WO2023122953A1 - 一种立式多相电感器及其制造方法 - Google Patents

一种立式多相电感器及其制造方法 Download PDF

Info

Publication number
WO2023122953A1
WO2023122953A1 PCT/CN2021/142050 CN2021142050W WO2023122953A1 WO 2023122953 A1 WO2023122953 A1 WO 2023122953A1 CN 2021142050 W CN2021142050 W CN 2021142050W WO 2023122953 A1 WO2023122953 A1 WO 2023122953A1
Authority
WO
WIPO (PCT)
Prior art keywords
coils
coil
inductor
vertical
magnetic body
Prior art date
Application number
PCT/CN2021/142050
Other languages
English (en)
French (fr)
Inventor
洪哲
郭海
王文杰
陈先仁
丁黄瑞
Original Assignee
深圳顺络电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳顺络电子股份有限公司 filed Critical 深圳顺络电子股份有限公司
Priority to PCT/CN2021/142050 priority Critical patent/WO2023122953A1/zh
Publication of WO2023122953A1 publication Critical patent/WO2023122953A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding

Definitions

  • the present application relates to the technical field of electromagnetic components, in particular to a vertical multiphase inductor and a manufacturing method thereof.
  • Traditional inductors are generally independent components, which are commonly referred to as single-phase inductors.
  • a packaged inductor can only work for the circuit where one driver chip is located. If it is necessary to work for the circuit where multiple driver chips are located, multiple independent inductors are required, not only the cost is high, but also the occupied PCB (Printed Circuit Board, printed circuit board) circuit space is relatively large, which is not conducive to the miniaturization of electrical components .
  • PCB Print Circuit Board, printed circuit board
  • the embodiment of the present application provides a vertical multi-phase inductor and a manufacturing method thereof, which can integrate multiple inductors into one multi-phase inductor, thereby reducing the occupied PCB circuit space.
  • a vertical multiphase inductor provided by an embodiment of the present application includes a magnetic body and a plurality of first coils and a plurality of second coils, and the plurality of first coils and a plurality of second coils are arranged along the second direction
  • the laminations are arranged in the magnetic body at intervals, and along the second direction, a second coil is arranged between two adjacent first coils, and the orthographic projection of the first coil falls within the orthographic projection of the second coil.
  • two adjacent first coils may form an original coil connected end to end, and/or two adjacent second coils may form an original coil connected end to end.
  • two adjacent first coils may be arranged symmetrically, and/or two adjacent second coils may be arranged symmetrically, and the first direction and the second direction are perpendicular to each other.
  • the multi-phase inductor includes a plurality of first pads and second pads exposed to the magnetic body, and the two ends of each first coil are respectively connected to a first pad as an input end of the first coil and output ends; two ends of each second coil are respectively connected to a second pad as the input end and output end of the second coil; the two first pads of the first coil are located at the two first pads of the second coil between two pads.
  • the distance between the first pad and the second pad is W, and 0.3mm ⁇ W ⁇ 0.4mm.
  • the magnetic permeability of the vertical multi-phase inductor is 50H/m ⁇ 5H/m
  • the vertical multi-phase inductor also includes an interlayer, the interlayer is arranged in the magnetic body and is located adjacent to the first coil and the second coil between.
  • the magnetic permeability of the interlayer is ⁇ 1 , and when the temperature is above 25° C., ⁇ 1 ⁇ 20%* ⁇ .
  • the thickness of the interlayer is D, and 0.5mm ⁇ D ⁇ 1.2mm.
  • a method for manufacturing a vertical multi-phase inductor provided in an embodiment of the present application includes:
  • a plurality of first coils and a plurality of second coils are stacked and spaced in the magnetic body along the second direction, and along the second direction, a second coil is arranged between two adjacent first coils, and the first coil
  • the orthographic projection falls within the orthographic projection of the second coil.
  • printing forms a plurality of first coils and a plurality of second coils, including:
  • the original coil is cut along the axis of the first direction to form at least two first coils and/or at least two second coils, and the first direction is perpendicular to the second direction.
  • a plurality of first coils and second coils are alternately stacked and spaced in the magnetic body along the second direction, and an inductor is formed by each coil in the magnetic body, so that multiple inductors can be integrated It becomes a multi-phase inductor with a high degree of integration, which reduces the occupied PCB circuit space and is conducive to the miniaturization design of electrical components; moreover, the orthographic projection of the first coil falls into the orthographic projection of the second coil, which is equivalent to Displacement of two adjacent coils can adjust the mutual inductance between the inductors by adjusting the overlapping area of the upper and lower adjacent coils (that is, the overlapping area of the orthographic projection of the two along the second direction y); of course, it can also be adjusted by Adjust other designs of each coil, such as coil size, etc., so that the consistency of the electrical parameters such as the inductance L, RDC, and coupling coefficient K of the polyphase inductor is high, and its high electrical performance consistency
