WO2023121040A1 - 방향성 전기강판 및 이의 제조방법 - Google Patents

방향성 전기강판 및 이의 제조방법 Download PDF

Info

Publication number
WO2023121040A1
WO2023121040A1 PCT/KR2022/019322 KR2022019322W WO2023121040A1 WO 2023121040 A1 WO2023121040 A1 WO 2023121040A1 KR 2022019322 W KR2022019322 W KR 2022019322W WO 2023121040 A1 WO2023121040 A1 WO 2023121040A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grain
oriented electrical
electrical steel
recrystallization annealing
Prior art date
Application number
PCT/KR2022/019322
Other languages
English (en)
French (fr)
Inventor
고경준
이상우
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202280082626.4A priority Critical patent/CN118401693A/zh
Publication of WO2023121040A1 publication Critical patent/WO2023121040A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • One embodiment of the present invention relates to a grain-oriented electrical steel sheet and a manufacturing method thereof. Specifically, it relates to a grain-oriented electrical steel sheet in which the ratio of hysteretic loss to total iron loss is dramatically lowered by adjusting the exposure time of nitriding gas during primary recrystallization annealing and a manufacturing method thereof.
  • Grain-oriented electrical steel is used as a core material for stationary equipment such as transformers, motors, generators and other electronic devices.
  • the final product of grain-oriented electrical steel sheet has a texture in which the orientation of crystal grains is oriented in the (110)[001] direction, so it has extremely excellent magnetic properties in the rolling direction, so it is an iron core material for transformers, motors, generators and other electronic devices In order to reduce energy loss, a low core loss is required, and a high magnetic flux density is required to miniaturize a generator.
  • the core loss of grain-oriented electrical steel sheet is divided into hysteretic loss and eddy current loss, and in order to reduce the eddy current loss, it is necessary to increase the specific resistivity and reduce the thickness of the product.
  • the method of reducing the product plate thickness it is difficult to roll grain-oriented electrical steel sheets, which are difficult-to-roll products, into ultra-thin materials.
  • the biggest difficulty and problem to be overcome in making ultra-thin products having very low core loss characteristics is that it is difficult to make the directness of the Goss orientation, which is the secondary recrystallization structure of grain-oriented electrical steel sheet, very strong as the thickness becomes thinner.
  • Hysteretic loss increases because the movement of the magnetic domain walls is hindered by fine precipitates or inclusions.
  • the base material of the final product must be managed so that it is clean with very few components such as C, N, O, and S, and the stronger the Goss density, the greater the proportion. so it decreases
  • the ratio of the coating layer to the total product thickness increases.
  • the thicker the metal oxide layer (base coating, glass coating) on the base material the higher the proportion of the coating layer in the product and the worse the hysteretic loss.
  • decarburization and nitriding reactions are performed through the surface layer of the steel sheet.
  • the speed and timing of decarburization and nitriding change according to the shape of the oxide layer formed on the surface layer.
  • the depth and composition of the oxide layer generated during the primary recrystallization annealing process are sensitively changed depending on the temperature, furnace atmosphere such as oxidation ability, steel component content, and surface shape.
  • components such as Sb, Sn, and Cr change the oxide layer formation behavior according to the amount added and consequently affect the characteristics of the product, so it is necessary to derive optimal conditions according to the characteristics of the product.
  • One embodiment of the present invention provides a grain-oriented electrical steel sheet and a manufacturing method thereof. Specifically, a grain-oriented electrical steel sheet in which the ratio of hysteretic loss to total iron loss is dramatically lowered by adjusting the exposure time of nitriding gas during primary recrystallization annealing and a manufacturing method thereof are provided.
  • Si 2.5 to 4.0%, C: 0.03 to 0.09%, Al: 0.015 to 0.040%, Mn: 0.04 to 0.15%, S: 0.01 % or less (excluding 0%), N: 0.002 to 0.012%, Sb: 0.01 to 0.05%, Sn: 0.03 to 0.1%, and Cr: 0.05 to 0.2%, the balance being Fe and other unavoidable impurities.
  • Preparing a hot-rolled sheet by hot-rolling a slab comprising; Cold-rolling a hot-rolled sheet to produce a cold-rolled sheet; Primary recrystallization annealing of the cold-rolled sheet; and performing secondary recrystallization annealing on the steel sheet on which the primary recrystallization annealing has been completed.
  • the step of performing the primary recrystallization annealing may include measuring a needle weight of the steel sheet after the primary recrystallization annealing; and adjusting the exposure time of the nitriding gas during primary recrystallization annealing according to the measured amount of needlework, wherein the amount of needlework and the exposure time of the nitride gas satisfy Equation 1 below.
  • ⁇ [N] represents the amount (wt%) of the steel sheet after the primary recrystallization annealing, and ⁇ t represents the exposure time (minutes) of the nitriding gas.
  • the slab may further include 0.002 to 0.01% by weight of one or more of Ti and V alone or in combination thereof.
  • the slab may further include Sb: 0.01 to 0.05% by weight, Sn: 0.03 to 0.1% by weight, and Cr, and satisfy Equation 2 below.
  • the primary recrystallization annealing step may be performed in an atmosphere having an oxidation capacity (PH 2 O/PH 2 ) of 0.5 to 0.8.
  • the step of primary recrystallization annealing may be performed at a temperature of 800 to 900 °C.
  • an oxide layer having an average thickness of 1.6 to 3.2 ⁇ m may be present on the surface of the steel sheet.
  • the needle weight of the steel sheet may be 0.02 to 0.04% by weight.
  • Si 2.5 to 4.0%, C: 0.005% or less (excluding 0%), Al: 0.015 to 0.040%, Mn: 0.04 to 0.15%, S: 0.01% or less (excluding 0%), N: 0.005% or less (excluding 0%), Sb: 0.01 to 0.05%, Sn: 0.03 to 0.1%, and Cr: 0.05 to 0.2%, the remainder Base materials containing Fe and other unavoidable impurities; and a metal oxide layer positioned on the base material.
  • the maximum emission intensity ratio [I(Ti)/I(Mg)] of the metal oxide layer is 0.05 or more.
  • the base material may further include 0.002 to 0.01% by weight of one or more of Ti and V alone or in combination thereof.
  • the base material may further include Sb: 0.01 to 0.05% by weight, Sn: 0.03 to 0.1% by weight, and Cr, and satisfy Equation 2 below.
  • the grain-oriented electrical steel sheet may have a whiteness of 43 to 51.
  • the metal oxide layer may include 0.003% by weight or more of Ti.
  • An insulating coating layer positioned on the metal oxide layer may be further included, and a ratio of the sum of the thicknesses of the metal oxide layer and the insulating coating layer to the total thickness of the grain-oriented electrical steel sheet may be 0.03 or less.
  • the ratio of hysteretic loss in total iron loss is dramatically lowered by adjusting the exposure time of the nitriding gas during primary recrystallization annealing, and ultimately, the total iron loss can be lowered.
  • first, second and third are used to describe, but are not limited to, various parts, components, regions, layers and/or sections. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.
  • % means weight%, and 1ppm is 0.0001 weight%.
  • the meaning of further including an additional element means replacing and including iron (Fe) as much as the additional amount of the additional element.
  • Si 2.5 to 4.0%, C: 0.03 to 0.09%, Al: 0.015 to 0.040%, Mn: 0.04 to 0.15%, S: 0.01 % or less (excluding 0%), N: 0.002 to 0.012%, Sb: 0.01 to 0.05%, Sn: 0.03 to 0.1%, and Cr: 0.05 to 0.2%, the balance including Fe and unavoidable impurities.
  • Preparing a hot-rolled sheet by hot rolling Preparing a hot-rolled sheet by hot rolling; Cold-rolling a hot-rolled sheet to produce a cold-rolled sheet; Primary recrystallization annealing of the cold-rolled sheet; and performing secondary recrystallization annealing on the steel sheet on which the primary recrystallization annealing has been completed.
  • a hot-rolled sheet is manufactured by hot-rolling a slab.
  • Si silicon
  • Si increases the specific resistance of the grain-oriented electrical steel sheet material and serves to lower core loss, that is, iron loss. If the Si content is too small, the specific resistance may decrease and iron loss may deteriorate. If the Si content is too high, the brittleness of the steel increases and the toughness decreases, resulting in an increase in the rate of sheet breakage during the rolling process. Secondary recrystallization formation may become unstable.
  • the Si content can be between 2.5 and 4.0% by weight. More specifically, it may be 3.0 to 3.5% by weight.
  • Carbon (C) is an element that induces the formation of an austenite phase
  • the ferrite-austenite phase transformation is activated during the hot rolling process, and the long-stretched hot-rolled band structure formed during the hot rolling process increases, Ferrite grain growth is suppressed during the annealing process.
  • the texture after cold rolling is improved by the increase in the stretched hot-rolled band structure, which has higher strength than the ferrite structure, and the refinement of the initial grains of the annealed hot-rolled sheet, which is the starting structure of cold rolling.
  • the Goss fraction increases. .
  • the higher the C content the better, but the decarburization annealing time becomes longer during the subsequent decarburization and nitriding annealing, and productivity is impaired.
  • the C content may be limited to a range of 0.03 to 0.09% by weight. More specifically, C may be included in the range of 0.050 to 0.070% by weight.
  • the base material of the finally manufactured grain-oriented electrical steel sheet may contain C at 0.005% by weight or less. More specifically, the base material of the finally manufactured grain-oriented electrical steel sheet may contain 0.003% by weight or less of C.
  • Aluminum (Al) combines with N to precipitate as AlN, but in annealing for decarburization and nitriding, fine precipitates (Al, Si, Mn) N and AlN form nitrides are formed, which plays a strong role in suppressing crystal grain growth.
  • a certain amount of Al employed in this way is required. If the content is too small, the number of precipitates formed and the volume fraction are low, so the crystal grain growth inhibitory effect may not be sufficient. If too much Al is included, the precipitate grows coarsely and the crystal grain growth inhibitory effect is reduced. Therefore, Al may be included in an amount of 0.015 to 0.040% by weight. More specifically, 0.0200 to 0.0380% by weight may be included.
  • Manganese (Mn) has the effect of reducing iron loss by increasing specific resistance in the same way as Si, and reacts with nitrogen introduced by nitriding treatment together with Si to form precipitates of (Al,Si,Mn)N, which are primary recombination. It is an important element in causing secondary recrystallization by inhibiting grain growth. In addition, Mn improves primary recrystallization grain uniformity by forming surfide precipitates with Cu, and plays a part as an auxiliary inhibitor in the formation of secondary recrystallization. However, if too much Mn is included, the slab reheating temperature must be increased to adjust the (Cu,Mn)S fine precipitates. Since it causes non-uniformity, the upper limit can be limited to 0.15% by weight.
  • N Nitrogen
  • Al and the like are elements that refines crystal grains by reacting with Al and the like.
  • N is set to 0.0120% by weight or less.
  • the base material of the finally manufactured grain-oriented electrical steel sheet may contain 0.005% by weight or less of N. More specifically, the base material of the grain-oriented electrical steel sheet finally manufactured may contain 0.003% by weight or less of N.
  • S is an element with high solid solution temperature and severe segregation during hot rolling, and it is desirable to avoid containing sulfur (S) as much as possible, but it is a kind of unavoidable impurity contained during steelmaking.
  • S forms (Mn, Cu)S and affects primary recrystallized grain uniformity the content of S may be limited to 0.0100% by weight or less. More specifically, it may contain 0.0010 to 0.0080% by weight.
  • Antimony increases the grain nuclei of the Goss orientation generated during the cold rolling process, and has an effect of improving the fraction of grains having the Goss orientation in the primary recrystallized texture.
  • the secondary recrystallization start temperature of the crystal grains having a Goss texture is increased during secondary recrystallization high temperature annealing, so that a secondary recrystallization microstructure with excellent degree of integration can be obtained and the magnetic flux density is increased.
  • the Sb content is too small, it is difficult to exert its action properly.
  • Sb content is too high, the size of the primary recrystallized grains becomes too small, and the secondary recrystallization initiation temperature is lowered, resulting in deterioration of magnetic properties or an excessively large suppression of grain growth, so that secondary recrystallization may not be formed. Therefore, 0.01 to 0.05% by weight of Sb may be included. More specifically, 0.020 to 0.045% by weight of Sb may be included.
  • Tin (Sn) is known as a crystal growth inhibitor because it is an element that hinders the movement of grain boundaries as a grain boundary segregation element.
  • the number of Goss orientation nuclei growing into the secondary recrystallized texture increases.
  • the size of the secondary recrystallized microstructure decreases as it is added, the iron loss of the final product decreases because the eddy current loss decreases as the crystal grain size decreases.
  • Sn plays an important role in suppressing grain growth through segregation at grain boundaries, which not only enhances the inhibitory effect of suppressing the grain growth driving force of the refined primary recrystallized microstructure, but also enhances the high-temperature
  • Al, Si, Mn AlN particles that cause grain growth suppression effect are coarsened to prevent the decrease in grain growth suppression. If the content of Sn is too small, the addition effect may not be sufficient. If the content of Sn is too large, the grain growth suppressing power increases too much, so the grain size of the primary recrystallized microstructure must be reduced to relatively increase the grain growth driving force. Uncontrollable, unable to secure a good surface.
  • 0.03 to 0.10 wt% of Sn may be included. More specifically, 0.030 to 0.090 wt % of Sn may be included.
  • chromium When chromium (Cr) is added within a range as an element that promotes oxidation formation, it suppresses the formation of a dense oxide layer in the surface layer and helps to form a fine oxide layer in the depth direction. With the addition of Sb and Sn and the addition of Cr in an appropriate range, the formation of Fe 2 SiO 4 increases in the surface layer of the oxide layer, helping the formation of the oxide layer in the depth direction.
  • Cr is an element that overcomes the phenomenon that primary recrystallized grains become non-uniform due to delayed decarburization and nitriding due to the increase in Sb and Sn contents, thereby forming primary recrystallized grains with excellent uniformity and showing an effect of increasing magnetism.
  • the Cr content is added in the above suggested range according to the Sb and Sn content, the inner oxide layer is formed deeper and the nitriding and decarburization rates are faster, so the effect of adding Sb and Sn in the simultaneous decarburization nitriding process can be enhanced.
  • Cr may be included in an amount of 0.05 to 0.20% by weight. More specifically, it may include 0.10 to 0.15% by weight.
  • the slab may satisfy Equation 2 below.
  • chromium When chromium (Cr) is added within a range as an element that promotes oxidation formation, it suppresses the formation of a dense oxide layer in the surface layer and helps to form a fine oxide layer in the depth direction. With the addition of Sb and Sn and the addition of Cr in an appropriate range, the formation of Fe 2 SiO 4 increases in the surface layer of the oxide layer, helping the formation of the oxide layer in the depth direction.
  • Cr is an element that overcomes the phenomenon of non-uniformity of primary recrystallized grains due to delayed decarburization and nitriding due to the increase in Sb and Sn contents, thereby forming primary recrystallized grains with excellent uniformity and showing an effect of increasing magnetism.
  • the Cr content is added in the above suggested range according to the Sb and Sn content, the inner oxide layer is formed deeper and the nitriding and decarburization rates are increased, so the effect of adding Sb and Sn in the simultaneous decarburization nitriding process can be enhanced.
