WO2023120065A1 - 燃料電池セパレータ用前駆体シートおよび燃料電池セパレータ - Google Patents
燃料電池セパレータ用前駆体シートおよび燃料電池セパレータ Download PDFInfo
- Publication number
- WO2023120065A1 WO2023120065A1 PCT/JP2022/044104 JP2022044104W WO2023120065A1 WO 2023120065 A1 WO2023120065 A1 WO 2023120065A1 JP 2022044104 W JP2022044104 W JP 2022044104W WO 2023120065 A1 WO2023120065 A1 WO 2023120065A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- cell separator
- sheet
- graphite
- precursor sheet
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 115
- 239000002243 precursor Substances 0.000 title claims abstract description 98
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 164
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 145
- 239000010439 graphite Substances 0.000 claims abstract description 145
- 239000002245 particle Substances 0.000 claims abstract description 120
- 229920005989 resin Polymers 0.000 claims abstract description 103
- 239000011347 resin Substances 0.000 claims abstract description 103
- 239000010410 layer Substances 0.000 claims description 213
- 239000000835 fiber Substances 0.000 claims description 46
- 229920001187 thermosetting polymer Polymers 0.000 claims description 28
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 238000000465 moulding Methods 0.000 claims description 13
- 239000011254 layer-forming composition Substances 0.000 claims description 10
- 238000000748 compression moulding Methods 0.000 claims description 7
- 239000000758 substrate Substances 0.000 abstract description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 24
- 239000007789 gas Substances 0.000 description 22
- 238000002844 melting Methods 0.000 description 22
- 230000008018 melting Effects 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 18
- 239000002904 solvent Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- 238000000576 coating method Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 229920000049 Carbon (fiber) Polymers 0.000 description 9
- 239000004917 carbon fiber Substances 0.000 description 9
- 239000003822 epoxy resin Substances 0.000 description 9
- 229920002239 polyacrylonitrile Polymers 0.000 description 9
- 229920000647 polyepoxide Polymers 0.000 description 9
- -1 polyethylene Polymers 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000011231 conductive filler Substances 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 229920005992 thermoplastic resin Polymers 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 6
- 239000004734 Polyphenylene sulfide Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 229920000069 polyphenylene sulfide Polymers 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- 229920003235 aromatic polyamide Polymers 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 239000012765 fibrous filler Substances 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 238000013001 point bending Methods 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 229920000491 Polyphenylsulfone Polymers 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical compound C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 description 1
- YCGKJPVUGMBDDS-UHFFFAOYSA-N 3-(6-azabicyclo[3.1.1]hepta-1(7),2,4-triene-6-carbonyl)benzamide Chemical compound NC(=O)C1=CC=CC(C(=O)N2C=3C=C2C=CC=3)=C1 YCGKJPVUGMBDDS-UHFFFAOYSA-N 0.000 description 1
- WRDNCFQZLUCIRH-UHFFFAOYSA-N 4-(7-azabicyclo[2.2.1]hepta-1,3,5-triene-7-carbonyl)benzamide Chemical compound C1=CC(C(=O)N)=CC=C1C(=O)N1C2=CC=C1C=C2 WRDNCFQZLUCIRH-UHFFFAOYSA-N 0.000 description 1
- ZMGMDXCADSRNCX-UHFFFAOYSA-N 5,6-dihydroxy-1,3-diazepan-2-one Chemical compound OC1CNC(=O)NCC1O ZMGMDXCADSRNCX-UHFFFAOYSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-YPZZEJLDSA-N carbane Chemical group [10CH4] VNWKTOKETHGBQD-YPZZEJLDSA-N 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- GUVUOGQBMYCBQP-UHFFFAOYSA-N dmpu Chemical compound CN1CCCN(C)C1=O GUVUOGQBMYCBQP-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- KWHDXJHBFYQOTK-UHFFFAOYSA-N heptane;toluene Chemical compound CCCCCCC.CC1=CC=CC=C1 KWHDXJHBFYQOTK-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- SFMJNHNUOVADRW-UHFFFAOYSA-N n-[5-[9-[4-(methanesulfonamido)phenyl]-2-oxobenzo[h][1,6]naphthyridin-1-yl]-2-methylphenyl]prop-2-enamide Chemical compound C1=C(NC(=O)C=C)C(C)=CC=C1N1C(=O)C=CC2=C1C1=CC(C=3C=CC(NS(C)(=O)=O)=CC=3)=CC=C1N=C2 SFMJNHNUOVADRW-UHFFFAOYSA-N 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229940078552 o-xylene Drugs 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920006162 poly(etherimide sulfone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920003050 poly-cycloolefin Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000007785 strong electrolyte Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/025—Electric or magnetic properties
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/10—Organic non-cellulose fibres
- D21H13/20—Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/36—Inorganic fibres or flakes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/36—Inorganic fibres or flakes
- D21H13/46—Non-siliceous fibres, e.g. from metal oxides
- D21H13/50—Carbon fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H15/00—Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
- D21H15/02—Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
- D21H15/08—Flakes
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/36—Coatings with pigments
- D21H19/38—Coatings with pigments characterised by the pigments
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/80—Paper comprising more than one coating
- D21H19/82—Paper comprising more than one coating superposed
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H27/00—Special paper not otherwise provided for, e.g. made by multi-step processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0213—Gas-impermeable carbon-containing materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0221—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0239—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a fuel cell separator precursor sheet and a fuel cell separator.
- the fuel cell separator plays a role of providing electrical conductivity to each unit cell, securing a passage for fuel and air (oxygen) supplied to the unit cell, and serving as a boundary wall separating them.
- properties required for fuel cell separators include gas (hydrogen and oxygen) impermeability, electrical conductivity, mechanical strength, durability (heat resistance, water resistance, acid resistance), thinness and light weight, formability, etc. .
- a method of mixing carbon particles and resin and compression molding is known. Although it is excellent and lightweight, it has problems in terms of gas impermeability and mechanical strength.
- Patent Document 1 a second sheet formed by coating graphite with a thermosetting resin is interposed between a pair of first sheets obtained by papermaking a raw material obtained by adding a fibrous filler to expanded graphite.
- a fuel cell separator is disclosed which is obtained by press-molding a pre-formed body constructed as above.
- Patent Document 2 a first sheet obtained by papermaking a raw material in which a fibrous filler is added to expanded graphite is placed between a pair of second sheets obtained by coating graphite with a thermosetting resin.
- a fuel cell separator obtained by press-molding a pre-laminate obtained by interposing is disclosed.
- Patent Document 3 a conductive sheet having a structure in which a resin layer containing a matrix resin and a conductive powder but not containing a conductive fiber is laminated on at least one side of a papermaking sheet containing a matrix resin, a conductive fiber and a conductive powder.
- a fuel cell separator obtained by molding a flexible sheet is disclosed.
- the thickness of the first layer is 1.5 times or more the average particle size of the graphite powder particles, and the graphite powder particles contained in the first layer are spherical or aspect Disclosed is a fuel cell separator having an outer shape with an aspect ratio of less than 2.0, wherein the graphite particles contained in the second layer have an outer shape with an aspect ratio of 2.0 or more.
- Patent Document 5 at least one particle group having an average particle diameter of 25 to 100 ⁇ m and a powder resistance of 3.0 m ⁇ cm or less under a pressure of 30 MPa is contained, and the true specific gravity is 2.24 to 2.27.
- a fuel cell separator is disclosed which is obtained by molding the article.
- Patent Document 6 is characterized by comprising a first conductive layer and a second conductive layer containing a carbon material and a resin material, and the second conductive layer containing two types of carbon particles with different particle sizes exposed from the resin material.
- a fuel cell separator is disclosed.
- a sheet made of expanded graphite and a fibrous filler is used for the surface layer in order to increase gas impermeability and mechanical strength, but the fibrous material is exposed on the surface. It is difficult to achieve formability such as high surface smoothness and conductivity.
- a layer composed of graphite and a thermosetting resin is used as the surface layer in order to improve formability. It cannot be said that form can be realized.
- a resin layer containing a matrix resin and conductive powder but not containing conductive fibers is formed on the surface. However, it cannot be said that sufficient gas impermeability can be ensured with this structure alone.
- the fuel cell separators obtained in each of the above patent documents have good mechanical strength, but there is room for improvement in terms of gas impermeability, etc., and there is also the problem of low formability. be.
- JP 2007-280725 A Japanese Patent Application Laid-Open No. 2007-311061 JP 2007-122884 A Japanese Patent Application Laid-Open No. 2008-311176 JP 2014-032906 A Japanese Patent Application Laid-Open No. 2021-180150
- the present invention has been made in view of the above circumstances.
- the object is to provide a battery separator.
- a conductive base sheet a dense layer containing graphite particles and a resin having a predetermined bulk density and volume resistivity
- a predetermined A fuel cell separator precursor sheet comprising at least three layers of a conductive layer containing graphite particles having bulk density and volume resistivity and having excellent shapeability, mechanical strength, electrical conductivity and gas impermeability.
- the first graphite particles have a bulk density of 1.7 g/cm 3 or more and a volume resistivity of 20 m ⁇ cm or more when compressed at 30 MPa,
- the fuel cell separator precursor sheet of 4 wherein the first graphite particles are flat graphite having a bulk density of 1.7 to 1.9 g/cm 3 and a volume resistivity of 20 to 30 m ⁇ cm when compressed at 30 MPa. , 6. 6.
- a method for producing a fuel cell separator precursor sheet comprising a conductive base sheet, a dense layer containing first graphite particles, and a conductive layer containing second graphite particles, comprising: a step of applying a conductive layer-forming composition containing the second graphite particles and a resin to at least one surface of the base sheet or the surface of the dense layer to form the conductive layer; forming the dense layer by applying a dense layer-forming composition containing the first graphite particles and a resin to at least one surface of the base sheet or the surface of the conductive layer;
- the first graphite particles have a bulk density of 1.7 g/cm 3 or more and a volume resistivity of 20 m ⁇ cm or more when compressed at 30 MPa,
- a method for producing a fuel cell separator precursor sheet wherein the
- the method for producing a fuel cell separator precursor sheet comprising the step of applying the dense layer-forming composition to each surface of the two conductive layers to form two dense layers; 22.
- a method for producing a fuel cell separator wherein the precursor sheet obtained by the method for producing a fuel cell separator precursor sheet of 20 or 21 is compression-molded.
- the fuel cell separator precursor sheet of the present invention has a conductive base sheet, so that it can improve mechanical strength and conductivity, and has a conductive layer made of graphite with high fluidity, so that it is easy to shape. With the dense layer, gas impermeability and surface smoothness can be improved, and exposure of the base sheet can be prevented. Moreover, since the conductive layer and the dense layer can be formed on the conductive base sheet by a coating method, the precursor sheet can be produced by roll-to-roll, resulting in high productivity. Furthermore, by forming a conductive base sheet, a conductive layer, and a dense layer, it is possible to obtain a separator having advanced properties such as mechanical strength, conductivity, gas impermeability, and formability.