  • FIG. 1 is a schematic structural diagram of a multi-phase inductor according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a coil formed by printing according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of printing and forming coils according to another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a pad according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a multi-phase inductor according to another embodiment of the present application.
  • FIG. 6 is a schematic flow chart of a method for manufacturing a multiphase inductor according to an embodiment of the present application
  • FIG. 7 is a schematic flowchart of a method for manufacturing a multi-phase inductor according to another embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a multi-phase inductor according to an embodiment of the present application.
  • the vertical multiphase inductor 1 includes a magnetic body 10 , a plurality of first coils 21 , and a plurality of second coils 22 .
  • a plurality of first coils 21 and a plurality of second coils 22 are stacked and spaced in the magnetic body, and a second coil 22 is arranged between two adjacent first coils 21, or in other words, adjacent A first coil 21 is disposed between the two second coils 22 , that is, the first coils 21 and the second coils 22 are arranged alternately in sequence, and the orthographic projection of the first coil 21 falls within the orthographic projection of the second coil 22 .
  • the so-called lamination interval setting can be understood as: among multiple first coils 21 and multiple second coils 22, any single coil is located on the same plane layer, and the first coil 21 and the second coil that are adjacent up and down along the second direction y
  • the distance between the two coils 22 is greater than zero, that is, in the scene shown in FIG. 1 , the material of the magnetic body 10 is disposed between the vertically adjacent first coil 21 and the second coil 22 .
  • the orthographic projection of the first coil 21 falls within the orthographic projection of the second coil 22 , which is equivalent to arranging the vertically adjacent first coil 21 and second coil 22 in a misaligned position.
  • the so-called dislocation setting can be understood as: viewed along the second direction y, the orthographic projections between the upper and lower adjacent first coils 21 and second coils 22 do not completely overlap.
  • the first coil 21 The two ends of the orthographic projection (which can be regarded as the input end and the output end) fall within the orthographic projection of the second coil 22 .
  • An inductor is formed by each coil in the magnetic body 10, as shown in Figure 1, six inductors are formed by six coils, so that multiple inductors can be integrated into a vertical multi-phase inductor 1, reducing the occupation Smaller PCB circuit space is conducive to the miniaturization design of electrical components.
  • the shape of the vertical multiphase inductor 1 is not limited in this embodiment of the application, for example, it may be a rectangular parallelepiped as shown in FIG. 1 . It should be noted that, for the sake of visual presentation, FIG. 1 shows how each first coil 21 and second coil 22 are arranged in the magnetic body 10, but it should be understood that in an actual scene, the magnetic body 10 may be Transparent, the user cannot see the individual coils.
  • the size of the vertical multi-phase inductor 1 is not limited in this embodiment of the present application. Still taking the cuboid vertical polyphase inductor 1 shown in FIG. 1 as an example, the length of the vertical polyphase inductor 1 (that is, the length along the first direction x shown in FIG. 1 ) is 3.0 mm, and the height (that is, The length along the second direction y shown in FIG. 1) is 2.2 mm, and the thickness (ie the length along the third direction z shown in FIG. 1) is 1.4 mm.
  • the first direction x, the second direction y, and the third direction z are perpendicular to each other, which can be regarded as three coordinate axes of a three-dimensional Cartesian coordinate system.
  • the magnetic body 10 can be made of materials with relatively high magnetic permeability, for example, the material of the magnetic body 10 includes at least one of ferrite, iron-nickel alloy, amorphous alloy, nanocrystalline alloy and the like.
  • first coils 21 and the second coils 22 may be determined according to the actual required adaptability, which is not limited in this embodiment of the present application.
  • the three first coils 21 and the three second coils 22 shown in the accompanying drawings are only exemplary.
  • any two first coils 21 may form an original coil connected end to end
  • any two second coils 22 may form an original coil connected end to end.
  • the m th coil and the m+2 th coil can form the original coil 20a connected end to end
  • the m th coil and the m+2 th coil can both be the first coil 21, or Both may be the second coil 22 .