  • the slab may further include 0.002 to 0.010% by weight of one or more of Ti and V alone or in combination thereof.
  • Ti and V When Ti and V are included alone, 0.002 to 0.010 wt% of each alone is included, and when Ti and V are included simultaneously, the amount of Ti + V may be 0.002 to 0.010 wt%. More specifically, it may further include 0.0030 to 0.0070% by weight of at least one of Ti and V alone or in combination thereof.
  • Titanium (Ti) is a strong nitride-forming element that becomes TiN in the pre-hot rolling stage, lowers the N content, and suppresses crystal grain growth through fine precipitation. When added within an appropriate range, it shows the effect of suppressing crystal grain growth due to the formation of TiN precipitates and reducing the variation in the grain size within the coil by reducing AlN fine precipitates.
  • V 0.002 to 0.01% by weight
  • Vanadium (V) is a carbide and nitride-forming element that precipitates finely and suppresses crystal grain growth. By adding it within an appropriate range, it shows the effect of reducing the grain size deviation in the coil due to the effect of suppressing the growth of crystal grains by the formation of fine precipitates.
  • the slab may further include P: 0.010 to 0.050% by weight.
  • Phosphorus (P) is an element that exhibits an effect similar to Sn and Sb, and can play a supplementary role of segregating at grain boundaries to hinder movement of grain boundaries and suppressing grain growth at the same time. In addition, there is an effect of improving the ⁇ 110 ⁇ ⁇ 001> texture in terms of microstructure. If the content of P is too small, there is no effect of addition, and if too much is added, brittleness may increase and rollability may be greatly deteriorated. More specifically, 0.015 to 0.045% by weight of P may be included.
  • Zr, Cu In addition to the above elements, Zr, Cu. Inevitably mixed impurities such as Ni and Mo may be included. Zr, Cu. Since Ni, Mo, etc. are strong carbonitride-forming elements, it is preferable not to add them as much as possible, and each content should be less than 0.01% by weight.
  • the rest includes iron (Fe).
  • Fe iron
  • the addition of elements other than the above-described alloy components is not excluded, and may be variously included within a range that does not impair the technical spirit of the present invention. When additional elements are included, they are included in place of Fe, which is the remainder.
  • a step of heating the slab to 1230° C. or less may be further included before the step of manufacturing the hot-rolled sheet. Through this step, the precipitate may be partially dissolved.
  • the heating furnace may be repaired by melting the surface of the slab and the life of the heating furnace may be shortened. More specifically, the slab may be heated to 1130 to 1200 ° C. It is also possible to hot-roll a continuously cast slab as it is without heating the slab.
  • a hot-rolled sheet having a thickness of 1.8 to 2.3 mm may be manufactured by hot rolling.
  • a step of annealing the hot-rolled sheet may be further included.
  • the step of annealing the hot-rolled sheet may be performed by heating to a temperature of 950 to 1,100 ° C, cracking at a temperature of 850 to 1,000 ° C and then cooling.
  • the hot-rolled sheet is cold-rolled to manufacture a cold-rolled sheet.
  • Cold rolling may be performed through one round of strong cold rolling or through a plurality of passes. Gives a pass aging effect through warm rolling at a temperature of 200 to 300 ° C. one or more times during rolling, and can be manufactured with a final thickness of 0.14 to 0.25 mm.
  • the cold-rolled cold-rolled sheet is subjected to decarburization, recrystallization of the deformed structure, and nitriding treatment through nitriding gas in the primary recrystallization annealing process.
  • the cold-rolled sheet is subjected to primary recrystallization annealing.
  • the step of measuring the amount of nitration of the steel sheet in the step of primary recrystallization annealing and adjusting the exposure time of nitriding gas during primary recrystallization annealing according to the measurement result is a simple process for measuring the amount of nitration of the steel sheet in the step of primary recrystallization annealing and adjusting the exposure time of nitriding gas during primary recrystallization annealing according to the measurement result.
  • the amount of nitriding mass and the exposure time of the nitriding gas may be adjusted to satisfy Equation 1 below.
  • ⁇ [N] represents the amount (wt%) of the steel sheet after primary recrystallization annealing, and ⁇ t represents the exposure time (minutes) of the nitriding gas.
  • a delay may occur between the steel sheet on which the amount of needlework is measured and the steel sheet to which the adjustment of the exposure time of the nitriding gas is applied.
  • primary recrystallization annealing is continuously performed in one embodiment of the present invention, there may be substantially no delay, and the relationship of Equation 1 may be satisfied within the entire coil.
  • the needle mass means the difference between the N content in the steel sheet after primary recrystallization annealing and the N content in the steel sheet before primary recrystallization annealing.
  • the amount of precipitation of the steel sheet may be 0.02 to 0.04% by weight. If the amount of needle material is too small, that is, if the value on the left side of Equation 3 is too large, the ability to inhibit the growth of internal crystal grains may be insufficient. If the amount of needle material is too large, a large amount of defects such as nitrogen discharge holes may occur, a large amount of fine secondary recrystallization of 5 mm or less may be formed, and magnetism may be deteriorated.
  • any gas capable of infiltrating nitrogen into the steel sheet may be used without limitation. Specifically, it may be ammonia or nitrogen. Nitriding is possible through heat treatment in an ammonia atmosphere and laser or plasma treatment in a nitrogen atmosphere.
  • the exposure time of the nitriding gas can be adjusted by installing a screen to hinder the movement of the atmosphere gas along the moving direction of the steel plate in the annealing furnace and introducing gas so that the atmosphere gas can be adjusted differently in the space separated by the screen. do.
  • the exposure time of the nitriding gas may be adjusted in various ways.
  • the exposure time of the nitriding gas means the time for exposing the steel sheet to an atmosphere containing 1 to 10% by volume of the nitriding gas. Except for the exposure time of the nitriding gas, primary recrystallization annealing is performed in an atmosphere containing less than 1.0% by volume of the nitriding gas.
  • the amount of nitrification of steel sheet is proportional to the exposure time of nitriding gas, but there are various other variables. For example, there may be a temperature of a steel sheet, a content of atmospheric gas other than nitriding gas, and the like. Even if these variables are controlled as much as possible, it is practically impossible to control them identically within the entire coil, and even if the exposure time of the nitriding gas is the same, deviations may occur in the amount of nitriding. Specifically, the nitriding gas exposure time may be 30 seconds to 5 minutes.
  • Equation 1 may be 0.025 to 0.05.
  • the primary recrystallization annealing step may be performed in an atmosphere having an oxidation capacity (PH 2 O/PH 2 ) of 0.5 to 0.8, thereby discharging carbon in the steel sheet to the outside.
  • the above-described oxidizing ability range may be controlled in the entirety or partially in the primary recrystallization annealing step. Through this, carbon in the steel sheet can be reduced to 0.005% by weight or less.
  • the step of primary recrystallization annealing may be performed at a temperature of 800 to 900 °C. If the temperature is too low, primary recrystallization may not be performed or nitriding may not be performed smoothly. If the temperature is too high, primary recrystallization grows too large, which may cause deterioration of magnetism.
  • an oxide layer having an average thickness of 1.6 to 3.2 ⁇ m may be present on the surface of the steel sheet. Due to decarburization during primary recrystallization annealing, an oxide layer exists near the steel sheet surface. The oxide layer refers to a portion where the oxygen content rapidly fluctuates by measuring the oxygen content from the surface of the steel sheet. If the thickness of the oxide layer is too thin, the non-uniformity of the magnetic properties increases. If the thickness of the oxide layer is too thick, the metal oxide layer is formed thickly, and the thickness of the base material is relatively reduced, resulting in inferior magnetism.
  • the cold-rolled sheet on which the primary recrystallization annealing is completed is subjected to secondary recrystallization annealing.
  • the purpose of the secondary recrystallization annealing is to form a ⁇ 110 ⁇ 001> texture by secondary recrystallization, to impart insulation by forming a metal oxide layer by the reaction between the oxide layer formed during decarburization and MgO in the annealing separator, and to harm magnetic properties. in the removal of impurities.
  • the surface oxide layer generated in the primary recrystallization annealing process reacts with the annealing separator to form a metal oxide layer.
  • the composition of the metal oxide layer is different from that of the parent material.
  • MgO is used as an annealing separator
  • forsterite is included.
  • a Ti compound is further included in addition to MgO. More specifically, the annealing separator includes 90 to 99% by weight of MgO and 1 to 10% by weight of a Ti compound as solid content.
  • a step of forming an insulating coating layer after secondary recrystallization annealing may be further included. Since a method of forming the insulating coating layer is widely known, a detailed description thereof will be omitted.
  • the thickness of the metal oxide layer can be formed thin after the secondary recrystallization by adjusting the nitrogen content compared to the exposure time to the nitriding gas atmosphere to be sufficiently high, and an additional process of removing the metal oxide layer will not be included.
  • the ratio of the sum of the thicknesses of the metal oxide layer and the insulating coating layer to the thickness of the entire grain-oriented electrical steel sheet including the metal oxide layer and the insulating coating layer may be 0.03 or less. More specifically, it may be 0.001 to 0.03.
  • Si 2.5 to 4.0%, C: 0.005% or less (excluding 0%), Al: 0.015 to 0.040%, Mn: 0.04 to 0.15%, S: 0.01% or less (excluding 0%), N: 0.005% or less (excluding 0%), Sb: 0.01 to 0.05%, Sn: 0.03 to 0.1%, and Cr: 0.05 to 0.2%, the remainder Base material containing Fe and unavoidable impurities; and a metal oxide layer positioned on the base material.
  • the steel composition of the base material of the grain-oriented electrical steel sheet has been described in relation to the steel composition of the above-described slab, duplicate descriptions will be omitted. As described above, since decarburization and nitriding are performed during the manufacturing process of the grain-oriented electrical steel sheet, the content of C and N in the steel composition of the slab and the steel composition of the base material may be different, and the remaining elements may be substantially unchanged.
  • the maximum emission intensity ratio [I(Ti)/I(Mg)] of the metal oxide layer is 0.05 or more.
  • the maximum luminous intensity can be measured from the max intensity of Ti and Mg components through elemental analysis of the metal oxide layer in the thickness direction in the glow discharge surface analysis method.
  • the metal formed during the secondary recrystallization annealing by suppressing the local nitride concentration in the oxide layer and the lower oxide layer and forming sufficient nitride precipitates in the depth direction Since the oxide layer is densely and uniformly formed, the maximum luminous intensity ratio may be increased.
  • a high maximum luminous intensity ratio is advantageous for imparting uniform tension as the metal oxide layer is formed robustly, suppresses loss of nitrogen before secondary recrystallization, and ultimately leads to improved magnetic properties.
  • the grain-oriented electrical steel sheet may have a whiteness of 43 to 51.
  • the whiteness can be measured in the absence or removal of the insulating coating layer and the presence of only the metal oxide layer.
  • Whiteness is measured by a spectrochromatic reflectance measurement method, and can be measured by measuring more than 10 times on both sides of the coating and taking an average value. If the whiteness is too large, problems arise in that the metal oxide layer is non-uniformly formed, surface defects occur, and magnetic variation becomes large. If it is too small, the thickness ratio occupied by the metal oxide layer becomes too high, and rather degrades the magnetism.
  • the metal oxide layer may include 0.003% by weight or more of Ti.
  • Ti in the metal oxide layer may be derived from a Ti compound component in the annealing separator, or Ti component in the steel sheet may be diffused. When a small amount of Ti is present in the metal oxide layer, the metal oxide layer is formed thinly and non-uniformly, and coating defects due to formation of Fe oxide may occur. More specifically, Ti may be included in an amount of 0.003 to 0.02 wt % in the metal oxide layer. More specifically, Ti may be included in an amount of 0.005 to 0.02 wt % in the metal oxide layer.
  • the grain-oriented electrical steel sheet may have a thickness of 0.23 mm or less. More specifically, it may be 0.20 mm or less.
  • the thickness of the grain-oriented electrical steel sheet means the total thickness of the base material, the metal oxide layer, and the insulating coating layer.
  • the grain-oriented electrical steel sheet according to the embodiment of the present invention has excellent iron loss and magnetic flux density.
  • iron loss (W17/50) may be 0.8 W/kg or less, and a ratio of hysteretic loss to total iron loss may be 40% or less.
  • the induced magnetic flux density (B8) of the grain-oriented electrical steel sheet under a magnetic field of 800 A/m may be 1.91 T or more. More specifically, it may be 1.91 to 1.97T.
  • a to H slabs having the component compositions shown in Table 1 are vacuum melted for steel containing Fe and other unavoidably contained impurities, and then heated at 1150 ° C. for 210 minutes, followed by hot rolling to obtain 2.3
  • a hot-rolled sheet having a thickness of mm or 2.0 mm was prepared. After pickling, steel cold rolling with a reduction rate of 90% was performed at a thickness of 0.23 mm or 0.20 mm.
  • the cold-rolled sheet is maintained for 180 seconds in a humid atmosphere of 50v% hydrogen and 50v% nitrogen and ammonia mixed gas at a temperature of 850 ° C. Simultaneous decarburization and nitriding annealing heat treatment so that the carbon content is less than 30ppm and the total nitrogen content is more than 200ppm did
  • the volume fraction of ammonia gas was adjusted within the range of 1 to 10% by volume and the oxidation capacity (P H2O /P H2 ) of 0.5 to 0.8, so that the nitriding amount and ammonia exposure time after nitriding satisfied the conditions as shown in Table 2.
  • An annealing separator containing 95% by weight of MgO and 5% by weight of TiO 2 as a solid content was applied to the steel sheet and subjected to secondary recrystallization annealing in a coil shape.
  • the secondary recrystallization annealing was carried out in a mixed atmosphere of 25 v% nitrogen and 75 v% hydrogen up to 1200 ° C, and after reaching 1200 ° C, it was maintained in a 100% hydrogen atmosphere for 10 hours or more, followed by furnace cooling.
  • an insulating coating layer-forming composition containing a mixture of metal phosphate and colloidal silica was applied and heat-treated to form an insulating coating layer.
  • Whiteness Measured by the spectrochromatic reflectance measurement method, measured by taking the average value by measuring more than 10 times on both sides of the coating.
  • Hysteresis loss ratio The ratio of hysteretic loss to total iron loss was obtained by measuring iron loss and hysteretic loss for specimens manufactured under each condition.
  • the inventive material in which the exposure time of the nitriding gas is appropriately adjusted according to the needle mass amount has a large maximum luminous intensity ratio [I(Ti)/I(Mg)], excellent magnetism, and particularly hysteretic loss ratio. is small, it can be seen that the overall core loss is reduced.
  • Comparative Materials 1 to 4 in which the exposure time of the nitriding gas was not properly adjusted, had a small maximum luminous intensity ratio [I(Ti)/I(Mg)] and poor magnetism.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명의 일 실시예에 의한 방향성 전기강판의 제조 방법은 중량%로, Si: 2.5 내지 4.0%, C: 0.03 내지 0.09%, Al: 0.015 내지 0.040%, Mn: 0.04 내지 0.15%, S : 0.01% 이하(0%를 제외함), N: 0.002 내지 0.012%, Sb: 0.01 내지 0.05%, Sn: 0.03 내지 0.1% 및 Cr: 0.05 내지 0.2% 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 열간압연하여 열연판을 제조하는 단계; 열연판을 냉간압연하여 냉연판을 제조하는 단계; 냉연판을 1차 재결정 소둔하는 단계; 및 1차 재결정 소둔이 완료된 강판을 2차 재결정 소둔하는 단계를 포함한다.

