WO2023121315A1 - 양극 슬러리 조성물, 이를 이용하여 제조된 리튬 이차전지 - Google Patents

양극 슬러리 조성물, 이를 이용하여 제조된 리튬 이차전지 Download PDF

Info

Publication number
WO2023121315A1
WO2023121315A1 PCT/KR2022/020996 KR2022020996W WO2023121315A1 WO 2023121315 A1 WO2023121315 A1 WO 2023121315A1 KR 2022020996 W KR2022020996 W KR 2022020996W WO 2023121315 A1 WO2023121315 A1 WO 2023121315A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
slurry composition
electrode slurry
dispersant
secondary battery
Prior art date
Application number
PCT/KR2022/020996
Other languages
English (en)
French (fr)
Inventor
권오정
김민현
조윤철
김주련
조정근
김기웅
안인구
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220179775A external-priority patent/KR20230098037A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023550667A priority Critical patent/JP2024507546A/ja
Priority to CN202280015253.9A priority patent/CN116918094A/zh
Priority to EP22911948.2A priority patent/EP4283712A1/en
Publication of WO2023121315A1 publication Critical patent/WO2023121315A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode slurry composition and a lithium secondary battery manufactured using the same, and more particularly, to a positive electrode slurry composition including a low molecular weight dispersant and a lithium secondary battery manufactured using the same.
  • Lithium cobalt-based oxide, lithium nickel-cobalt-manganese-based oxide, lithium iron phosphate, and the like are used as cathode active materials for lithium secondary batteries.
  • lithium iron phosphate is inexpensive because it contains iron, which is a resource-rich and inexpensive material.
  • the toxicity of lithium iron phosphate is low, environmental pollution can be reduced when lithium iron phosphate is used.
  • lithium iron phosphate has an olivine structure, the active material structure can be stably maintained at a high temperature compared to the layered lithium transition metal oxide. Accordingly, there is an advantage in that the battery has excellent high-temperature stability and high-temperature lifespan characteristics.
  • lithium iron phosphate has a problem of poor lithium mobility and low electrical conductivity compared to lithium transition metal oxides such as lithium nickel cobalt manganese oxide. Accordingly, in the related art, lithium iron phosphate having a small average particle diameter is used to form a short lithium migration path, the surface of the lithium iron phosphate is coated with carbon to improve electrical conductivity, and an excessive amount of a conductive material is used.
  • the specific surface area of the lithium iron phosphate increases, and the wettability of the lithium iron phosphate by a solvent is reduced.
  • severe particle aggregation of lithium iron phosphate occurs, resulting in deterioration in stability and coating processability of the positive electrode slurry.
  • an excessive amount of the conductive material is used, excessive aggregation of particles between the conductive materials occurs in the positive electrode slurry.
  • the number of agglomerated conductive materials increases, the number of lithium iron phosphates that can participate in cell charge/discharge reactions relatively decreases, and as a result, charge/discharge resistance of the lithium secondary battery may increase.
  • An object of the present invention is to provide a positive electrode slurry composition having a relatively low viscosity and a high solid content by improving the dispersibility of a positive electrode active material and/or conductive material in the positive electrode slurry composition and suppressing particle aggregation.
  • an object of the present invention is to provide a lithium secondary battery with reduced discharge resistance by improving the dispersibility of a positive electrode active material and/or conductive material in a positive electrode and suppressing particle aggregation.
  • a cathode active material, a dispersant, a conductive material, a binder, and a solvent are included, the cathode active material includes lithium iron phosphate, and the dispersant has a weight average molecular weight of 10,000 g/mol to 150,000 g /mol of the positive electrode slurry composition is provided.
  • a positive electrode includes a positive electrode active material, a dispersant, a conductive material, and a binder, the positive electrode active material includes lithium iron phosphate, and the weight average molecular weight of the dispersant is 10,000 g. / mol to 150,000 g / mol lithium secondary battery is provided.
  • the positive electrode slurry composition of the present invention includes a dispersant having a low weight average molecular weight, solvent wetting and dispersibility of the lithium iron phosphate particles included in the positive electrode slurry composition are improved, thereby suppressing particle aggregation of lithium iron phosphate. there is. Accordingly, the positive electrode slurry composition may have a low viscosity and a high solid content compared to other positive electrode slurry compositions having the same viscosity.
  • the positive electrode slurry composition of the present invention suppresses particle aggregation of lithium iron phosphate, thereby improving stability and coating processability of the positive electrode slurry composition.
  • the positive electrode slurry composition of the present invention has a relatively high solid content, the time required for a slurry drying process in manufacturing a positive electrode is shortened, thereby reducing process costs.
  • the surface area of the agglomerated conductive material can be minimized compared to the case where the conductive material is linearly agglomerated because the conductive material is agglomerated in a spherical shape in the positive electrode.
  • the surface area of the positive electrode active material that does not participate in the lithium insertion/desorption reaction adjacent to the aggregated conductive material is minimized, the discharge resistance of the lithium secondary battery manufactured using the positive electrode slurry composition can be reduced.
  • Example 1 is a SEM image of a cross-section of a positive electrode in a lithium secondary battery of Example 1;
  • Example 2 is a SEM image of a cross-section of a positive electrode in a lithium secondary battery of Example 2;
  • Example 3 is a SEM image of a cross-section of a positive electrode in a lithium secondary battery of Example 3;
  • references to "A and/or B" herein means A, or B, or A and B.
  • D 50 means a particle diameter corresponding to 50% of the cumulative volume in the particle diameter distribution curve of the particles.
  • the D 50 can be measured using, for example, a laser diffraction method.
  • the laser diffraction method is generally capable of measuring particle diameters of several millimeters in the submicron region, and can obtain results with high reproducibility and high resolution.
  • specific surface area is measured by the BET method, and can be specifically calculated from the nitrogen gas adsorption amount under liquid nitrogen temperature (77K) using BELSORP-mino II of BEL Japan.
  • the viscosity of the positive electrode slurry composition is measured at a shear rate of 10 -2 rpm at 25 ° C using a viscometer (Brookfield) after cooling the positive electrode slurry composition for 1 hour at room temperature and 1% relative humidity. (shear rate) was measured. Viscosity was measured within 2 hours after preparing the positive electrode slurry composition, including the cooling time.
  • SOC50 discharge resistance means a value obtained by dividing a voltage drop value by a current value in a state in which a discharge pulse is applied for 10 seconds at a current of 2.5 C at 50% of SOC (State of Charge).
  • a positive electrode slurry composition according to an embodiment of the present invention is for forming a positive electrode active material layer, and includes a positive electrode active material, a dispersant, a conductive material, a binder, and a solvent, wherein the positive electrode active material includes lithium iron phosphate,
  • the weight average molecular weight of the dispersant is 10,000 g/mol to 150,000 g/mol.
  • the inventors of the present invention found that when the dispersant with a low weight average molecular weight is included in the positive electrode slurry composition, the dispersibility of the positive electrode active material and/or the conductive material in the positive electrode slurry composition is improved and particle aggregation can be suppressed. found out that it can This will be described in detail in this specification.
  • the cathode active material may include lithium iron phosphate.
  • the positive electrode active material includes the lithium iron phosphate, the stability of the positive electrode including the positive electrode active material is significantly improved, and thus the risk of ignition of the lithium secondary battery including the positive electrode may be greatly reduced.
  • the lithium iron phosphate may be a compound represented by Formula 1 below.
  • M is any one or two or more elements selected from the group consisting of Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn, and Y includes, and X includes any one or two or more elements selected from the group consisting of F, S, and N, and a, b, and x are each -0.5 ⁇ a ⁇ 0.5, 0 ⁇ b ⁇ 0.1, 0 ⁇ x ⁇ 0.5)
  • the lithium iron phosphate may be LiFePO 4 .
  • Lithium iron phosphate may include a carbon coating layer on its surface.
  • electrical conductivity may be improved, thereby improving resistance characteristics of the positive electrode.
  • the carbon coating layer is glucose, sucrose, lactose, starch, oligosaccharide, polyoligosaccharide, fructose, cellulose, polymer of furfuryl alcohol, block copolymer of ethylene and ethylene oxide, vinyl resin, cellulose resin, phenolic resin, pitch It may be formed using at least one raw material selected from the group consisting of resin-based resins and tar-based resins. Specifically, the carbon coating layer may be formed through a process of heat treatment after mixing the raw materials with the lithium iron phosphate.
  • the average particle diameter D 50 of the lithium iron phosphate may be 0.8 ⁇ m to 20.0 ⁇ m, specifically 0.9 ⁇ m to 10.0 ⁇ m, and more specifically 0.9 ⁇ m to 3.0 ⁇ m.
  • the average particle diameter D 50 of the positive electrode active material satisfies the above range, the mobility of lithium in lithium iron phosphate may be improved, thereby improving charge/discharge characteristics of the battery.
  • the BET specific surface area of lithium iron phosphate may be 5 m 2 /g to 20 m 2 /g, specifically 7 m 2 /g to 18 m 2 /g, more specifically 9 m 2 /g to 16 m 2 / g can be g.
  • This range corresponds to a lower value than conventional lithium iron phosphate. When the above range is satisfied, aggregation of the lithium iron phosphate may be effectively inhibited even in a positive electrode slurry composition having a relatively small dispersant content.
  • Lithium iron phosphate may be included in an amount of 93 wt% to 98 wt%, specifically 93.5 wt% to 98 wt%, and more specifically 94 wt% to 97 wt% based on the total solid content of the positive electrode slurry composition.
  • the battery capacity of the positive electrode may be improved by securing a sufficient positive electrode energy density.