  • the so-called end-to-end original coil 20a that can be formed in this paper is not the form of the mth coil and the m+2th coil in the magnetic body 10 to form an end-to-end original coil 20a, but that the two coils can be placed by changing the orientation.
  • an original coil 20a connected end to end is formed on a base substrate through a printing process; the original coil 20a is cut along the axis O x where the first direction x is located, to obtain the mth coil and the mth coil. +2 coils.
  • the one-time printing process for forming the original coil 20a may be implemented by including but not limited to a dry printing process.
  • the embodiment of the present application can also form two (or more) original coils 20a arranged along the first direction x through one printing process, along the axis O x where the first direction x is located, through Multiple first coils 21 or second coils 22 are obtained through one cutting process.
  • first coils 21 can be set to form an end-to-end original coil 20a, and one printing process and one cutting process are used to obtain multiple first coils 21 .
  • first coil 21 and any two second coils 22 can form an original coil 20 a connected end to end, and a printing process and a cutting process are used to obtain multiple second coils 22 .
  • the base substrate can be made of the same material as the magnetic body 10 , and the cut substrate and the coils on it can be directly arranged on the corresponding layer, so as to be combined with the magnetic body 10 .
  • two adjacent first coils 21 may be arranged symmetrically, and/or, two adjacent second coils 22 may be arranged symmetrically.
  • the so-called symmetrical arrangement in this paper is not the symmetrical arrangement of the m-th coil and the m+2-th coil in the magnetic body 10, but that the two coils can be arranged along the first direction x by changing the orientation.
  • the structure of the mth coil and the m+2th coil is exactly the same, which is more conducive to manufacturing, and the size of the coils is consistent, which is conducive to keeping the RDC (direct current resistance) of the inductance of each phase consistent.
  • the shapes of the first coil 21 and the second coil 22 can be determined according to the adaptability of actual needs, which is not limited in the embodiment of the present application, for example, they can be U-shaped as shown in FIG. 2 or FIG. 3 .
  • the vertical multiphase inductor 1 includes a plurality of pads (Pads) exposed to the magnetic body 10, which are respectively the first pads 21a and the second pads 21b, and the pads are connected to the coil, which can be regarded as a coil
  • the lead-out electrode is used to electrically connect the coil to the external circuit, so that the corresponding inductance is electrically connected to the external circuit. Please continue to refer to FIG. 1, FIG. 4 and FIG.
  • each first coil 21 are respectively connected to a first pad 21a, as the input end and output end of the first coil 21; Both ends are respectively connected to a second pad 21b as the input end and output end of the second coil 22; the two first pads 21a of the first coil 21 are located between the two second pads 21b of the second coil 22 between.
  • the first end and the second end of each coil are arranged opposite to each other along the first direction x, and, along the first direction x,
  • the two first pads 21 a of the first coil 21 are located between the two second pads 21 b of the second coil 22 .
  • these pads can be the same, which is beneficial to modular design and manufacturing.
  • the size of each pad can be determined according to the actual required adaptability, which is not limited in this embodiment of the present application. For example, when the length, width and height of the vertical multi-phase inductor 1 are 3.0mm*2.2mm*1.4mm respectively, the width of a single pad (that is, the dimension along the second direction y) is 0.3mm, and the length (that is, the dimension along the second direction y) is 0.3mm.
  • the size of a direction x) is 0.4mm; optionally, the distance W between the first pad 21a and the second pad 21b satisfies 0.3mm ⁇ W ⁇ 0.4mm, preferably 0.38mm, by controlling the distance threshold, The overlapping area of the first coil 21 and the second coil 22 can be adjusted so that the mutual inductance between the inductances of each phase is reduced and within a preset range.
  • the material of a single pad may be a high-conductivity metal material such as silver or copper.
  • a plurality of coils are dislocated, and the mutual inductance between the inductors can be adjusted by adjusting the overlapping area of the upper and lower adjacent coils (that is, the overlapping area of the two orthographic projections along the second direction y).
  • the inductance L and the coupling coefficient k can be reduced by reducing the overlapping area between the upper and lower adjacent coils. All are within a predetermined deviation range, for example, within a deviation range of ⁇ 10%.