Description

방향성 전기강판 및 이의 제조방법
본 발명의 일 실시예는 방향성 전기강판 및 이의 제조방법에 관한 것이다. 구체적으로 1차 재결정 소둔 시 침질 가스의 노출 시간을 조절하여 전체 철손 중 이력손의 비율을 획기적으로 낮춘 방향성 전기강판 및 이의 제조방법에 관한 것이다.
방향성 전기강판은 변압기, 전동기, 발전기 및 기타 전자기기 등 정지 기기의 철심 재료로 사용된다. 방향성 전기강판 최종 제품은 결정립의 방위가 (110)[001]방향으로 배향된 집합조직을 가짐으로, 압연방향으로 극히 우수한 자기적 특성을 갖기 때문에 변압기, 전동기, 발전기 및 기타 전자기기 등의 철심 재료로 사용될 수 있고, 에너지 손실을 줄이기 위해서는 철손이 낮은 것, 발전기기의 소형화를 위해서는 자속밀도가 높은 것이 요구된다.
방향성 전기강판의 철손은 이력손, 와전류손으로 나뉘고 이중 와전류손을 감소하기 위해서는 고유비저항을 늘리는 것, 제품 판두께를 줄이는 등의 노력이 필요하다. 제품판 두께를 줄이는 방법에 대해서는 난압연 제품인 방향성 전기강판을 극박물로 압연해야하는 어려움이 있다. 또한 매우 낮은 철손특성을 가지는 극박물 제품을 만드는데 있어서 가장 큰 어려움이자 극복해야할 문제는 두께가 얇아지면서 방향성 전기강판의 2차 재결정 조직인 고스 방위의 직접도를 매우 강하게 만들기 어렵다는 것이다. 이력손은 자구벽의 이동이 미세 석출물이나 개재물에 의해 방해되어 증가하는데, 최종 제품의 모재의 C, N, O, S 등의 성분이 극히 적은 청정하도록 관리 되어야 하며, 고스 집적도가 강할 수록 이에 비례하여 감소한다.
이는 제품두께가 얇아짐에 따라 2차 재결정 소둔 과정 중 특히, 고스 방위의 2차 재결정이 나타나는 구간에서의 표면으로부터 석출물 유실이 빨라져 고스 방위 집적도를 강하게 유지하기 어려워 진다는데 그 원인이 있다. 이는 제품 자성 특성에 직결되는 문제로 두께를 매우 얇게 만들더라도 매우 낮은 철손 특성을 확보하기 어렵게 만든다.
또한 제품이 박물화 될수록 전체 제품 두께에서 코팅층이 차지하는 비율이 증가하게 된다. 모재 상의 금속 산화물 층(베이스 코팅, 글라스 코팅)이 두꺼울수록 제품에서 코팅층이 차지하는 비율이 증가하며 이력손이 나빠질 수 있다.
석출물 유실을 극복하기 위한 방법으로 2차 재결정 소둔 과정중 N2 gas의 분율을 높여서 석출물 유실을 방지하는 방법이 제안되었으나, 이는 제품판 표면에 질소 방출구와 같은 표면결함을 유발 시키는 문제가 있다.
동시탈탄침질방법을 사용한 경제적인 제조방법 또한 제안되었다. 동시탈탄침질 방법으로 탈탄판을 제조함에 있어서 표면 결정립경과 중심층 결정립경의 차이가 존재함을 명시하였고, 이를 일정 범위로 제어할 필요가 있음을 제안하였다.
Sb, Sn, P와 같은 편석원소를 포함함으로서 자성을 획기적으로 개선 하는 기술이 또한 제안되었다. 편석원소를 더욱 추가하여 극박물 제품 제조시 석출물 유실을 보완하는 보조 인히비터로 편석원소를 활용하였으나, 과량 첨가시 극박 압연이 어려운 점이 있고, 편석원소 과량 첨가시 산화층이 불균일하고 얇아져 베이스 코팅의 특성이 열위하여 석출물 유실을 더욱 야기하는 부작용이 있어 자성을 안정적으로 확보할 수가 없었다.
극박물 제품 제조시 1차 재결정 소둔 공정에 있어서 전단부의 산화능과 질화 처리를 조절하는 방법도 제안되었다. 하지만, 극박물제품을 제조함에 있어서는 석출물의 유실 영향이 매우 민감해지는 문제가 있었다.
또한, 슬라브에 Cr을 첨가하고, 1차 재결정 소둔 공정에 있어서 전단부 및 후단부의 침질 가스 투입량을 조절하는 방법이 제안되었다. 그러나, 이 방법은 강판 두께 방향으로의 질소량은 균일하게 유지하였으나, AlN 석출물은 불균일하게 분포하여 자성 특성의 편차가 여전히 존재하는 문제가 있었다. 또한 Cr을 첨가함으로써, 산화층 깊이가 깊어지면서 베이스 코팅 두께가 두꺼워지게 되고, 제품에 있어서 코팅층이 차지하는 비율이 커지는 박물제품의 이력손을 증가시키는 문제가 있다.
1차 재결정 소둔 중 탈탄과 침질 반응은 강판 표층부를 통해 이루어진다. 이때 표층부에 형성되어 있는 산화층의 형상에 따라 탈탄과 침질의 속도와 시기가 바뀌게 된다는 것이다. 1차 재결정 소둔 과정중 생기는 산화층의 깊이와 조성은 온도, 산화능과 같은 노분위기, 소강 성분함량, 표면 형상 등에 따라 민감하게 변화하게 된다. 특히, Sb, Sn, Cr와 같은 성분은 첨가량에 따라 산화층 형성 거동을 변화시키고 결과적으로 제품의 특성에 영향을 주므로 제품 특성에 따라 최적 조건을 도출할 필요가 있다.
본 발명의 일 실시예는 방향성 전기강판 및 이의 제조방법을 제공한다. 구체적으로 1차 재결정 소둔 시 침질 가스의 노출 시간을 조절하여 전체 철손 중 이력손의 비율을 획기적으로 낮춘 방향성 전기강판 및 이의 제조방법을 제공한다.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조 방법은 중량%로, Si: 2.5 내지 4.0%, C: 0.03 내지 0.09%, Al: 0.015 내지 0.040%, Mn: 0.04 내지 0.15%, S : 0.01% 이하(0%를 제외함), N: 0.002 내지 0.012%, Sb: 0.01 내지 0.05%, Sn: 0.03 내지 0.1% 및 Cr: 0.05 내지 0.2% 포함하고, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물을 포함하는 슬라브를 열간압연하여 열연판을 제조하는 단계; 열연판을 냉간압연하여 냉연판을 제조하는 단계; 냉연판을 1차 재결정 소둔하는 단계; 및 1차 재결정 소둔이 완료된 강판을 2차 재결정 소둔하는 단계를 포함한다.
1차 재결정 소둔하는 단계는, 1차 재결정 소둔 후 강판의 침질량을 측정하는 단계; 및 측정된 침질량에 따라 1차 재결정 소둔 시 침질 가스의 노출 시간을 조절하는 단계를 포함하고, 침질량 및 침질 가스의 노출 시간은 하기 식 1을 만족한다.
[식 1]
△[N]/△t≥ 0.025
(식 1에서, △[N]은 상기 1차 재결정 소둔 후 강판의 침질량(중량%)을 나타내고, △t는 침질 가스의 노출 시간(분)을 나타낸다.)
슬라브는 Ti 및 V 중 1종 이상을 각각 단독 또는 이들의 합량으로 0.002 내지 0.01 중량% 더 포함할 수 있다.
슬라브는 Sb: 0.01 내지 0.05 중량%, Sn: 0.03 내지 0.1 중량% 및 Cr을 더 포함하고, 하기 식 2를 만족할 수 있다.
[식 2]
[Sb] ≤ [Cr] ≤ [Sb] + 2×[Sn]
(식 2에서, [Sb], [Cr] 및 [Sn]은 각각 슬라브 내의 Sb, Cr 및 Sn의 함량(중량%)을 나타낸다.)
1차 재결정 소둔하는 단계는 산화능(PH2O/PH2)이 0.5 내지 0.8인 분위기에서 수행될 수 있다.
1차 재결정 소둔하는 단계는 800 내지 900℃의 온도에서 수행될 수 있다.
1차 재결정 소둔하는 단계 이후, 강판의 표면에 평균 두께가 1.6 내지 3.2㎛인 산화층이 존재할 수 있다.
1차 재결정 소둔하는 단계 이후, 강판의 침질량이 0.02 내지 0.04 중량%일 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 중량%로, Si: 2.5 내지 4.0%, C: 0.005% 이하(0%를 제외함), Al: 0.015 내지 0.040%, Mn: 0.04 내지 0.15%, S : 0.01% 이하(0%를 제외함), N: 0.005% 이하(0%를 제외함), Sb: 0.01 내지 0.05%, Sn: 0.03 내지 0.1% 및 Cr: 0.05 내지 0.2% 포함하고, 잔부 Fe 및 기타 불가피하게 혼입되는 불순물을 포함하는 모재; 및 모재 상에 위치하는 금속 산화물 층을 포함한다.
금속 산화물층의 최대(Max) 발광강도 비[I(Ti)/I(Mg)]가 0.05 이상이다.
모재는 Ti 및 V 중 1종 이상을 각각 단독 또는 이들의 합량으로 0.002 내지 0.01 중량% 더 포함할 수 있다.
모재는 Sb: 0.01 내지 0.05 중량%, Sn: 0.03 내지 0.1 중량% 및 Cr을 더 포함하고, 하기 식 2를 만족할 수 있다.
[식 2]
[Sb] ≤ [Cr] ≤ [Sb] + 2×[Sn]
(식 2에서, [Sb], [Cr] 및 [Sn]은 각각 모재 내의 Sb, Cr 및 Sn의 함량(중량%)을 나타낸다.)
방향성 전기강판의 백색도는 43 내지 51일 수 있다.
금속 산화물층은 Ti를 0.003 중량% 이상 포함할 수 있다.
금속 산화물층 상에 위치하는 절연 코팅층을 더 포함하고, 방향성 전기강판 전체 두께에 대한 금속 산화물층 및 절연 코팅층의 두께의 합의 비율이 0.03 이하일 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 1차 재결정 소둔 시 침질 가스의 노출 시간을 조절하여 전체 철손 중 이력손의 비율을 획기적으로 낮추어, 궁극적으로 전체 철손을 낮출 수 있다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며, 1ppm 은 0.0001중량%이다.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 철(Fe)을 대체하여 포함하는 것을 의미한다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조 방법은 중량%로, Si: 2.5 내지 4.0%, C: 0.03 내지 0.09%, Al: 0.015 내지 0.040%, Mn: 0.04 내지 0.15%, S : 0.01% 이하(0%를 제외함), N: 0.002 내지 0.012%, Sb: 0.01 내지 0.05%, Sn: 0.03 내지 0.1% 및 Cr: 0.05 내지 0.2% 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 열간압연하여 열연판을 제조하는 단계; 열연판을 냉간압연하여 냉연판을 제조하는 단계; 냉연판을 1차 재결정 소둔하는 단계; 및 1차 재결정 소둔이 완료된 강판을 2차 재결정 소둔하는 단계를 포함한다.
이하에서는 각 단계별로 상세히 설명한다.
먼저, 슬라브를 열간압연하여 열연판을 제조한다.
이하에서는 슬라브 합금 성분에 대해 설명한다.