  • the dispersant suppresses excessive aggregation of lithium iron phosphate in the positive electrode slurry composition, and enables the lithium iron phosphate to be effectively dispersed and present in the prepared positive electrode active material layer.
  • the dispersant may include a hydrogenated nitrile-based copolymer, and specifically, the dispersant may be a hydrogenated nitrile-based copolymer.
  • the hydrogenated nitrile-based copolymer is a copolymer comprising an ⁇ , ⁇ -unsaturated nitrile-derived structural unit and a hydrogenated conjugated diene-derived structural unit, or an ⁇ , ⁇ -unsaturated nitrile-derived structural unit and a conjugated diene-derived structural unit. , and a structural unit derived from a hydrogenated conjugated diene.
  • ⁇ , ⁇ -unsaturated nitrile monomer for example, acrylonitrile or methacrylonitrile may be used, and one or a mixture of two or more of them may be used.
  • conjugated diene-based monomer for example, conjugated diene-based monomers having 4 to 6 carbon atoms such as 1,3-butadiene, isoprene, or 2,3-methyl butadiene may be used, and one or two of these monomers may be used. Mixtures of the above may be used.
  • the hydrogenated nitrile-based copolymer may be hydrogenated nitrile butadiene rubber (H-NBR).
  • the weight average molecular weight of the dispersant may be 10,000 g/mol to 150,000 g/mol, preferably 15,000 g/mol to 140,000 g/mol, and more preferably 20,000 g/mol to 130,000 g/mol. This corresponds to a value smaller than the weight average molecular weight of the dispersant included in the conventional positive electrode slurry composition.
  • the weight average molecular weight of the dispersant is less than 10,000 g/mol, there is a problem in that the dispersibility of lithium iron phosphate is poor and the dispersant is eluted during electrode preparation.
  • the weight average molecular weight of the dispersant exceeds 150,000 g/mol, the positive electrode slurry composition has a high viscosity, which may degrade stability and coating processability of the positive electrode slurry composition, and as a result of linear aggregation of the conductive material, resistance of the lithium secondary battery undesirable from the point of view
  • the positive electrode slurry composition may have a low viscosity and a high solid content compared to other positive electrode slurry compositions having the same viscosity.
  • the surface area of the agglomerated conductive material can be minimized compared to the case where the conductive material is linearly agglomerated because the conductive material is agglomerated in a spherical shape in the positive electrode.
  • the surface area of the positive electrode active material that does not participate in the lithium insertion/desorption reaction adjacent to the aggregated conductive material is minimized, the discharge resistance of the lithium secondary battery manufactured using the positive electrode slurry composition can be reduced.
  • the dispersant may be included in an amount of 0.2 wt% to 1.0 wt%, specifically 0.2 wt% to 0.9 wt%, and more specifically 0.3 wt% to 0.8 wt% based on the total solid content of the positive electrode slurry composition.
  • the content of the dispersant satisfies the above range, the aggregation of the conductive material in the cathode active material layer may be suppressed, thereby improving the cathode conductive network.
  • the binder plays a role of assisting in the bonding of the positive electrode active material and the conductive material and the bonding to the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluororubber, or various copolymers thereof, and the like, one alone or a mixture of two or more of these can be used
  • the binder may be included in an amount of 2.0 wt% to 4.0 wt%, specifically 2.2 wt% to 3.8 wt%, and more specifically 2.3 wt% to 3.7 wt% based on the total solid content of the positive electrode slurry composition.
  • the content of the binder satisfies the above range, the contact area between the binder and lithium iron phosphate is widened to secure excellent positive electrode adhesion.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite; carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material may be carbon nanotubes.
  • the conductive network of carbon nanotubes is particularly preferable as a conductive material included in the positive electrode slurry composition of the present invention because it can alleviate migration of the binder during the drying process of the positive electrode slurry composition.
  • the conductive material may be included in an amount of 0.1 wt% to 3.0 wt%, specifically 0.2 wt% to 2.0 wt%, and more specifically 0.6 wt% to 1.2 wt% based on the total solid content of the positive electrode slurry composition.
  • the electrical conductivity of the anode may be improved by securing the anode conductive network.
  • the solvent is used to mix the above-described cathode active material, binder, dispersant, and/or conductive material.
  • the solvent may be a solvent commonly used in the art, for example, dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methyl-2-pyrrolidone (NMP) , acetone or water, and one of these may be used alone or in a mixture of two or more.
  • DMSO dimethyl sulfoxide
  • NMP N-methyl-2-pyrrolidone
  • acetone acetone
  • the solvent may be included in an amount such that the positive electrode slurry composition has appropriate viscosity and solid content.
  • the solvent may be included in an amount such that the solid content in the composition is 40 wt% to 75 wt%, specifically 50 wt% to 70 wt%, and more specifically 55 wt% to 70 wt%. This corresponds to a relatively high solids content compared to other conventional cathode slurry compositions.
  • the composition may have a coatingable level of viscosity, and a positive electrode active material layer formed of the composition may have a thickness of a certain level or more, so that excellent energy density may be secured.
  • the viscosity of the composition measured at a shear rate of 10 -2 rpm at 25 ° C is 5,000 cps to 20,000 cps, specifically 6,000 cps to 15,000 cps, more Specifically, it may be 8,000 cps to 15,000 cps.
  • a positive electrode slurry composition having a viscosity value within the above range may have excellent storage stability and coating processability.
  • the positive electrode slurry composition may have a higher solids content than other positive electrode slurry compositions having the same viscosity, the time required for a slurry drying process in manufacturing a positive electrode may be shortened, thereby reducing process costs.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer positioned on at least one surface of the positive electrode current collector.
  • the cathode active material layer includes a cathode active material, a conductive material, a binder, and a dispersant
  • the cathode active material includes lithium iron phosphate
  • the dispersant has a weight average molecular weight of 10,000 g/mol to 150,000 g/mol.
  • the positive electrode may be formed using the positive electrode slurry composition described above.
  • the cathode active material, binder, dispersant, and conductive material are as described above.
  • the positive electrode according to the present invention includes hydrogenated nitrile-based butadiene rubber as a dispersant, and as the weight average molecular weight of the dispersant is in the range of 10,000 g/mol to 150,000 g/mol, the conductive material is agglomerated into a sphere in the positive electrode.
  • the surface area of the agglomerated conductive material can be minimized compared to the case where the conductive material is linearly agglomerated.
  • the discharge resistance of the lithium secondary battery may be lowered.
  • the maximum value of the major axis length of the aggregation region of the conductive material in the cross section of the anode is 10 ⁇ m or less.
  • the ratio of the length of the aggregation region of the conductive material in the minor axis direction to the length of the major axis may be 0.1 to 1, preferably 0.2 to 1, and more preferably 0.3 to 1.
  • the discharge resistance of the lithium secondary battery may be further improved.
  • the aggregation region of the conductive material can be confirmed by observing the cross section of the anode with a scanning electron microscope (hereinafter referred to as 'SEM').
  • 'SEM' scanning electron microscope
  • an SEM image or a Back Scattered Electron (BSE) image obtained by photographing a cross-section of an anode lithium iron phosphate appears in bright contrast, and an aggregation region of the conductive material appears in dark contrast. It is possible to measure the length of the long axis and the length of the short axis direction of the aggregation region of the conductive material appearing in dark contrast.
  • a region having an area of 50 ⁇ m ⁇ 50 ⁇ m in the cross section of the anode was observed with an SEM, and the major axis length and the minor axis length of the region appearing as a dark shade in the SEM image or BSE image were measured.
  • the positive current collector may be any material having conductivity without causing chemical change in the battery, and is not particularly limited.
  • the current collector copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel surface-treated with carbon, nickel, titanium, or silver may be used.
  • the cathode current collector may have a thickness of 3 ⁇ m to 500 ⁇ m, and adhesion to the cathode active material layer may be increased by forming fine irregularities on the surface of the cathode current collector.
  • it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the positive electrode active material layer may be located on at least one surface of the positive electrode current collector and formed of the positive electrode slurry composition described above.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode slurry composition. Specifically, it may be prepared by applying the positive electrode slurry composition on a positive electrode current collector, followed by drying and rolling.
  • the positive electrode may be manufactured by casting the positive electrode slurry composition on a separate support, and then laminating a film obtained by peeling from the support on a positive electrode current collector.
  • a lithium secondary battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • the positive electrode is as described above.
  • the cathode includes a cathode active material, a conductive material, a binder, and a dispersant
  • the cathode active material includes lithium iron phosphate
  • the dispersant has a weight average molecular weight of 10,000 g/mol to 150,000 g/mol.
  • the negative electrode may be manufactured, for example, by preparing a composition for forming a negative electrode including a negative electrode active material, a negative electrode binder, and a negative electrode conductive material on a negative electrode current collector, and then applying the composition on the negative electrode current collector.
  • the negative electrode active material is not particularly limited, and a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon, and highly crystalline carbon; metallic compounds capable of being alloyed with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys, or Al alloys; or a composite containing a metallic compound and a carbonaceous material.
