cellulose solution obtained in step 2), 0.5g of nano-ferric oxide and 0.6g of calcium carbonate, stir evenly, place the mixed solution in a constant pressure funnel, and then Slowly add dropwise in the hydrochloric acid solution of 150g 1mol/L, the rate of addition is 3mL/min, in the process of dropping, the hydrochloric acid solution is continuously stirred, after the dropwise addition, continue to stir, the stirring speed is 200r/min, and the total stirring time is 1h, after the stirring is completed, filter, then wash the obtained microspheres to neutrality, freeze-dry to obtain composite microspheres;
  • step 4) Add 1g of the composite microspheres prepared in step 3) to a 250mL three-necked flask, add 200g of deionized water, 7g of acrylamide, and under the protection of N2 , stir at a constant speed until the mixture is uniform, and then add 0.3507g to the three-necked flask Cerium ammonium nitrate, 0.4g of nitric acid (the concentration of nitric acid is 5mol/L), stirred and reacted at 35°C for 3h, filtered with suction, and dried at 45°C for 12h in a blast drying oven to obtain functionalized magnetic attapulgite cellulose Composite microspheres, the particle diameter of the magnetic attapulgite cellulose composite microspheres is 2 mm.
  • the functionalized magnetic attapulgite cellulose composite microspheres prepared in the above examples were tested for their effect on remediation of effective cadmium in cadmium-contaminated soil.
  • Test group 1 get 1kg of cadmium-contaminated soil (the content of effective cadmium in the cadmium-contaminated soil is 6.48mg/kg), and then uniformly mix the functionalized magnetic attapulgite cellulose composite microspheres prepared in the above examples in the In the cadmium-contaminated soil, the addition of composite microspheres was 1% of the mass of the cadmium-contaminated soil, and then watered the cadmium-contaminated soil so that the water content of the cadmium-contaminated soil was 40%. After 5 weeks, an external magnetic field was applied to the soil, and the The magnetic attapulgite cellulose composite microspheres are separated from the soil, the soil is sampled, and the effective cadmium content in the soil is determined.
  • Test Group 2 The test method is the same as that of Test Group 1, except that the amount of composite microspheres added is 3% of the mass of cadmium-contaminated soil.
  • Test Group 3 The test method is the same as that of Test Group 1, except that the amount of composite microspheres added is 5% of the mass of cadmium-contaminated soil.
  • Blank control group the test method is the same as that of test group 1, the difference is that no composite microspheres are added to the cadmium-contaminated soil.
  • test method of effective state cadmium content is the same as embodiment 1, and test result is as shown in table 4.
  • This embodiment provides a method for preparing magnetic attapulgite cellulose composite microspheres, comprising the following steps:
  • Attapulgite (the specific surface area of attapulgite is 200m 2 /g) is washed and removed with water, dried and passed through a 400 mesh sieve, then 30g of attapulgite after sieving is weighed, and added to 240g concentration of In 2mol/L hydrochloric acid, stir and activate at 80°C for 3h, filter with suction, wash the product with water until neutral, and then dry at 60°C for 8h to obtain activated attapulgite;
  • step 3 Add 0.5 g of activated attapulgite, 0.5 g of nano-ferric oxide and 0.15 g of calcium carbonate to the cellulose solution obtained in step 2), stir evenly, place the mixed solution in a constant pressure funnel, Then slowly add dropwise in the hydrochloric acid solution of 120g 0.5mol/L, the rate of addition is 2mL/min, in the process of dropping, the hydrochloric acid solution is continuously stirred, after the dropwise addition, continue to stir, the stirring speed is 150r/min, the total stirring The time is 0.5h, after the stirring is completed, filter, then wash the obtained microspheres to neutrality, freeze-dry to obtain composite microspheres;
  • step 4) Add 1g of the composite microspheres prepared in step 3) to a 250mL three-necked flask, add 200g of deionized water, 3g of acrylamide, and under the protection of N2 , stir at a constant speed until the mixture is uniform, and then add 0.2g to the three-necked flask Ceric ammonium nitrate, 0.2g of nitric acid (the concentration of nitric acid is 4mol/L), stirred and reacted at 35°C for 2h, filtered with suction, and dried at 40°C for 8h in a blast drying oven to obtain functionalized magnetic attapulgite cellulose Composite microspheres, the particle diameter of the magnetic attapulgite cellulose composite microspheres is 3mm.
  • the functionalized magnetic attapulgite cellulose composite microspheres prepared in the above examples were tested for their effect on remediation of effective cadmium in cadmium-contaminated soil.
  • Test group 1 get 1kg of cadmium-contaminated soil (the content of effective cadmium in the cadmium-contaminated soil is 6.48mg/kg), and then uniformly mix the functionalized magnetic attapulgite cellulose composite microspheres prepared in the above examples in the In the cadmium-contaminated soil, the addition of composite microspheres is 1% of the mass of the cadmium-contaminated soil, and then water the cadmium-contaminated soil so that the water content of the cadmium-contaminated soil is 30%. After 5 weeks, an external magnetic field is applied to the soil, and the The magnetic attapulgite cellulose composite microspheres are separated from the soil, the soil is sampled, and the effective cadmium content in the soil is determined.
  • Blank control group the test method is the same as that of test group 1, the difference is that no composite microspheres are added to the cadmium-contaminated soil.
  • test method of effective state cadmium content is the same as embodiment 1, and test result is as shown in table 5.
  • This embodiment provides a method for preparing magnetic attapulgite cellulose composite microspheres, comprising the following steps:
  • Attapulgite (the specific surface area of attapulgite is 800m2 /g) is washed with water to remove impurities, dried and passed through a 400-mesh sieve, then 30g of attapulgite after sieving is weighed, and added to 300g concentration of In 4mol/L hydrochloric acid, stir and activate at 120°C for 5h, filter with suction, wash the product to neutrality, and then dry at 80°C for 12h to obtain activated attapulgite;
  • step 3 Add 1 g of activated attapulgite, 1 g of nano-ferric oxide and 0.6 g of calcium carbonate to the cellulose solution obtained in step 2), stir evenly, place the mixed solution in a constant pressure funnel, and slowly Add dropwise into 320g 1mol/L hydrochloric acid solution, the rate of dropping is 3mL/min, the hydrochloric acid solution is continuously stirred during the dropwise addition, and continue to stir after the dropwise addition, the stirring speed is 200r/min, and the total stirring time is 1h , filtering after the stirring is completed, then washing the obtained microspheres with water to neutrality, and freeze-drying to obtain composite microspheres;
  • step 4) Add 1g of the composite microspheres prepared in step 3) to a 250mL three-necked flask, add 200g of deionized water, 5g of acrylamide, and stir at a constant speed until the mixture is uniform under the protection of N2 , then add 0.5g of Ceric ammonium nitrate, 0.5g of nitric acid (concentration of nitric acid is 6mol/L), stirred and reacted at 40°C for 4h, filtered with suction, and dried at 45°C for 12h in a blast drying oven to obtain functionalized magnetic attapulgite cellulose Composite microspheres, the particle diameter of the magnetic attapulgite cellulose composite microspheres is 2 mm.
  • the functionalized magnetic attapulgite cellulose composite microspheres prepared in the above examples were tested for their effect on remediation of effective cadmium in cadmium-contaminated soil.