- a precursor sheet for a fuel cell separator according to the present invention includes a conductive base sheet, a dense layer containing first graphite particles, and a conductive layer containing second graphite particles. contains a resin, the first graphite particles have a bulk density of 1.7 g/cm 3 or more and a volume resistivity of 20 m ⁇ cm or more when compressed at 30 MPa, and the second graphite particles have a volume resistivity of 20 m ⁇ cm or more when compressed at 30 MPa It has a bulk density of 1.5 g/cm 3 or more and a volume resistivity of less than 20 m ⁇ cm.
- the dense layer constituting the precursor sheet for a fuel cell separator of the present invention contains first graphite particles and a resin, and is mainly gas-impermeable. It functions as a layer.
- the first graphite particles have a bulk density of 1.7 g/cm 3 or more, preferably 1.7 to 1.9 g/cm 3 and a volume resistivity of 20 m ⁇ when compressed at 30 MPa. cm or more, preferably 20 to 30 m ⁇ cm, more preferably 22 to 28 m ⁇ cm.
- Graphite particles within this range have moderate anisotropy, filling properties, and fluidity. reduction) can be imparted.
- the shape of the first graphite particles is not particularly limited, but since particles having a certain level or more of anisotropy are suitable for forming a dense layer, flat graphite particles are preferred instead of spherical ones.
- the flattened graphite particles have basal planes on which hexagonal carbon mesh planes appear and edge planes on which ends of the hexagonal carbon mesh planes appear.
- the flattened graphite particles include flaky graphite, flaky graphite, earthy graphite, flaky graphite, Kish graphite, pyrolytic graphite, highly oriented pyrolytic graphite, and the like.
- the average particle size of the first graphite particles is not particularly limited, but is preferably 1 to 30 ⁇ m, more preferably 1 to 15 ⁇ m, since particles with a small particle size are suitable for forming a dense layer.
- the average particle diameter is the median diameter (d 50 ) in particle size distribution measurement by laser diffraction (the same shall apply hereinafter).
- the first graphite particles may be either natural graphite or artificial graphite as long as the above properties are satisfied.
- the resin contained in the dense layer may be a thermoplastic resin or a thermosetting resin, but preferably contains a thermosetting resin, and more preferably contains only a thermosetting resin.
- the thermoplastic resin is not particularly limited, a resin having a melting point or glass transition point of 100° C. or higher is preferable from the viewpoint of heat resistance.
- Specific examples include polyethylene, polypropylene, polyphenylene sulfide, polytetrafluoroethylene, tetrafluoroethylene-ethylene copolymer, polychlorotrifluoroethylene, polyamide, polyetherketoneetherketoneketone, polyetherketone, liquid crystal polymer, and polyimide.
- the upper limit of the melting point or glass transition point is not particularly limited, it is preferably 300° C. or less from the viewpoint of productivity of precursor sheets and fuel cell separators.
- thermosetting resin is not particularly limited, and can be appropriately selected from conventional binder resins such as carbon separators. Specific examples thereof include phenol resins, epoxy resins, furan resins, unsaturated polyester resins, urea resins, melamine resins, diallyl phthalate resins, bismaleimide resins, polycarbodiimide resins, silicone resins, vinyl ester resins, benzoxazine resins, and the like. These may be used alone or in combination of two or more. Among these, epoxy resins are preferable because they are excellent in heat resistance and mechanical strength.
- the content ratio of the first graphite particles and the resin is not particularly limited, but the resulting fuel cell separator is given properties such as gas impermeability, conductivity, and surface smoothness (reduction of contact resistance).
- the resin is preferably 5 to 50 parts by mass, more preferably 10 to 35 parts by mass, with respect to 100 parts by mass of the first graphite particles, but in the case of a thermosetting resin, the thermosetting resin is a precursor sheet. It is preferably contained in an amount of 10 to 25% by mass in the whole.
- the dense layer may further contain a conductive aid in order to reduce the resistance of the resulting fuel cell separator.
- conductive aids include carbon black, graphene, carbon fibers, carbon nanofibers, carbon nanotubes, various metal fibers, inorganic fibers, and fibers obtained by depositing or plating a metal on organic fibers. may be used in combination of two or more.
- carbon materials having a fine particle size, such as carbon black and graphene are preferable from the viewpoint of maintaining surface smoothness.
- Examples of carbon black include furnace black, acetylene black, ketjen black, channel black, etc. Furnace black is preferable from the viewpoint of cost.
- Examples of the carbon fiber include PAN-based carbon fiber made from polyacrylonitrile (PAN) fiber, pitch-based carbon fiber made from pitch such as petroleum pitch, and phenol-based carbon fiber made from phenol resin. PAN-based carbon fiber is preferable from the viewpoint of cost.
- the average fiber length of the fibrous conductive aid is preferably 0.1 to 10 mm, more preferably 0.1 to 7 mm, and even more preferably 0.1 to 5 mm, from the viewpoint of achieving both moldability and conductivity.
- the average fiber diameter is preferably 3 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, even more preferably 3 to 15 ⁇ m, from the viewpoint of moldability.
- the content of the conductive aid is preferably 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, in the dense layer.
- the dense layer may contain other components commonly used in fuel cell separators, in addition to the components described above.
- Other components include internal release agents such as stearic acid wax, amide wax, montanic acid wax, carnauba wax, and polyethylene wax; anionic, cationic, or nonionic surfactants; strong acids and strong electrolytes. , bases, polyacrylamide-based, polysodium acrylate-based, polymethacrylate-based surfactants, etc. known flocculants; carboxymethyl cellulose, starch, vinyl acetate, polylactic acid, polyglycolic acid, polyethylene oxide thickeners and the like.
- the dense layer is formed on the base layer (base material sheet or conductive layer) by a composition for forming a dense layer containing first graphite particles, a resin, and other additives such as a conductive aid used as necessary, and a solvent. It can be formed by applying an object.
- a dense layer can also be formed by impregnating a layer formed by applying a composition containing the first graphite particles and a solvent onto an underlayer with a resin.
- the solvent is not particularly limited as long as a composition that can be coated can be prepared, but water; aliphatic hydrocarbon solvents such as pentane, hexane and heptane; toluene, p-xylene, o-xylene, m - Aromatic hydrocarbon solvents such as xylene and ethylbenzene; n-propyl acetate, isobutyl acetate, ester solvents such as n-butyl acetate, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, 1-pentanol, 1-hexanol, cyclohexanol aliphatic alcohol solvents such as; diethyl ether, tetrahydrofuran, ether solvents such as 1,4-dioxane, N,N-dimethylformamide, N,N-
- the coating method is not particularly limited, and includes spin coating, dipping, flow coating, inkjet, jet dispenser, spraying, bar coating, gravure coating, roll coating, transfer printing, It may be appropriately selected from known methods such as brush coating, blade coating, air knife coating and die coating.
- a solvent used, the temperature for its removal cannot be defined indiscriminately because it varies depending on the solvent used, and is required to be lower than the melting point of thermoplastic resins and the curing start temperature of thermosetting resins. However, it can generally be about room temperature to 150°C, more preferably about 50 to 130°C.
- the thickness of the dense layer constituting the precursor sheet is not particularly limited, but considering the balance between gas impermeability and smoothness and electrical conductivity, it is preferably 5 to 30 ⁇ m per layer, and 5 to 30 ⁇ m. 20 ⁇ m is more preferred.
- the conductive layer constituting the precursor sheet of the present invention contains second graphite particles and a resin, and mainly imparts shapeability (mold shape followability) to the precursor sheet, It imparts electrical conductivity to the battery separator.
- the second graphite particles have a bulk density of 1.5 g/cm 3 or more, preferably 1.5 to 1.9 g/cm 3 , more preferably 1.6 when compressed at 30 MPa. Up to 1.9 g/cm 3 and a volume resistivity of less than 20 m ⁇ cm, preferably 10 m ⁇ cm or less, more preferably 9 m ⁇ cm or less is used.
- Graphite particles within this range have a high degree of isotropy, fluidity, and conductivity, so they can impart shapeability to the precursor sheet, and also impart properties such as good conductivity to the fuel cell separator. can.
- the volume resistivity is preferably 3.5 m ⁇ cm or more, more preferably 5 m ⁇ cm or more, from the viewpoint of imparting high fluidity and improving uniformity in the conductive layer.
- Graphite particles within this range have an appropriate particle size and particle size distribution, so that the formability and conductivity of the precursor sheet can be further enhanced.
- the shape of the second graphite particles is not particularly limited, but since particles having fluidity are suitable for forming a conductive layer, graphite particles having an isotropic shape are preferable, and spherical graphite particles are more preferable. preferable.
- the average particle size of the second graphite particles is not particularly limited, but is preferably 5 to 50 ⁇ m, more preferably 5 to 30 ⁇ m, and preferably has an average particle size larger than that of the graphite particles constituting the dense layer. be.
- the second graphite particles may be either natural graphite or artificial graphite as long as the above properties are satisfied.
- the resin contained in the conductive layer may be a thermoplastic resin or a thermosetting resin, but preferably contains a thermosetting resin.
- thermoplastic resins and thermosetting resins include the same resins as those exemplified for the dense layer.
- the conductive layer is formed on the base layer (base material sheet or dense layer) by a composition for forming a conductive layer containing second graphite particles, a resin, and other additives such as a conductive aid used as necessary, and a solvent. It can be formed by applying an object.
- the conductive layer can also be formed by impregnating a layer formed by applying a composition containing the second graphite particles and a solvent onto the underlayer with a resin.
- the solvent, coating method, and solvent removal temperature described for the dense layer can be employed.
- the conductive layer-forming composition preferably contains a binder resin having thickening and adhesive properties from the viewpoint of obtaining a predetermined thickness and uniformity when applied.
- a binder resin having thickening and adhesive properties from the viewpoint of obtaining a predetermined thickness and uniformity when applied.
- a water-based resin is more preferable because a small amount of the binder resin can provide thickening properties and adhesiveness, and the solvent can be easily removed.
- the aqueous resin is not particularly limited, and specific examples thereof include acrylic resins, polyurethane resins, polyester resins, polyolefin resins, polyvinyl resins, polyether resins, polyamide resins, polyimide resins, polyallylamine resins, phenol resins, epoxy resins, Phenoxy resins, urea resins, melamine resins, alkyd resins, formaldehyde resins, silicone resins, fluorine resins, water-based resins such as polysaccharides such as carboxymethyl cellulose, and water-based emulsions and dispersions obtained by emulsion polymerization, etc. These may be used alone or in combination of two or more.
- acrylic resins polyvinyl resins, polyether resins, and polysaccharides such as carboxymethyl cellulose are preferable since sufficient adhesiveness can be obtained even in a small amount.