  • the embodiment of the present application can adjust the size of each coil, for example, increase The size of the large coils will reduce the influence of mutual inductance between the inductances; or, instead of adjusting the size of each coil, as shown in Figure 5, an interlayer 40 is arranged in the magnetic body 10, and the interlayer 40 is located between two adjacent coils The space is isolated by the interlayer 40 to reduce the mutual inductance between the inductances, so as to reduce the coupling coefficient k of the vertical multiphase inductor 1, which is conducive to the stability of the vertical multiphase inductor 1 within the predetermined deviation range; further optional Specifically, the interlayer 40 is also arranged on opposite sides of the magnetic body 10 along the second direction y, for example, in the orientation shown in FIG. 1 and FIG. mutual inductance.
  • the magnetic permeability of the interlayer 40 is ⁇ 1 , and above normal temperature (such as 25° C.), the magnetic permeability ⁇ 1 ⁇ 20%* ⁇ , and the material of the interlayer 40 can be resin, ceramics, glass, and those whose Curie temperature is lower than normal temperature. At least one of magnetic materials and the like.
  • the interlayer 40 can be regarded as a non-magnetic layer, and the magnetic permeability ⁇ 1 ⁇ 1H/m.
  • each edge of the interlayer 40 is exposed to the corresponding side of the vertical multiphase inductor 1 .
  • the vertical multi-phase inductors 1 with different magnetic permeability are introduced below, and the consistency of the inductance L, wherein the inductance L is the value measured at a frequency of 50MHz. See Table 1 below.
  • Inductors L1-L6 can be regarded as the aforementioned inductance formed by the six coils shown along the second direction y, and scheme 1# and scheme 2# can be regarded as the vertical multi-phase inductor 1 of the embodiment shown in Figure 1, scheme 3# can be regarded as the vertical multiphase inductor 1 provided with the interlayer 40 in the embodiment shown in FIG. 5 .
  • adjusting the corresponding thickness and permeability ⁇ 1 of the interlayer 40 can also reduce the inductance L of each inductor and the coupling coefficient K of each inductance.
  • the thickness D of the interlayer 40 can satisfy 0.5mm ⁇ D ⁇ 1.2mm, so that the consistency of the inductance L of each inductor is high and the consistency of the coupling coefficient K is high.
  • the embodiment of the present application also provides a method for manufacturing a multi-phase inductor, which can be used to manufacture the aforementioned vertical multi-phase inductor 1 .
  • the manufacturing method includes the following steps S11 and S12.
  • S11 printing and forming a plurality of first coils and a plurality of second coils.
  • S12 Lay a plurality of first coils and a plurality of second coils in the magnetic body at intervals along the second direction, and arrange a second coil between two adjacent first coils along the second direction, the first The orthographic projection of the coil falls within the orthographic projection of the second coil.
  • the way of forming the first coil and the second coil may be: as shown in FIG. 2 and FIG. 3 , printing and forming at least one original coil 20a connected end to end;
  • the axis Ox cuts the original coil 20a to form at least two coils, both of which are first coils, or both of which are second coils.
  • This method can produce the vertical multiphase inductor 1 of any of the foregoing embodiments, and thus can produce the beneficial effects of the vertical multiphase inductor 1 of the corresponding embodiment. It should be understood that the materials used in each step and the obtained dimensions can be referred to above, and will not be repeated here.
  • each coil is formed by a dry printing process, and then these coils are stacked as described above, and the magnetic body is cut to obtain the required size, and then formed by sintering with a plurality of first coils.
  • the magnetic body 10 of the coil 21 and the second coil 22 that is, the semi-finished product, further forms the first pad 21 a and the second pad 21 b by, for example, sputtering or other processes (eg, dipping silver).
  • the embodiment of the present application also provides an electronic device, the electronic device includes the vertical multi-phase inductor 1 of any of the above embodiments, and the vertical multi-phase inductor 1 is arranged in a circuit of the electronic device.
  • Electronic devices can be implemented in various specific forms, such as smart phones, wearable devices, drones, electric vehicles, electric cleaning tools, energy storage products, electric vehicles, electric bicycles, electric navigation tools and other electronic products.
  • smart phones wearable devices
  • drones electric vehicles
  • electric cleaning tools energy storage products
  • electric vehicles electric bicycles
  • electric navigation tools and other electronic products.
  • Those skilled in the art can understand that, in addition to elements specially used for mobile purposes, configurations according to embodiments of the present application can also be applied to fixed-type electronic devices.
  • the electronic equipment Since the electronic equipment has the vertical multi-phase inductor 1 of any of the aforementioned embodiments, the electronic equipment can produce the beneficial effects of the vertical multi-phase inductor 1 of the corresponding embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本申请公开了一种立式多相电感器及其制造方法。立式多相电感器包括磁性体和多个第一线圈和多个第二线圈,多个第一线圈和多个第二线圈沿第二方向叠层间隔设置于磁性体内,且沿第二方向,相邻两个第一线圈之间设置有一第二线圈,第一线圈的正投影落入第二线圈的正投影内。本申请可以将多颗电感集成为一颗多相电感器,且多相电感器的电感量L、RDC、耦合系数K等电性参数的一致性较高,其较高的电性能一致性可在电路工作中维持信号稳定,还可以减少所占用的PCB电路空间。