  • Test group 1 get 1kg of cadmium-contaminated soil (the content of effective cadmium in the cadmium-contaminated soil is 6.48mg/kg), and then uniformly mix the functionalized magnetic attapulgite cellulose composite microspheres prepared in the above examples in the In the cadmium-contaminated soil, the amount of composite microspheres added is 1% of the mass of the cadmium-contaminated soil, and then watered in the cadmium-contaminated soil, so that the water content of the cadmium-contaminated soil is 60%, and an external magnetic field is applied to the soil after 5 weeks, and the The magnetic attapulgite cellulose composite microspheres are separated from the soil, the soil is sampled, and the effective cadmium content in the soil is determined.
  • Blank control group the test method is the same as that of test group 1, the difference is that no composite microspheres are added to the cadmium-contaminated soil.
  • test method of effective state cadmium content is the same as embodiment 1, and test result is as shown in table 6.
  • This comparative example provides a kind of preparation method of magnetic attapulgite cellulose composite microsphere, and its difference with embodiment 1 is that in step 3) the hydrochloric acid solution of 150g 1mol/L is placed in the constant pressure funnel, then slowly drips Into the mixed solution, the dropping rate is 2mL/min, the mixed solution is continuously stirred during the dropping process, and the stirring is continued after the dropping is completed, the stirring speed is 150r/min, and the total stirring time is 1h. After the stirring is completed, filter, and then The obtained microspheres were washed with water until neutral, and freeze-dried to obtain composite microspheres.
  • This comparative example provides a kind of preparation method of magnetic cellulose composite microsphere, comprises the steps:
  • step 2) Add 0.2g of nano ferric oxide and 0.15g of calcium carbonate to the cellulose solution obtained in step 1), stir evenly, place the mixed solution in a constant pressure funnel, then slowly add it dropwise to 150g 1mol/L In the hydrochloric acid solution, the rate of addition is 2mL/min. During the dropwise addition, the hydrochloric acid solution is continuously stirred. After the dropwise addition, the stirring is continued. The stirring speed is 150r/min, and the total stirring time is 1h. After the stirring is completed, it is filtered, and then Washing the obtained microspheres to neutrality, freeze-drying to obtain composite microspheres;
  • step 3 Add 1g of the composite microspheres prepared in step 2) to a 250mL three-necked flask, add 200g of deionized water, 5g of acrylamide, and stir at a constant speed until the mixture is uniform under the protection of N 2 , then add 0.3507g to the three-necked flask Ammonium cerium nitrate, 0.4g of nitric acid (concentration of nitric acid is 6mol/L), stirred and reacted at 35°C for 3h, filtered with suction, and dried at 45°C for 12h in a blast drying oven to obtain functionalized magnetic cellulose composite microspheres , the particle diameter of the magnetic cellulose composite microsphere is 3mm.
  • Comparative example 3 (compared with embodiment 1 without adding cellulose)
  • This comparative example provides a method for preparing magnetic attapulgite composite microspheres, comprising the following steps:
  • Attapulgite (the specific surface area of attapulgite is 800m2 /g) is washed with water to remove impurities, dried and passed through a 400-mesh sieve, then 30g of attapulgite after sieving is weighed, and added to 300g concentration of In 4mol/L hydrochloric acid, stir and activate at 90°C for 4h, filter with suction, wash the product with water until neutral, and then dry at 60°C for 12h to obtain activated attapulgite;
  • step 3 In the attapulgite solution obtained in step 2), add 0.2 g of nano-ferric iron tetroxide and 0.15 g of calcium carbonate, stir evenly, place the mixed solution in a constant pressure funnel, then slowly add it dropwise to 150 g 1mol/ In the hydrochloric acid solution of 1 L, the rate of addition is 2mL/min. During the dropwise addition, the hydrochloric acid solution is continuously stirred. After the dropwise addition, continue to stir. The stirring speed is 150r/min, and the total stirring time is 1h. Filter after the stirring. Then the obtained microspheres were washed to neutrality, and freeze-dried to obtain composite microspheres;
  • step 4) Add 1g of the composite microspheres prepared in step 3) to a 250mL three-necked flask, add 200g of deionized water, 5g of acrylamide, and under the protection of N2 , stir at a constant speed until the mixture is uniform, and then add 0.3507g to the three-necked flask Ammonium cerium nitrate, 0.4g of nitric acid (the concentration of nitric acid is 6mol/L), stirred and reacted at 35°C for 3h, filtered with suction, and dried at 45°C for 12h in a blast drying oven to obtain functionalized magnetic attapulgite composite microparticles. Balls, the particle diameter of the magnetic attapulgite composite microspheres is 3mm.
  • Comparative example 4 (compared with embodiment 1 does not carry out amination)
  • This comparative example provides a method for preparing magnetic attapulgite cellulose composite microspheres, comprising the following steps:
  • Attapulgite (the specific surface area of attapulgite is 800m2 /g) is washed with water to remove impurities, dried and passed through a 400-mesh sieve, then 30g of attapulgite after sieving is weighed, and added to 300g concentration of In 4mol/L hydrochloric acid, stir and activate at 90°C for 4h, filter with suction, wash the product with water until neutral, and then dry at 60°C for 12h to obtain activated attapulgite;
  • step 3 Add 0.5 g of activated attapulgite, 0.2 g of nano-ferric oxide and 0.15 g of calcium carbonate to the cellulose solution obtained in step 2), stir evenly, place the mixed solution in a constant pressure funnel, Then slowly add dropwise to the hydrochloric acid solution of 150g1mol/L, the rate of addition is 2mL/min, in the process of dropping, the hydrochloric acid solution is continuously stirred, after the dropwise addition, continue to stir, the stirring speed is 150r/min, and the total stirring time is After 1 hour, the stirring was completed and filtered, and then the obtained microspheres were washed with water until neutral, and freeze-dried to obtain magnetic attapulgite cellulose composite microspheres.
  • Comparative Example 1 group get 1kg of cadmium-contaminated soil (the content of effective cadmium in the cadmium-contaminated soil is 6.48mg/kg), then the magnetic attapulgite cellulose composite microspheres prepared in the above-mentioned comparative example 1 are uniformly mixed with cadmium In the polluted soil, the addition of composite microspheres is 1% of the quality of the cadmium-contaminated soil, and then water the cadmium-contaminated soil so that the water content of the cadmium-contaminated soil is 40%. After 5 weeks, an external magnetic field is applied to the soil, and the magnetic The attapulgite cellulose composite microspheres are separated from the soil, the soil is sampled, and the effective cadmium content in the soil is determined.
  • Comparative Example 2 The test method is the same as that of Comparative Example 1, except that the magnetic attapulgite cellulose composite microspheres prepared in Comparative Example 1 are replaced by the magnetic cellulose composite microspheres prepared in Comparative Example 2 .
  • Comparative Example 3 The test method is the same as that of Comparative Example 1, except that the magnetic attapulgite cellulose composite microspheres prepared in Comparative Example 1 are replaced by the functionalized magnetic attapulgite prepared in Comparative Example 3 Stone composite microspheres.
  • Comparative Example 4 The test method is the same as that of Comparative Example 1, except that the magnetic attapulgite cellulose composite microspheres prepared in Comparative Example 1 are replaced by the magnetic attapulgite cellulose prepared in Comparative Example 4 Composite microspheres.
  • Blank control group the test method is the same as that of test group 1, the difference is that no composite microspheres are added to the cadmium-contaminated soil.