- the content of the binder resin is not particularly limited, it is preferably 0.1 to 10% by mass, more preferably 0.5 to 7% by mass in the conductive layer. If it is less than 0.1% by mass, the thickening property and adhesiveness may be insufficient, and if it is 10% by mass or more, the conductivity may be lowered.
- the content ratio of the second graphite particles and the resin is not particularly limited, but considering the formability of the precursor sheet described above, the conductivity of the fuel cell separator, etc., the second graphite particles 100 5 to 50 parts by mass of the resin is preferable, and 10 to 35 parts by mass is more preferable.
- the thermosetting resin it is preferable that the thermosetting resin is contained in the entire precursor sheet in an amount of 10 to 25% by mass.
- the conductive layer may further contain a conductive aid in order to reduce the resistance of the resulting fuel cell separator.
- a conductive aid in order to reduce the resistance of the resulting fuel cell separator.
- Specific examples of the conductive aid are the same as those exemplified for the dense layer.
- the content of the conductive aid is preferably 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, in the conductive layer.
- the conductive layer may also contain other components exemplified for the dense layer.
- the thickness of the conductive layer constituting the precursor sheet is not particularly limited, it is preferably 10 to 200 ⁇ m, more preferably 30 to 150 ⁇ m per layer, considering the balance between formability and conductivity.
- the conductive base sheet that constitutes the precursor sheet of the present invention is not particularly limited. It may be appropriately selected from those conventionally used as precursor sheets for fuel cell separators, such as metal foils and metal meshes, but papermaking sheets containing conductive fillers and organic fibers are preferred.
- the conductive filler that constitutes the base sheet is not particularly limited, and conventionally known fillers for fuel cell separators can be used. Specific examples thereof include carbon materials, metal powders, inorganic powders, and powders obtained by depositing or plating metal on organic powders, and carbon materials are preferred. Carbon materials include natural graphite, artificial graphite obtained by calcining needle coke, artificial graphite obtained by calcining lump coke, expanded graphite obtained by chemically treating natural graphite, pulverized carbon electrodes, and coal-based pitch. , petroleum pitch, coke, activated carbon, vitreous carbon, acetylene black, ketjen black, etc. Among them, graphite is preferable from the viewpoint of conductivity. In addition, the conductive filler may be used singly or in combination of two or more.
- the shape of the conductive filler is not limited and may be spherical, scale-like, massive, foil-like, plate-like, needle-like, or amorphous, but scale-like is preferred from the viewpoint of gas impermeability of the separator.
- the average particle size of the conductive filler is preferably 5-200 ⁇ m, more preferably 10-80 ⁇ m. If the average particle size of the conductive filler is within this range, necessary conductivity can be obtained while ensuring gas impermeability.
- the content of the conductive filler is preferably 50-96% by mass, more preferably 60-90% by mass, in the base sheet. If the content of the conductive filler is within this range, the necessary conductivity can be obtained within a range that does not impair the formability.
- the organic fiber preferably has a melting point higher than the heating temperature during the production of the fuel cell separator.
- first organic fiber By using such an organic fiber (hereinafter also referred to as first organic fiber), the mechanical strength of the precursor sheet and the fuel cell separator obtained therefrom can be improved.
- Materials for the first organic fiber include aramids such as poly-p-phenylene terephthalamide (decomposing temperature: 500°C), poly-m-phenylene isophthalamide (decomposing temperature: 500°C), polyacrylonitrile (melting point: 300°C), cellulose (melting point: 260°C), acetate (melting point 260°C), nylon polyester (melting point 260°C), polyphenylene sulfide (PPS) (melting point 280°C), polyetheretherketone (melting point 340°C), polyphenylsulfone (no melting point), polyamideimide (melting point 300° C.), polyetherimide (melting point 210° C.), and copolymers mainly composed of these materials. These may be used alone or in combination of two or more. These can be appropriately selected in consideration of the formability of the precursor sheet and the mechanical strength, conductivity and durability of the separator.
- the organic fibers may contain a second organic fiber having a lower melting point than the heating temperature at which the fuel cell separator is manufactured.
- a second organic fiber one having affinity with the resin contained in the dense layer and the conductive layer is preferable.
- the material of the second organic fiber polyethylene (PE) (melting point 120 to 140° C. (HDPE), 95 to 130° C. (LDPE)), polypropylene (PP) (melting point 160° C.), polyphenylene sulfide, etc. are preferable. may be used alone or in combination of two or more.
- the melting point of the first organic fiber is preferably 10° C. or more higher than the above-mentioned heating temperature from the viewpoint of reliably retaining the fiber form for imparting impact resistance. C. or more is more preferable, and 30.degree. C. or more is even more preferable.
- the melting point of the second organic fiber is preferably lower than the heating temperature by 10°C or more, more preferably 20°C or more, and even more preferably 30°C or more.
- the temperature difference between the melting points of the first organic fiber and the second organic fiber is preferably 40° C. or higher, more preferably 60° C. or higher.
- the first organic fiber is preferably aramid, polyacrylonitrile, cellulose, acetate, or nylon polyester
- the second organic fiber is preferably PE, PP, or PPS.
- PE or PP is used as the second organic fiber
- PPS can also be used as the first organic fiber in addition to aramid, polyacrylonitrile, cellulose, acetate, nylon polyester.
- the average fiber length of the organic fibers is preferably 0.1 to 10 mm, more preferably 0.1 to 6 mm, and more preferably 0.5 from the viewpoint of stabilizing the basis weight during papermaking and ensuring the mechanical strength of the resulting papermaking sheet. ⁇ 6 mm is even more preferred.
- the average fiber diameter of the first organic fibers and the second organic fibers is preferably 0.1 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, even more preferably 1 to 50 ⁇ m, from the viewpoint of moldability.
- the average fiber length and average fiber diameter are arithmetic mean values of fiber length and fiber diameter measured for arbitrary 100 fibers using an optical microscope or an electron microscope.
- the organic fiber content is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, in the base sheet.
- the content is preferably 10 to 80% by mass, more preferably 50 to 80% by mass in the organic fiber.
- the paper-made sheet may further contain a conductive aid in order to reduce the resistance of the fuel cell separator obtained therefrom.
- a conductive aid include those exemplified for the dense layer, but carbon fibers are preferred, and PAN-based carbon fibers are more preferred.
- the content of the conductive aid is preferably 1 to 20% by mass, more preferably 2 to 10% by mass, in the sheet.
- the paper-made sheet may also contain other components exemplified for the dense layer.
- a paper-making sheet can be obtained by paper-making a composition containing each component described above.
- the papermaking method is not particularly limited, and conventionally known methods may be used.
- a composition containing each component described above is dispersed in a solvent such as water that does not dissolve these components, each component in the resulting dispersion is deposited on a substrate, and the resulting deposit is
- a papermaking sheet can be produced by drying.
- the basis weight of the papermaking sheet is preferably 150 to 300 g/m 2 .
- the thickness of the base sheet used in the present invention is not particularly limited, but considering the mechanical strength of the fuel cell separator, etc., it is preferably 10 ⁇ m to 1.0 mm.
- the base material sheet when it is a porous sheet such as a papermaking sheet, it may contain a resin.
- the resin contained in the base sheet may be a thermoplastic resin or a thermosetting resin, but a thermosetting resin is preferred.
- thermoplastic resins and thermosetting resins include the same resins as those exemplified for the dense layer above. It is preferred that it is contained in an amount of 25% by mass.
- methods for incorporating the resin into the base sheet include a method of heating and melting a resin film to impregnate the base sheet, and a method of immersing the base sheet in a liquid resin for impregnation.
- the resin after all of the dense layer, the conductive layer and the base sheet are laminated, and the composition for forming the dense layer and the conductive layer is impregnated with the resin.
- the lower layer can be impregnated with a resin when the is applied.
- a dense layer-forming composition containing a resin is applied to the laminate, and the entire laminate is impregnated with the resin.
- the order of stacking the base sheet, the conductive layer, and the dense layer is not particularly limited, and the order may be arbitrary.
- the number of layers is not particularly limited, and the number of layers can be arbitrary.
- the outermost surface is composed of the dense layer. is preferred. That is, a three-layer structure in which a conductive layer is laminated on one side surface of a base material sheet and a dense layer is laminated on the surface of this conductive layer is one of preferred embodiments.
- a conductive layer is formed on both side surfaces of the base sheet. That is, another preferred embodiment is a five-layer structure in which a conductive layer is laminated on both side surfaces of the base sheet and a dense layer is laminated on each surface of these conductive layers.
- Fuel cell separator A fuel cell separator can be produced by heating and molding the precursor sheet of the present invention.
- the molding method is not particularly limited, but compression molding is preferred.
- the conditions for compression molding are not particularly limited, but a mold temperature of 150 to 190°C is preferable.
- the mold temperature is preferably lower than the melting point of the organic fibers (first organic fibers) by 10°C or more, more preferably by 20°C or more.
- the molding pressure is preferably 1 to 100 MPa, more preferably 1 to 60 MPa.
- the compression molding time is not particularly limited, and can be appropriately set from 3 seconds to 1 hour.
- the thickness of the dense layer after compression molding is not particularly limited, it is preferably 0.5 to 20 ⁇ m per layer, and the entire dense layer is preferably 15% or less of the total thickness of the separator.
- the thickness of the conductive layer after compression molding is preferably 20 to 150 ⁇ m per layer.
- polymer electrolyte fuel cells consist of a pair of electrodes sandwiching a polymer electrolyte membrane, and a pair of separators sandwiching these electrodes to form a gas supply and discharge flow path.
- the fuel cell separator of the present invention can be used as part or all of the plurality of separators.
- the inter-electrode resistance was converted from the inter-electrode voltage when a constant current of 1 A/cm 2 was applied between the gold-plated copper electrodes, and was taken as the volume resistivity (unit: m ⁇ cm). Also, the compaction density (unit: g/cm 3 ) was calculated from the graphite powder weight and filling height.
- (2) Gas Impermeability of Fuel Cell Separator A flat plate separator is formed, conforming to JIS K7126-1:2006 (Plastic and sheet-Gas permeability test method-Part 1: Differential pressure method), hydrogen gas permeability coefficient (Unit: cm 3 ⁇ cm/(cm 2 ⁇ sec ⁇ cmHg)) was measured.
- Density and volume resistivity hereinafter represent values when the graphite powder is compressed at 30 MPa. 95 parts by mass of spherical graphite having a density of 1.69 g/cm 3 and a volume resistivity of 5.8 m ⁇ cm with an average particle size of 15 ⁇ m, 5 parts by mass of polyacrylic acid (molecular weight: 1,000,000), which is a water-based resin, as a binder resin, and a solvent was mixed with water to prepare a conductive layer-forming slurry having a solid content concentration of 45% by mass.