  • soft carbon and hard carbon may be used as the low crystalline carbon
  • natural graphite, kish graphite, pyrolytic carbon, and liquid crystals may be used as the high crystalline carbon.
  • mesophase pitch based carbon fiber meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes.
  • mesophase pitch based carbon fiber meso-carbon microbeads
  • mesophase pitches mesophase pitches
  • petroleum or coal tar pitch derived cokes One type alone or a mixture of two or more types of these may be used, and a metal lithium thin film may be used as the negative electrode active material.
  • the negative electrode conductive material is used to impart conductivity to the electrode, and any material that does not cause chemical change and has electronic conductivity may be used without particular limitation in the battery.
  • Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, and carbon nanotube; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the anode conductive material may be typically included in an amount of 1 to 30 wt%, preferably 1 to 20 wt%, and more preferably 1 to 10 wt%, based on the total weight of the anode active material layer.
  • the anode binder serves to improve adhesion between particles of the anode active material and adhesion between the anode active material and the anode current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like, and one type alone or a mixture of two or more types thereof may be used.
  • the anode binder may be included in an amount of 1 to 30 w
  • the anode current collector is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel A surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
  • the anode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and like the cathode current collector, fine irregularities may be formed on the surface of the anode current collector to enhance bonding strength of the anode active material.
  • it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
  • the separator may be a porous thin film having a pore diameter of 0.01 ⁇ m to 10 ⁇ m and a thickness of 5 ⁇ m to 300 ⁇ m.
  • the electrolyte may include an organic solvent and a lithium salt commonly used for electrolytes, but is not particularly limited.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, A carbonate-based solvent such as PC) may be used.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone
  • ether solvents such
  • carbonate-based solvents are preferred, and cyclic carbonates (eg, ethylene carbonate or propylene carbonate, etc.) having high ion conductivity and high dielectric constant capable of increasing the charge and discharge performance of batteries, and low-viscosity linear carbonate-based compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • cyclic carbonates eg, ethylene carbonate or propylene carbonate, etc.
  • low-viscosity linear carbonate-based compounds For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate is more preferable.
  • the lithium salt any compound capable of providing lithium ions used in a lithium secondary battery may be used without particular limitation.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 or the like may be used.
  • the lithium salt is preferably included in the electrolyte in a concentration of about 0.6 mol% to about 2 mol%.
  • electrolyte in addition to the above electrolyte components, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n -glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2 -
  • One or more additives such as methoxy ethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery of the present invention may be manufactured by disposing a separator between a positive electrode and a negative electrode to form an electrode assembly, inserting the electrode assembly into a cylindrical battery case or a prismatic battery case, and then injecting an electrolyte.
  • a separator between a positive electrode and a negative electrode to form an electrode assembly
  • inserting the electrode assembly into a cylindrical battery case or a prismatic battery case and then injecting an electrolyte.
  • they may be impregnated with an electrolyte, and the resulting product may be put into a battery case and sealed.
  • NMP N-methyl-2-pyrrolidone
  • acetone ethanol
  • propylene carbonate ethylmethyl carbonate
  • ethylene carbonate dimethyl carbonate used in manufacturing a positive electrode by drying the electrode assembly
  • One or more organic solvents selected from the group consisting of may be removed. If an electrolyte having the same components as the organic solvent used in manufacturing the positive electrode is used as the electrolyte, the process of drying the electrode assembly may be omitted.
  • a lithium secondary battery according to another embodiment of the present invention may be an all-solid-state battery.
  • the battery case may be one commonly used in the field, and there is no limitation on the external appearance according to the purpose of the battery, for example, a cylindrical shape using a can, a prismatic shape, a pouch shape, or a coin shape. etc.
  • the lithium secondary battery according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it is suitable for portable devices such as mobile phones, notebook computers, digital cameras, energy storage systems (ESS), and hybrid electric It is useful in the field of electric vehicles such as automobiles (hybrid electric vehicles, HEVs).
  • the cell resistance (SOC50 discharge value obtained by dividing the voltage drop value appearing in the state of giving a discharge pulse for 10 seconds at a current of 2.5 C at 50% SOC (State of charge) by the current value Resistance) value may be 1.7 m ⁇ or less, specifically 1.1 m ⁇ to 1.7 m ⁇ , more specifically 1.1 m ⁇ to 1.6 m ⁇ .
  • a cell resistance value that satisfies the numerical range may be developed because the cathode active material in the lithium secondary battery includes lithium iron phosphate and the weight average molecular weight of the dispersant corresponds to 10,000 g/mol to 150,000 g/mol.
  • the conductive material is agglomerated in a spherical shape in the positive electrode, so that the surface area of the agglomerated conductive material can be minimized compared to the case where the conductive material is linearly agglomerated.
  • the cell resistance of the lithium secondary battery prepared using the positive electrode slurry composition can be lowered to the above range. there is.
  • a cathode slurry composition was prepared by mixing at 2500 rpm for 60 minutes using a homo-disperse.
  • the positive electrode active material, the conductive material, the binder, and the dispersant were present in a weight ratio of 95.68: 0.8: 3.0: 0.52, and the solid content of the positive electrode slurry composition was 60% by weight.
  • the prepared positive electrode slurry composition After applying the prepared positive electrode slurry composition to an aluminum thin film having a thickness of 15 ⁇ m using a slot die coater, it was vacuum dried at 130° C. for 10 hours. Thereafter, a positive electrode was prepared by rolling such that the porosity of the positive electrode active material layer was 28%.
  • the positive active material layer had a thickness of 98 ⁇ m, a width of 33 mm and a length of 50 mm, and a loading amount of the positive active material layer was 3.6 mAh/cm 2 .
  • artificial graphite as an anode active material, superC as a conductive material, and SBR/CMC as a binder were mixed in a weight ratio of 96: 1: 3 to prepare an anode slurry, applied to one side of a copper current collector, and then dried at 130 ° C.
  • the porosity was rolled at 29% to prepare a negative electrode having a width of 34 mm and a length of 51 mm.
  • an electrode assembly was prepared by interposing a separator formed of polypropylene having a thickness of 18 ⁇ m between the prepared positive electrode and the negative electrode.
  • Electrolyte solution After injecting 230g, it was vacuum sealed. The electrolyte solution was aged for 1 day, an activation process was performed with 7.9 mAh for 3 hours, and then additional aging was performed for 3 days. Finally, a degas process was performed to manufacture a lithium secondary battery.
  • a positive electrode slurry composition and a lithium secondary battery were prepared in the same manner as in Example 1, except that hydrogenated nitrile-based butadiene rubber (H-NBR) whose weight average molecular weight (Mw) was changed as shown in Table 1 was used as a dispersant. .
  • H-NBR hydrogenated nitrile-based butadiene rubber
  • Example 2 The same method as Example 1, except that hydrogenated nitrile-based butadiene rubber (H-NBR) having a weight average molecular weight (Mw) of 220,000 g/mol was used as a dispersant and the solid content of the positive electrode slurry composition was 57% by weight.
  • H-NBR hydrogenated nitrile-based butadiene rubber
  • Mw weight average molecular weight
  • a positive electrode slurry composition and a lithium secondary battery were prepared in the same manner as in Comparative Example 1, except that the solid content of the positive electrode slurry composition was 60% by weight.
  • Viscosity values of the positive electrode slurry compositions prepared in Examples 1 to 3 and Comparative Examples 1 to 2 were measured, and the measurement results are shown in Table 2 below.
  • the positive electrode slurry composition prepared in Examples 1 to 3 and Comparative Examples 1 to 2 was cooled at room temperature and 1% relative humidity for 1 hour, and then measured at 25° C. using a viscometer (Brookfield). The viscosity of the positive electrode slurry composition was measured at a shear rate of 10 -2 rpm. Viscosity was measured within 2 hours after preparing the positive electrode slurry composition, including the cooling time.
  • FIG. 1 is a SEM image of a cross-section of a positive electrode in a lithium secondary battery of Example 1
  • FIG. 2 is an SEM image of a cross-section of a positive electrode of a lithium secondary battery of Example 2
  • FIG. 3 is a lithium secondary battery of Example 3.
  • This is a SEM image of a cross section of a positive electrode in a secondary battery
  • FIG. 4 is a SEM image of a cross section of a positive electrode in a lithium secondary battery of Comparative Example 1.
  • lithium iron phosphate appears as a bright part, and the aggregation region of the conductive material appears as a dark shade.
  • the positive electrode slurry composition of Comparative Example 2 in which the weight average molecular weight of the dispersant exceeds 150,000 g/mol has a significantly higher viscosity compared to the positive electrode slurry compositions of Examples 1 to 3 with the same solid content. You can check.
  • the positive electrode slurry composition of Comparative Example 1 in which the weight average molecular weight of the dispersant exceeds 150,000 g/mol has a lower viscosity
  • the positive electrode slurry composition of Example 1 has a lower solids content than the positive electrode slurry composition of Example 1. There is a problem that the process cost becomes expensive as a lot of time is required for the process.
  • the lithium secondary battery of Comparative Example 1 has higher cell resistance than the lithium secondary battery of Example 1.