  • test method of effective state cadmium content is the same as embodiment 1, and test result is as shown in table 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明涉及重金属污染土壤修复技术领域,具体涉及一种复合微球的制备方法及由其制备的复合微球和应用。本发明提供的复合微球的制备方法,包括如下步骤:将纤维素和离子液体混合,加热,得到纤维素溶液;将纤维素溶液、凹凸棒石、磁性粒子和成孔剂进行混合,然后将所得混合液滴加到酸溶液中,过滤,得到复合微球;将复合微球、溶剂、丙烯酰胺进行混合,然后加入引发剂、酸,搅拌反应,过滤,干燥,得到所述复合微球。本发明提供的制备方法制备的复合微球可有效固化稳定化土壤中镉离子,降低其生物有效态含量,减少作物对土壤重金属的吸收量。

Description

一种复合微球的制备方法及由其制备的复合微球和应用 技术领域
本发明涉及重金属污染土壤修复技术领域,具体涉及一种磁性凹凸棒石纤维素复合微球及其制备方法和应用。
背景技术
由于现代工业的快速发展,大气中的重金属通过雨水进入水体和土壤,会加剧水体和土壤中重金属污染的问题。
凹凸棒石是一种以含水富镁铝硅酸盐为主的矿物,属于硅酸盐类矿物,其基本结构由两层硅氧四面体与一层镁氧八面体构成,是一种天然的多孔材料。纤维素是世界上最丰富和可再生的有机生物聚合物,由于其强大的机械强度,生物相容性和热稳定性,被广泛认为是可持续材料的重要来源。凹凸棒石和纤维素在我国产量丰富、价格低廉且具有较强的的离子交换能力和良好的吸附性能。然而纤维素比表面积小,凹凸棒石易富集,在土壤修复中使用效率较低且较难回收,为此,通常需要对其进行改性处理,使其具有较高的吸附效率且易于回收。磁性有机改性克服了普通有机改性回收分离困难的缺点,达到了节约成本和时间的效果。
现有磁改性材料的制备方法一般采用共沉淀法,负载材料采用纤维素制备微球,微球质软,易失去球状结构,同时采用纤维素制备微球,微球的孔道较少,不利于后续改性和对重金属镉的吸附。
发明内容
本发明的目的在于克服现有采用纤维素制备载体微球的方法,得到的微球质软,微球的孔道较少,不利于后续吸附和对重金属镉的吸附的缺陷,进而提供一种磁性凹凸棒石纤维素复合微球及其制备方法和应用。
为达到上述目的,本发明采用如下技术方案:
一种磁性凹凸棒石纤维素复合微球的制备方法,包括如下步骤:
1)将纤维素和离子液体混合,加热,得到纤维素溶液;
2)将纤维素溶液、凹凸棒石、磁性粒子和成孔剂进行混合,然后将所得混合液滴加到酸溶液中,过滤,得到复合微球;
3)将复合微球、溶剂、丙烯酰胺进行混合,然后加入引发剂、酸,搅拌反应,过滤,干燥,得到所述磁性凹凸棒石纤维素复合微球。
优选的,步骤2)中滴加速率为2mL/min~3mL/min;所述酸溶液为盐酸溶液,盐酸溶液的浓度为0.5mol/L-1mol/L。
可选的,步骤2)中混合液和酸溶液的质量比为1:(4-8)。
优选的,所述纤维素、凹凸棒石、磁性粒子和离子液体的的质量比为1:(0.5-1):(0.5-1):(30-40);
成孔剂的加入量为纤维素和凹凸棒石总质量的10%-50%;
步骤3)中复合微球、溶剂、丙烯酰胺、引发剂和酸的质量比为1:(200-300):(3-7):(0.2-0.5):(0.2-0.5)。
优选的,步骤1)中所述加热温度为90℃~120℃,加热时间为1h~2h;
步骤2)中在滴加过程中对酸溶液持续搅拌,滴加结束后继续搅拌,搅拌转速为150~200r/min,总搅拌时间为0.5h~1h;
步骤3)中所述反应温度为35℃~40℃,反应时间为2h~4h,干燥温度为40℃~45℃,干燥时间为8~12h。
优选的,步骤2)中还包括将复合微球进行水洗,冻干的步骤;
步骤3)中所述混合、搅拌反应步骤均在氮气或惰性气体下进行。
本发明不对纤维素和离子液体的种类做具体限定,可选的,所述纤维素选自微晶纤维素、棉纤维素、秸秆纤维素或纸张纤维素中的一种;所述离子液体选自1-烯丙基-3甲基咪唑氯盐或1-丁基-3-甲基咪唑氯盐。
优选的,所述成孔剂为碳酸钙;
所述磁性粒子为四氧化三铁,优选的,所述磁性粒子为纳米四氧化三铁;
所述溶剂为水,所述引发剂为硝酸铈铵,所述酸为硝酸,硝酸的浓度为4mol/L-6mol/L。
优选的,所述凹凸棒石为活化后的凹凸棒石,所述活化后的凹凸棒石的制备方法包括如下步骤:将凹凸棒石和酸混合,加热活化,过滤,清洗,干燥,得到所述活化后的凹凸棒石。
优选的,所述活化后的凹凸棒石的制备方法中,凹凸棒石和酸的质量比为1:(8-10),加热活性温度为80℃~120℃,加热活化时间为3h~5h,干燥温度为60℃~80℃,干燥时间为8h~12h。
优选的,所述活化后的凹凸棒石的制备方法中,所述酸为盐酸,盐酸的浓度为2mol/L-4mol/L;
在将凹凸棒石和酸混合之前还包括对凹凸棒石进行清洗、烘干、过筛的步骤。
优选的,所述凹凸棒石的比表面积为200-800m 2/g,所述磁性凹凸棒石纤维素复合微球的粒径为2-3mm。本发明采用微球粒径(2-3mm)有利于在实际土壤实施中均匀播撒,也有利于修复后的磁选回收。
本发明还提供一种磁性凹凸棒石纤维素复合微球,由上述所述的制备方法制备得到。
本发明还提供一种上述所述的磁性凹凸棒石纤维素复合微球在重金属污染土壤修复中的应用。
优选的,所述重金属为金属镉。
本发明的有益效果:
本发明提供的磁性凹凸棒石纤维素复合微球的制备方法,包括如下步骤:将纤维素和离子液体混合,加热,得到纤维素溶液;将纤维素溶液、凹凸棒石、磁性粒子和成孔剂进行混合,然后将所得混合液滴加到酸溶液中,过滤,得到复合微球;将复合微球、溶剂、丙烯酰胺进行混合,然后加入引发剂、酸,搅拌反应,过滤,干燥,得到所述磁性凹凸棒石纤维素复合微球。
本发明利用离子液体溶解纤维素,然后向纤维素溶液中直接加入凹凸棒石、磁性粒子和成孔剂,通过离子液体溶解纤维素突破了传统尿素/碱液在低温环境下溶解纤维素的限制,离子液体溶解纤维素的过程快速安全,简单易操作,纳米四氧化三铁直接加入可以更好地控制材料中四氧化三铁的含量从而控制材料的饱和磁化强度,采用丙烯酰胺对微球进一步改性,可引入大量的胺基基团,进而有效固化土壤中的重金属镉离子,同时本发明采用将混合液滴加到酸溶液的方式获得复合微球,然后再对复合微球进行丙烯酰胺改性,混合溶液滴入酸溶液时成孔剂与酸反应释放气体使复合微球具备多孔结构,同时多孔结构增大了丙烯酰胺的接枝率,有利于镉污染土壤的修复;本发明通过纤维素、凹凸棒石、磁性粒子和成孔剂相互配合,纤维素和凹凸棒石复配体系具有的协同作用,解决了纤维素比表面积小,凹凸棒石易富集等缺点。制成的微球材料质硬,在实际应用中不会失去其球状结构,成孔剂的加入使复合微球具备了多孔结构,利于随后的改性和其作为土壤修复剂对于镉的吸附。