- This slurry was applied to both surfaces of the base sheet obtained in Production Example 1 to form a conductive layer on each of both side surfaces of the base sheet.
- the thickness of each conductive layer obtained was 110 ⁇ m.
- 15 parts by mass of flaky graphite having a density of 1.75 g/cm 3 and a volume resistivity of 24.5 m ⁇ cm with an average particle size of 5 ⁇ m, 85 parts by mass of epoxy resin, and acetone were mixed to obtain a solid concentration of 50% by mass.
- a slurry for forming a dense layer was prepared.
- This slurry is applied to the surface of each of the previously formed two conductive layers to form a dense layer, and the conductive layer is impregnated with an epoxy resin to form a dense layer/conductive layer/base sheet/conductive layer/dense layer.
- a precursor sheet having a five-layer structure was obtained.
- the thermosetting resin contained in the entire precursor sheet was 20% by mass.
- the thickness of each dense layer obtained was 10 ⁇ m.
- Example 1-2 A five-layer structure was formed in the same manner as in Example 1-1, except that spherical graphite with an average particle size of 10 ⁇ m having a density of 1.82 g/cm 3 and a volume resistivity of 7.6 m ⁇ cm was used as the graphite contained in the conductive layer. was obtained.
- Example 1-3 Five layers were formed in the same manner as in Example 1-1, except that flaky graphite with an average particle size of 4 ⁇ m having a density of 1.72 g/cm 3 and a volume resistivity of 26.1 m ⁇ cm was used as the graphite contained in the dense layer. A structured precursor sheet was obtained.
- Example 1-4 Five layers were formed in the same manner as in Example 1-1, except that flaky graphite with an average particle size of 13 ⁇ m having a density of 1.88 g/cm 3 and a volume resistivity of 27.6 m ⁇ cm was used as the graphite contained in the dense layer. A structured precursor sheet was obtained.
- Example 1-5 A 5-layer structure was formed in the same manner as in Example 1-1, except that spherical graphite with an average particle size of 10 ⁇ m having a density of 1.63 g/cm 3 and a volume resistivity of 8.2 m ⁇ cm was used as the graphite contained in the conductive layer. was obtained.
- Example 1-6 A five-layer structure was formed in the same manner as in Example 1-1, except that spherical graphite with an average particle size of 13 ⁇ m and a density of 1.88 g/cm 3 and a volume resistivity of 5.2 m ⁇ cm was used as the graphite contained in the conductive layer. was obtained.
- Example 1-7 A five-layered precursor was prepared in the same manner as in Example 1-1, except that spherical graphite with an average particle size of 5 ⁇ m having a density of 1.62 g/cm 3 and a volume resistivity of 17 m ⁇ cm was used as the graphite contained in the conductive layer. Got a body sheet.
- Example 1-8 A five-layered precursor was prepared in the same manner as in Example 1-1, except that spherical graphite with an average particle size of 10 ⁇ m having a density of 1.58 g/cm 3 and a volume resistivity of 8 m ⁇ cm was used as the graphite contained in the conductive layer. Got a body sheet.
- Example 1-9 A five-layered precursor was prepared in the same manner as in Example 1-1, except that spherical graphite with an average particle size of 25 ⁇ m having a density of 1.87 g/cm 3 and a volume resistivity of 17 m ⁇ cm was used as the graphite contained in the conductive layer. Got a body sheet.
- Example 1-10 A five-layer structure was formed in the same manner as in Example 1-1, except that spherical graphite with an average particle size of 40 ⁇ m having a density of 1.93 g/cm 3 and a volume resistivity of 14.5 m ⁇ cm was used as the graphite contained in the conductive layer. was obtained.
- Example 1-11 A five-layer structure was formed in the same manner as in Example 1-1, except that spherical graphite having a density of 1.71 g/cm 3 and a volume resistivity of 12.4 m ⁇ cm and an average particle size of 15 ⁇ m was used as the graphite contained in the conductive layer. was obtained.
- Example 1-12 A 5-layer structure was formed in the same manner as in Example 1-1, except that spherical graphite with an average particle size of 35 ⁇ m having a density of 1.8 g/cm 3 and a volume resistivity of 3.8 m ⁇ cm was used as the graphite contained in the conductive layer. was obtained.
- Example 1-13 A five-layer structure was formed in the same manner as in Example 1-1, except that flat graphite with an average particle size of 20 ⁇ m having a density of 1.92 g/cm 3 and a volume resistivity of 26 m ⁇ cm was used as the graphite contained in the dense layer. A precursor sheet was obtained.
- Example 1-14 92 parts by mass of spherical graphite with an average particle diameter of 15 ⁇ m having a density of 1.69 g/cm 3 and a volume resistivity of 5.8 m ⁇ cm as graphite contained in the conductive layer, 8 parts by mass of polyvinylidene fluoride as a binder resin, and N as a solvent.
- a five-layer precursor sheet was obtained in the same manner as in Example 1-1, except that -methylpyrrolidone (NMP) was used.
- NMP -methylpyrrolidone
- thermosetting resin contained in the entire precursor sheet was 20% by mass.
- Example 1-2 The dense layer-forming slurry used in Example 1-1 was applied to both surfaces of the papermaking sheet obtained in Production Example 1 to form two dense layers, and three layers of dense layer/base sheet/dense layer were formed. A precursor sheet having a layer structure was obtained. The thermosetting resin contained in the entire precursor sheet was 20% by mass.
- Example 1-3 A three-layer structure of conductive layer/base sheet/conductive layer was formed in the same manner as in Example 1-1, except that the dense layer was not formed, and then impregnated with epoxy resin in the same manner as in Comparative Example 1-1. to obtain a precursor sheet.
- the thermosetting resin contained in the entire precursor sheet was 20% by mass.
- Example 1-4 A five-layer precursor was prepared in the same manner as in Example 1-1, except that spherical graphite with an average particle size of 5 ⁇ m having a density of 1.62 g/cm 3 and a volume resistivity of 17 m ⁇ cm was used as the graphite contained in the dense layer. Got a body sheet.
- Example 1-5 A five-layer structure was formed in the same manner as in Example 1-1, except that spherical graphite with an average particle size of 8 ⁇ m having a density of 1.76 g/cm 3 and a volume resistivity of 8.5 m ⁇ cm was used as the graphite contained in the dense layer. was obtained.
- Example 1-6 Five layers were formed in the same manner as in Example 1-1, except that flaky graphite with an average particle size of 5 ⁇ m having a density of 1.75 g/cm 3 and a volume resistivity of 24.5 m ⁇ cm was used as the graphite contained in the conductive layer. A structured precursor sheet was obtained.
- Example 1-7 Five layers were formed in the same manner as in Example 1-1, except that flaky graphite with an average particle size of 2 ⁇ m having a density of 1.62/cm 3 and a volume resistivity of 26.7 m ⁇ cm was used as the graphite contained in the dense layer. A structured precursor sheet was obtained.
- Table 1 shows a summary of the above examples and comparative examples.
- Example 2-1 Production of fuel cell separator
- the precursor sheet obtained in Example 1-1 was compression-molded at 180° C. and 60 MPa for 1 minute using a planar mold and a corrugated and convex mold to form a fuel cell separator. Obtained.
- the thickness of the planar separator was 250 ⁇ m.
- the thickness of the dense layer was 5 ⁇ m per layer
- the thickness of the conductive layer was 70 ⁇ m per layer.
- Example 2-2 to 2-14 Fuel cell separators were obtained in the same manner as in Example 2-1, except that the precursor sheets prepared in Examples 1-2 to 1-14 were used.
- Comparative Example 2-1 Two of the precursor sheets obtained in Comparative Example 1-1 were stacked and compression-molded at 180° C. and 60 MPa for 1 minute using a corrugated and convex mold to obtain a fuel cell separator.
- the fuel cell separators obtained in Examples 2-1 to 2-14 were excellent in gas impermeability and electrical conductivity, and had good moldability.