Abstract

본 발명에 따른 양극 슬러리 조성물은 양극 활물질, 분산제, 도전재, 바인더, 및 용매를 포함하고, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 분산제의 중량평균분자량은 10,000 g/mol 내지 150,000 g/mol이다.

Description

양극 슬러리 조성물, 이를 이용하여 제조된 리튬 이차전지
본 출원은 2021.12.24. 출원한 한국 특허 출원 제10-2021-0187722호 및 2022.12.20.자 출원한 한국 특허 출원 제10-2022-0179775호에 기초한 우선권의 이익을 주장한다.
본 발명은 양극 슬러리 조성물과, 이를 이용하여 제조된 리튬 이차전지에 관한 것으로, 보다 상세하게는 저분자량 분산제를 포함하는 양극 슬러리 조성물과, 이를 이용하여 제조된 리튬 이차전지에 관한 것이다.
전기 자동차, 에너지 저장 시스템(Energy Storage System, ESS)에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 연구가 다양하게 행해지고 있다. 특히, 이러한 장치의 전원으로 높은 에너지 밀도를 가지면서 우수한 수명 및 사이클 특성을 가지는 리튬 이차전지에 대한 연구가 활발히 진행되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 코발트계 산화물, 리튬 니켈코발트망간계 산화물, 리튬 인산철 등이 사용되고 있다.
그 중 리튬 인산철은 자원적으로 풍부하고 저가의 재료인 철을 포함하기 때문에 저가이다. 또한, 리튬 인산철의 독성이 낮기 때문에, 리튬 인산철을 사용할 시 환경 오염을 줄일 수 있다. 더불어, 리튬 인산철은 올리빈 구조를 가지기 때문에, 층상 구조의 리튬 전이금속 산화물에 비해 고온에서 활물질 구조가 안정적으로 유지될 수 있다. 이에 따라, 전지의 고온 안정성 및 고온 수명 특성이 우수하다는 장점이 있다.
반면, 리튬 인산철은 리튬 니켈코발트망간 산화물과 같은 리튬 전이금속 산화물과 비교하여, 리튬 이동성이 떨어지고 전기 전도도가 낮다는 문제점이 있다. 이에 따라, 종래에는 리튬 이동 경로를 짧게 형성하기 위해 평균 입경이 작은 리튬 인산철을 사용하고, 전기 전도도 개선을 위해 리튬 인산철의 표면을 탄소로 코팅하며, 도전재를 과량으로 사용하였다.
그러나, 리튬 인산철 입자의 크기가 감소함에 따라 리튬 인산철의 비표면적이 증가하며, 표면이 탄소 코팅된 리튬 인산철은 용매에 의한 젖음성(wetting)이 저하된다. 그 결과, 리튬 인산철의 입자 응집이 심하게 발생하여 양극 슬러리의 안정성과 코팅 공정성이 저하된다. 또한, 과량의 도전재가 사용될 시, 양극 슬러리 내에서 도전재 간의 입자 응집이 과도하게 발생하게 된다. 응집된 도전재가 많아질수록 상대적으로 셀 충방전 반응에 참여할 수 있는 리튬 인산철 개수가 줄어들게 되고, 그 결과 리튬 이차전지의 충방전 저항이 증가할 수 있다.
따라서, 리튬 인산철을 포함하는 양극 슬러리 조성물 및 양극에서, 입자의 응집을 억제하기 위한 기술이 요구되고 있다.
본 발명은, 양극 슬러리 조성물 내 양극 활물질 및/또는 도전재의 분산성을 개선하고 입자 응집을 억제함으로써, 상대적으로 낮은 점도와 높은 고형분 함량을 갖는 양극 슬러리 조성물을 제공하는 것을 목적으로 한다.
또한, 본 발명은, 양극 내 양극 활물질 및/또는 도전재의 분산성을 개선하고 입자 응집을 억제함으로써, 방전 저항이 감소된 리튬 이차전지를 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따르면, 양극 활물질, 분산제, 도전재, 바인더, 및 용매를 포함하고, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 분산제의 중량평균분자량은 10,000 g/mol 내지 150,000 g/mol인 양극 슬러리 조성물이 제공된다.
본 발명의 다른 실시예에 따르면, 양극을 포함하고, 상기 양극은 양극 활물질, 분산제, 도전재 및 바인더를 포함하고, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 분산제의 중량평균분자량은 10,000 g/mol 내지 150,000 g/mol인 리튬 이차전지가 제공된다.
본 발명의 양극 슬러리 조성물은 중량평균분자량이 작은 분산제를 포함하므로, 양극 슬러리 조성물에 포함된 리튬 인산철 입자의 용매 젖음성(wetting)과 분산성이 개선됨으로써, 리튬 인산철의 입자 응집이 억제될 수 있다. 이에 따라, 양극 슬러리 조성물은 낮은 점도를 갖고, 아울러 같은 점도를 갖는 다른 양극 슬러리 조성물과 비교하여 높은 고형분 함량을 가질 수 있다.
또한, 본 발명의 양극 슬러리 조성물은 리튬 인산철의 입자 응집이 억제됨으로써, 양극 슬러리 조성물의 안정성과 코팅 공정성이 개선될 수 있다.
또한, 본 발명의 양극 슬러리 조성물은 상대적으로 높은 고형분 함량을 가짐으로써, 양극 제조 시 슬러리 건조 공정에 소요되는 시간이 단축되어 공정 비용을 절감할 수 있다.
또한, 상기 분산제의 중량평균분자량이 낮은 수치 범위를 가짐에 따라, 양극 내에서 도전재가 구형으로 응집됨으로써 도전재가 선형으로 응집된 경우와 비교하여 상기 응집된 도전재의 표면적이 최소화될 수 있다. 그 결과, 상기 응집된 도전재와 인접하여 리튬 삽입/탈리 반응에 참여하지 못하는 양극 활물질의 표면적이 최소화되므로, 상기 양극 슬러리 조성물을 이용하여 제조된 리튬 이차전지의 방전 저항을 낮출 수 있다.
도 1은 실시예 1의 리튬 이차전지 내 양극의 단면을 촬영한 SEM 이미지이다.
도 2는 실시예 2의 리튬 이차전지 내 양극의 단면을 촬영한 SEM 이미지이다.
도 3은 실시예 3의 리튬 이차전지 내 양극의 단면을 촬영한 SEM 이미지이다.
도 4는 비교예 1의 리튬 이차전지 내 양극의 단면을 촬영한 SEM 이미지이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
본 명세서에서, 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본 명세서에서 "A 및/또는 B"의 기재는 A, 또는 B, 또는 A 및 B를 의미한다.
본 명세서에서, "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.
본 명세서에서, D50은 입자의 입경 분포 곡선에 있어서 체적 누적량의 50%에 해당하는 입경을 의미하는 것이다. 상기 D50은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
본 명세서에서, "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출될 수 있다.
본 명세서에서 양극 슬러리 조성물의 점도는, 양극 슬러리 조성물을 상온, 상대습도 1%의 조건에서 1시간동안 쿨링(cooling)한 뒤, 점도계(Brookfield)를 이용하여 25℃에서 10-2 rpm의 전단 속도(shear rate)로 측정하였다. 점도 측정은 양극 슬러리 조성물 제조 후 쿨링 시간을 포함하여 2시간 이내에 실시하였다.
본 명세서에서 SOC50 방전 저항은, SOC(State of charge) 50% 에서 2.5C의 전류로 10초 간 방전 펄스(pulse)를 준 상태에서 나타나는 전압 강하 값을 전류 값으로 나눈 값을 의미한다.
이하, 본 발명에 대해 구체적으로 설명한다.
양극 슬러리 조성물
본 발명의 일 실시예에 따른 양극 슬러리 조성물은, 양극 활물질층을 형성하기 위한 것으로, 양극 활물질, 분산제, 도전재, 바인더, 및 용매를 포함하고, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 분산제의 중량평균분자량은 10,000 g/mol 내지 150,000 g/mol이다.
리튬 인산철을 포함하는 종래의 양극 슬러리 조성물의 경우, 리튬 인산철의 작은 입자 크기와 표면 상의 탄소 코팅층으로 인해 리튬 인산철의 입자 응집이 과도하게 발생하여 양극 슬러리의 안정성과 코팅 공정성이 저하되는 문제점이 발생하였다. 또한, 양극의 전기 전도도 개선을 위해 과량의 도전재가 사용됨에 따라, 도전재 간의 입자 응집이 심하게 발생하여 양극 도전성 네트워크가 저하되고, 그 결과 리튬 이차전지의 충방전 저항이 증가하는 문제점이 발생하였다.
본 발명자들은 이러한 문제를 해결을 위해 연구를 거듭한 결과, 양극 슬러리 조성물에 중량평균분자량이 작은 분산제가 포함될 시, 양극 슬러리 조성물 내 양극 활물질 및/또는 도전재의 분산성이 개선되고 입자 응집을 억제할 수 있음을 알아내었다. 이에 대해 본 명세서에서 구체적으로 설명하도록 한다.
(1) 양극 활물질
상기 양극 활물질은 리튬 인산철을 포함할 수 있다. 상기 양극 활물질이 상기 리튬 인산철을 포함하는 경우, 상기 양극 활물질을 포함하는 양극의 안정성이 현저히 개선됨으로써, 상기 양극을 포함하는 리튬 이차전지의 발화 위험 등이 크게 감소할 수 있다.