同时本发明原料来源广泛,为低成本、绿色环保的材料,不会对土壤环境带来毒害 作用。本发明磁性凹凸棒石纤维素复合微球可有效固化稳定化土壤中镉离子,降低其生物有效态含量,减少作物对土壤重金属的吸收量,还能有效改良土壤理化性质,提高土壤保肥保水能力,易于推广应用。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供一种磁性凹凸棒石纤维素复合微球的制备方法,包括如下步骤:
1)将凹凸棒石(凹凸棒石的比表面积为800m 2/g)水清洗除杂,烘干后过400目筛,然后称取30g过筛后的凹凸棒石,将其加入300g浓度为4mol/L的盐酸中,90℃搅拌活化4h,抽滤,产物水洗至中性,然后60℃下干燥12h,得到活化后的凹凸棒石;
2)取40g离子液体1-烯丙基-3甲基咪唑氯盐,向离子液体中加入1g微晶纤维素,在100℃下加热2h,使得纤维素完全溶解,得到纤维素溶液;
3)向步骤2)获得的纤维素溶液中加入0.5g活化后的凹凸棒石,0.2g的纳米四氧化三铁和0.15g的碳酸钙,搅拌均匀,将混合液置于恒压漏斗中,然后缓慢滴加到150g 1mol/L的盐酸溶液中,滴加速率为2mL/min,在滴加过程中对盐酸溶液持续搅拌,滴加结束后继续搅拌,搅拌转速为150r/min,总搅拌时间为1h,搅拌结束后过滤,然后将得到的微球水洗至中性,冻干,得到复合微球;
4)在250mL的三口烧瓶中加入1g步骤3)制备的复合微球,加入200g的去离子水,5g丙烯酰胺,在N 2保护下,匀速搅拌至混合均匀,然后向三口烧瓶中加入0.3507g硝酸铈铵,0.4g的硝酸(硝酸浓度为6mol/L),在35℃下搅拌反应3h,抽滤,在鼓风干燥箱内45℃下干燥12h,得到功能化的磁性凹凸棒石纤维素复合微球,所述磁性凹凸棒石纤维素复合微球的粒径为3mm。
对上述实施例中制备得到的功能化的磁性凹凸棒石纤维素复合微球对镉污染土壤 有效态镉修复效果进行测试。
测试1组:取1kg镉污染土壤(镉污染土壤中有效态镉的含量为6.48mg/kg),然后将上述实施例中制备得到的功能化的磁性凹凸棒石纤维素复合微球均匀混合于镉污染土壤中,复合微球的加入量为镉污染土壤质量的1%,然后向镉污染土壤中浇水,使镉污染土壤的含水量为40%,5周后对土壤施加外加磁场,将磁性凹凸棒石纤维素复合微球与土壤进行分离,对土壤进行采样,测定土壤中有效态镉含量。
测试2组:测试方法同测试1组的测试方法,区别在于复合微球的加入量为镉污染土壤质量的3%。
测试3组:测试方法同测试1组的测试方法,区别在于复合微球的加入量为镉污染土壤质量的5%。
空白对照组:测试方法同测试1组的测试方法,区别在于不向镉污染土壤中加入复合微球。
其中有效态镉含量的测试方法为Tessier连续提取法,具体测试流程为准确称取1.0g待测土壤样品置于50mL塑料离心管中,按以下五步提取法进行提取:1、可交换态(EX)的提取:将8mL 1mol/L的氯化镁(MgCl 2·6H 2O)溶液和1g待测土壤样品以200r/min转速室温水浴振荡1h,离心10min,取其上清液测量镉离子浓度;2、碳酸盐结合态(CB)的提取:将8mL 1mol/L的乙酸钠(NaAc)溶液和经第一步提取后的残余物以200r/min转速室温水浴振荡8h,离心10min,取其上清液测量镉离子浓度;3、铁锰氧化态(OX)的提取:将20mL盐酸羟胺醋酸水溶液(盐酸羟胺醋酸水溶液中盐酸羟胺的浓度为0.04mol/L,醋酸的体积百分浓度为25%)和经第二步提取后的残余物以200r/min转速96℃恒温水浴振荡4h,离心10min,取其上清液测量镉离子浓度;4、有机物结合态(OM)的提取:将5ml过氧化氢(H 2O 2),3ml 0.02mol/L硝酸(HNO 3)和经第三步提取后的残余物在85℃恒温水浴振荡5h,然后加入5ml 3.2mol/L醋酸铵(NH 4Ac)溶液和15ml 0.02mol/L硝酸(HNO 3)在85℃下继续搅拌0.5h,离心10min,取其上清液测量镉离子浓度;5、残渣态(RS)的提取:王水消解经第四步提取后的残余物,测其镉离子浓度。其中镉离子浓度用原子吸收分光光度计在228.8nm处测定,可交换态和碳酸盐结合态被称为生物有效态,也即,有效态镉含量为步骤1可交换态(EX)的提取中测得的镉离子浓度和步骤2碳酸盐结合态(CB)的提取中测得的镉离子浓度之和。
测试结果如表1所示。
表1 实施例1复合微球对镉污染土壤有效态镉修复效果
Figure PCTCN2021142738-appb-000001
实施例2
本实施例提供一种磁性凹凸棒石纤维素复合微球的制备方法,包括如下步骤:
1)将凹凸棒石(凹凸棒石的比表面积为800m 2/g)水清洗除杂,烘干后过400目筛,然后称取30g过筛后的凹凸棒石,将其加入300g浓度为4mol/L的盐酸中,90℃搅拌活化4h,抽滤,产物水洗至中性,然后60℃下干燥12h,得到活化后的凹凸棒石;
2)取40g离子液体1-烯丙基-3甲基咪唑氯盐,向离子液体中加入1g微晶纤维素,在100℃下加热2h,使得纤维素完全溶解,得到纤维素溶液;
3)向步骤2)获得的纤维素溶液中加入1g活化后的凹凸棒石,0.5g的纳米四氧化三铁和0.2g的碳酸钙,搅拌均匀,将混合液置于恒压漏斗中,然后缓慢滴加到150g1mol/L的盐酸溶液中,滴加速率为2mL/min,在滴加过程中对盐酸溶液持续搅拌,滴加结束后继续搅拌,搅拌转速为150r/min,总搅拌时间为1h,搅拌结束后过滤,然后将得到的微球水洗至中性,冻干,得到复合微球;
4)在250mL的三口烧瓶中加入1g步骤3)制备的复合微球,加入200g的去离子水,5g丙烯酰胺,在N 2保护下,匀速搅拌至混合均匀,然后向三口烧瓶中加入0.3507g硝酸铈铵,0.4g的硝酸(硝酸浓度为6mol/L),在35℃下搅拌反应3h,抽滤,在鼓风干燥箱内45℃下干燥12h,得到功能化的磁性凹凸棒石纤维素复合微球,所述磁性凹凸棒石纤维素复合微球的粒径为3mm。
对上述实施例中制备得到的功能化的磁性凹凸棒石纤维素复合微球对镉污染土壤有效态镉修复效果进行测试。
测试1组:取1kg镉污染土壤(镉污染土壤中有效态镉的含量为6.48mg/kg),然后将上述实施例中制备得到的功能化的磁性凹凸棒石纤维素复合微球均匀混合于镉污染土壤中,复合微球的加入量为镉污染土壤质量的1%,然后向镉污染土壤中浇水,使镉 污染土壤的含水量为30%,5周后对土壤施加外加磁场,将磁性凹凸棒石纤维素复合微球与土壤进行分离,对土壤进行采样,测定土壤中有效态镉含量。
测试2组:测试方法同测试1组的测试方法,区别在于复合微球的加入量为镉污染土壤质量的3%。
测试3组:测试方法同测试1组的测试方法,区别在于复合微球的加入量为镉污染土壤质量的5%。
空白对照组:测试方法同测试1组的测试方法,区别在于不向镉污染土壤中加入复合微球。
其中有效态镉含量的测试方法同实施例1,测试结果如表2所示。
表2 实施例2复合微球对镉污染土壤有效态镉修复效果
Figure PCTCN2021142738-appb-000002
实施例3