- the fuel cell separators obtained in Comparative Examples 2-1 to 2-3 without a conductive layer, and the fuel cells obtained in Comparative Examples 2-4 to 2-7 in which the properties of graphite are outside the scope of the present invention It can be seen that the separator and the fuel cell separator obtained in Comparative Example 2-8, which consists of only the conductive layer, are inferior in either or all of the above separator properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Energy (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Fuel Cell (AREA)
- Laminated Bodies (AREA)
- Paper (AREA)
Abstract
Description
一般に、燃料電池セパレータに要求される特性として、ガス(水素および酸素)不透過性、導電性、機械的強度、耐久性(耐熱、耐水、耐酸性)、薄肉軽量、賦形性等が挙げられる。
従来の燃料電池セパレータの製法として、カーボン粒子と樹脂を混合し圧縮成形する方法(いわゆるコンパウンド)が知られているが、この製法で得られたセパレータは、導電性、耐久性、賦形性に優れ軽量である一方、ガス不透過性や機械的強度という点で問題がある。
例えば、特許文献1では、膨張黒鉛に繊維質充填材を添加した原料を抄造して得られる第1シートの一対の間に、黒鉛に熱硬化性樹脂を塗してなる第2シートを介装して構成した予備成形体をプレス成形して得られた燃料電池セパレータが開示されている。
特許文献2には、膨張黒鉛に繊維質充填材が加えられた原料を抄造して得られる第1シートを、黒鉛に熱硬化性樹脂を塗して得られた第2シートの一対の間に介装して得られた予備積層体をプレス成形して得られた燃料電池セパレータが開示されている。
特許文献3には、マトリックス樹脂、導電性繊維および導電性粉末を含む抄造シートの少なくとも片面に、マトリックス樹脂および導電性粉末を含み、導電性繊維を含まない樹脂層が積層された構造を有する導電性シートを成形して得られる燃料電池セパレータが開示されている。
特許文献5には、平均粒径25~100μm、かつ、30MPaの圧力下での粉体抵抗が3.0mΩcm以下である粒子群を少なくとも一種含有し、真比重が2.24~2.27の範囲内である黒鉛粒子と樹脂成分とを含有し、黒鉛粒子全体における30MPaの圧力下での粉体抵抗が3.0mΩcm以下であり、黒鉛粒子の固形分割合が70~80質量%である組成物を成形して得られる燃料電池セパレータが開示されている。
特許文献6には、炭素材および樹脂材を含む第1導電層および第2導電層からなり、第2導電層は樹脂材から露出した粒径の異なる2種の炭素粒子を含むことを特徴とする燃料電池用セパレータが開示されている。
特許文献2の燃料電池セパレータでは、賦形性を高めるため黒鉛と熱硬化性樹脂からなる層を表層に用いているが、そのための具体的な要件の記載はなく、この構成のみで高度な賦形性を実現できるとは言えない。
特許文献3の燃料電池セパレータでは、外観を良好にし、表面の接触抵抗を低減すべく、マトリックス樹脂および導電性粉末を含み、導電性繊維を含まない樹脂層が表面となるように成形されているが、この構造のみでは十分なガス不透過性が確保できるとは言えない。
特許文献5の燃料電池セパレータでは、30MPaの圧力下での粉体抵抗が3.0mΩ・cm以下である粒子群を少なくとも一種含有する黒鉛粒子を用いて導電性の向上が図られているが、ガス不透過性については何ら言及されていない。
特許文献6の燃料電池セパレータでは、2層構造により導電性の低下を抑制し、表層に形成した凹凸により排水性を高められるとしているものの、具体的な効果やガス不透過性については何ら言及されていない。
1. 導電性の基材シートと、第1の黒鉛粒子を含む緻密層と、第2の黒鉛粒子を含む導電層とを備え、
前記緻密層および前記導電層が樹脂を含み、
前記第1の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.7g/cm3以上かつ体積抵抗率20mΩ・cm以上であり、
前記第2の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.5g/cm3以上かつ体積抵抗率20mΩ・cm未満であることを特徴とする燃料電池セパレータ用前駆体シート、
2. 前記基材シートの片側表面に前記導電層が積層され、この導電層の表面に前記緻密層が積層されている1の燃料電池セパレータ用前駆体シート、
3. 前記基材シートの両側表面にそれぞれ前記導電層が積層され、これらの導電層の表面のそれぞれに前記緻密層が積層されている2の燃料電池セパレータ用前駆体シート、
4. 前記第1の黒鉛粒子が、平均粒径1~30μmの扁平状黒鉛である1~3のいずれかの燃料電池セパレータ用前駆体シート、
5. 前記第1の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.7~1.9g/cm3かつ体積抵抗率20~30mΩ・cmの扁平状黒鉛である4の燃料電池セパレータ用前駆体シート、
6. 前記第2の黒鉛粒子が、平均粒径5~50μmの等方性の形状を有する黒鉛である1~5のいずれかの燃料電池セパレータ用前駆体シート、
7. 前記第2の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.5~1.9g/cm3かつ体積抵抗率10mΩ・cm以下の球状黒鉛である6の燃料電池セパレータ用前駆体シート、
8. 前記緻密層の厚みが、5~30μmである1~7のいずれかの燃料電池セパレータ用前駆体シート、
9. 前記導電層の厚みが、10~200μmである1~8のいずれかの燃料電池セパレータ用前駆体シート、
10. 前記導電層および前記緻密層のいずれか一方または両方の樹脂が、熱硬化性樹脂を含む1~9のいずれかの燃料電池セパレータ用前駆体シート、
11. 前記導電層の樹脂が、水性樹脂を含む1~10のいずれかの燃料電池セパレータ用前駆体シート、
12. 前記基材シートが、樹脂を含む1~11のいずれかの燃料電池セパレータ用前駆体シート、
13. 前記基材シートの樹脂が、熱硬化性樹脂を含む12の燃料電池セパレータ用前駆体シート、
14. 前記熱硬化性樹脂が、燃料電池セパレータ用前駆体シート全体中に10~25質量%含まれる10または13の燃料電池セパレータ用前駆体シート、
15. 前記基材シートが、有機繊維および黒鉛を含む抄造シートである1~14のいずれかの燃料電池セパレータ用前駆体シート、
16. 1~15のいずれかの燃料電池セパレータ用前駆体シートを成形してなる燃料電池セパレータ、
17. 前記緻密層の成形後の緻密層全体の厚みが、総厚の15%以下である16の燃料電池セパレータ、
18. 前記導電層の成形後の1層あたりの厚みが、20~150μmである16または17の燃料電池セパレータ、
19. 16~18のいずれかの燃料電池セパレータを備える燃料電池、
20. 導電性の基材シートと、第1の黒鉛粒子を含む緻密層と、第2の黒鉛粒子を含む導電層とを備える燃料電池セパレータ用前駆体シートの製造方法であって、
前記基材シートの少なくとも一方の表面または前記緻密層の表面に、前記第2の黒鉛粒子と樹脂とを含む導電層形成用組成物を塗布して前記導電層を形成する工程と、
前記基材シートの少なくとも一方の表面または前記導電層の表面に、前記第1の黒鉛粒子と樹脂とを含む緻密層形成用組成物を塗布して前記緻密層を形成する工程とを備え、
前記第1の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.7g/cm3以上かつ体積抵抗率20mΩ・cm以上であり、
前記第2の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.5g/cm3以上かつ体積抵抗率20mΩ・cm未満であることを特徴とする燃料電池セパレータ用前駆体シートの製造方法、
21. 前記基材シートの両表面に、前記導電層形成用組成物を塗布して2層の導電層を形成する工程と、
前記2層の導電層のそれぞれの表面に、前記緻密層形成用組成物を塗布して2層の緻密層を形成する工程とを備える20の燃料電池セパレータ用前駆体シートの製造方法、
22. 20または21の燃料電池セパレータ用前駆体シートの製造方法で得られた前駆体シートを圧縮成形する燃料電池セパレータの製造方法
を提供する。
また、導電性の基材シート上に導電層、緻密層を塗布法により形成可能であるため、ロールトゥロールで前駆体シートを作製でき、生産性が高い。
さらに、導電性の基材シート、導電層、緻密層を形成することで、機械的強度、導電性、ガス不透過性、賦形性等の高度な特性を有するセパレータを得ることができる。
本発明に係る燃料電池セパレータ用前駆体シートは、導電性の基材シートと、第1の黒鉛粒子を含む緻密層と、第2の黒鉛粒子を含む導電層とを備え、緻密層および導電層が樹脂を含み、第1の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.7g/cm3以上かつ体積抵抗率20mΩ・cm以上であり、第2の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.5g/cm3以上かつ体積抵抗率20mΩ・cm未満であることを特徴とする。
本発明の燃料電池セパレータ用前駆体シート(以下、「前駆体シート」と略記する。)を構成する緻密層は、第1の黒鉛粒子と樹脂とを含み、主としてガス不透過層として機能するものである。
本発明の前駆体シートでは、第1の黒鉛粒子として、30MPaで圧縮したときの嵩密度が1.7g/cm3以上、好ましくは1.7~1.9g/cm3かつ体積抵抗率20mΩ・cm以上、好ましくは20~30mΩ・cm、より好ましくは22~28mΩ・cmのものを用いる。この範囲内の黒鉛粒子は、適度な異方性、充填性、流動性を有することから、これを含む緻密層を備える燃料電池セパレータに、ガス不透過性、導電性、表面平滑性(接触抵抗の低減)等の特性を付与できる。
また、第1の黒鉛粒子の平均粒径に特に制限はないが、緻密層の形成には小粒径の粒子が好適であることから、1~30μmが好ましく、1~15μmがより好ましい。なお、本発明において平均粒径とは、レーザー回折法による粒度分布測定におけるメジアン径(d50)である(以下、同様)。
なお、第1の黒鉛粒子は、上記特性を満たす限り、天然黒鉛でも人造黒鉛でもよい。
熱可塑性樹脂は、特に限定されるものではないが、耐熱性の点から、融点またはガラス転移点が100℃以上の樹脂が好ましい。
その具体例としては、ポリエチレン、ポリプロピレン、ポリフェニレンサルファイド、ポリテトラフルオロエチレン、テトラフルオロエチレン・エチレン共重合体、ポリクロロトリフルオロエチレン、ポリアミド、ポリエーテルケトンエーテルケトンケトン、ポリエーテルケトン、液晶ポリマー、ポリイミド、ポリアミドイミド、ポリフェニルサルフォン、ポリエーテルイミドおよびポリスルフォン、ポリブチレンテレフタレート、ポリエチレンナフタレート、ABS樹脂、ポリシクロオレフィンおよびポリエーテルスルホン、並びにこれらの誘導体のうち融点が100℃以上であるものや、ポリカーボネート、ポリスチレンおよびポリフェニレンオキシド、並びにこれらの誘導体のうちガラス転移点が100℃以上であるもの等が挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。なお、融点またはガラス転移点の上限は特に限定されないが、前駆体シートおよび燃料電池セパレータの生産性の点から、300℃以下が好ましい。
その具体例としては、フェノール樹脂、エポキシ樹脂、フラン樹脂、不飽和ポリエステル樹脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂、ビスマレイミド樹脂、ポリカルボジイミド樹脂、シリコーン樹脂、ビニルエステル樹脂、ベンゾオキサジン樹脂等が挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。これらの中でも、耐熱性および機械的強度に優れていることから、エポキシ樹脂が好ましい。
導電助剤としては、カーボンブラック、グラフェン、炭素繊維、カーボンナノファイバー、カーボンナノチューブ、各種金属繊維、無機繊維や有機繊維に金属を蒸着あるいはメッキさせた繊維等が挙げられ、これらは単独で用いても、2種以上併用してもよい。これらの中でも、カーボンブラック、グラフェン等の粒径の微小な炭素材料が表面平滑性を保つ観点から好ましい。
炭素繊維としては、ポリアクリロニトリル(PAN)繊維を原料とするPAN系炭素繊維、石油ピッチ等のピッチを原料とするピッチ系炭素繊維、フェノール樹脂を原料とするフェノール系炭素繊維等が挙げられるが、PAN系炭素繊維がコストの観点から好ましい。
繊維状の導電助剤の平均繊維長は、成形性と導電性を両立する観点から、0.1~10mmが好ましく、0.1~7mmがより好ましく、0.1~5mmがより一層好ましい。また、その平均繊維径は、成形性の観点から、3~50μmが好ましく、3~30μmがより好ましく、3~15μmがより一層好ましい。