슬라브는 중량%로, Si: 2.5 내지 4.0%, C: 0.03 내지 0.09%, Al: 0.015 내지 0.040%, Mn: 0.04 내지 0.15%, S : 0.01% 이하(0%를 제외함), N: 0.002 내지 0.012%, Sb: 0.01 내지 0.05%, Sn: 0.03 내지 0.1% 및 Cr: 0.05 내지 0.2% 포함하고, 잔부 Fe 및 불가피한 불순물을 포함한다.
Si : 2.50 내지 4.00 중량%
규소(Si, 실리콘)은 방향성 전기강판 소재의 비저항을 증가시켜 철심손실(core loss) 즉, 철손을 낮추는 역할을 한다. Si함량이 너무 적을 경우 비저항이 감소하여 철손이 열화될 수 있다. Si 함량이 너무 많을 경우 강의 취성이 증가하고, 인성이 감소하여 압연 과정중 판파단 발생율이 증가되고, 용접성이 열위해져 냉간압연 조업에 부하가 생기고, 냉간압연 중 패스에이징에 필요한 판온에 미달하게 되고 2차재결정 형성이 불안정해질 수 있다. 따라서 Si 함량은 2.5 내지 4.0 중량%가 될 수 있다. 더욱 구체적으로 3.0 내지 3.5 중량%가 될 수 있다.
C: 0.030 내지 0.090 중량%
탄소(C)는 오스테나이트상 형성을 유도하는 원소로서 C 함량의 증가에 따라 열간 압연 공정 중 페라이트-오스테나이트 상변태가 활성화되고, 열연 공정 중 형성되는 길게 연신된 열연띠 조직이 증가하여, 열연판 소둔 공정 중 페라이트 입성장이 억제한다. 또한 C함량이 증가함에 따라 페라이트 조직에 비해 강도가 높은 연신된 열연띠 조직 증가와 냉연 시작 조직인 열연판 소둔 조직의 초기 입자의 미세화에 의해 냉간압연 이후 집합조직이 개선 특히, 고스 분율이 증가하게 된다. 이는 열연판 소둔 후 강판내 존재하는 잔류 C에 의해 냉간압연중 패스에이징 효과가 커져서, 1차 재결정립 내의 고스 분율을 증가시키는 것으로 본다. 따라서 C함량이 클수록 이로우나, 이후 탈탄 질화 소둔시 탈탄 소둔 시간이 길어지고, 생산성을 손상시키며, 가열 초기의 탈탄이 충분치 않으면 1차 재결정결정립을 불균일하게들어 2차 재결정을 불안정하게 한다. 또한 자기시효현상에 의해 자기적 특성이 열위 될수 있으므로, C함량은 0.03 내지 0.09 중량% 범위로 제한할 수 있다. 더욱 구체적으로 C는 0.050 내지 0.070 중량% 범위로 포함할 수 있다. 전술하였듯이, 1차 재결정 소둔 중 탈탄에 의해 탄소가 제거되며, 최종 제조되는 방향성 전기강판의 모재에는 C를 0.005 중량% 이하로 포함할 수 있다. 더욱 구체적으로 최종 제조되는 방향성 전기강판의 모재에는 C를 0.003 중량% 이하로 포함할 수 있다.
Al : 0.015 내지 0.040 중량%
알루미늄(Al)은 N과 결합하여 AlN으로 석출하지만, 탈탄과 침질을 행하는 소둔에서 미세한 석출물인 (Al,Si,Mn)N 및 AlN 형태의 질화물을 형성하게 되어 강력한 결정립 성장 억제 역할을 한다. 이처럼 고용된 Al이 일정량 이상 필요하다. 그 함량이 너무 적은 경우에는 형성되는 석출물의 개수와 부피 분율이 낮아서 결정립 성장 억제 효과가 충분하지 않을 수 있다. Al이 너무 많이 포함되면 석출물이 조대하게 성장하여 결정립 성장 억제 효과가 떨어지게 된다. 따라서 Al은 0.015 내지 0.040 중량%로 포함할 수 있다. 더욱 구체적으로 0.0200 내지 0.0380 중량% 포함될 수 있다.
Mn : 0.040 내지 0.150 중량%
망간(Mn)은 Si과 동일하게 비저항을 증가시켜 철손을 감소시키는 효과도 있으며, Si과 함께 질화처리에 의해 도입되는 질소와 반응하여 (Al,Si,Mn)N의 석출물을 형성함으로서 1차재결정립의 성장을 억제하여 2차재결정을 일으키는데 중요한 원소이다. 또한, Mn은 Cu와 함께 Surfide 석출물을 형성하여 1차 재결정립 균일성을 개선하며, 2차 재결정이 형성되는데 보조 인히비터의 역할을 일부하게 된다. 그러나, Mn이 너무 많이 포함되면 (Cu,Mn)S 미세 석출물 조정을 위하여 슬라브 재가열 온도를 높여주어야 하며, 그렇게 되면 1차 재결정립이 극히 미세해져 1차 재결정 소둔의 온도를 범위 이상 올려야 하며, 결정립 불균일을 야기하므로, 그 상한을 0.15 중량% 로 제한할 수 있다.
또한 Mn 과다 첨가시 강판 표면에 Fe2SiO4 이외에 (Fe, Mn) 및 Mn 산화물이 다량 형성되어 2차 재결정 소둔중에 형성되는 베이스코팅 형성을 방해하여 표면품질을 저하시키게 되고, 1차 재결정 소둔 공정에서 페라이트와 오스테나이트간 상변태의 불균일을 유발하기 때문에 1차 재결정립의 크기가 불균일되며, 그 결과 2차 재결정이 불안정해지게 된다. 더욱 구체적으로 0.050 내지 0.100 중량% 포함될 수 있다.
N : 0.0020 내지 0.0120 중량%
질소(N)는 Al 등과 반응하여 결정립을 미세화시키는 원소이다. 이들 원소들이 적절히 분포될 경우에는 상술한 바와 같이 냉간압연이후 조직을 적절히 미세하게 하여 적절한 1차 재결정 입도를 확보하는데 도움이 될 수 있으나, 그 함량이 과도하면 1차 재결정립이 과도하게 미세화되고 그 결과 미세한 결정립으로 인해 2차 재결정시 결정립 성장을 초래하는 구동력이 커져서 바람직하지 않은 방위의 결정립까지 성장할 수 있으므로 바람직하지 않다. 그리고 N이 너무 많이 첨가되면 1차 재결정립이 과도하게 미세화되고 그 결과 미세한 결정립으로 인해 바람직하지 않은 방위가 2차 재결정을 형성하여 자기특성을 열화시킬 수 있다. 그러므로 N은 0.0120 중량% 이하로 정한다. 한편 N의 함량이 너무 적으면 1차 재결정 억제 효과가 너무 약해 안정된 결정립성장 억제 효과를 얻지 못할 수 있다. 따라서, 슬라브 내에 N을 0.0020 내지 0.0120 중량% 포함할 수 있다. 더욱 구체적으로 N을 0.0025 내지 0.0100 중량% 포함할 수 있다. 2차 재결정 소둔 과정에서 N이 일부 제거되므로, 최종 제조되는 방향성 전기강판의 모재는 N을 0.005 중량% 이하 포함할 수 있다. 더욱 구체적으로 최종 제조되는 방향성 전기강판의 모재는 N을 0.003 중량% 이하 포함할 수 있다.
S : 0.0100 중량% 이하
황(S)는 열간압연시 고용온도가 높고 편석이 심한 원소로서 가능한한 함유되지 않도록 하는 것이 바람직하지만, 제강시 함유되는 불가피한 불순물의 일종이다. 또한 S는 (Mn, Cu)S를 형성하여 1차 재결정립 균일성에 영향을 주므로 S의 함량은 0.0100 중량% 이하로 제한할 수 있다. 더욱 구체적으로 0.0010 내지 0.0080 중량% 포함할 수 있다.
Sb: 0.01 내지 0.05 중량%
안티몬(Sb)은 냉간압연 공정중 생성되는 고스방위의 결정립핵을 증가시켜, 1차 재결정 집합조직에서 고스방위를 가지는 결정립의 분율을 향상시키는 효과가 있다. 또한 1차 재결정 결정립계에 편석하여 2차재결정 고온소둔시 고스집합조직을 갖는 결정립들의 2차재결정 개시온도를 상승시켜 집적도가 우수한 2차재결정 미세조직을 얻을 수 있도록 하며 자속밀도를 높여주게 된다. Sb 함량이 너무 적으면, 그 작용이 제대로 발휘되기 어렵다. Sb 함량이 너무 높으면 1차 재결정립의 크기가 지나치게 작아져 2차 재결정 개시온도가 낮아져 자기특성을 열화시키거나 또는 입성장에 대한 억제력이 지나치게 커져 2차 재결정이 형성되지 않을 수도 있다. 그러므로 Sb를 0.01 내지 0.05 중량% 포함할 수 있다. 더욱 구체적으로 Sb를 0.020 내지 0.045 중량% 포함할 수 있다.
Sn: 0.03 내지 0.10 중량%
주석(Sn)은 결정립계 편석원소로서 결정립계의 이동을 방해하는 원소이기 때문에 결정성장억제제로서 알려져 있다. 또한 1차 재결정 집합조직에 있어서 고스방위의 결정립 분율을 증가시킴으로써 2차 재결정 집합조직으로 성장하는 고스방위 핵이 많아진다. 또한 이를 첨가할 수록 2차 재결정 미세조직의 크기가 감소하므로, 결정립크기가 작아질수록 와전류손이 작아지기 때문에 최종제품의 철손이 감소하게 된다. 한편 Sn은 결정립계에 편석을 통해서 결정립 성장을 억제하는데 중요한 역할을 하며, 이는 미세화된 1차 재결정 미세조직의 결정립 성장 구동력을 억제하는 억제효과를 향상시킬 뿐만 아니라, 2차재결정 집합조직 형성을 위한 고온소둔 과정중 (Al,Si,Mn)N 및 AlN 등의 결정립 성장 억제효과를 야기하는 입자가 조대화 되어 결정립 성장 억제력이 감소하는 현상을 방지한다. Sn의 함량이 너무 적으면 첨가효과가 충분치 않을 수 있다. Sn의 함량이 너무 많으면 결정립 성장 억제력이 너무 증가하여 상대적으로 결정립 성장 구동력을 증가시키기 위해 1차 재결정 미세조직의 결정립 크기를 감소시켜야 하기 때문에 탈탄소둔을 낮은 온도에서 실시해야하며, 이로인해 적절한 산화층으로 제어할 수 없어서 양호한 표면을 확보할 수가 없다. 또한 기계적 특성 측면에서 입계편석원소의 과잉편석으로 인해 취성이 증가하여 제조과정중 판파단을 야기할 수 있다. 그러므로 Sn을 0.03 내지 0.10 중량% 포함할 수 있다. 더욱 구체적으로 Sn을 0.030 내지 0.090 중량% 포함할 수 있다.
Cr: 0.05 내지 0.20 중량%
산화 형성을 촉진하는 원소로 크롬(Cr)을 범위내로 첨가하면, 표층부의 치밀한 산화층 형성을 억제하며 깊이 방향으로 미세한 산화층이 형성되는 것을 돕는다. Sb와 Sn의 첨가와 함께 적정 범위의 Cr함량 첨가로 산화층 표층부에 Fe2SiO4 형성이 많아지면서 깊이 방향으로 산화층의 형성을 돕는다.
또한, Cr을 첨가함으로써 균일성이 우수한 1차 재결정을 형성시키기가 더욱 용이하게 된다. 즉, Cr은 Sb, Sn함량 상향에 따른 탈탄 및 침질이 지연되어 1차 재결정립이 불균일해지는 현상을 극복함으로써 균일성이 우수한 1차 재결정립을 형성하고, 자성을 상향 시켜주는 효과를 보이는 원소이다. Sb와 Sn함량에 따라 Cr함량을 상기 제안한 범위로 첨가하면 내부 산화층이 더 깊게 형성되고, 침질 및 탈탄 속도가 빠르게 되므로, 동시 탈탄 침질 공정에서 Sb, Sn 첨가의 효과를 높여줄 수 있다. Cr은 0.05 내지 0.20 중량% 포함할 수 있다. 더욱 구체적으로 0.10 내지 0.15 중량% 포함할 수 있다.
슬라브는 하기 식 2를 만족할 수 있다.
[식 2]
[Sb] ≤ [Cr] ≤ [Sb] + 2×[Sn]
(식 2에서, [Sb], [Cr] 및 [Sn]은 각각 슬라브 내의 Sb, Cr 및 Sn의 함량(중량%)을 나타낸다.)