本实施例提供一种磁性凹凸棒石纤维素复合微球的制备方法,包括如下步骤:
1)将凹凸棒石(凹凸棒石的比表面积为800m 2/g)水清洗除杂,烘干后过400目筛,然后称取30g过筛后的凹凸棒石,将其加入300g浓度为4mol/L的盐酸中,90℃搅拌活化4h,抽滤,产物水洗至中性,然后60℃下干燥12h,得到活化后的凹凸棒石;
2)取40g离子液体1-烯丙基-3甲基咪唑氯盐,向离子液体中加入1g微晶纤维素,在100℃下加热2h,使得纤维素完全溶解,得到纤维素溶液;
3)向步骤2)获得的纤维素溶液中加入1g活化后的凹凸棒石,0.5g的纳米四氧化三铁和0.6g的碳酸钙,搅拌均匀,将混合液置于恒压漏斗中,然后缓慢滴加到150g 1mol/L的盐酸溶液中,滴加速率为3mL/min,在滴加过程中对盐酸溶液持续搅拌,滴加结束后继续搅拌,搅拌转速为200r/min,总搅拌时间为1h,搅拌结束后过滤,然后将得到的微球水洗至中性,冻干,得到复合微球;
4)在250mL的三口烧瓶中加入1g步骤3)制备的复合微球,加入200g的去离 子水,5g丙烯酰胺,在N 2保护下,匀速搅拌至混合均匀,然后向三口烧瓶中加入0.3507g硝酸铈铵,0.4g的硝酸(硝酸浓度为4mol/L),在35℃下搅拌反应3h,抽滤,在鼓风干燥箱内45℃下干燥12h,得到功能化的磁性凹凸棒石纤维素复合微球,所述磁性凹凸棒石纤维素复合微球的粒径为2mm。
对上述实施例中制备得到的功能化的磁性凹凸棒石纤维素复合微球对镉污染土壤有效态镉修复效果进行测试。
测试1组:取1kg镉污染土壤(镉污染土壤中有效态镉的含量为6.48mg/kg),然后将上述实施例中制备得到的功能化的磁性凹凸棒石纤维素复合微球均匀混合于镉污染土壤中,复合微球的加入量为镉污染土壤质量的1%,然后向镉污染土壤中浇水,使镉污染土壤的含水量为50%,5周后对土壤施加外加磁场,将磁性凹凸棒石纤维素复合微球与土壤进行分离,对土壤进行采样,测定土壤中有效态镉含量。
测试2组:测试方法同测试1组的测试方法,区别在于复合微球的加入量为镉污染土壤质量的3%。
测试3组:测试方法同测试1组的测试方法,区别在于复合微球的加入量为镉污染土壤质量的5%。
空白对照组:测试方法同测试1组的测试方法,区别在于不向镉污染土壤中加入复合微球。
其中有效态镉含量的测试方法同实施例1,测试结果如表3所示。
表3 实施例3复合微球对镉污染土壤有效态镉修复效果
Figure PCTCN2021142738-appb-000003
实施例4
本实施例提供一种磁性凹凸棒石纤维素复合微球的制备方法,包括如下步骤:
1)将凹凸棒石(凹凸棒石的比表面积为800m 2/g)水清洗除杂,烘干后过400目筛,然后称取30g过筛后的凹凸棒石,将其加入300g浓度为4mol/L的盐酸中,90℃ 搅拌活化4h,抽滤,产物水洗至中性,然后60℃下干燥12h,得到活化后的凹凸棒石;
2)取40g离子液体1-烯丙基-3甲基咪唑氯盐,向离子液体中加入1g微晶纤维素,在100℃下加热2h,使得纤维素完全溶解,得到纤维素溶液;
3)向步骤2)获得的纤维素溶液中加入1g活化后的凹凸棒石,0.5g的纳米四氧化三铁和0.6g的碳酸钙,搅拌均匀,将混合液置于恒压漏斗中,然后缓慢滴加到150g 1mol/L的盐酸溶液中,滴加速率为3mL/min,在滴加过程中对盐酸溶液持续搅拌,滴加结束后继续搅拌,搅拌转速为200r/min,总搅拌时间为1h,搅拌结束后过滤,然后将得到的微球水洗至中性,冻干,得到复合微球;
4)在250mL的三口烧瓶中加入1g步骤3)制备的复合微球,加入200g的去离子水,7g丙烯酰胺,在N 2保护下,匀速搅拌至混合均匀,然后向三口烧瓶中加入0.3507g硝酸铈铵,0.4g的硝酸(硝酸浓度为5mol/L),在35℃下搅拌反应3h,抽滤,在鼓风干燥箱内45℃下干燥12h,得到功能化的磁性凹凸棒石纤维素复合微球,所述磁性凹凸棒石纤维素复合微球的粒径为2mm。
对上述实施例中制备得到的功能化的磁性凹凸棒石纤维素复合微球对镉污染土壤有效态镉修复效果进行测试。
测试1组:取1kg镉污染土壤(镉污染土壤中有效态镉的含量为6.48mg/kg),然后将上述实施例中制备得到的功能化的磁性凹凸棒石纤维素复合微球均匀混合于镉污染土壤中,复合微球的加入量为镉污染土壤质量的1%,然后向镉污染土壤中浇水,使镉污染土壤的含水量为40%,5周后对土壤施加外加磁场,将磁性凹凸棒石纤维素复合微球与土壤进行分离,对土壤进行采样,测定土壤中有效态镉含量。
测试2组:测试方法同测试1组的测试方法,区别在于复合微球的加入量为镉污染土壤质量的3%。
测试3组:测试方法同测试1组的测试方法,区别在于复合微球的加入量为镉污染土壤质量的5%。
空白对照组:测试方法同测试1组的测试方法,区别在于不向镉污染土壤中加入复合微球。
其中有效态镉含量的测试方法同实施例1,测试结果如表4所示。
表4 实施例4复合微球对镉污染土壤有效态镉修复效果
Figure PCTCN2021142738-appb-000004
实施例5
本实施例提供一种磁性凹凸棒石纤维素复合微球的制备方法,包括如下步骤:
1)将凹凸棒石(凹凸棒石的比表面积为200m 2/g)水清洗除杂,烘干后过400目筛,然后称取30g过筛后的凹凸棒石,将其加入240g浓度为2mol/L的盐酸中,80℃搅拌活化3h,抽滤,产物水洗至中性,然后60℃下干燥8h,得到活化后的凹凸棒石;
2)取30g离子液体1-丁基-3-甲基咪唑氯盐,向离子液体中加入1g棉纤维素,在90℃下加热1h,使得纤维素完全溶解,得到纤维素溶液;
3)向步骤2)获得的纤维素溶液中加入0.5g活化后的凹凸棒石,0.5g的纳米四氧化三铁和0.15g的碳酸钙,搅拌均匀,将混合液置于恒压漏斗中,然后缓慢滴加到120g 0.5mol/L的盐酸溶液中,滴加速率为2mL/min,在滴加过程中对盐酸溶液持续搅拌,滴加结束后继续搅拌,搅拌转速为150r/min,总搅拌时间为0.5h,搅拌结束后过滤,然后将得到的微球水洗至中性,冻干,得到复合微球;
4)在250mL的三口烧瓶中加入1g步骤3)制备的复合微球,加入200g的去离子水,3g丙烯酰胺,在N 2保护下,匀速搅拌至混合均匀,然后向三口烧瓶中加入0.2g硝酸铈铵,0.2g的硝酸(硝酸浓度为4mol/L),在35℃下搅拌反应2h,抽滤,在鼓风干燥箱内40℃下干燥8h,得到功能化的磁性凹凸棒石纤维素复合微球,所述磁性凹凸棒石纤维素复合微球的粒径为3mm。
对上述实施例中制备得到的功能化的磁性凹凸棒石纤维素复合微球对镉污染土壤有效态镉修复效果进行测试。
测试1组:取1kg镉污染土壤(镉污染土壤中有效态镉的含量为6.48mg/kg),然后将上述实施例中制备得到的功能化的磁性凹凸棒石纤维素复合微球均匀混合于镉污染土壤中,复合微球的加入量为镉污染土壤质量的1%,然后向镉污染土壤中浇水,使镉 污染土壤的含水量为30%,5周后对土壤施加外加磁场,将磁性凹凸棒石纤维素复合微球与土壤进行分离,对土壤进行采样,测定土壤中有效态镉含量。