Description

一种立式多相电感器及其制造方法 技术领域
本申请涉及电磁元件技术领域,具体涉及一种立式多相电感器及其制造方法。
背景技术
传统的电感一般为独立元器件,即通常所说的单相电感器,一个封装的电感器件只能为一颗驱动芯片所在的电路工作。如果需要为多颗驱动芯片所在的电路工作,则需要多颗独立的电感,不仅成本高,而且所占用的PCB(Printed Circuit Board,印刷电路板)电路空间较大,不利于电器元件的小型化。
发明内容
本申请实施例提供一种立式多相电感器及其制造方法,可以将多颗电感集成为一颗多相电感器,减少所占用的PCB电路空间。
第一方面,本申请实施例提供的一种立式多相电感器,包括磁性体和多个第一线圈和多个第二线圈,多个第一线圈和多个第二线圈沿第二方向叠层间隔设置于磁性体内,且沿第二方向,相邻两个第一线圈之间设置有一第二线圈,第一线圈的正投影落入第二线圈的正投影内。
可选地,相邻两个第一线圈可形成首尾相连的原始线圈,和/或,相邻两个第二线圈可形成首尾相连的原始线圈。
可选地,沿第一方向所在的轴,相邻两个第一线圈可对称设置,和/或,相邻两个第二线圈可对称设置,第一方向和第二方向相垂直。
可选地,多相电感器包括多个外露于磁性体的第一焊盘和第二焊盘,每个第一线圈的两端分别连接一个第一焊盘,以作为第一线圈的输入端和输出端;每个第二线圈的两端分别连接一个第二焊盘,以作为第二线圈的输入端和输出端;第一线圈的两个第一焊盘位于第二线圈的两个第二焊盘之间。
可选地,沿第一方向,第一焊盘和第二焊盘之间的距离为W,且0.3mm≤W≤0.4mm。
可选地,立式多相电感器的磁导率50H/m≥μ≥5H/m,立式多相电感器还包括夹层,夹层设置于磁性体内且位于相邻第一线圈和第二线圈之间。
可选地,夹层的磁导率为μ 1,且在温度为25℃以上时,μ 1<20%*μ。
可选地,夹层的厚度为D,且0.5mm≤D≤1.2mm。
第二方面,本申请实施例提供的一种立式多相电感器的制造方法,包括:
印刷形成多个第一线圈和多个第二线圈;
将多个第一线圈和多个第二线圈沿第二方向叠层间隔设置于磁性体中,且沿第二方向,相邻两个第一线圈之间设置有一第二线圈,第一线圈的正投影落入第二线圈的正投影内。
可选地,印刷形成多个第一线圈和多个第二线圈,包括:
印刷形成至少一个首尾相连的原始线圈;
沿第一方向所在的轴切割原始线圈,形成至少两个第一线圈和/或至少两个第二线圈,第一方向与第二方向垂直。
如上所述,本申请实施例将多个第一线圈和第二线圈沿第二方向交替叠层间隔设置于磁性体内,通过磁性体内的每一线圈形成一颗电感,从而可以将多颗电感集成为一颗多相电感器,集成化程度高,减少所占用的PCB电路空间,有利于电器元件的小型化设计;并且,第一线圈的正投影落入第二线圈的正投影内,相当于将相邻两个线圈错位设置,可以通过调节上下相邻两个线圈的重合面积(即沿第二方向y两者的正投影重合面积),来调节电感之间的互感;当然,还可以通过调整各个线圈的其他设计,例如线圈尺寸等,使得多相电感器的电感量L、RDC、耦合系数K等电性参数的一致性较高,其较高的电性能一致性可在电路工作中维持信号稳定。
附图说明
图1为本申请一实施例的多相电感器的结构示意图;
图2为本申请一实施例的印刷形成线圈的示意图;
图3为本申请另一实施例印刷形成线圈的示意图;
图4为本申请一实施例的焊盘的结构示意图;
图5为本申请另一实施例的多相电感器的结构示意图;
图6为本申请一实施例的多相电感器的制造方法的流程示意图;
图7为本申请另一实施例的多相电感器的制造方法的流程示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合具体实施例及相应的附图,对本申请的技术方案进行清楚地描述。显然,下文所描述实施例仅是本申请的一部分实施例,而非全部的实施例。在不冲突的情况下,下述各个实施例及其技术特征可相互组合,且亦属于本申请的技术方案。
应理解,在本申请实施例的描述中,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请相应实施例的技术方案和简化描述,而非指示或暗示装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
图1为本申请一实施例的多相电感器的结构示意图。如图1所示,立式多相电感器1包括磁性体10、多个第一线圈21、以及多个第二线圈22。沿第二方向y,多个第一线圈21和多个第二线圈22叠层间隔设置于磁性体内,相邻两个第一线圈21之间设有一个第二线圈22,或者说,相邻两个第二线圈22之间设有一个第一线圈21,即,第一线圈21和第二线圈22依次交替设置,且第一线圈21的正投影落入第二线圈22的正投影内。
所谓叠层间隔设置可以理解为:在多个第一线圈21和多个第二线圈22中,任一单个线圈位于同一平面层上,沿第二方向y上下相邻的第一线圈21和第二线圈22之间具有大于零的距离,即在图1所示的场景中,上下相邻的第一线圈21和第二线圈22之间设置有磁性体10的材料。