산화 형성을 촉진하는 원소로 크롬(Cr)을 범위내로 첨가하면, 표층부의 치밀한 산화층 형성을 억제하며 깊이 방향으로 미세한 산화층이 형성되는 것을 돕는다. Sb와 Sn의 첨가와 함께 적정 범위의 Cr함량 첨가로 산화층 표층부에 Fe2SiO4 형성이 많아지면서 깊이 방향으로 산화층의 형성을 돕는다.
또한, Cr을 첨가함으로써 균일성이 우수한 1차 재결정을 형성시키기가 더욱 용이하게 된다. 즉, Cr은 Sb, Sn함량 상향에 따른 탈탄 및 침질이 지연되어 1차 재결정립이 불균일해지는 현상을 극복함으로써 균일성이 우수한 1차 재결정립을 형성하고, 자성을 상향시켜주는 효과를 보이는 원소이다. Sb와 Sn함량에 따라 Cr함량을 상기 제안한 범위로 첨가하면 내부 산화층이 더 깊게 형성되고, 침질 및 탈탄 속도가 빠르게 되므로, 동시탈탄 침질 공정에서 Sb, Sn 첨가의 효과를 높여줄 수 있다.
Cr 함량이 식 2의 하한치에 미달하는 경우, 효과가 미약하고, 식 2의 상한치를 초과하는 경우, 산화층이 과하게 형성되어 그 효과가 감소한다.
슬라브는 Ti 및 V 중 1종 이상을 각각 단독 또는 이들의 합량으로 0.002 내지 0.010 중량% 더 포함할 수 있다. Ti, V 를 단독으로 포함할 경우, 각각 단독으로 0.002 내지 0.010 중량% 포함하고, Ti 및 V를 동시에 포함하는 경우, Ti + V의 양이 0.002 내지 0.010 중량%일 수 있다. 더욱 구체적으로 Ti 및 V 중 1종 이상을 각각 단독 또는 이들의 합량으로 0.0030 내지 0.0070 중량% 더 포함할 수 있다.
Ti: 0.002 내지 0.010 중량%
티타늄(Ti)은 강력한 Nitride 형성 원소로 열연 전 단계에서 TiN가 되어 N함량을 낮게 하고, 미세 석출하여 결정립 성장을 억제한다. 적정한 범위 내로 첨가하면 TiN 석출물이 형성에 의한 결정립 성장 억제 효과와 AlN 미세 석출물 저감으로 결정립경의 코일내 편차를 줄이는 효과를 보인다.
V: 0.002 내지 0.01 중량%
바나듐(V)은 carbide와 nitride 형성 원소로 미세 석출하여 결정립 성장을 억제한다. 적정한 범위 내로 첨가하여 미세 석출물의 형성에 의한 결정립 성장 억제 효과로 코일 내 결정립경 편차를 줄이는 효과를 보인다.
슬라브는 P: 0.010 내지 0.050 중량% 더 포함할 수 있다.
P: 0.010 내지 0.050 중량%
인(P)는 Sn, Sb와 유사한 효과를 나타내는 원소로서, 결정립계에 편석하여 결정립계의 이동을 방해하고 동시에 결정립 성장을 억제하는 보조적인 역할이 가능하다. 또한, 미세조직측면에서 {110}<001>집합조직을 개선하는 효과가 있다. P의 함량이 너무 적으면 첨가효과가 없으며, 너무 많이 첨가하면 취성이 증가하여 압연성을 크게 나빠질 수 있다. 더욱 구체적으로 P를 0.015 내지 0.045 중량% 포함할 수 있다.
불순물 원소
상기의 원소 외에도 Zr, Cu. Ni, Mo 등의 불가피하게 혼입되는 불순물이 포함될 수 있다. Zr, Cu. Ni, Mo 등은 강력한 탄질화물 형성 원소이기 때문에 가능한 첨가되지 않는 것이 바람직하며 각각 0.01 중량% 이하로 함유되도록 한다.
전술한 원소 외에 나머지는 철(Fe)를 포함한다. 본 발명의 일 실시예에서 전술한 합금 성분 외에 원소의 추가를 배제하는 것은 아니며, 본 발명의 기술 사상을 해치지 않는 범위 내에서 다양하게 포함될 수 있다. 추가 원소를 더 포함하는 경우 잔부인 Fe를 대체하여 포함한다.
열연판을 제조하는 단계 이전에 슬라브를 1230℃ 이하로 가열하는 단계를 더 포함할 수 있다. 이 단계를 통해 석출물을 부분 용체화할 수 있다. 또한, 슬라브의 주상정조직이 조대하게 성장되는 것이 방지되어 후속 열간압연 공정에서 판의 폭 방향으로 크랙이 발생되는 것을 막을 수 있어 실수율이 향상 된다. 슬라브 가열온도가 너무 높으면, 슬라브의 표면부 용융으로 가열로를 보수하고 가열로 수명이 단축될 수 있다. 더욱 구체적으로 1130 내지 1200℃로 슬라브를 가열할 수 있다. 슬라브를 가열하지 않고, 연속 주조되는 슬라브를 그대로 열간압연하는 것도 가능하다.
열연판을 제조하는 단계에서 열간압연에 의하여 두께 1.8 내지 2.3mm의 열연판을 제조할 수 있다.
열연판을 제조한 이후, 열연판을 열연판 소둔하는 단계를 더 포함할 수 있다. 열연판 소둔하는 단계는 950 내지 1,100℃ 온도까지 가열한 후, 850 내지 1,000℃온도에서 균열한 다음 냉각하는 과정에 의하여 수행할 수 있다.
다음으로, 열연판을 냉간압연하여 냉연판을 제조한다.
냉간압연은 1회 강냉간압연을 통하여 수행되거나, 복수의 패스를 통해 수행될 수 있다. 압연 중 1회 이상 200 내지 300℃의 온도에서 온간압연을 통하여 패스에이징 효과를 주며, 최종 두께 0.14 내지 0.25mm로 제조될 수 있다. 냉간압연된 냉연판은 1차 재결정 소둔 과정에서 탈탄과 변형된 조직의 재결정 및 침질 가스를 통한 침질처리를 수행하게 된다.
다음으로, 냉연판을 1차 재결정 소둔한다.
본 발명의 일 실시예에서는 1차 재결정 소둔하는 단계에서 강판의 침질량을 측정하여 그 측정 결과에 따라 1차 재결정 소둔 시 침질 가스의 노출 시간을 조절하는 단계를 포함한다.
침질량 및 침질 가스의 노출 시간은 하기 식 1을 만족하게 조절할 수 있다.
[식 1]
△[N]/△t≥ 0.025
(식 1에서, △[N]은 1차 재결정 소둔 후 강판의 침질량(중량%)을 나타내고, △t는 침질 가스의 노출 시간(분)을 나타낸다.)
본 발명의 일 실시예에서 침질량 측정 이후, 사후적으로 침질 가스의 노출 시간을 조절하는 과정을 거치게 되므로, 침질량이 측정된 강판과 침질 가스의 노출 시간이 조절이 적용된 강판 사이의 지연이 발생할 수 있다. 다만, 본 발명의 일 실시예에서 1차 재결정 소둔은 연속적으로 이루어지므로, 그 지연이 실질적으로 없을 수 있으며, 전체 코일 내에서 식 1의 관계를 만족할 수 있다.
침질량은 1차 재결정 소둔 후 강판 내의 N 함량과 1차 재결정 소둔 전 강판 내의 N 함량의 차이를 의미한다. 이를 질소분석기로 측정하여, 이 결과를 침질 가스의 노출 시간을 조절하는 데에 반영할 수 있다. 침질량을 실시간으로 측정하는 방법은 제한되지 않으며, 이에 대해서는 널리 알려져 있으므로, 구체적인 설명은 생략한다.
강판의 침질량은 0.02 내지 0.04 중량%일 수 있다. 침질량이 너무 작은 경우, 즉 식 3의 좌변 값이 너무 큰 경우 내부의 결정립 성장 억제력이 부족할 수 있다. 침질량이 너무 많은 경우 질소 방출구같은 결함이 다량 발생하고, 5mm 이하의 미세 2차 재결정이 다량 형성되고, 자성이 열화될 수 있다.
침질 가스는 강판에 질소를 침투시킬 수 있는 가스라면 제한 없이 사용할 수 있다. 구체적으로 암모니아 또는 질소가 될 수 있다. 암모니아 분위기에서는 열처리를 통해, 질소 분위기에서는 레이저 또는 플라즈마 처리 등을 통해 침질이 가능하다.
침질 가스의 노출 시간은 소둔로 내에 강판의 이동 방향을 따라 분위기 가스의 이동을 방해할 수 있도록 가림막을 설치하고, 가림막으로 분리된 공간 내에 분위기 가스가 달리 조절될 수 있도록 가스를 투입함으로써 조절이 가능하다. 그 외에 다양한 방법으로 침질 가스의 노출 시간을 조절할 수 있다.
침질 가스의 노출 시간이란 침질 가스를 1 내지 10 부피% 포함하는 분위기에 강판을 노출하는 시간을 의미한다. 침질 가스의 노출 시간 외에는 침질 가스를 1.0 부피% 미만으로 포함하는 분위기에서 1차 재결정 소둔하게 된다.
강판의 침질량은 침질 가스의 노출 시간에 비례하나, 그 밖에도 다양한 변수가 존재한다. 예컨데, 강판의 온도, 침질 가스 외 분위기 가스 함량 등이 있을 수 있다. 이러한 변수를 최대한 통제하고자 하더라도 전체 코일 내에서 동일하게 통제하기는 사실상 불가능하며, 침질 가스의 노출 시간이 동일하더라도 침질량에 편차가 발생할 수 있다. 구체적으로 침질 가스 노출 시간은 30초 내지 5분일 수 있다.
침질 가스의 노출 시간에 비해 침질량이 너무 적은 경우, 즉 식 1의 값이 너무 작은 경우 석출물이 균일하게 형성되지 못하고, 2차 재결정 소둔 과정 중 금속 산화물층이 불균일하게 형성될 수 있다. 이로 인해 표면 결함이 발생하며, 자성이 불안정하게 될 수 있다. 더욱 구체적으로 식 1 값은 0.025 내지 0.05가 될 수 있다.
1차 재결정 소둔하는 단계는 산화능(PH2O/PH2)이 0.5 내지 0.8인 분위기에서 수행함으로써, 강판 내의 탄소를 외부로 배출할 수 있다. 전술한 산화능 범위는 1차 재결정 소둔하는 단계 전체에서 조절하거나 또는 부분적으로 조절하는 것도 가능하다. 이를 통해 강판 내의 탄소를 0.005 중량% 이하로 줄일 수 있다.
1차 재결정 소둔하는 단계는 800 내지 900℃의 온도에서 수행될 수 있다. 온도가 너무 낮으면, 1차 재결정이 이루어지지 않거나, 침질이 원활히 이루어지지 않을 수 있다. 온도가 너무 높으면, 1차 재결정이 너무 크게 성장하여, 자성을 열위시키는 원인이 될 수 있다.
1차 재결정 소둔하는 단계 이후, 강판의 표면에 평균 두께가 1.6 내지 3.2㎛인 산화층이 존재할 수 있다. 1차 재결정 소둔 시 탈탄으로 인해, 강판 표면 부근에 산화층이 존재한다. 산화층은 강판의 표면에서부터 산소 함량을 측정하여, 산소 함량이 급격히 변동되는 부분 까지를 의미한다. 산화층의 두께가 너무 얇으면 자성의 불균일 성이 증가한다. 산화층의 두께가 너무 두꺼우면, 금속 산화물층이 두껍게 형성되고, 상대적으로 모재의 두께가 줄어들어 자성이 열위될 수 있다.
다음으로, 1차 재결정 소둔이 완료된 냉연판을 2차 재결정 소둔한다. 2차 재결정 소둔의 목적은 크게 보면 2차 재결정에 의한 {110}<001> 집합조직 형성, 탈탄시 형성된 산화층과 소둔 분리제 내의 MgO의 반응에 의한 금속 산화물 층 형성으로 절연성 부여, 자기특성을 해치는 불순물의 제거에 있다. 2차 재결정 소둔의 방법으로는 2차 재결정이 일어나기 전의 승온구간에서는 질소와 수소의 혼합가스로 유지하여 입자성장 억제제인 질화물을 보호함으로써 2차 재결정이 잘 발달되도록 하고, 2차 재결정 완료 후에는 100% 수소분위기에서 장시간 유지하여 불순물을 제거하도록 한다. 2차 재결정 소둔 과정 중 질화 석출물이 분해되면서 질소가 금속 산화물층을 통과하여 제거되게 되는데, 금속 산화물층에 확산되면서 Ti와 반응하여 TiN를 일부 형성할 수 있다.