상기 리튬 인산철은 하기 화학식 1의 화합물일 수 있다.
[화학식 1]
Li1+aFe1-xMx(PO4-b)Xb
(상기 화학식 1에서, M은 Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn 및 Y 로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고, X는 F, S 및 N 로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고, a, b, x는 각각 -0.5≤a≤0.5, 0≤b≤0.1, 0≤x≤0.5이다)
예를 들어, 상기 리튬 인산철은 LiFePO4일 수 있다.
리튬 인산철은 표면에 탄소 코팅층을 포함할 수 있다. 리튬 인산철 표면에 탄소 코팅층이 형성될 경우, 전기 전도성이 향상되어 양극의 저항 특성을 개선할 수 있다.
탄소 코팅층은 글루코오스, 수크로오스, 락토오스, 녹말, 올리고당, 폴리올리고당, 프럭토오스, 셀룰로오스, 푸르푸릴알코올의 중합체, 에틸렌과 에틸렌옥사이드의 블록 공중합체, 비닐계 수지, 셀룰로오스계 수지, 페놀계 수지, 피치계 수지 및 타르계 수지로 이루어지는 군에서 선택된 적어도 하나 이상의 원료 물질을 사용하여 형성될 수 있다. 구체적으로 상기 탄소 코팅층은 상기 원료 물질들을 상기 리튬 인산철과 혼합한 후 열처리하는 과정을 통해 형성될 수 있다.
리튬 인산철의 평균 입경 D50은 0.8 ㎛ 내지 20.0 ㎛, 구체적으로 0.9 ㎛ 내지 10.0 ㎛, 보다 구체적으로 0.9 ㎛ 내지 3.0 ㎛일 수 있다. 양극 활물질의 평균 입경 D50이 상기 범위를 만족할 경우, 리튬 인산철 내에서 리튬의 이동성이 개선되어 전지의 충방전 특성이 개선될 수 있다.
리튬 인산철의 BET 비표면적은 5 m2/g 내지 20 m2/g일 수 있으며, 구체적으로 7 m2/g 내지 18 m2/g, 보다 구체적으로 9 m2/g 내지 16 m2/g일 수 있다. 상기 범위는 통상적인 리튬 인산철에 비해 낮은 수치에 해당한다. 상기 범위를 만족할 시, 분산제 함량이 상대적으로 적은 양극 슬러리 조성물 내에서도 상기 리튬 인산철의 응집이 효과적으로 억제될 수 있다.
리튬 인산철은 양극 슬러리 조성물의 고형분 전체 기준으로 93 중량% 내지 98 중량%, 구체적으로 93.5 중량% 내지 98 중량%, 보다 구체적으로 94 중량% 내지 97 중량%로 포함될 수 있다. 상기 리튬 인산철의 함량이 상기 범위를 만족하는 경우, 충분한 양극 에너지 밀도를 확보함으로써 양극의 전지용량을 향상시킬 수 있다.
(2) 분산제
분산제는 리튬 인산철이 상기 양극 슬러리 조성물 내에 지나치게 응집되는 현상을 억제시키며, 제조된 양극 활물질층에서 상기 리튬 인산철이 효과적으로 분산되어 존재할 수 있게 한다.
분산제는 수소화 니트릴계 공중합체를 포함할 수 있으며, 구체적으로 상기 분산제는 수소화 니트릴계 공중합체일 수 있다.
구체적으로, 상기 수소화 니트릴계 공중합체는 α,β-불포화 니트릴 유래 구조 단위, 및 수소화된 공액 디엔 유래 구조 단위를 포함하는 공중합체이거나, α,β-불포화 니트릴 유래 구조 단위, 공액 디엔 유래 구조 단위, 및 수소화된 공액 디엔 유래 구조 단위를 포함하는 공중합체일 수 있다. 상기 α,β-불포화 니트릴 단량체로는, 예를 들면, 아크릴로니트릴 또는 메타크릴로니트릴 등이 사용될 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 공액 디엔계 단량체로는, 예를 들면, 1,3-부타디엔, 이소프렌 또는 2,3-메틸 부타디엔 등의 탄소수 4 ~ 6의 공액 디엔계 단량체들이 사용될 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
보다 구체적으로, 상기 수소화 니트릴계 공중합체는 수소화 니트릴 부타디엔 고무(H-NBR)일 수 있다.
상기 분산제의 중량평균분자량은 10,000 g/mol 내지 150,000 g/mol, 바람직하게는 15,000 g/mol 내지 140,000 g/mol, 더욱 바람직하게는 20,000 g/mol 내지 130,000 g/mol 일 수 있다. 이는 종래의 양극 슬러리 조성물에 포함되는 분산제의 중량평균분자량 수치보다 작은 값에 해당한다.
상기 분산제의 중량평균분자량이 10,000 g/mol 미만인 경우, 리튬 인산철의 분산성이 떨어지고 전극 제조 시에 분산제가 용출되는 문제가 있다. 분산제의 중량평균분자량이 150,000 g/mol를 초과하는 경우, 양극 슬러리 조성물이 높은 점도를 가지게 되어 양극 슬러리 조성물의 안정성과 코팅 공정성이 저하될 수 있으며, 도전재가 선형으로 응집되는 결과 리튬 이차전지의 저항 측면에서 바람직하지 않다.
반면, 분산제의 중량평균분자량이 상기 범위를 만족하는 경우, 리튬 인산철 입자의 용매 젖음성(wetting)과 분산성이 개선됨으로써, 리튬 인산철의 입자 응집이 억제될 수 있다. 이에 따라, 양극 슬러리 조성물은 낮은 점도를 갖고, 아울러 같은 점도를 갖는 다른 양극 슬러리 조성물과 비교하여 높은 고형분 함량을 가질 수 있다.
뿐만 아니라, 분산제의 중량평균분자량이 상기 범위를 만족하는 경우, 양극 내에서 도전재가 구형으로 응집됨으로써 도전재가 선형으로 응집된 경우와 비교하여 상기 응집된 도전재의 표면적이 최소화될 수 있다. 그 결과, 상기 응집된 도전재와 인접하여 리튬 삽입/탈리 반응에 참여하지 못하는 양극 활물질의 표면적이 최소화되므로, 상기 양극 슬러리 조성물을 이용하여 제조된 리튬 이차전지의 방전 저항을 낮출 수 있다.
분산제는 양극 슬러리 조성물의 고형분 전체 기준으로 0.2 중량% 내지 1.0 중량%, 구체적으로 0.2 중량% 내지 0.9 중량%, 보다 구체적으로 0.3 중량% 내지 0.8 중량%로 포함될 수 있다. 분산제의 함량이 상기 범위를 만족하는 경우, 양극 활물질층 내의 도전재의 응집을 억제하여 양극 도전성 네트워크가 개선될 수 있다.
(3) 바인더
바인더는 양극 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
바인더는 양극 슬러리 조성물의 고형분 전체 기준으로 2.0 중량% 내지 4.0 중량%, 구체적으로 2.2 중량% 내지 3.8 중량%, 보다 구체적으로 2.3 중량% 내지 3.7 중량%로 포함될 수 있다. 바인더의 함량이 상기 범위를 만족하는 경우, 바인더와 리튬 인산철의 접촉 면적이 넓어져 우수한 양극 접착력을 확보할 수 있다.
(4) 도전재
도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전재의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다. 바람직하게는, 상기 도전재는 탄소나노튜브일 수 있다. 탄소나노튜브의 도전 네트워크는, 양극 슬러리 조성물의 건조 과정에서, 바인더의 들뜸(migration) 현상을 완화할 수 있어 본 발명의 양극 슬러리 조성물에 포함되는 도전재로서 특히 바람직하다.
도전재는 양극 슬러리 조성물의 고형분 전체 기준으로 0.1중량% 내지 3.0중량%, 구체적으로 0.2중량% 내지 2.0중량%, 보다 구체적으로 0.6중량% 내지 1.2중량%로 포함될 수 있다. 도전재의 함량이 상기 범위를 만족하는 경우, 양극 전도성 네트워크를 확보함으로써 양극의 전기 전도도를 개선할 수 있다.
(5) 용매
용매는 상술한 양극 활물질, 바인더, 분산제 및/또는 도전재를 혼합하기 위한 것이다. 상기 용매는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 예를 들면, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸-2-피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
상기 용매는 양극 슬러리 조성물이 적절한 점도 및 고형분 함량을 갖도록 하는 양으로 포함될 수 있다. 예를 들면, 상기 용매는 조성물 내 고형분 함량이 40 중량% 내지 75 중량%, 구체적으로 50 중량% 내지 70 중량%, 보다 구체적으로 55 중량% 내지 70 중량%가 되도록 하는 양으로 포함될 수 있다. 이는 종래 다른 양극 슬러리 조성물과 비교하여 상대적으로 높은 고형분 함량에 해당한다. 양극 슬러리 조성물의 고형분의 함량이 상기 범위를 만족하는 경우, 양극 제조 시 슬러리 건조 공정에 소요되는 시간이 단축되어 공정 비용을 절감할 수 있다. 또한, 상기 조성물은 코팅 가능한 수준의 점도를 가질 수 있고, 상기 조성물로 형성된 양극 활물질층이 일정 수준 이상의 두께를 가지게 되어 우수한 에너지 밀도를 확보할 수 있다.
본 발명의 일 실시예에 따른 양극 슬러리 조성물의 경우, 25 ℃에서 10-2 rpm의 전단 속도(shear rate)로 측정된 조성물의 점도는 5,000 cps 내지 20,000 cps, 구체적으로 6,000 cps 내지 15,000 cps, 보다 구체적으로 8,000 cps 내지 15,000 cps일 수 있다. 상기 범위 내의 점도 값을 갖는 양극 슬러리 조성물은 우수한 저장 안정성과 코팅 공정성을 가질 수 있다. 또한, 상기 양극 슬러리 조성물은 같은 점도를 갖는 다른 양극 슬러리 조성물과 비교하여 높은 고형분 함량을 가질 수 있으므로, 양극 제조 시 슬러리 건조 공정에 소요되는 시간이 단축되어 공정 비용을 절감할 수 있다.