沿第二方向y,第一线圈21的正投影落入第二线圈22的正投影内,相当于将上下相邻的第一线圈21和第二线圈22错位设置。所谓错位设置可以理解为:沿第二方向y观察,上下相邻的第一线圈21和第二线圈22之间的正投影未完全重叠,在图1所示的场景中,第一线圈21的正投影的两端(可视为输入端和输出端)落于第二线圈22的正投影内。
通过磁性体10内的每一线圈形成一颗电感,如图1所示,通过六个线圈形成六颗电感,从而可以将多颗电感集成为一颗立式多相电感器1,减少所占用的PCB电路空间,有利于电器元件的小型化设计。
立式多相电感器1的形状,本申请实施例不予以限定,例如可以为图1所示的长方体等类四方体。需要说明的是,为了直观展示,图1中显示出了各个第一线圈21和第二线圈22在磁性体10内的设置方式,但应理解的是,在 实际场景中,磁性体10可以非透明,用户无法观看到各个线圈。
立式多相电感器1的尺寸,本申请实施例也不予以限定。仍以图1所示的长方体的立式多相电感器1为例,立式多相电感器1(即沿图1所示的第一方向x的长度)的长度为3.0mm、高度(即沿图1所示的第二方向y的长度)为2.2mm、厚度(即沿图1所示的第三方向z的长度)为1.4mm。第一方向x、第二方向y和第三方向z两两垂直,可视为三维直角坐标系的三条坐标轴。
磁性体10可以采用较高磁导率的材料制得,例如磁性体10的材料包括铁氧体、铁镍合金、非晶合金、纳米晶合金等中的至少一种。
应理解,第一线圈21和第二线圈22的数量可以根据实际所需适应性而定,本申请实施例不予以限定。本文附图所示的3个第一线圈21和3个第二线圈22仅为示例性展示。
可选地,任意两个第一线圈21可形成首尾相连的原始线圈,任意两个第二线圈22可形成首尾相连的原始线圈。请一并参阅图1和图2,第m个线圈和第m+2个线圈可形成首尾相连的原始线圈20a,第m个线圈和第m+2个线圈可以均为第一线圈21,也可以均为第二线圈22。本文所谓的可形成首尾相连的原始线圈20a并非第m个线圈和第m+2个线圈在磁性体10中的形态形成首尾相连的原始线圈20a,而是这两个线圈可以通过改变摆放方位,以此可形成首尾相连的原始线圈20a。请参阅图2所示,通过一次印刷制程在一衬底基板上形成一个首尾相连的原始线圈20a;沿第一方向x所在的轴O x,切割原始线圈20a,得到第m个线圈和第m+2个线圈。形成原始线圈20a的该一次印刷制程可以采用包括但不限于干法印刷工艺实现。
当然,如图3所示,本申请实施例也可以通过一次印刷制程形成沿第一方向x排布的两个(或者多个)原始线圈20a,沿第一方向x所在的轴O x,通过一次切割制程得到多个第一线圈21或者第二线圈22。
其他实施例可以仅设置任意两个第一线圈21可形成首尾相连的原始线圈20a,并采用一次印刷制程和一次切割制程,从而得到多个第一线圈21。或者第一线圈21,任意两个第二线圈22可形成首尾相连的原始线圈20a,并采用一次印刷制程和一次切割制程,从而得到多个第二线圈22。
衬底基板可以与磁性体10的材料相同,切割后的衬底基板及其上的线圈可以直接设置于对应层上,以便于与磁性体10结合。
进一步可选地,沿第一方向x所在的轴O x,相邻两个第一线圈21可对称 设置,和/或,相邻两个第二线圈22可对称设置。本文所谓的可对称设置并非第m个线圈和第m+2个线圈在磁性体10中的形态对称设置,而是这两个线圈可以通过改变摆放方位,以此沿第一方向x所在的轴O x对称设置。于此,第m个线圈和第m+2个线圈的结构完全相同,更加有利于制造,并且线圈的尺寸是一致的,有利于各相电感的RDC(直流阻抗)保持一致。
第一线圈21和第二线圈22的形状,可以根据实际需求适应性而定,本申请实施例不予以限定,例如可以为图2或者图3所示的U型。
可选地,立式多相电感器1包括多个外露于磁性体10的焊盘(Pad),分别为第一焊盘21a和第二焊盘21b,焊盘与线圈连接,可视为线圈的引出电极,用于将线圈与外部电路电连接,以此对应的电感与外部电路电连接。请继续参阅图1、图4和图5,每个第一线圈21的两端分别连接一个第一焊盘21a,以作为第一线圈21的输入端和输出端;每个第二线圈22的两端分别连接一个第二焊盘21b,以作为第二线圈22的输入端和输出端;第一线圈21的两个第一焊盘21a位于第二线圈22的两个第二焊盘21b之间。
基于前述多个线圈的排布方式,请参阅图1、图4和图5所示,每个线圈的第一端和第二端沿第一方向x相对设置,并且,沿第一方向x,第一线圈21的两个第一焊盘21a位于第二线圈22的两个第二焊盘21b之间。
在一些场景中,这些焊盘可以相同,有利于模块化设计与制造。各个焊盘的尺寸可以根据实际所需适应性而定,本申请实施例不予以限定。例如,在立式多相电感器1的长宽高分别为3.0mm*2.2mm*1.4mm时,单个焊盘的宽度(即沿第二方向y的尺寸)为0.3mm,长度(即沿第一方向x的尺寸)为0.4mm;可选地,第一焊盘21a和第二焊盘21b之间的距离W满足0.3mm≤W≤0.4mm,优选为0.38mm,通过控制该距离阈值,可以实现对第一线圈21和第二线圈22重合面积的调节,使得各相电感之间得互感降低并在预设范围内。可选地,单个焊盘的材料可以是银、铜等高电导率金属材料。