2차 재결정 소둔 과정에서 1차 재결정 소둔 과정에서 생성된 표면 산화층과 소둔 분리제가 반응하여 금속 산화물 층이 형성된다. 금속 산화물층은 성분이 모재와는 구별된다. 예컨데, 소둔 분리제로서 MgO를 사용한 경우, 포스테라이트를 포함한다. 본 발명에서 소둔 분리제로서, MgO 외에 Ti 화합물을 추가로 포함한다. 더욱 구체적으로 소둔 분리제는 고형분으로, MgO 90 내지 99 중량% 및 Ti 화합물 1 내지 10 중량% 포함한다.
2차 재결정 소둔 후 절연 코팅층을 형성하는 단계를 더 포함할 수 있다. 절연 코팅층의 형성 방법에 대해서는 널리 알려져 있으므로, 이에 대한 구체적인 설명은 생략한다.
본 발명의 일 실시예에서는 침질 가스 분위기 노출 시간대비 질소 함량의 충분히 높게 조절함으로써, 2차 재결정 이후 금속 산화물층의 두께를 얇게 형성할 수 있고, 추가로 금속 산화물층을 제거하는 공정을 포함하지 않을 수 있다. 구체적으로 금속 산화물층 및 절연 코팅층을 포함하는 전체 방향성 전기강판의 두께에 대한 금속 산화물층 및 절연 코팅층의 두께의 합의 비율이 0.03 이하일 수 있다. 더욱 구체적으로 0.001 내지 0.03일 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 중량%로, Si: 2.5 내지 4.0%, C: 0.005% 이하(0%를 제외함), Al: 0.015 내지 0.040%, Mn: 0.04 내지 0.15%, S : 0.01% 이하(0%를 제외함), N: 0.005% 이하(0%를 제외함), Sb: 0.01 내지 0.05%, Sn: 0.03 내지 0.1% 및 Cr: 0.05 내지 0.2% 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하는 모재; 및 모재 상에 위치하는 금속 산화물 층을 포함한다.
방향성 전기강판의 모재에 대한 강 조성에 대해서는 전술한 슬라브의 강 조성과 관련하여 설명하였으므로, 중복되는 설명은 생략한다. 전술하였듯이, 방향성 전기강판의 제조 과정에서 탈탄 및 침질이 이루어지므로, 슬라브의 강 조성과 모재의 강 조성 중 C, N의 함량은 상이할 수 있으며, 나머지 원소에 대해서는 실질적으로 변동이 없을 수 있다.
본 발명의 일 실시예에서 금속 산화물층의 최대(Max) 발광강도 비[I(Ti)/I(Mg)]가 0.05 이상이다. 최대 발광강도는 글로우 방전 표면 분석 방식으로 두께방향으로 금속산화층의 원소분석을 통하여 Ti와 Mg성분의 max intensity로부터 비율을 측정할 수 있다. 본 발명의 일 실시예에서 침질 가스 분위기 노출 시간대비 질소 함량의 충분히 높게 조절함으로써, 산화층 및 산화층 하부에 국부적인 침질 농화를 억제하고 깊이방향으로 충분한 질화석출물을 형성하여 2차 재결정 소둔 시 형성되는 금속 산화물 층이 치밀하고 균일하게 형성되어, 최대 발광강도 비가 높아질 수 있다. 최대 발광강도 비가 높다는 것은 금속 산화물 층이 강건하게 형성되어 균일한 장력 부여에 유리하고, 2차 재결정 형성 이전의 질소 유실 억제하며, 이는 궁극적으로 자성 향상으로 이어진다.
방향성 전기강판의 백색도는 43 내지 51일 수 있다. 백색도는 절연 코팅층이 없거나 또는 제거되고, 금속 산화물층 만이 존재하는 상태에서 측정할 수 있다. 백색도는 분광색차계의 반사 측정법으로 측정하며, 코팅 양면 10회이상 측정하여 평균값을 취하는 방식으로 측정할 수 있다. 백색도가 너무 크면, 금속 산화물 층이 불균일하게 형성되고, 표면 결함이 발생하며 자성 편차가 커지는 문제가 발생한다. 너무 작으면 금속 산화물층이 차지하는 두께 비율이 너무 높아져 오히려 자성이 열화된다.
금속 산화물층은 Ti를 0.003 중량% 이상 포함할 수 있다. 금속 산화물층의 Ti는 소둔 분리제 내의 Ti 화합물 성분에서 유래되거나, 또는 강판 내의 Ti 성분이 확산되어 존재할 수 있다. 금속 산화물층 내에 Ti가 적게 존재하면 금속 산화물층이 얇고 불균일하게 형성되며, Fe산화물 형성에 의한 코팅 결함 문제가 발생할 수 있다. 더욱 구체적으로 금속 산화물층 내에 Ti는 0.003 내지 0.02 중량% 포함할 수 있다. 더욱 구체적으로 금속 산화물층 내에 Ti는 0.005 내지 0.02 중량% 포함할 수 있다.
본 발명의 일 실시예에서 방향성 전기강판의 두께는 0.23mm 이하일 수 있다. 더욱 구체적으로 0.20 mm이하일 수 있다. 여기서 방향성 전기강판의 두께는 모재, 금속 산화물층 및 절연 코팅층을 모두 합한 두께를 의미한다.
본 발명의 실시예에 의한 방향성 전기강판은 철손 및 자속밀도가 매우 우수하다. 구체적으로 철손(W17/50)이 0.8W/kg이하이고, 총 철손 중 이력손이 차지하는 비율이 40% 이하가 될 수 있다. 또한 방향성 전기강판의 800A/m의 자기장 하에서 유도되는 자속밀도(B8)는 1.91 T 이상일 수 있다. 더욱 구체적으로 1.91 내지 1.97T일 수 있다.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
실시예
표 1에 나타낸 성분 조성을 가지는 A 내지 H 슬라브를 나머지 성분은 잔부 Fe와 기타 불가피하게 함유되는 불순물을 함유하는 강재를 진공용해한 후 잉곳을 만들고, 이어서 1150℃ 온도에서 210분 가열한 후 열간압연하여 2.3mm 또는 2.0mm 두께의 열연판을 제조하였다. 산세한 후 0.23mm 또는 0.20mm 두께로 1회 압하율 90%의 강 냉간압연 하였다.
냉간압연된 판은 850℃의 온도로 습한 50v% 수소 및 50v% 질소 습윤 분위기 및 암모니아 혼합 가스 분위기 속에서 180초간 유지하여 탄소함량이 30ppm이하, 총 질소함량이 200ppm이상이 되도록 동시 탈탄 질화 소둔 열처리하였다.
이 때, 암모니아 가스 부피분율을 1 내지 10 부피%, 산화능(PH2O/PH2) 0.5 내지 0.8범위내에서, 질화 후 침질량과 암모니아 노출시간이 표 2와 같이 조건을 만족하도록 조정하였다.
이 강판에 고형분으로 MgO 95중량% 및 TiO2 5 중량% 포함하는 소둔분리제를 도포하여 코일상으로 2차 재결정 소둔하였다. 2차 재결정 소둔은 1200℃ 까지는 25 v% 질소 및 75v% 수소의 혼합분위기로 하였고, 1200℃ 도달 후에는 100% 수소분위기에서 10 시간 이상 유지후 노냉하였다.
이후 금속 인산염 및 콜로이달 실리카 혼합액을 포함하는 절연 코팅층 형성 조성물을 도포하고, 열처리하여 절연 코팅층을 형성하였다.
각 조건에 대하여 측정한 백색도, 최대 발광강도 비[I(Ti)/I(Mg)], 이력손 비를 하기 표 2에 정리하였다. 각 측정 방법은 다음과 같다.
백색도 : 분광색차계의 반사 측정법으로 측정하며, 코팅 양면 10회이상 측정하여 평균값을 취하는 방식으로 측정하였다.
최대 발광강도 비[I(Ti)/I(Mg)]: 글로우 방전 표면 분석 방식으로 두께방향으로 금속산화층의 원소분석을 통하여 Ti와 Mg성분의 max intensity로부터 비율을 측정하였다.
이력손 비: 각 조건으로 제조한 시편에 대하여 철손과 이력손을 측정하여 총철손에서 이력손의 비율을 구하였다.
강종
(중량%)
Si C Mn P Al N Sb Sn Cr
A 3.35 0.06 0.08 0.03 0.037 0.006 0.02 0.06 0.13
B 3.4 0.055 0.09 0.02 0.037 0.005 0.02 0.09 0.15
C 3.45 0.065 0.08 0.03 0.036 0.005 0.04 0.04 0.12
D 3.4 0.06 0.09 0.04 0.036 0.005 0.02 0.06 0.01
E 3.45 0.065 0.08 0.03 0.036 0.005 0.02 0.03 0.13
F 3.45 0.06 0.09 0.03 0.038 0.005 0.03 0.01 0.1
G 3.35 0.055 0.08 0.03 0.038 0.004 0.03 0.15 0.12
H 3.35 0.06 0.08 0.03 0.038 0.004 0.07 0.05 0.12
성분 냉연두께
(mm)
침질증가량(wt%) 암모니아 노출시간(min) 침질증가량(wt%) / 암모니아
노출시간(min)
백색도 I(Ti)/I(Mg) 철손(W17/50, W/kg) 자속밀도(B8, T) 이력손비
(%)
비고
A 0.23 0.024 0.7 0.034 48.6 0.07 0.81 1.92 37 발명재1
B 0.02 0.8 0.025 45.4 0.18 0.8 1.93 36 발명재2
C 0.027 0.9 0.03 50.5 0.15 0.83 1.93 36 발명재3
A 0.01 0.5 0.02 52.5 0.04 0.86 1.9 41 비교재1
B 0.009 0.6 0.015 55 0.02 0.88 1.89 42 비교재2
C 0.015 1 0.015 56 0.02 0.89 1.89 42 비교재3
A 0.2 0.018 0.6 0.03 44.5 0.5 0.76 1.92 39 발명재4
B 0.013 0.5 0.026 45 0.45 0.75 1.93 38 발명재5
C 0.012 0.8 0.015 53.6 0.03 0.84 1.89 45 비교재4
D 0.2 0.018 0.7 0.026 52.5 0.04 0.85 1.88 47 비교재5
E 0.02 0.5 0.04 44.5 0.5 0.86 1.89 45 비교재6
F 0.02 0.5 0.04 44.5 0.5 0.89 1.87 47 비교재7
G 0.02 0.8 0.025 55 0.02 0.85 1.87 49 비교재8
H 0.02 0.8 0.025 56 0.02 0.87 1.88 46 비교재9
표 1에서 확인할 수 있는 바와 같이, 침질량에 따라 침질 가스의 노출 시간을 적절히 조절한 발명재는 최대 발광강도 비[I(Ti)/I(Mg)]가 크고, 자성이 우수하고, 특히 이력손비가 작아, 전체적인 철손이 작아짐을 확인할 수 있다.
반면, 침질 가스의 노출 시간이 적절히 조절되지 않은 비교재 1 내지 4는 최대 발광강도 비[I(Ti)/I(Mg)]가 작고, 자성이 열위함을 확인할 수 있다.
침질 가스의 노출 시간이 적절히 조절되더라도, Sb. Sn, Cr의 함량이 적절히 조절되지 않은 비교재 5 내지 9은 자성이 열위함을 확인할 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (13)