空白对照组:测试方法同测试1组的测试方法,区别在于不向镉污染土壤中加入复合微球。
其中有效态镉含量的测试方法同实施例1,测试结果如表5所示。
表5 实施例5复合微球对镉污染土壤有效态镉修复效果
Figure PCTCN2021142738-appb-000005
实施例6
本实施例提供一种磁性凹凸棒石纤维素复合微球的制备方法,包括如下步骤:
1)将凹凸棒石(凹凸棒石的比表面积为800m 2/g)水清洗除杂,烘干后过400目筛,然后称取30g过筛后的凹凸棒石,将其加入300g浓度为4mol/L的盐酸中,120℃搅拌活化5h,抽滤,产物水洗至中性,然后80℃下干燥12h,得到活化后的凹凸棒石;
2)取40g离子液体1-丁基-3-甲基咪唑氯盐,向离子液体中加入1g秸秆纤维素,在120℃下加热2h,使得纤维素完全溶解,得到纤维素溶液;
3)向步骤2)获得的纤维素溶液中加入1g活化后的凹凸棒石,1g的纳米四氧化三铁和0.6g的碳酸钙,搅拌均匀,将混合液置于恒压漏斗中,然后缓慢滴加到320g 1mol/L的盐酸溶液中,滴加速率为3mL/min,在滴加过程中对盐酸溶液持续搅拌,滴加结束后继续搅拌,搅拌转速为200r/min,总搅拌时间为1h,搅拌结束后过滤,然后将得到的微球水洗至中性,冻干,得到复合微球;
4)在250mL的三口烧瓶中加入1g步骤3)制备的复合微球,加入200g的去离子水,5g丙烯酰胺,在N 2保护下,匀速搅拌至混合均匀,然后向三口烧瓶中加入0.5g硝酸铈铵,0.5g的硝酸(硝酸浓度为6mol/L),在40℃下搅拌反应4h,抽滤,在鼓风干燥箱内45℃下干燥12h,得到功能化的磁性凹凸棒石纤维素复合微球,所述磁性凹凸棒石纤维素复合微球的粒径为2mm。
对上述实施例中制备得到的功能化的磁性凹凸棒石纤维素复合微球对镉污染土壤有效态镉修复效果进行测试。
测试1组:取1kg镉污染土壤(镉污染土壤中有效态镉的含量为6.48mg/kg),然 后将上述实施例中制备得到的功能化的磁性凹凸棒石纤维素复合微球均匀混合于镉污染土壤中,复合微球的加入量为镉污染土壤质量的1%,然后向镉污染土壤中浇水,使镉污染土壤的含水量为60%,5周后对土壤施加外加磁场,将磁性凹凸棒石纤维素复合微球与土壤进行分离,对土壤进行采样,测定土壤中有效态镉含量。
空白对照组:测试方法同测试1组的测试方法,区别在于不向镉污染土壤中加入复合微球。
其中有效态镉含量的测试方法同实施例1,测试结果如表6所示。
表6 实施例6复合微球对镉污染土壤有效态镉修复效果
Figure PCTCN2021142738-appb-000006
对比例1
本对比例提供一种磁性凹凸棒石纤维素复合微球的制备方法,其与实施例1的区别在于步骤3)中将150g 1mol/L的盐酸溶液置于恒压漏斗中,然后缓慢滴加到混合液中,滴加速率为2mL/min,在滴加过程中对混合液持续搅拌,滴加结束后继续搅拌,搅拌转速为150r/min,总搅拌时间为1h,搅拌结束后过滤,然后将得到的微球水洗至中性,冻干,得到复合微球。
对比例2(同实施例1相比不加凹凸棒石)
本对比例提供一种磁性纤维素复合微球的制备方法,包括如下步骤:
1)取40g离子液体1-烯丙基-3甲基咪唑氯盐,向离子液体中加入1.5g微晶纤维素,在100℃下加热2h,使得纤维素完全溶解,得到纤维素溶液;
2)向步骤1)获得的纤维素溶液中加入0.2g的纳米四氧化三铁和0.15g的碳酸钙,搅拌均匀,将混合液置于恒压漏斗中,然后缓慢滴加到150g 1mol/L的盐酸溶液中,滴加速率为2mL/min,在滴加过程中对盐酸溶液持续搅拌,滴加结束后继续搅拌,搅拌转速为150r/min,总搅拌时间为1h,搅拌结束后过滤,然后将得到的微球水洗至中性,冻干,得到复合微球;
3)在250mL的三口烧瓶中加入1g步骤2)制备的复合微球,加入200g的去离子水,5g丙烯酰胺,在N 2保护下,匀速搅拌至混合均匀,然后向三口烧瓶中加入0.3507g硝酸铈铵,0.4g的硝酸(硝酸浓度为6mol/L),在35℃下搅拌反应3h,抽滤,在 鼓风干燥箱内45℃下干燥12h,得到功能化的磁性纤维素复合微球,所述磁性纤维素复合微球的粒径为3mm。
对比例3(同实施例1相比不加纤维素)
本对比例提供一种磁性凹凸棒石复合微球的制备方法,包括如下步骤:
1)将凹凸棒石(凹凸棒石的比表面积为800m 2/g)水清洗除杂,烘干后过400目筛,然后称取30g过筛后的凹凸棒石,将其加入300g浓度为4mol/L的盐酸中,90℃搅拌活化4h,抽滤,产物水洗至中性,然后60℃下干燥12h,得到活化后的凹凸棒石;
2)取40g离子液体1-烯丙基-3甲基咪唑氯盐,向离子液体中加入1.5g活化后的凹凸棒石,在100℃下加热2h,得到凹凸棒石溶液;
3)向步骤2)获得的凹凸棒石溶液中加入0.2g的纳米四氧化三铁和0.15g的碳酸钙,搅拌均匀,将混合液置于恒压漏斗中,然后缓慢滴加到150g 1mol/L的盐酸溶液中,滴加速率为2mL/min,在滴加过程中对盐酸溶液持续搅拌,滴加结束后继续搅拌,搅拌转速为150r/min,总搅拌时间为1h,搅拌结束后过滤,然后将得到的微球水洗至中性,冻干,得到复合微球;
4)在250mL的三口烧瓶中加入1g步骤3)制备的复合微球,加入200g的去离子水,5g丙烯酰胺,在N 2保护下,匀速搅拌至混合均匀,然后向三口烧瓶中加入0.3507g硝酸铈铵,0.4g的硝酸(硝酸浓度为6mol/L),在35℃下搅拌反应3h,抽滤,在鼓风干燥箱内45℃下干燥12h,得到功能化的磁性凹凸棒石复合微球,所述磁性凹凸棒石复合微球的粒径为3mm。
对比例4(同实施例1相比不进行氨基化)
本对比例提供一种磁性凹凸棒石纤维素复合微球的制备方法,包括如下步骤:
1)将凹凸棒石(凹凸棒石的比表面积为800m 2/g)水清洗除杂,烘干后过400目筛,然后称取30g过筛后的凹凸棒石,将其加入300g浓度为4mol/L的盐酸中,90℃搅拌活化4h,抽滤,产物水洗至中性,然后60℃下干燥12h,得到活化后的凹凸棒石;
2)取40g离子液体1-烯丙基-3甲基咪唑氯盐,向离子液体中加入1g微晶纤维素,在100℃下加热2h,使得纤维素完全溶解,得到纤维素溶液;
3)向步骤2)获得的纤维素溶液中加入0.5g活化后的凹凸棒石,0.2g的纳米四氧化三铁和0.15g的碳酸钙,搅拌均匀,将混合液置于恒压漏斗中,然后缓慢滴加到150g1mol/L的盐酸溶液中,滴加速率为2mL/min,在滴加过程中对盐酸溶液持续搅拌,滴加结束后继续搅拌,搅拌转速为150r/min,总搅拌时间为1h,搅拌结束后过滤,然后 将得到的微球水洗至中性,冻干,得到磁性凹凸棒石纤维素复合微球。
对上述对比例1-4中制备得到的磁性复合微球对镉污染土壤有效态镉修复效果进行测试。
对比例1组:取1kg镉污染土壤(镉污染土壤中有效态镉的含量为6.48mg/kg),然后将上述对比例1中制备得到的磁性凹凸棒石纤维素复合微球均匀混合于镉污染土壤中,复合微球的加入量为镉污染土壤质量的1%,然后向镉污染土壤中浇水,使镉污染土壤的含水量为40%,5周后对土壤施加外加磁场,将磁性凹凸棒石纤维素复合微球与土壤进行分离,对土壤进行采样,测定土壤中有效态镉含量。