양극
다음으로, 본 발명에 따른 양극에 대해 설명한다.
상기 양극은, 양극 집전체, 및 양극 집전체의 적어도 일면에 위치하는 양극 활물질층을 포함한다. 이 경우, 상기 양극 활물질층은, 양극 활물질, 도전재, 바인더 및 분산제를 포함하며, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 분산제의 중량평균분자량은 10,000 g/mol 내지 150,000 g/mol 이다. 상기 양극은 상술한 양극 슬러리 조성물을 사용하여 형성될 수 있다. 상기 양극 활물질, 바인더, 분산제, 도전재는 앞서 설명한 바와 같다.
본 발명에 따른 양극은, 분산제로서 수소화 니트릴계 부타디엔 고무를 포함하되, 상기 분산제의 중량평균분자량이 10,000 g/mol 내지 150,000 g/mol 범위임에 따라, 양극 내에서 도전재가 구형으로 응집된다. 이러한 양극은 도전재가 선형으로 응집된 경우와 비교하여, 상기 응집된 도전재의 표면적이 최소화될 수 있다. 그 결과, 상기 응집된 도전재와 인접하여 리튬 삽입/탈리 반응에 참여하지 못하는 양극 활물질의 표면적이 최소화되므로, 리튬 이차전지의 방전 저항을 낮출 수 있다.
본 발명에 따른 양극은, 도전재가 구형으로 응집되는 결과, 양극의 단면에서 상기 도전재의 응집 영역의 장축 길이의 최대값이 10㎛ 이하이다. 그리고, 상기 도전재의 응집 영역의 장축 길이에 대한 단축 방향 길이의 비율이 0.1 내지 1, 바람직하게는 0.2 내지 1, 더욱 바람직하게는 0.3 내지 1 일 수 있다.
도전재의 응집 영역이, 상기 수치 범위를 만족하는 경우, 리튬 이차전지의 방전 저항이 더욱 향상될 수 있다.
양극 단면에서, 도전재의 응집 영역은, 양극의 단면을 주사전자현미경(이하 'SEM')으로 관찰하여, 확인할 수 있다. 양극 단면을 촬영하여 수득한 SEM 이미지 또는 BSE(Back Scattered Electron) 이미지에서, 리튬 인산철은 밝은 대비(contrast)로 나타나고, 도전재의 응집 영역은 어두운 대비(contrast)로 나타난다. 어두운 대비로 나타나는 도전재의 응집 영역의 장축 길이 및 단축 방향 길이의 측정이 가능하다.
본 발명에서는 양극의 단면 중, 50㎛ × 50㎛ 면적의 영역을 SEM으로 관찰하여, SEM 이미지 또는 BSE 이미지에서 어두운 음영으로 나타나는 영역의 장축 길이 및 단축 방향 길이를 측정하였다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 집전체는 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 양극 집전체의 표면 상에 미세한 요철을 형성하여 양극 활물질층에 대한 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 양극 집전체의 적어도 일면에 위치하고, 상술한 양극 슬러리 조성물에 의해 형성될 수 있다.
상기 양극은 상기한 양극 슬러리 조성물을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 슬러리 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다.
또한, 다른 방법으로, 상기 양극은 상기 양극 슬러리 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
리튬 이차전지
다음으로, 본 발명에 따른 리튬 이차전지에 대해 설명한다.
리튬 이차전지는 양극, 음극, 상기 양극과 음극 사이에 개재된 분리막, 및 전해질을 포함한다.
상기 리튬 이차전지에 있어서 상기 양극은 앞서 설명한 바와 같다. 예컨대, 상기 양극은 양극 활물질, 도전재, 바인더 및 분산제를 포함하고, 상기 양극 활물질은 리튬 인산철을 포함하며, 상기 분산제의 중량평균분자량은 10,000 g/mol 내지 150,000 g/mol이다.
상기 음극은, 예를 들어 음극 집전체 상에, 음극 활물질, 음극 바인더, 음극 도전재를 포함하는 음극 형성용 조성물을 제조한 후 이를 음극 집전체 위에 도포하여 제조될 수 있다.
상기 음극 활물질로는 특별히 제한되지 않으며, 통상 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소, 고결정성 탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; 또는 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있다. 또, 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)를 들 수 있으며, 고결정성 탄소로는 천연 흑연, 키시흑연(kish graphite), 열분해 탄소(pyrolytic carbon), 액정치피계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소를 들 수 있다. 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있으며, 또, 상기 음극 활물질로서 금속 리튬 박막이 사용될 수도 있다.
상기 음극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 음극 도전재는 통상적으로 음극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
상기 음극 바인더는 음극 활물질 입자들 간의 부착 및 음극 활물질과 음극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 음극 바인더는 음극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
한편, 상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
또, 상기 음극 집전체는 통상적으로 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 음극 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
한편, 상기 리튬 이차전지에 있어서, 상기 분리막은 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 상기 분리막은 0.01㎛ 내지 10㎛의 기공직경 및 5㎛ 내지 300㎛의 두께를 갖는 다공성 박막일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 상기 전해질은 전해질에 통상적으로 사용되는 유기 용매 및 리튬염을 포함할 수 있으며, 특별히 제한되는 것은 아니다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매 등이 사용될 수 있다.
이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염은 상기 전해질 내에 대략 0.6mol% 내지 2mol%의 농도로 포함되는 것이 바람직하다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
본 발명의 리튬 이차전지는 양극과 음극 사이에 분리막을 배치하여 전극 조립체를 형성하고, 상기 전극 조립체는 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음 전해질을 주입하여 제조할 수 있다. 또는, 상기 전극 조립체를 적층한 후, 이를 전해질에 함침시키고 얻어진 결과물을 전지 케이스에 넣어 밀봉하여 제조할 수도 있다.
본 발명의 리튬 이차전지를 제조 시에는 전극 조립체를 건조시켜 양극 제조 시 사용된 N-메틸-2-피롤리돈(NMP), 아세톤, 에탄올, 프로필렌 카보네이트, 에틸메틸카보네이트, 에틸렌카보네이트, 다이메틸카보네이트로 이루어진 군에서 선택되는 하나 이상의 유기 용매를 제거할 수 있다. 만약, 전해질로서 양극 제조시 사용한 유기 용매와 동일한 성분의 전해질을 사용하는 경우에는 상기 전극 조립체를 건조하는 공정을 생략할 수 있다.
이상 상술한 리튬 이차전지와 달리, 본 발명의 다른 실시예에 따른 리튬 이차전지는 전고체 전지일 수 있다.
상기 전지 케이스는 당 분야에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 에너지 저장 시스템(Energy Storage System, ESS) 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
본 발명에 따른 리튬 이차전지의 경우, SOC(State of charge) 50% 에서 2.5C의 전류로 10초 간 방전 펄스(pulse)를 준 상태에서 나타나는 전압 강하 값을 전류 값으로 나눈 셀 저항(SOC50 방전 저항) 값은 1.7 mΩ 이하, 구체적으로 1.1 mΩ 내지 1.7 mΩ, 보다 구체적으로 1.1 mΩ 내지 1.6 mΩ일 수 있다.