導電助剤の含有量は、緻密層中、0.1~10質量%が好ましく、0.5~7質量%がより好ましい。
その他の成分としては、ステアリン酸系ワックス、アマイド系ワックス、モンタン酸系ワックス、カルナバワックス、ポリエチレンワックス等の内部離型剤;アニオン系、カチオン系、またはノニオン系の界面活性剤;強酸、強電解質、塩基、ポリアクリルアミド系、ポリアクリル酸ソーダ系、ポリメタクリル酸エステル系等の界面活性剤に合わせた公知の凝集剤;カルボキシメチルセルロース、デンプン、酢酸ビニル、ポリ乳酸、ポリグリコール酸、ポリエチレンオキシド等の増粘剤等が挙げられる。
溶媒としては、塗工可能な組成物を調製できる限り特に限定されるものではないが、水;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒;トルエン、p-キシレン、o-キシレン、m-キシレン、エチルベンゼン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソプロピルケトン、ジエチルケトン、メチルイソブチルケトン、メチルn-ブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸イソプロピル、酢酸n-プロピル、酢酸イソブチル、酢酸n-ブチル等のエステル系溶媒、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、1-ペンタノール、1-ヘキサノール、シクロヘキサノール等の脂肪族アルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン等のアミド系溶媒;1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン等の環状ウレア系溶媒、ジメチルスルホキシドなどが挙げられ、これらは単独で用いても、2種以上混合して用いてもよい。
溶媒を用いる場合、その除去の温度は、使用溶媒によって変動するため一概には規定できず、また、熱可塑性樹脂の融点等や、熱硬化性樹脂の硬化開始温度より低温であることが要求されるが、一般に室温~150℃程度とすることができ、50~130℃程度がより好ましい。
本発明の前駆体シートを構成する導電層は、第2の黒鉛粒子と樹脂とを含み、主として前駆体シートに賦形性(金型形状追従性)を付与するとともに、燃料電池セパレータに導電性を付与するものである。
本発明の前駆体シートでは、第2の黒鉛粒子として、30MPaで圧縮したときの嵩密度1.5g/cm3以上、好ましくは1.5~1.9g/cm3、より好ましくは1.6~1.9g/cm3かつ体積抵抗率20mΩ・cm未満、好ましくは10mΩ・cm以下、より好ましくは9mΩ・cm以下のものを用いる。この範囲内の黒鉛粒子は、高度な等方性、流動性、導電性を有することから、前駆体シートに賦形性を付与でき、また、燃料電池セパレータに良好な導電性等の特性を付与できる。
一方で高度な流動性を付与し、導電層内の均一性を高める観点から体積抵抗率は3.5mΩ・cm以上が好ましく、5mΩ・cm以上がより好ましい。この範囲内の黒鉛粒子は、適度な粒子径と粒度分布を有することから前駆体シートの賦形性と導電性をより高めることができる。
また、第2の黒鉛粒子の平均粒径に特に制限はないが、5~50μmが好ましく、5~30μmがより好ましく、緻密層を構成する黒鉛粒子よりも大きな平均粒径であることが好適である。
なお、第2の黒鉛粒子は、上記特性を満たす限り、天然黒鉛でも人造黒鉛でもよい。
導電層形成時にも、上記緻密層で説明した溶媒、塗布法、溶媒の除去温度を採用することができる。
水性樹脂としては特に制限はなく、その具体例としては、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリビニル樹脂、ポリエーテル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアリルアミン樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、ホルムアルデヒド樹脂、シリコーン樹脂、フッ素樹脂、カルボキシメチルセルロース等の多糖類等の水性樹脂や、乳化重合などで得られた水性エマルション、ディスパージョン等が挙げられ、これらは単独で用いても、2種以上併用してもよい。これらの中でも、特に少量で十分な接着性が得られるアクリル樹脂、ポリビニル樹脂、ポリエーテル樹脂、カルボキシメチルセルロース等の多糖類が好ましい。バインダ樹脂の含有量は特に制限はないが、導電層中、0.1~10質量%が好ましく、0.5~7質量%がより好ましい。0.1質量%未満では増粘性と接着性が不足する虞があり、10質量%以上では導電性が低下する虞がある。
導電助剤の含有量は、導電層中、0.1~10質量%が好ましく、0.5~7質量%がより好ましい。
また、導電層は、上記緻密層で例示したその他の成分を含んでいてもよい。
本発明の前駆体シートを構成する導電性の基材シートに特に制限はなく、導電性フィラーおよび有機繊維を含む抄造シート、炭素繊維シート、炭素繊維強化炭素複合材料シート、金属箔、金属メッシュ等の燃料電池セパレータ用前駆体シートとして従来用いられているものから適宜選択すればよいが、導電性フィラーおよび有機繊維を含む抄造シートが好ましい。
その具体例としては、炭素材料、金属粉末、無機粉末や有機粉末に金属を蒸着あるいはメッキした粉末等が挙げられるが、炭素材料が好ましい。
炭素材料としては、天然黒鉛、針状コークスを焼成した人造黒鉛、塊状コークスを焼成した人造黒鉛、天然黒鉛を化学処理して得られる膨張黒鉛等の黒鉛、炭素電極を粉砕したもの、石炭系ピッチ、石油系ピッチ、コークス、活性炭、ガラス状カーボン、アセチレンブラック、ケッチェンブラック等が挙げられるが、これらの中でも、導電性の観点から、黒鉛が好ましい。
なお、導電性フィラーは、1種単独で用いても、2種以上組み合わせて用いてもよい。
導電性フィラーの平均粒径は、5~200μmが好ましく、10~80μmがより好ましい。導電性フィラーの平均粒径がこの範囲であれば、ガス不透過性を確保しながら必要な導電性を得ることができる。
第1の有機繊維の材質としては、ポリp-フェニレンテレフタルアミド(分解温度500℃)、ポリm-フェニレンイソフタルアミド(分解温度500℃)等のアラミド、ポリアクリロニトリル(融点300℃)、セルロース(融点260℃)、アセテート(融点260℃)、ナイロンポリエステル(融点260℃)ポリフェニレンサルファイド(PPS)(融点280℃)、ポリエーテルエーテルケトン(融点340℃)、ポリフェニルサルフォン(融点なし)、ポリアミドイミド(融点300℃)、ポリエーテルイミド(融点210℃)およびこれらの材質を主材料としたコポリマー等が挙げられ、これらは単独で用いても、2種以上併用してもよい。これらは、前駆体シートの賦形性、セパレータの機械的強度、導電性、耐久性を考慮し適宜選択することができる。
第2の有機繊維としては、緻密層および導電層に含まれる樹脂と親和性を有するものが好ましい。第2の有機繊維の材質としては、ポリエチレン(PE)(融点120~140℃(HDPE)、95~130℃(LDPE))、ポリプロピレン(PP)(融点160℃)、ポリフェニレンサルファイド等が好ましく、これらは単独で用いても、2種以上併用してもよい。
一方、第2の有機繊維の融点は成形性の観点から、加熱温度よりも10℃以上低いことが好ましく、20℃以上低いことがより好ましく、30℃以上低いことがより一層好ましい。
なお、第1の有機繊維と第2の有機繊維の融点の温度差は、40℃以上が好ましく、60℃以上がより好ましい。
また、第1の有機繊維および第2の有機繊維の平均繊維径は、成形性の観点から、0.1~100μmが好ましく、0.1~50μmがより好ましく、1~50μmがより一層好ましい。
なお、本発明において平均繊維長および平均繊維径は、光学顕微鏡または電子顕微鏡を用いて、任意の100本の繊維について測定した繊維長および繊維径の算術平均値である。
また、第2の有機繊維を含む場合、その含有量は、有機繊維中、10~80質量%が好ましく、50~80質量%がより好ましい。
導電助剤の含有量は、抄造シート中、1~20質量%が好ましく、2~10質量%がより好ましい。
また、抄造シートは、上記緻密層で例示したその他の成分を含んでいてもよい。
抄造方法は、特に限定されず、従来公知の方法でよい。例えば、前述した各成分を含む組成物をこれらの成分を溶解しない、水等の溶媒中に分散させ、得られた分散液中の各成分を基材上に堆積させ、得られた堆積物を乾燥させることで、抄造シートを製造することができる。
抄造シートの坪量は150~300g/m2が好ましい。
基材シートが含む樹脂は、熱可塑性樹脂でも熱硬化性樹脂でもよいが、熱硬化性樹脂が好ましい。熱可塑性樹脂および熱硬化性樹脂の具体例としては、上記緻密層で例示した樹脂と同様のものが挙げられるが、熱硬化性樹脂の場合、熱硬化性樹脂が前駆体シート全体中に10~25質量%含まれることが好適である。
基材シートに樹脂を含有させる手法としては、樹脂フィルムを加熱して溶融させて含浸させる方法や、液状の樹脂に基材シートを浸漬し、含浸させる方法などが挙げられる。
なお、緻密層、導電層および基材シートのすべてを積層した後に、樹脂を含浸させることもでき、緻密層および導電層を形成するための組成物中に樹脂を含ませておき、当該組成物を塗布する際に、その下層に樹脂を含浸させることもできる。例えば、緻密層を最表面に形成する場合、基材シートおよび導電層の積層体を作製した後、樹脂を含む緻密層形成用組成物を当該積層体に塗布し、積層体全体に樹脂を含浸させることができる。
本発明の前駆体シートにおいて、基材シート、導電層、緻密層の積層順序に特に制限はなく、任意の順序とすることができ、また、導電層および緻密層それぞれの層数にも特に制限はなく、任意の層数とすることができるが、上述した緻密層および導電層の機能を効果的に発揮させることを考慮すると、最表面が緻密層で構成されていることが好ましい。
すなわち、基材シートの片側表面に導電層が積層され、この導電層の表面に緻密層が積層されている3層構成が好適な態様の1つである。
すなわち、基材シートの両側表面にそれぞれ導電層が積層され、これらの導電層の表面のそれぞれに緻密層が積層されている5層構成が好適な態様の他の1つである。
本発明の前駆体シートを、加熱して成形することで、燃料電池セパレータを製造することができる。
成形方法としては、特に限定されないが、圧縮成形が好ましい。
圧縮成形の条件は、特に限定されないが、型温度150~190℃が好ましい。なお、基材シートとして、抄造シートを用いた場合は、金型温度が有機繊維(第1の有機繊維)の融点よりも10℃以上低いことが好ましく、20℃以上低いことがより好ましい。
また、成形圧力は1~100MPaが好ましく、1~60MPaがより好ましい。
圧縮成形時間は、特に限定されるものではなく、3秒から1時間程度で適宜設定することができる。
圧縮成形後の導電層の厚みは、1層あたり20~150μmが好ましい。
(1)黒鉛粒子の圧縮密度および体積抵抗率
直径12mmの円筒に黒鉛粉0.2gを入れ軽くタッピングし、表面を均し、次いで円筒の両端に設置した同径の円柱型金メッキ銅電極で30N/secの一定速度で徐々に圧縮し、3395N(30MPa)到達時点の電極間抵抗と充填高さを測定した。圧縮にはオートグラフ((株)島津製作所製、AG-X 10kN)を用いた。電極間抵抗は金メッキ銅電極間に1A/cm2の定電流を通電した際の電極間電圧から換算し、これを体積抵抗率(単位:mΩ・cm)とした。また、黒鉛粉重量と充填高さから圧縮密度(単位:g/cm3)を算出した。
(2)燃料電池セパレータのガス不透過性
平板のセパレータを成形し、JIS K7126-1:2006(プラスチック及びシート―ガス透過度試験方法-第1部:差圧法)に準拠し、水素ガス透過係数(単位:cm3・cm/(cm2・sec・cmHg))を測定した。なお、試験の種類はガスクロマトグラフ法であり、条件は23℃、高圧側の試験ガス(水素ガス)は150.3kPaで測定した。
(3)燃料電池セパレータの導電性
平板のセパレータを成形し、1辺が2cmの金メッキ銅電極で挟みこみ、2.5MPaで10秒間加圧後、1.0MPaまで降圧し、金メッキ銅電極間に1A/cm2の定電流を通電した際の電極間電圧を測定した。得られた電極間電圧を抵抗に換算してこれをセパレータの貫通抵抗(単位:mΩ・cm2)とし、導電性を評価した。
(4)燃料電池セパレータの賦形性
波型、凸型の形状を有する金型を用いてセパレータを成形し、断面のSEM画像を撮影した。画像から寸法および内部空隙率を測定し、金型形状との一致性および空隙の有無を確認した。
(5)燃料電池セパレータの機械的強度
平板のセパレータを成形し、25℃環境下でJIS K 7171に準拠した3点曲げ試験により測定した。
[製造例1]
黒鉛87質量部、PAN系炭素繊維3質量部、およびセルロース繊維10質量部を水中に入れて撹拌し、繊維質スラリーを得た。このスラリーを抄造し、カーボン担持抄造シートを作製した。得られた抄造シートの坪量は190g/m2であった。
[実施例1-1]
以下、密度および体積抵抗率は、黒鉛粉体を30MPaで圧縮したときの値を表す。
密度1.69g/cm3かつ体積抵抗率5.8mΩ・cmである平均粒径15μmの球状黒鉛95質量部、バインダ樹脂として水性樹脂であるポリアクリル酸(分子量100万)5質量部、および溶媒である水を混合し、固形分濃度45質量%の導電層形成用スラリーを調製した。このスラリーを、製造例1で得られた基材シートの両表面に塗布し、基材シートの両側表面のそれぞれに導電層を形成した。得られた導電層1層あたりの厚みは110μmであった。