在本申请实施例中,多个线圈错位设置,可以通过调节上下相邻两个线圈的重合面积(即沿第二方向y两者的正投影重合面积),来调节电感之间的互感。例如,对于立式多相电感器1的(磁性体10)磁导率μ<10H/m的场景,可以通过降低上下相邻两个线圈之间的重合面积,使得电感量L和耦合系数k均满足预定偏差范围内,例如满足±10%的偏差范围内。
而当立式多相电感器1的磁导率50H/m≥μ≥5H/m时,由于多相电感量L 之间影响较大,因此本申请实施例可以调整各个线圈的大小,例如增大线圈的尺寸,以将降低电感之间的互感影响;或者,不调整各个线圈的大小,如图5所示,而是在磁性体10内设置夹层40,夹层40位于相邻两个线圈之间,通过夹层40隔绝,降低电感之间的互感,以此降低立式多相电感器1的耦合系数k,利于立式多相电感器1的一致性稳定在预定偏差范围内;进一步可选地,夹层40还设置于磁性体10沿第二方向y的相对两侧,例如图1和图5所示的方位中,设置于磁性体10的上下两个端侧面,也可以降低电感之间的互感。
夹层40的磁导率为μ 1,在常温(例如25℃)以上,磁导率μ 1<20%*μ,夹层40的材料可以为树脂、陶瓷、玻璃、以及居里温度低于常温的磁性材料等中的至少一种。在一些场景中,夹层40可视为非磁性层,磁导率μ 1<1H/m。可选地,夹层40的各个边缘均暴露于立式多相电感器1对应的侧面。
下面介绍不同磁导率的立式多相电感器1,电感量L的一致性,其中电感量L均是在50MHz频率时测得的数值。请参阅下表1。
Figure PCTCN2021142050-appb-000001
表1
电感L1~L6可视为前述沿第二方向y所示的通过六个线圈形成的电感,方案1#和方案2#可视为图1所示实施例的立式多相电感器1,方案3#可视为图5所示实施例的设置有夹层40的立式多相电感器1。
请参阅表1所示,结合方案1#和方案3#可知,通过设置夹层40,会降低各个电感的电感量L,各个电感的电感量L的一致性较高。结合方案1#和方案2#可知,通过增大磁性体10材料的磁导率μ,会增大各个电感的电感量L,各个电感的电感量L的一致性虽然也会增加,但增加量较小,电感量L的一致性也可以实现在较高水平。
另外,需要说明的是,调整夹层40对应的厚度以及磁导率μ 1,也可以降低各个电感的电感量L以及各个电感的耦合系数K,例如夹层40的厚度D可以满足0.5mm≤D≤1.2mm,从而使得各个电感的电感量L的一致性较高以及耦合系数K的一致性较高。
本申请实施例还提供一种多相电感器的制造方法,可用于制造前述立式多相电感器1。如图6所示,该制造方法包括以下步骤S11和S12。
S11:印刷形成多个第一线圈和多个第二线圈。
S12:将多个第一线圈和多个第二线圈沿第二方向叠层间隔设置于磁性体中,且沿第二方向,相邻两个第一线圈之间设置有一第二线圈,第一线圈的正投影落入第二线圈的正投影内。
可选地,在S11步骤中,形成第一线圈和第二线圈的方式,可以为:结合图2和图3所示,印刷形成至少一个首尾相连的原始线圈20a;沿第一方向x所在的轴O x切割原始线圈20a,形成至少两个线圈,该至少两个线圈均为第一线圈,或者均为第二线圈。
该方法可以制得前述任一实施例的立式多相电感器1,因此可以产生对应实施例的立式多相电感器1所具有的有益效果。应该理解的是,各步骤采用的材料及所制得的尺寸等,可参阅前述,此处不再予以赘述。
应理解,前述多相电感器的制造方法仅为示例性概括,在实际场景中,各个步骤的具体过程应根据实际所需予以调整。例如,如图7所示,首先通过干法印刷工艺形成各个线圈,然后将这些线圈进行前述叠层设置,并对磁性体进行切割以得到符合需求的尺寸,再通过烧结形成具有多个第一线圈21和第二线圈22的磁性体10,即半成品,进一步地,通过例如溅射工艺或者其他工艺(例如沾银方式)形成第一焊盘21a和第二焊盘21b。
本申请实施例还提供一种电子设备,该电子设备包括上述任一实施例的立式多相电感器1,立式多相电感器1设置于电子设备的电路中。
电子设备可以以各种具体形式来实施,例如,智能手机、可穿戴设备、无人机、电动车、电动清洁工具、储能产品、电动汽车、电动自行车、电动导航工具等电子产品。本领域技术人员可理解的是,除特别用于移动目的的元件之外,根据本申请实施例的构造也能够应用于固定类型的电子设备。
由于电子设备具有前述任一实施例的立式多相电感器1,因此,该电子设备能够产生对应实施例的立式多相电感器1具有的有益效果。
应理解,以上所述仅为本申请的部分实施例,并非因此限制本申请的专利范围,对于本领域普通技术人员而言,凡是利用本说明书及附图内容所作的等 效结构变换,均同理包括在本申请的专利保护范围内。
尽管本文采用术语“第一、第二”等描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式。术语“或”和“和/或”被解释为包括性的,或意味着任一个或任何组合。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。