상기 수치 범위를 만족하는 셀 저항 값은, 리튬 이차전지 내 양극 활물질이 리튬 인산철을 포함하며, 분산제의 중량평균분자량이 10,000 g/mol 내지 150,000 g/mol에 해당하기 때문에 발현될 수 있다. 구체적으로, 양극 슬러리 조성물에 저분자량의 분산제가 포함될 시, 양극 내에서 도전재가 구형으로 응집됨으로써 도전재가 선형으로 응집된 경우와 비교하여 상기 응집된 도전재의 표면적이 최소화될 수 있다. 그 결과, 상기 응집된 도전재와 인접하여 리튬 삽입/탈리 반응에 참여하지 못하는 양극 활물질의 표면적이 최소화되므로, 상기 양극 슬러리 조성물을 이용하여 제조된 리튬 이차전지의 셀 저항을 상술한 범위로 낮출 수 있다.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예 1
(1) 양극 슬러리 조성물의 제조
양극 활물질로서 평균 입경 D50이 1μm, BET 비표면적이 11 m2/g인 LiFePO4, 도전재로 탄소나노튜브(CNT), 바인더로 폴리비닐리덴플루오라이드(PVdF), 분산제로 중량평균분자량(Mw)이 40,000 g/mol인 수소화 니트릴계 부타디엔 고무(H-NBR)를 N-메틸피롤리돈(NMP) 용매에 투입하였다. Homo-disperse를 사용하여 2500 rpm에서 60분 동안 혼합하여 양극 슬러리 조성물을 제조하였다.
상기 양극 슬러리 조성물 내에서, 양극 활물질, 도전재, 바인더, 및 분산제는 95.68 : 0.8 : 3.0 : 0.52의 중량비로 존재하였고, 상기 양극 슬러리 조성물의 고형분은 60 중량%였다.
(2) 양극의 제조
15 μm 두께의 알루미늄 박막에, 슬롯 다이 코터를 이용해, 상기 제조된 양극 슬러리 조성물을 도포한 후, 130℃에서 10 시간 동안 진공 건조하였다. 이후, 양극 활물질층의 공극률(porosity)이 28%가 되도록 압연하여 양극을 제조하였다. 상기 양극 활물질층는 두께 98 μm, 가로 33 mm, 세로 50 mm 였고, 양극 활물질층의 로딩량은 3.6 mAh/cm2였다.
(3) 리튬 이차전지의 제조
먼저, 음극 활물질로서 인조 흑연, 도전재로서 superC, 바인더로서 SBR/CMC를 96:1:3의 중량비로 혼합하여 음극 슬러리를 제작하고 이를 구리 집전체의 일면에 도포한 후 130℃에서 건조 후, 공극률은 29 %로 압연하여 가로 34 mm, 세로 51 mm인 음극을 제조하였다.
다음으로, 상기 제조된 양극 및 음극 사이에 두께 18 μm, 폴리프로필렌으로 형성된 분리막을 개재하여 전극 조립체를 제조하였다. 상기 전극 조립체를 알루미늄 파우치형 전지케이스에 수납하고, 1.0M LiPF6 및 2wt% 바이닐렌 카보네이트(vinylene carbonate, VC)가 유기 용매(EC/ EMC/DMC = 3:3:4 부피비)에 용해된 전해액을 230g 주액한 후 진공 실링하였다. 상기 전해액은 1일 동안 에이징하고, 7.9 mAh로 3시간동안 활성화 공정을 실시한 후, 3일간 추가 에이징을 실시하였다. 최종적으로 디가스(degas) 공정을 진행하여 리튬 이차전지를 제조하였다.
실시예 2 내지 실시예 3
분산제로서 중량평균분자량(Mw)을 표 1과 같이 변경한 수소화 니트릴계 부타디엔 고무(H-NBR)를 사용한 점을 제외하고는, 실시예 1과 동일한 방법으로 양극 슬러리 조성물 및 리튬 이차전지를 제조하였다.
비교예 1
분산제로 중량평균분자량(Mw)이 220,000 g/mol인 수소화 니트릴계 부타디엔 고무(H-NBR)를 사용하고, 양극 슬러리 조성물의 고형분이 57 중량%인 점을 제외하고는, 실시예 1과 동일한 방법으로 양극 슬러리 조성물 및 리튬 이차전지를 제조하였다.
비교예 2
양극 슬러리 조성물의 고형분이 60 중량%인 점을 제외하고는, 비교예 1과 동일한 방법으로 양극 슬러리 조성물 및 리튬 이차전지를 제조하였다.
양극 슬러리 조성물 내 고형분 함량 (중량%) 분산제(H-NBR)의 중량평균분자량
(g/mol)
실시예 1 60 40,000
실시예 2 60 21,000
실시예 3 60 130,000
비교예 1 57 220,000
비교예 2 60 220,000
실험예 1 - 점도 측정
실시예 1 ~ 3 및 비교예 1 ~ 2에서 각각 제조된 양극 슬러리 조성물의 점도 값을 측정하였고, 측정 결과를 하기 표 2에 나타내었다.
구체적으로, 실시예 1 ~ 3 및 비교예 1 ~ 2에서 제조된 양극 슬러리 조성물을 상온, 상대습도 1%의 조건에서 1시간동안 쿨링(cooling)한 뒤, 점도계(Brookfield)를 이용하여 25℃에서 10-2 rpm의 전단 속도(shear rate)로 양극 슬러리 조성물의 점도를 측정하였다. 점도 측정은 양극 슬러리 조성물 제조 후 쿨링 시간을 포함하여 2시간 이내에 실시하였다.
실험예 2 - 양극 단면 상에서 도전재의 응집 형태 확인
실시예 1 ~ 3 및 비교예 1에서 각각 제조된 양극의 단면 중, 50㎛ × 50㎛ 면적의 영역을 SEM으로 관찰하여, 상기 양극 단면 상에서의 도전재의 응집 형태를 확인하였다. 상기 SEM 이미지는 각각 도 1 내지 도 4에 나타내었고, 상기 양극 단면 상에서의 도전재 응집 형태는 하기 표 2에 나타내었다.
도 1은 실시예 1의 리튬 이차전지 내 양극의 단면을 촬영한 SEM 이미지이고, 도 2는 실시예 2의 리튬 이차전지 내 양극의 단면을 촬영한 SEM 이미지이고, 도 3은 실시예 3의 리튬 이차전지 내 양극의 단면을 촬영한 SEM 이미지이며, 도 4는 비교예 1의 리튬 이차전지 내 양극의 단면을 촬영한 SEM 이미지이다.
도 1 내지 도 4에서, 리튬 인산철은 밝은 부분으로 나타나고, 도전재의 응집 영역은, 어두운 음영으로 나타난다.
도 1 내지 도 2에 도시된 바와 같이, 실시예 1,2의 양극 단면에서는 선형으로 응집된 도전재 뭉침 영역이 발견되지 않고, 도전재가 구형으로 응집되었음을 확인할 수 있다. 도 3에 도시된 바와 같이, 실시예 3의 양극 단면에서는 구형으로 응집된 도전재 뭉침 영역과 선형으로 응집된 도전재 뭉침 영역이 혼재되어 있으나, 선형으로 응집된 도전재의 뭉침 영역에서도 장축 길이의 최대값이 10 μm 이하인 것으로 나타났다. 한편, 도 4에 도시된 바와 같이, 비교예 1의 양극 단면에서는 선형으로 응집되고 장경이 1μm 이상인 도전재 뭉침 영역이 발견되었으며, 장축 길이가 10 μm를 초과하는 도전재 뭉침 영역도 3개 관찰되었다.
실험예 3 - 리튬 이차전지의 셀 저항 측정
실시예 1 ~ 3 및 비교예 1 ~ 2에서 각각 제조된 리튬 이차전지의 셀 저항 값을 측정하였고, 측정 결과를 하기 표 2에 나타내었다.
구체적으로, 상기 실시예 1 ~3 및 비교예 1 ~ 2에서 각각 제조된 리튬 이차전지에 대하여, SOC(State of charge) 50% 에서 2.5C의 전류로 10초 간 방전 펄스(pulse)를 준 상태에서 나타나는 전압 강하 값을 전류 값으로 나눈 값으로 셀 저항(SOC50 방전 저항)을 측정하였다.
양극 슬러리 조성물 양극 단면 리튬 이차전지
점도 (cps) 도전재의 응집 형태 셀 저항 (mΩ)
실시예 1 11,900 구형 1.5
실시예 2 10,500 구형 1.5
실시예 3 12,400 선형/구형 1.5
비교예 1 8,900 선형 1.8
비교예 2 23,000 (미관찰) (측정 불가)
표 2에 따르면, 분산제의 중량평균분자량이 150,000 g/mol을 초과하는 비교예 2의 양극 슬러리 조성물은, 실시예 1 내지 실시예 3의 양극 슬러리 조성물에 비해 같은 고형분 함량 대비 현저히 높은 점도를 가짐을 확인할 수 있다.
비교예 2의 경우, 슬롯 다이 코터에 연결된 이송 배관이 양극 슬러리 조성물에 의해 막힐 정도로, 양극 슬러리 조성물의 점도가 매우 높아, 통상적인 펌프 압력으로는 슬롯 다이 코터로부터 슬러리 조성물을 토출하는 것이 불가능하였다. 이에 슬롯 다이 코터로부터 양극 슬러리 조성물을 토출시키기 위해, 슬롯 다이 코터에 높은 펌프 압력을 인가해야 했고, 과다한 펌프 압력이 인가되는 결과, 실시예 1과 동일한 수준의 로딩량으로 양극 슬러리 조성물을 도포하지 못해 양극의 제작이 불가능하였으며, 그 결과 리튬 이차전지에 대한 셀 저항 측정이 불가능하였다.
분산제의 중량평균분자량이 150,000 g/mol을 초과하는 비교예 1의 양극 슬러리 조성물은 비록 낮은 점도를 갖지만, 실시예 1의 양극 슬러리 조성물에 비해 고형분 함량이 더 낮기 때문에, 양극 제조 시 조성물의 건조 공정에 시간이 많이 소요됨에 따라 공정 비용이 비싸지는 문제가 있다.
또한, 비교예 1의 리튬 이차전지는 실시예 1의 리튬 이차전지에 비해 높은 셀 저항을 가짐을 확인할 수 있다. 이러한 결과는 비교예 1의 경우 도 2에 도시된 바와 같이 양극 내에서 도전재가 선형으로 응집됨으로써 상기 응집된 도전재의 표면적이 증가하게 되고, 이에 따라 상기 응집된 도전재와 인접하여 리튬 삽입/탈리 반응에 참여하지 못하는 양극 활물질의 표면적이 증가하기 때문으로 판단된다.