对比例2组:测试方法同对比例1组的测试方法,区别在于将对比例1中制备得到的磁性凹凸棒石纤维素复合微球替换为对比例2中制备得到的磁性纤维素复合微球。
对比例3组:测试方法同对比例1组的测试方法,区别在于将对比例1中制备得到的磁性凹凸棒石纤维素复合微球替换为对比例3中制备得到的功能化的磁性凹凸棒石复合微球。
对比例4组:测试方法同对比例1组的测试方法,区别在于将对比例1中制备得到的磁性凹凸棒石纤维素复合微球替换为对比例4中制备得到的磁性凹凸棒石纤维素复合微球。
空白对照组:测试方法同测试1组的测试方法,区别在于不向镉污染土壤中加入复合微球。
其中有效态镉含量的测试方法同实施例1,测试结果如表7所示。
表7 对比例复合微球对镉污染土壤有效态镉修复效果
Figure PCTCN2021142738-appb-000007
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对 于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (13)

  1. 一种磁性凹凸棒石纤维素复合微球的制备方法,其特征在于,包括如下步骤:
    1)将纤维素和离子液体混合,加热,得到纤维素溶液;
    2)将纤维素溶液、凹凸棒石、磁性粒子和成孔剂进行混合,然后将所得混合液滴加到酸溶液中,过滤,得到复合微球;
    3)将复合微球、溶剂、丙烯酰胺进行混合,然后加入引发剂、酸,搅拌反应,过滤,干燥,得到所述磁性凹凸棒石纤维素复合微球。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤2)中滴加速率为2mL/min~3mL/min;
    所述酸溶液为盐酸溶液,盐酸溶液的浓度为0.5mol/L-1mol/L。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述纤维素、凹凸棒石、磁性粒子和离子液体的质量比为1:(0.5-1):(0.5-1):(30-40);
    成孔剂的加入量为纤维素和凹凸棒石总质量的10%-50%;
    步骤3)中复合微球、溶剂、丙烯酰胺、引发剂和酸的质量比为1:(200-300):(3-7):(0.2-0.5):(0.2-0.5)。
  4. 根据权利要求1-3任一项所述的制备方法,其特征在于,步骤1)中所述加热温度为90℃~120℃,加热时间为1h~2h;
    步骤2)中在滴加过程中对酸溶液持续搅拌,滴加结束后继续搅拌,搅拌转速为150~200r/min,总搅拌时间为0.5h~1h;
    步骤3)中所述反应温度为35℃~40℃,反应时间为2h~4h,干燥温度为40℃~45℃,干燥时间为8~12h。
  5. 根据权利要求1-4任一项所述的制备方法,其特征在于,步骤2)中还包括将复合微球进行水洗,冻干的步骤;
    步骤3)中所述混合、搅拌反应步骤均在氮气或惰性气体下进行。
  6. 根据权利要求1-5任一项所述的制备方法,其特征在于,所述纤维素选自微晶纤维素、棉纤维素、秸秆纤维素或纸张纤维素中的一种;
    所述离子液体选自1-烯丙基-3甲基咪唑氯盐或1-丁基-3-甲基咪唑氯盐;
    所述成孔剂为碳酸钙;
    所述磁性粒子为四氧化三铁,优选的,所述磁性粒子为纳米四氧化三铁;
    所述溶剂为水,所述引发剂为硝酸铈铵,所述酸为硝酸,硝酸的浓度为 4mol/L-6mol/L。
  7. 根据权利要求1-6任一项所述的制备方法,其特征在于,所述凹凸棒石为活化后的凹凸棒石,所述活化后的凹凸棒石的制备方法包括如下步骤:将凹凸棒石和酸混合,加热活化,过滤,清洗,干燥,得到所述活化后的凹凸棒石。
  8. 根据权利要求1-7任一项所述的制备方法,其特征在于,所述活化后的凹凸棒石的制备方法中,凹凸棒石和酸的质量比为1:(8-10),加热活性温度为80℃~120℃,加热活化时间为3h~5h,干燥温度为60℃~80℃,干燥时间为8h~12h。
  9. 根据权利要求1-8任一项所述的制备方法,其特征在于,所述活化后的凹凸棒石的制备方法中,所述酸为盐酸,盐酸的浓度为2mol/L-4mol/L;
    在将凹凸棒石和酸混合之前还包括对凹凸棒石进行清洗、烘干、过筛的步骤。
  10. 根据权利要求1-9任一项所述的制备方法,其特征在于,所述凹凸棒石的比表面积为200-800m 2/g,所述磁性凹凸棒石纤维素复合微球的粒径为2-3mm。
  11. 一种磁性凹凸棒石纤维素复合微球,其特征在于,由权利要求1-10任一项所述的制备方法制备得到。
  12. 权利要求11所述的磁性凹凸棒石纤维素复合微球在重金属污染土壤修复中的应用。
  13. 根据权利要求12所述的应用,其特征在于,所述重金属为金属镉。
PCT/CN2021/142738 2021-12-29 2021-12-29 一种复合微球的制备方法及由其制备的复合微球和应用 WO2023123139A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142738 WO2023123139A1 (zh) 2021-12-29 2021-12-29 一种复合微球的制备方法及由其制备的复合微球和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142738 WO2023123139A1 (zh) 2021-12-29 2021-12-29 一种复合微球的制备方法及由其制备的复合微球和应用

Publications (1)

Publication Number Publication Date
WO2023123139A1 true WO2023123139A1 (zh) 2023-07-06

Family

ID=86996969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142738 WO2023123139A1 (zh) 2021-12-29 2021-12-29 一种复合微球的制备方法及由其制备的复合微球和应用

Country Status (1)

Country Link
WO (1) WO2023123139A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117063655A (zh) * 2023-08-15 2023-11-17 湖南省土壤肥料研究所 一种淹水环境下稻田潜育化阻控及协同降镉的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103183832A (zh) * 2011-12-28 2013-07-03 中国科学院青岛生物能源与过程研究所 一种磁性纤维素壳聚糖复合微球的制备方法