  1. 중량%로, Si: 2.5 내지 4.0%, C: 0.03 내지 0.09%, Al: 0.015 내지 0.040%, Mn: 0.04 내지 0.15%, S : 0.01% 이하(0%를 제외함), N: 0.002 내지 0.012%, Sb: 0.01 내지 0.05%, Sn: 0.03 내지 0.1% 및 Cr: 0.05 내지 0.2% 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 열간압연하여 열연판을 제조하는 단계;
    상기 열연판을 냉간압연하여 냉연판을 제조하는 단계;
    상기 냉연판을 1차 재결정 소둔하는 단계; 및
    상기 1차 재결정 소둔이 완료된 강판을 2차 재결정 소둔하는 단계를 포함하고,
    상기 1차 재결정 소둔하는 단계는,
    상기 1차 재결정 소둔 후 강판의 침질량을 측정하는 단계; 및
    측정된 침질량에 따라 1차 재결정 소둔 시 침질 가스의 노출 시간을 조절하는 단계를 포함하고,
    상기 침질량 및 상기 침질 가스의 노출 시간은 하기 식 1을 만족하는 방향성 전기강판의 제조 방법.
    [식 1]
    △[N]/△t≥ 0.025
    (식 1에서, △[N]은 상기 1차 재결정 소둔 후 강판의 침질량(중량%)을 나타내고, △t는 침질 가스의 노출 시간(분)을 나타낸다.)
  2. 제1항에 있어서,
    상기 슬라브는 Ti 및 V 중 1종 이상을 각각 단독 또는 이들의 합량으로 0.002 내지 0.01 중량% 더 포함하는 방향성 전기강판의 제조 방법.
  3. 제1항에 있어서,
    상기 슬라브는 하기 식 2를 만족하는 방향성 전기강판의 제조 방법.
    [식 2]
    [Sb] ≤ [Cr] ≤ [Sb] + 2×[Sn]
    (식 2에서, [Sb], [Cr] 및 [Sn]은 각각 슬라브 내의 Sb, Cr 및 Sn의 함량(중량%)을 나타낸다.)
  4. 제1항에 있어서,
    상기 1차 재결정 소둔하는 단계는 산화능(PH2O/PH2)이 0.5 내지 0.8인 분위기에서 수행되는 방향성 전기강판의 제조 방법.
  5. 제1항에 있어서,
    상기 1차 재결정 소둔하는 단계는 800 내지 900℃의 온도에서 수행되는 방향성 전기강판의 제조 방법.
  6. 제1항에 있어서,
    상기 1차 재결정 소둔하는 단계 이후, 강판의 표면에 평균 두께가 1.6 내지 3.2㎛인 산화층이 존재하는 방향성 전기강판의 제조 방법.
  7. 제1항에 있어서,
    상기 1차 재결정 소둔하는 단계 이후, 강판의 침질량이 0.02 내지 0.04 중량%인 방향성 전기강판의 제조 방법.
  8. 중량%로, Si: 2.5 내지 4.0%, C: 0.005% 이하(0%를 제외함), Al: 0.015 내지 0.040%, Mn: 0.04 내지 0.15%, S : 0.01% 이하(0%를 제외함), N: 0.005% 이하(0%를 제외함) Sb: 0.01 내지 0.05%, Sn: 0.03 내지 0.1% 및 Cr: 0.05 내지 0.2% 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하는 모재; 및
    상기 모재 상에 위치하는 금속 산화물 층을 포함하고,
    상기 금속 산화물층의 최대 발광강도 비[I(Ti)/I(Mg)]가 0.05 이상인 방향성 전기강판.
  9. 제8항에 있어서,
    상기 모재는 Ti 및 V 중 1종 이상을 각각 단독 또는 이들의 합량으로 0.002 내지 0.01 중량% 더 포함하는 방향성 전기강판.
  10. 제8항에 있어서,
    상기 모재는 하기 식 2를 만족하는 방향성 전기강판.
    [식 2]
    [Sb] ≤ [Cr] ≤ [Sb] + 2×[Sn]
    (식 2에서, [Sb], [Cr] 및 [Sn]은 각각 모재 내의 Sb, Cr 및 Sn의 함량(중량%)을 나타낸다.)
  11. 제8항에 있어서,
    상기 방향성 전기강판의 백색도는 43 내지 51인 방향성 전기강판.
  12. 제8항에 있어서,
    상기 금속 산화물층은 Ti를 0.003 중량% 이상 포함하는 방향성 전기강판.
  13. 제8항에 있어서,
    상기 금속 산화물층 상에 위치하는 절연 코팅층을 더 포함하고, 상기 방향성 전기강판 전체 두께에 대한 상기 금속 산화물층 및 상기 절연 코팅층의 두께의 합의 비율이 0.03 이하인 방향성 전기강판.
PCT/KR2022/019322 2021-12-21 2022-12-01 방향성 전기강판 및 이의 제조방법 WO2023121040A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280082626.4A CN118401693A (zh) 2021-12-21 2022-12-01 取向电工钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0184134 2021-12-21
KR1020210184134A KR20230094748A (ko) 2021-12-21 2021-12-21 방향성 전기강판 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2023121040A1 true WO2023121040A1 (ko) 2023-06-29