Claims (12)

  1. 양극 활물질, 분산제, 도전재, 바인더, 및 용매를 포함하고,
    상기 양극 활물질은 리튬 인산철을 포함하며,
    상기 분산제의 중량평균분자량은 10,000 g/mol 내지 150,000 g/mol인 양극 슬러리 조성물.
  2. 청구항 1에 있어서,
    상기 리튬 인산철은 하기 화학식 1로 표시되는 화합물인 양극 슬러리 조성물.
    [화학식 1]
    Li1+aFe1-xMx(PO4-b)Xb
    (상기 화학식 1에서, M은 Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn 및 Y 로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고, X는 F, S 및 N 로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고, a, b, x는 각각 -0.5≤a≤0.5, 0≤b≤0.1, 0≤x≤0.5이다)
  3. 청구항 1에 있어서,
    상기 분산제는 수소화 니트릴계 부타디엔 고무인 양극 슬러리 조성물.
  4. 청구항 1에 있어서,
    상기 분산제는 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 0.2중량부 내지 1.0중량부로 포함되는 양극 슬러리 조성물.
  5. 청구항 1에 있어서,
    상기 양극 슬러리 조성물의 고형분 함량은 40 중량% 내지 75 중량%로 포함되는 양극 슬러리 조성물.
  6. 청구항 1에 있어서,
    25℃, 10-2 rpm 조건에서 측정된 상기 양극 슬러리 조성물의 점도는 5,000 cps 내지 20,000 cps인 양극 슬러리 조성물.
  7. 청구항 1에 있어서,
    상기 도전재는 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 0.1 중량부 내지 3.0 중량부로 포함되는 양극 슬러리 조성물.
  8. 청구항 1에 있어서,
    상기 바인더는 상기 양극 슬러리 조성물 내 고형분 100중량부에 대하여 2.0 중량부 내지 4.0 중량부로 포함되는 양극 슬러리 조성물.
  9. 양극을 포함하고,
    상기 양극은 양극 활물질, 분산제, 도전재 및 바인더를 포함하고,
    상기 양극 활물질은 리튬 인산철을 포함하며,
    상기 양극의 단면에서, 상기 도전재의 응집 영역의 장축 길이의 최대값은 10㎛ 이하인 리튬 이차전지.
  10. 청구항 9에 있어서, 상기 분산제의 중량평균분자량은 10,000 g/mol 내지 150,000 g/mol인 리튬 이차전지.
  11. 청구항 9에 있어서,
    상기 분산제는 수소화 니트릴계 부타디엔 고무인 리튬 이차전지.
  12. 청구항 9에 있어서,
    상기 리튬 이차전지의 SOC50 방전 저항은 1.7 mΩ 이하인 리튬 이차전지.
PCT/KR2022/020996 2021-12-24 2022-12-21 양극 슬러리 조성물, 이를 이용하여 제조된 리튬 이차전지 WO2023121315A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023550667A JP2024507546A (ja) 2021-12-24 2022-12-21 正極スラリー組成物、それを用いて製造されたリチウム二次電池
CN202280015253.9A CN116918094A (zh) 2021-12-24 2022-12-21 正极浆料组合物和使用其制造的锂二次电池
EP22911948.2A EP4283712A1 (en) 2021-12-24 2022-12-21 Cathode slurry composition, and lithium secondary battery manufactured using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210187722 2021-12-24
KR10-2021-0187722 2021-12-24
KR10-2022-0179775 2022-12-20
KR1020220179775A KR20230098037A (ko) 2021-12-24 2022-12-20 양극 슬러리 조성물, 이를 이용하여 제조된 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2023121315A1 true WO2023121315A1 (ko) 2023-06-29

Family

ID=86897362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020996 WO2023121315A1 (ko) 2021-12-24 2022-12-21 양극 슬러리 조성물, 이를 이용하여 제조된 리튬 이차전지

Country Status (4)

Country Link
US (1) US20230207807A1 (ko)
EP (1) EP4283712A1 (ko)
JP (1) JP2024507546A (ko)
WO (1) WO2023121315A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130108776A1 (en) * 2011-10-12 2013-05-02 Ut-Battelle, Llc Aqueous processing of composite lithium ion electrode material
KR20140116190A (ko) * 2012-01-11 2014-10-01 미쯔비시 레이온 가부시끼가이샤 이차 전지 전극용 바인더 수지 조성물, 이차 전지 전극용 슬러리, 이차 전지용 전극, 및 리튬 이온 이차 전지
KR20150059438A (ko) * 2013-11-22 2015-06-01 한국화학연구원 리튬인산철 양극 활물질의 제조방법, 이에 따라 제조되는 리튬인산철 양극 활물질 및 이에 따라 제조되는 2차 전지
KR20170111740A (ko) * 2016-03-29 2017-10-12 주식회사 엘지화학 이차전지용 양극의 제조방법, 및 이를 이용하여 제조된 양극 및 이차전지
KR20180107759A (ko) * 2017-03-22 2018-10-02 주식회사 엘지화학 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR20180108463A (ko) * 2017-03-23 2018-10-04 주식회사 엘지화학 이차전지 양극용 슬러리의 제조방법
KR20210064360A (ko) * 2018-09-28 2021-06-02 닝보 질량 뉴 에너지 컴퍼니 리미티드 양극 첨가제 및 그 제조방법, 양극 및 그 제조방법과 리튬이온전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130108776A1 (en) * 2011-10-12 2013-05-02 Ut-Battelle, Llc Aqueous processing of composite lithium ion electrode material
KR20140116190A (ko) * 2012-01-11 2014-10-01 미쯔비시 레이온 가부시끼가이샤 이차 전지 전극용 바인더 수지 조성물, 이차 전지 전극용 슬러리, 이차 전지용 전극, 및 리튬 이온 이차 전지
KR20150059438A (ko) * 2013-11-22 2015-06-01 한국화학연구원 리튬인산철 양극 활물질의 제조방법, 이에 따라 제조되는 리튬인산철 양극 활물질 및 이에 따라 제조되는 2차 전지
KR20170111740A (ko) * 2016-03-29 2017-10-12 주식회사 엘지화학 이차전지용 양극의 제조방법, 및 이를 이용하여 제조된 양극 및 이차전지
KR20180107759A (ko) * 2017-03-22 2018-10-02 주식회사 엘지화학 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR20180108463A (ko) * 2017-03-23 2018-10-04 주식회사 엘지화학 이차전지 양극용 슬러리의 제조방법
KR20210064360A (ko) * 2018-09-28 2021-06-02 닝보 질량 뉴 에너지 컴퍼니 리미티드 양극 첨가제 및 그 제조방법, 양극 및 그 제조방법과 리튬이온전지

Also Published As

Publication number Publication date
JP2024507546A (ja) 2024-02-20
US20230207807A1 (en) 2023-06-29
EP4283712A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019225969A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021187961A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021107586A1 (ko) 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지
WO2020111649A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2020162708A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2019177403A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지용 음극
WO2021225316A1 (ko) 수분과의 반응성이 완화된 고-니켈 전극 시트 및 이의 제조방법
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018174616A1 (ko) 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021112607A1 (ko) 이차전지용 양극재의 제조방법
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021133127A1 (ko) 수계 양극용 슬러리, 양극 조성물 및 이 양극 조성물을 포함하는 리튬 이온 이차전지, 그리고 이들의 제조 방법
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021225396A1 (ko) 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020226354A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 양극 및 이를 포함하는 리튬 이차전지
WO2022139563A1 (ko) 이차전지용 음극, 음극용 슬러리 및 음극의 제조 방법
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021075830A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2023121315A1 (ko) 양극 슬러리 조성물, 이를 이용하여 제조된 리튬 이차전지
WO2020159310A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021125535A1 (ko) 고온 수명 특성 향상에 최적화된 양극 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280015253.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023550667

Country of ref document: JP

Ref document number: 2022911948

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022911948

Country of ref document: EP

Effective date: 20230822