US20140284281A1 (en) * 2013-03-21 2014-09-25 King Abdulaziz City for Science and Technology (KACST) Novel adsorbent composite from natural raw materials to remove heavy metals from water
CN106179249A (zh) * 2016-08-22 2016-12-07 中国科学院广州能源研究所 一种凹凸棒纤维素复合吸附微球的制备方法
CN108620032A (zh) * 2018-05-18 2018-10-09 云南圣清环保科技有限公司 一种重金属吸附剂及其制备方法与应用
CN108889278A (zh) * 2018-07-10 2018-11-27 华北电力大学(保定) 一种可清除汞离子的复合吸附微球的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103183832A (zh) * 2011-12-28 2013-07-03 中国科学院青岛生物能源与过程研究所 一种磁性纤维素壳聚糖复合微球的制备方法
US20140284281A1 (en) * 2013-03-21 2014-09-25 King Abdulaziz City for Science and Technology (KACST) Novel adsorbent composite from natural raw materials to remove heavy metals from water
CN106179249A (zh) * 2016-08-22 2016-12-07 中国科学院广州能源研究所 一种凹凸棒纤维素复合吸附微球的制备方法
CN108620032A (zh) * 2018-05-18 2018-10-09 云南圣清环保科技有限公司 一种重金属吸附剂及其制备方法与应用
CN108889278A (zh) * 2018-07-10 2018-11-27 华北电力大学(保定) 一种可清除汞离子的复合吸附微球的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GONG, GUIZHEN ET AL.: "Study on Adsorption Performance of Peanut Shell Cellulose Modified with Acrylamide for Cadmium Ion from Water", CEREALS & OILS, vol. 34, no. 4, 10 April 2021 (2021-04-10), XP009546984, ISSN: 1008-9578 *
LI, BO ET AL.: "Functionalized porous magnetic cellulose/Fe3O4 beads prepared from ionic liquid for removal of dyes from aqueous solution", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, vol. 163, 3 July 2020 (2020-07-03), XP086300193, ISSN: 0141-8130, DOI: 10.1016/j.ijbiomac.2020.06.280 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117063655A (zh) * 2023-08-15 2023-11-17 湖南省土壤肥料研究所 一种淹水环境下稻田潜育化阻控及协同降镉的方法
CN117063655B (zh) * 2023-08-15 2024-04-23 湖南省土壤肥料研究所 一种淹水环境下稻田潜育化阻控及协同降镉的方法

Similar Documents

Publication Publication Date Title
CN112871127B (zh) 一种高孔隙率锂离子筛颗粒的制备方法
CN110170295A (zh) 一种除磷吸附剂及其制备方法
CN104084126B (zh) 生物质基铁铝复合球形炭的制备方法
CN106492761A (zh) 一种磁性水凝胶微球的制备方法
CN103706328B (zh) 氮杂化的磁性有序介孔碳吸附剂、制备方法和应用
CN106268652B (zh) 一种基于MOFs的重金属捕集剂的制备方法
CN108525636B (zh) 一种快速吸附解析的吸附剂、制备及在锂/铷吸附的应用
CN106430304B (zh) 一种高比表面耐高温铈锆固溶体的制备方法
CN103599749A (zh) 磁性载钴有序介孔碳及其制备方法和应用
CN104623973B (zh) 一种改性石英砂及其改性方法
CN106824069B (zh) 用于处理含砷废水的稀土掺杂铁炭材料的制备方法
CN108435143A (zh) 一种高亲水性吸附剂、制备及吸附铷离子或锂离子的应用
WO2023123139A1 (zh) 一种复合微球的制备方法及由其制备的复合微球和应用
CN104741074A (zh) 一种膨胀蛭石吸附剂的制备方法
CN105817213A (zh) 一种基于中空介孔二氧化硅的吸附剂及其制备方法和回收黄金的应用
CN108912343A (zh) 一种聚不饱和羧酸类改性的金属有机骨架材料及其制备方法和应用
CN102500315A (zh) 一种LiX分子筛吸附剂及其制备方法
CN110292912A (zh) 一种mof衍生的簇状铈基除磷吸附剂及其制备方法
CN112607816A (zh) 膨润土基复合材料深度脱除废水重金属离子技术
CN103626222B (zh) 一种微米级二氧化锡粉体的制备方法
CN114345304A (zh) 一种负载零价铁的纤维素壳聚糖复合微球及其制备方法和应用
Zeng et al. Mesoporous-confined short chain polyamidoxime in MIL-101 matrix for enhanced uranium adsorption
CN103554514A (zh) 一种用于修复重金属污染土壤的螯合剂及其制备和使用方法
CN104841371A (zh) 一种高活性蛭石/碳纳米管复合的吸附过滤剂及其制作方法
CN106830159A (zh) 一种用于去除废水中氟离子的新型吸附剂及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969506

Country of ref document: EP

Kind code of ref document: A1