Claims (10)

  1. 一种立式多相电感器,其中,包括磁性体和多个第一线圈和多个第二线圈,所述多个第一线圈和所述多个第二线圈沿第二方向叠层间隔设置于所述磁性体内,且沿所述第二方向,相邻两个所述第一线圈之间设置有一第二线圈,所述第一线圈的正投影落入所述第二线圈的正投影内。
  2. 根据权利要求1所述的立式多相电感器,其中,任意两个所述第一线圈可形成首尾相连的原始线圈,和/或,任意两个所述第二线圈可形成首尾相连的原始线圈。
  3. 根据权利要求2所述的立式多相电感器,其中,沿第一方向所在的轴,任意两个所述第一线圈可对称设置,和/或,任意两个所述第二线圈可对称设置,所述第一方向和所述第二方向相垂直。
  4. 根据权利要求3所述的立式多相电感器,其中,所述多相电感器包括多个外露于所述磁性体的第一焊盘和第二焊盘,每个所述第一线圈的两端分别连接一个第一焊盘,以作为所述第一线圈的输入端和输出端;每个所述第二线圈的两端分别连接一个第二焊盘,以作为所述第二线圈的输入端和输出端;所述第一线圈的两个第一焊盘位于所述第二线圈的两个第二焊盘之间。
  5. 根据权利要求4所述的立式多相电感器,其中,沿所述第一方向,所述第一焊盘和所述第二焊盘之间的距离为W,且0.3mm≤W≤0.4mm。
  6. 根据权利要求1至5中任一项所述的立式多相电感器,其中,所述立式多相电感器的磁导率50H/m≥μ≥5H/m,所述立式多相电感器还包括夹层,所述夹层设置于所述磁性体内且位于相邻第一线圈和第二线圈之间。
  7. 根据权利要求6所述的立式多相电感器,其中,所述夹层的磁导率为μ 1,且在温度为25℃以上时,所述μ 1<20%*μ。
  8. 根据权利要求6所述的立式多相电感器,其中,所述夹层的厚度为D,且0.5mm≤D≤1.2mm。
  9. 一种立式多相电感器的制造方法,其中,包括:
    印刷形成多个第一线圈和多个第二线圈;
    将所述多个第一线圈和所述多个第二线圈沿第二方向叠层间隔设置于磁性体中,且沿所述第二方向,相邻两个所述第一线圈之间设置有一第二线圈,所述第一线圈的正投影落入所述第二线圈的正投影内。
  10. 根据权利要求9所述的方法,其中,所述印刷形成多个第一线圈和多个第二线圈,包括:
    印刷形成至少一个首尾相连的原始线圈;
    沿第一方向所在的轴切割所述原始线圈,形成至少两个所述第一线圈和/或至少两个所述第二线圈,所述第一方向与所述第二方向垂直。
PCT/CN2021/142050 2021-12-28 2021-12-28 一种立式多相电感器及其制造方法 WO2023122953A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142050 WO2023122953A1 (zh) 2021-12-28 2021-12-28 一种立式多相电感器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142050 WO2023122953A1 (zh) 2021-12-28 2021-12-28 一种立式多相电感器及其制造方法

Publications (1)

Publication Number Publication Date
WO2023122953A1 true WO2023122953A1 (zh) 2023-07-06

Family

ID=86996909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142050 WO2023122953A1 (zh) 2021-12-28 2021-12-28 一种立式多相电感器及其制造方法

Country Status (1)

Country Link
WO (1) WO2023122953A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117676A (ja) * 2007-11-08 2009-05-28 Panasonic Corp カップルドインダクタ
CN201307489Y (zh) * 2008-10-28 2009-09-09 深圳振华富电子有限公司 叠层片式线圈集成件
CN101556854A (zh) * 2008-04-09 2009-10-14 深圳振华富电子有限公司 叠层片式线圈集成件及其制造方法
CN101763934A (zh) * 2010-01-20 2010-06-30 深圳顺络电子股份有限公司 一种无极性叠层片式电感器
CN103366945A (zh) * 2012-03-30 2013-10-23 东光株式会社 面安装多相电感器的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117676A (ja) * 2007-11-08 2009-05-28 Panasonic Corp カップルドインダクタ
CN101556854A (zh) * 2008-04-09 2009-10-14 深圳振华富电子有限公司 叠层片式线圈集成件及其制造方法
CN201307489Y (zh) * 2008-10-28 2009-09-09 深圳振华富电子有限公司 叠层片式线圈集成件
CN101763934A (zh) * 2010-01-20 2010-06-30 深圳顺络电子股份有限公司 一种无极性叠层片式电感器
CN103366945A (zh) * 2012-03-30 2013-10-23 东光株式会社 面安装多相电感器的制造方法

Similar Documents

Publication Publication Date Title
US10068697B2 (en) Coil component and board having the same
KR102047563B1 (ko) 코일 부품 및 그 실장 기판
JP6500992B2 (ja) コイル内蔵部品
KR102117512B1 (ko) 코일 부품 및 그 실장 기판
KR102105393B1 (ko) 코일 부품 및 그 실장 기판
JPWO2014171140A1 (ja) コモンモードノイズフィルタおよびその製造方法
US20160078997A1 (en) Inductor array chip and board having the same
JP2004311944A (ja) チップタイプパワーインダクタ
JP5776868B1 (ja) アンテナ装置および電子機器
US20190260343A1 (en) Lc filter
US10056183B2 (en) Coil component and board having the same
CN104766690A (zh) 多层电子组件及其制造方法
US11954552B2 (en) RFID tag substrate, RFID tag, and RFID system
JP2018082136A (ja) インダクター
JP2016006847A (ja) Lc複合部品
JP2005045103A (ja) チップインダクタ
WO2023122953A1 (zh) 一种立式多相电感器及其制造方法
WO2023122951A1 (zh) 一种多相电感器及其制造方法
US9058923B2 (en) Electronic component and manufacturing method thereof
CN114496518A (zh) 一种立式多相电感器及其制造方法
KR20050029927A (ko) 칩 인덕터
JP2020107773A (ja) 巻線型のコイル部品及びドラムコア
CN114334398A (zh) 一种多相电感器及其制造方法
WO2024108478A1 (zh) 电感元器件及其制造方法
JP6707970B2 (ja) Icチップ実装基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969333

Country of ref document: EP

Kind code of ref document: A1