次いで、密度1.75g/cm3かつ体積抵抗率24.5mΩ・cmである平均粒径5μmの薄片状黒鉛15質量部、エポキシ樹脂85質量部、およびアセトンを混合し、固形分濃度50質量%の緻密層形成用スラリーを調製した。このスラリーを、先に形成した2つの導電層のそれぞれの表面に塗布し、緻密層を形成すると共に導電層にエポキシ樹脂を含浸させ、緻密層/導電層/基材シート/導電層/緻密層の5層構成の前駆体シートを得た。この前駆体シート全体中に含まれる熱硬化性樹脂は20質量%であった。得られた緻密層1層あたりの厚みは10μmであった。
導電層に含まれる黒鉛として密度1.82g/cm3かつ体積抵抗率7.6mΩ・cmである平均粒径10μmの球状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
緻密層に含まれる黒鉛として密度1.72g/cm3かつ体積抵抗率26.1mΩ・cmである平均粒径4μmの薄片状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
緻密層に含まれる黒鉛として密度1.88g/cm3かつ体積抵抗率27.6mΩ・cmである平均粒径13μmの薄片状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
導電層に含まれる黒鉛として密度1.63g/cm3かつ体積抵抗率8.2mΩ・cmである平均粒径10μmの球状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
導電層に含まれる黒鉛として密度1.88g/cm3かつ体積抵抗率5.2mΩ・cmである平均粒径13μmの球状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
導電層に含まれる黒鉛として密度1.62g/cm3かつ体積抵抗率17mΩ・cmである平均粒径5μmの球状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
導電層に含まれる黒鉛として密度1.58g/cm3かつ体積抵抗率8mΩ・cmである平均粒径10μmの球状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
導電層に含まれる黒鉛として密度1.87g/cm3かつ体積抵抗率17mΩ・cmである平均粒径25μmの球状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
導電層に含まれる黒鉛として密度1.93g/cm3かつ体積抵抗率14.5mΩ・cmである平均粒径40μmの球状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
導電層に含まれる黒鉛として密度1.71g/cm3かつ体積抵抗率12.4mΩ・cmである平均粒径15μmの球状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
導電層に含まれる黒鉛として密度1.8g/cm3かつ体積抵抗率3.8mΩ・cmである平均粒径35μmの球状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
緻密層に含まれる黒鉛として密度1.92g/cm3かつ体積抵抗率26mΩ・cmである平均粒径20μmの扁平状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
導電層に含まれる黒鉛として密度1.69g/cm3かつ体積抵抗率5.8mΩ・cmである平均粒径15μmの球状黒鉛92質量部、バインダ樹脂としてポリフッ化ビニリデン8質量部と、溶媒としてN-メチルピロリドン(NMP)を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
導電層および緻密層を形成することなく、製造例1で得られた抄造シートにエポキシ樹脂を含浸させて前駆体シートを得た。この前駆体シート全体中に含まれる熱硬化性樹脂は20質量%であった。
製造例1で得られた抄造シートの両表面に、実施例1-1で用いた緻密層形成用スラリーを塗布して2つの緻密層を形成し、緻密層/基材シート/緻密層の3層構成の前駆体シートを得た。この前駆体シート全体中に含まれる熱硬化性樹脂は20質量%であった。
緻密層を形成しなかった以外は、実施例1-1と同様にして、導電層/基材シート/導電層の3層構成を形成した後、比較例1-1と同様にエポキシ樹脂を含浸して前駆体シートを得た。この前駆体シート全体中に含まれる熱硬化性樹脂は20質量%であった。
緻密層に含まれる黒鉛として密度1.62g/cm3かつ体積抵抗率17mΩ・cmである平均粒径5μmの球状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
緻密層に含まれる黒鉛として密度1.76g/cm3かつ体積抵抗率8.5mΩ・cmである平均粒径8μmの球状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
導電層に含まれる黒鉛として密度1.75g/cm3かつ体積抵抗率24.5mΩ・cmである平均粒径5μmの薄片状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
緻密層に含まれる黒鉛として密度1.62/cm3かつ体積抵抗率26.7mΩ・cmである平均粒径2μmの薄片状黒鉛を用いた以外は、実施例1-1と同様にして5層構成の前駆体シートを得た。
密度1.69g/cm3かつ体積抵抗率5.8mΩ・cmである平均粒径15μmの球状黒鉛80質量部、エポキシ樹脂20質量部、および溶媒であるアセトンを混合した後、真空乾燥および粉砕し黒鉛とエポキシ樹脂の混合粉体を得た。この混合粉体を板状に加圧成形し、前駆体シートを得た。
[実施例2-1]
実施例1-1で得られた前駆体シートを、平面形状の金型と、波型および凸型の形状を有する金型を用いて180℃、60MPaで1分間圧縮成形して燃料電池セパレータを得た。平面形状で成形したセパレータの厚みは250μmであった。このうち、緻密層厚みは1層あたり5μm、導電層厚みは1層あたり70μmであった。
実施例1-2~1-14で作製した前駆体シートに変更した以外は、実施例2-1と同様にして燃料電池セパレータを得た。
比較例1-1で得られた前駆体シートを2枚重ね、波型および凸型の形状を有する金型を用いて180℃、60MPaで1分間圧縮成形して燃料電池セパレータを得た。
比較例1-2~1-8で作製した前駆体シートに変更した以外は、実施例2-1と同様にして燃料電池セパレータを得た。
〔ガス不透過性〕
○:水素ガス透過係数が5.0×10-9cm3・cm/(cm2・sec・cmHg)未満
×:それ以上の場合
〔導電性〕
◎:貫通抵抗が10mΩ・cm2未満
○:貫通抵抗が10mΩ・cm2以上13mΩ・cm2未満
△:貫通抵抗が13mΩ・cm2以上15mΩ・cm2未満
×:貫通抵抗が15mΩ・cm2以上の場合
〔賦形性〕
○:任意の3点で金型形状との寸法誤差5%以下かつ内部空隙率1%未満
△:任意の3点で金型形状との寸法誤差5%以下かつ内部空隙率1%以上3%以下
×:それ以上の場合
〔機械的強度〕
○:3点曲げ試験における曲げ応力が60MPa以上
△:3点曲げ試験における曲げ応力が50MPa以上60MPa未満
×:それ以下の場合
Claims (22)
- 導電性の基材シートと、第1の黒鉛粒子を含む緻密層と、第2の黒鉛粒子を含む導電層とを備え、
前記緻密層および前記導電層が樹脂を含み、
前記第1の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.7g/cm3以上かつ体積抵抗率20mΩ・cm以上であり、
前記第2の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.5g/cm3以上かつ体積抵抗率20mΩ・cm未満であることを特徴とする燃料電池セパレータ用前駆体シート。 - 前記基材シートの片側表面に前記導電層が積層され、この導電層の表面に前記緻密層が積層されている請求項1記載の燃料電池セパレータ用前駆体シート。
- 前記基材シートの両側表面にそれぞれ前記導電層が積層され、これらの導電層の表面のそれぞれに前記緻密層が積層されている請求項2記載の燃料電池セパレータ用前駆体シート。
- 前記第1の黒鉛粒子が、平均粒径1~30μmの扁平状黒鉛である請求項1~3のいずれか1項記載の燃料電池セパレータ用前駆体シート。
- 前記第1の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.7~1.9g/cm3かつ体積抵抗率20~30mΩ・cmの扁平状黒鉛である請求項4記載の燃料電池セパレータ用前駆体シート。
- 前記第2の黒鉛粒子が、平均粒径5~50μmの等方性の形状を有する黒鉛である請求項1~5のいずれか1項記載の燃料電池セパレータ用前駆体シート。
- 前記第2の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.5~1.9g/cm3かつ体積抵抗率10mΩ・cm以下の球状黒鉛である請求項6記載の燃料電池セパレータ用前駆体シート。
- 前記緻密層の厚みが、5~30μmである請求項1~7のいずれか1項記載の燃料電池セパレータ用前駆体シート。
- 前記導電層の厚みが、10~200μmである請求項1~8のいずれか1項記載の燃料電池セパレータ用前駆体シート。
- 前記導電層および前記緻密層のいずれか一方または両方の樹脂が、熱硬化性樹脂を含む請求項1~9のいずれか1項記載の燃料電池セパレータ用前駆体シート。
- 前記導電層の樹脂が、水性樹脂を含む請求項1~10のいずれか1項記載の燃料電池セパレータ用前駆体シート。
- 前記基材シートが、樹脂を含む請求項1~11のいずれか1項記載の燃料電池セパレータ用前駆体シート。
- 前記基材シートの樹脂が、熱硬化性樹脂を含む請求項12記載の燃料電池セパレータ用前駆体シート。
- 前記熱硬化性樹脂が、燃料電池セパレータ用前駆体シート全体中に10~25質量%含まれる請求項10または13記載の燃料電池セパレータ用前駆体シート。
- 前記基材シートが、有機繊維および黒鉛を含む抄造シートである請求項1~14のいずれか1項記載の燃料電池セパレータ用前駆体シート。
- 請求項1~15のいずれか1項記載の燃料電池セパレータ用前駆体シートを成形してなる燃料電池セパレータ。
- 前記緻密層の成形後の緻密層全体の厚みが、総厚の15%以下である請求項16記載の燃料電池セパレータ。
- 前記導電層の成形後の1層あたりの厚みが、20~150μmである請求項16または17記載の燃料電池セパレータ。
- 請求項16~18のいずれか1項記載の燃料電池セパレータを備える燃料電池。
- 導電性の基材シートと、第1の黒鉛粒子を含む緻密層と、第2の黒鉛粒子を含む導電層とを備える燃料電池セパレータ用前駆体シートの製造方法であって、
前記基材シートの少なくとも一方の表面または前記緻密層の表面に、前記第2の黒鉛粒子と樹脂とを含む導電層形成用組成物を塗布して前記導電層を形成する工程と、
前記基材シートの少なくとも一方の表面または前記導電層の表面に、前記第1の黒鉛粒子と樹脂とを含む緻密層形成用組成物を塗布して前記緻密層を形成する工程とを備え、
前記第1の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.7g/cm3以上かつ体積抵抗率20mΩ・cm以上であり、
前記第2の黒鉛粒子が、30MPaで圧縮したときの嵩密度1.5g/cm3以上かつ体積抵抗率20mΩ・cm未満であることを特徴とする燃料電池セパレータ用前駆体シートの製造方法。 - 前記基材シートの両表面に、前記導電層形成用組成物を塗布して2層の導電層を形成する工程と、
前記2層の導電層のそれぞれの表面に、前記緻密層形成用組成物を塗布して2層の緻密層を形成する工程とを備える請求項20記載の燃料電池セパレータ用前駆体シートの製造方法。 - 請求項20または21記載の燃料電池セパレータ用前駆体シートの製造方法で得られた前駆体シートを圧縮成形する燃料電池セパレータの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237026294A KR102651934B1 (ko) | 2021-12-20 | 2022-11-30 | 연료전지 세퍼레이터용 전구체 시트 및 연료전지 세퍼레이터 |
EP22910782.6A EP4270552A4 (en) | 2021-12-20 | 2022-11-30 | PRECURSOR FILM FOR A FUEL CELL SEPARATOR AND FUEL CELL SEPARATOR |
CN202280014769.1A CN116888777A (zh) | 2021-12-20 | 2022-11-30 | 燃料电池分隔体用前体片和燃料电池分隔体 |
CA3210471A CA3210471A1 (en) | 2021-12-20 | 2022-11-30 | Precursor sheet for fuel cell separator, and fuel cell separator |