Family

ID=86903005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019322 WO2023121040A1 (ko) 2021-12-21 2022-12-01 방향성 전기강판 및 이의 제조방법

Country Status (3)

Country Link
KR (1) KR20230094748A (ko)
CN (1) CN118401693A (ko)
WO (1) WO2023121040A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258741A (ja) * 1994-03-18 1995-10-09 Nippon Steel Corp 方向性珪素鋼板の製造法
JP2014156619A (ja) * 2013-02-14 2014-08-28 Jfe Steel Corp 方向性電磁鋼板の製造方法および焼鈍分離剤用MgO
KR20180069433A (ko) * 2016-12-15 2018-06-25 주식회사 포스코 전기강판 탈탄소둔로의 내부 가스 제어 장치 및 제어 방법
KR20200035752A (ko) * 2018-09-27 2020-04-06 주식회사 포스코 방향성 전기강판 및 그의 제조방법
KR20210024614A (ko) * 2018-07-31 2021-03-05 닛폰세이테츠 가부시키가이샤 방향성 전자 강판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258741A (ja) * 1994-03-18 1995-10-09 Nippon Steel Corp 方向性珪素鋼板の製造法
JP2014156619A (ja) * 2013-02-14 2014-08-28 Jfe Steel Corp 方向性電磁鋼板の製造方法および焼鈍分離剤用MgO
KR20180069433A (ko) * 2016-12-15 2018-06-25 주식회사 포스코 전기강판 탈탄소둔로의 내부 가스 제어 장치 및 제어 방법
KR20210024614A (ko) * 2018-07-31 2021-03-05 닛폰세이테츠 가부시키가이샤 방향성 전자 강판
KR20200035752A (ko) * 2018-09-27 2020-04-06 주식회사 포스코 방향성 전기강판 및 그의 제조방법

Also Published As

Publication number Publication date
CN118401693A (zh) 2024-07-26
KR20230094748A (ko) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2021125855A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2022139352A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2016099191A1 (ko) 방향성 전기강판 및 그 제조방법
WO2021125682A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2017082621A1 (ko) 방향성 전기강판 및 그 제조방법
WO2013100698A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2021125683A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020067724A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2021125685A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2013094777A1 (ko) 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
WO2020130328A1 (ko) 방향성의 전기강판 및 그 제조 방법
WO2022139353A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2021125858A2 (ko) 법랑용 강판 및 그 제조방법
WO2022139312A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2020111741A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2023018195A1 (ko) 무방향성 전기강판 및 그 제조 방법
WO2023121040A1 (ko) 방향성 전기강판 및 이의 제조방법
WO2020122558A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2023113527A1 (ko) 방향성 전기강판 및 이의 제조 방법
WO2022139354A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2021125686A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2024136165A1 (ko) 박물 방향성 전기강판 및 그 제조방법
WO2023121274A1 (ko) 방향성 전기강판 및 방향성 전기강판의 제조 방법
WO2023121294A1 (ko) 무방향성 전기강판 및 그를 포함하는 모터 코어
WO2023121295A1 (ko) 무방향성 전기강판, 그 제조 방법 및 그를 포함하는 모터 코어

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022911673

Country of ref document: EP

Effective date: 20240722