US18/273,624 US11942666B2 (en) | 2021-12-20 | 2022-11-30 | Precursor sheet for fuel cell separator, and fuel cell separator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021205641A JP7056796B1 (ja) | 2021-12-20 | 2021-12-20 | 燃料電池セパレータ用前駆体シートおよび燃料電池セパレータ |
JP2021-205641 | 2021-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023120065A1 true WO2023120065A1 (ja) | 2023-06-29 |
Family
ID=81291722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/044104 WO2023120065A1 (ja) | 2021-12-20 | 2022-11-30 | 燃料電池セパレータ用前駆体シートおよび燃料電池セパレータ |
Country Status (7)
Country | Link |
---|---|
US (1) | US11942666B2 (ja) |
EP (1) | EP4270552A4 (ja) |
JP (1) | JP7056796B1 (ja) |
KR (1) | KR102651934B1 (ja) |
CN (1) | CN116888777A (ja) |
CA (1) | CA3210471A1 (ja) |
WO (1) | WO2023120065A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112424409A (zh) * | 2018-07-23 | 2021-02-26 | 3M创新有限公司 | 低基重阻燃稀松布、制品和方法 |
JP7501758B1 (ja) | 2023-08-30 | 2024-06-18 | 日清紡ケミカル株式会社 | 燃料電池セパレータ用前駆体シートおよび燃料電池セパレータ |
JP7563543B1 (ja) | 2023-08-30 | 2024-10-08 | 日清紡ケミカル株式会社 | 燃料電池セパレータ用前駆体シート |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006127812A (ja) * | 2004-10-26 | 2006-05-18 | Matsushita Electric Works Ltd | 燃料電池セパレータ |
JP2007042326A (ja) * | 2005-08-01 | 2007-02-15 | Nichias Corp | 燃料電池用セパレータ及びその製造方法 |
JP2007122884A (ja) | 2005-10-25 | 2007-05-17 | Jfe Chemical Corp | 導電性シートおよび燃料電池用セパレータ |
JP2007280725A (ja) | 2006-04-05 | 2007-10-25 | Nippon Pillar Packing Co Ltd | 燃料電池用セパレータ及びその製造方法 |
JP2007311061A (ja) | 2006-05-16 | 2007-11-29 | Nippon Pillar Packing Co Ltd | 燃料電池用セパレータ及びその製造方法 |
JP2008311176A (ja) | 2007-06-18 | 2008-12-25 | Dic Corp | 燃料電池用セパレータおよびその製造方法、ならびに燃料電池 |
JP2014032906A (ja) | 2012-08-06 | 2014-02-20 | Panasonic Corp | 燃料電池セパレータ成形用組成物、燃料電池セパレータ、燃料電池セパレータの製造方法、及び燃料電池 |
JP2021180150A (ja) | 2020-05-15 | 2021-11-18 | トヨタ車体株式会社 | 燃料電池用セパレータ及び燃料電池用セパレータの製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005008436A (ja) * | 2003-06-16 | 2005-01-13 | Nippon Steel Chem Co Ltd | 黒鉛材料とその製造方法及び燃料電池セパレータ |
CN100426574C (zh) * | 2003-09-10 | 2008-10-15 | 三菱树脂株式会社 | 燃料电池隔板 |
EP1821317A4 (en) | 2004-12-09 | 2008-12-31 | Jfe Chemical Corp | SHEET MANUFACTURED THROUGH PAPERMAKING PROCESS, MULTILAYER SHEET, AND SEPARATOR FOR FUEL CELL |
US7758783B2 (en) * | 2007-09-17 | 2010-07-20 | Nanotek Instruments, Inc. | Continious production of exfoliated graphite composite compositions and flow field plates |
WO2010116674A1 (ja) * | 2009-03-30 | 2010-10-14 | 昭和電工株式会社 | シートプレス成形方法および燃料電池用セパレータの製造方法 |
US20110053052A1 (en) * | 2009-08-28 | 2011-03-03 | Enerfuel, Inc. | Fuel cell composite flow field element and method of forming the same |
KR101173059B1 (ko) * | 2010-09-29 | 2012-08-13 | 한국과학기술원 | 고분자 전해질 연료전지용 복합재료 분리판 및 이의 제조방법 |
US9263750B2 (en) * | 2011-05-30 | 2016-02-16 | Showa Denko K.K. | Method for manufacturing fuel cell separator |
KR101815134B1 (ko) * | 2015-01-02 | 2018-01-05 | 한국타이어 주식회사 | 연료전지 분리판 및 그 제조방법 |
JP7225473B2 (ja) * | 2020-06-05 | 2023-02-20 | 株式会社有沢製作所 | 燃料電池用セパレータ部材、及びその製造方法 |
-
2021
- 2021-12-20 JP JP2021205641A patent/JP7056796B1/ja active Active
-
2022
- 2022-11-30 CN CN202280014769.1A patent/CN116888777A/zh active Pending
- 2022-11-30 WO PCT/JP2022/044104 patent/WO2023120065A1/ja active Application Filing
- 2022-11-30 EP EP22910782.6A patent/EP4270552A4/en active Pending
- 2022-11-30 KR KR1020237026294A patent/KR102651934B1/ko active IP Right Grant
- 2022-11-30 CA CA3210471A patent/CA3210471A1/en active Pending
- 2022-11-30 US US18/273,624 patent/US11942666B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006127812A (ja) * | 2004-10-26 | 2006-05-18 | Matsushita Electric Works Ltd | 燃料電池セパレータ |
JP2007042326A (ja) * | 2005-08-01 | 2007-02-15 | Nichias Corp | 燃料電池用セパレータ及びその製造方法 |
JP2007122884A (ja) | 2005-10-25 | 2007-05-17 | Jfe Chemical Corp | 導電性シートおよび燃料電池用セパレータ |
JP2007280725A (ja) | 2006-04-05 | 2007-10-25 | Nippon Pillar Packing Co Ltd | 燃料電池用セパレータ及びその製造方法 |
JP2007311061A (ja) | 2006-05-16 | 2007-11-29 | Nippon Pillar Packing Co Ltd | 燃料電池用セパレータ及びその製造方法 |
JP2008311176A (ja) | 2007-06-18 | 2008-12-25 | Dic Corp | 燃料電池用セパレータおよびその製造方法、ならびに燃料電池 |
JP2014032906A (ja) | 2012-08-06 | 2014-02-20 | Panasonic Corp | 燃料電池セパレータ成形用組成物、燃料電池セパレータ、燃料電池セパレータの製造方法、及び燃料電池 |
JP2021180150A (ja) | 2020-05-15 | 2021-11-18 | トヨタ車体株式会社 | 燃料電池用セパレータ及び燃料電池用セパレータの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4270552A4 |
Also Published As
Publication number | Publication date |
---|---|
US11942666B2 (en) | 2024-03-26 |
JP2023091104A (ja) | 2023-06-30 |
JP7056796B1 (ja) | 2022-04-19 |
CA3210471A1 (en) | 2023-06-29 |
KR102651934B1 (ko) | 2024-03-28 |
EP4270552A4 (en) | 2024-11-06 |
CN116888777A (zh) | 2023-10-13 |
EP4270552A1 (en) | 2023-11-01 |
KR20230119254A (ko) | 2023-08-16 |
US20240047705A1 (en) | 2024-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023120065A1 (ja) | 燃料電池セパレータ用前駆体シートおよび燃料電池セパレータ | |
TWI692144B (zh) | 氣體擴散電極 | |
US11515547B2 (en) | Fuel cell separator precursor, and fuel cell separator | |
US20170051192A1 (en) | Flexible composites containing graphite and fillers | |
JP6205718B2 (ja) | 燃料電池ガス拡散層、膜電極接合体、および燃料電池 | |
WO2018105301A1 (ja) | ガス拡散電極とその製造方法 | |
JP2002522885A (ja) | 層材料 | |
KR100978534B1 (ko) | 연료전지용 고분자 복합재료 분리판 제조방법 | |
US10906266B2 (en) | Structural body and core | |
WO2020100649A1 (ja) | ガス拡散電極、ガス拡散電極の製造方法、膜電極接合体、燃料電池 | |
JP6766650B2 (ja) | ガス拡散電極とその製造方法 | |
JP3992074B2 (ja) | 燃料電池用セパレータおよびその製造方法、ならびにこれを用いた燃料電池 | |
CA3072621A1 (en) | Fuel cell separator conductive sheet and fuel cell separator | |
KR101926458B1 (ko) | 복합재 분리판 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 18273624 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 3210471 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20237026294 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237026294 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2022910782 Country of ref document: EP Effective date: 20230728 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22910782 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280014769.1 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |