WO2023119955A1 - 半導体装置及び半導体装置の製造方法、撮像装置 - Google Patents

半導体装置及び半導体装置の製造方法、撮像装置 Download PDF

Info

Publication number
WO2023119955A1
WO2023119955A1 PCT/JP2022/042451 JP2022042451W WO2023119955A1 WO 2023119955 A1 WO2023119955 A1 WO 2023119955A1 JP 2022042451 W JP2022042451 W JP 2022042451W WO 2023119955 A1 WO2023119955 A1 WO 2023119955A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
region
semiconductor
insulating film
semiconductor substrate
Prior art date
Application number
PCT/JP2022/042451
Other languages
English (en)
French (fr)
Inventor
康則 十河
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023119955A1 publication Critical patent/WO2023119955A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present disclosure relates to a semiconductor device, a method for manufacturing a semiconductor device, and an imaging device.
  • a non-planar transistor having a vertical gate electrode and a channel is known as a semiconductor device used in a CMOS (Complementary Metal Oxide Semiconductor) image sensor (see, for example, Patent Document 1).
  • CMOS Complementary Metal Oxide Semiconductor
  • Patent Document 2 As a semiconductor device used in a CMOS image sensor, a MOS transistor (FinFET) with a recessed gate structure is known (see Patent Document 2, for example).
  • JP-A-2006-121093 Japanese Patent Application Laid-Open No. 2021-15891
  • the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a semiconductor device in which diffusion of impurities in the lateral direction is suppressed, a manufacturing method thereof, and an imaging device using this semiconductor device. do.
  • a semiconductor device includes a semiconductor substrate and a field effect transistor provided on a first main surface side of the semiconductor substrate.
  • the field effect transistor includes an N-type region provided on the first main surface side of the semiconductor substrate and serving as at least a portion of a source region or at least a portion of a drain region, and an insulation provided on the N-type region. and an N-type semiconductor layer provided on the N-type region with the insulating film interposed therebetween.
  • an N-type region can be formed by solid-phase diffusion of an N-type impurity from an N-type semiconductor layer through an insulating film into a semiconductor substrate. Since the N-type region is shallowly formed by solid-phase diffusion, it is possible to provide a semiconductor device in which lateral diffusion of N-type impurities is suppressed.
  • a method for manufacturing a semiconductor device includes forming an insulating film on a semiconductor substrate; forming an N-type semiconductor layer on the insulating film; heat-treating a semiconductor substrate to solid-phase diffuse an N-type impurity from the N-type semiconductor layer into the semiconductor substrate to form an N-type region that will be at least a portion of a source region or at least a portion of a drain region; ,including.
  • the N-type region can be formed by solid-phase diffusion of the N-type impurity from the N-type semiconductor layer through the insulating film into the semiconductor substrate.
  • the N-type region can be shallowly formed, and lateral diffusion of the N-type impurity can be suppressed.
  • An imaging device includes a photoelectric conversion element, and a semiconductor device for reading electric charges photoelectrically converted by the photoelectric conversion element.
  • the semiconductor device includes a semiconductor substrate and a field effect transistor provided on a first main surface side of the semiconductor substrate.
  • the field effect transistor includes an N-type region provided on the first main surface side of the semiconductor substrate and serving as at least a portion of a source region or at least a portion of a drain region, and an insulation provided on the N-type region. and an N-type semiconductor layer provided on the N-type region with the insulating film interposed therebetween.
  • a semiconductor device in which lateral diffusion of N-type impurities is suppressed can be used as a semiconductor device for reading electric charges photoelectrically converted by the photoelectric conversion element. As a result, it is possible to improve the readout performance of the imaging device.
  • FIG. 1 is a plan view schematically showing a configuration example of a semiconductor device according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a cross-sectional view schematically showing a configuration example of a semiconductor device according to Embodiment 1 of the present disclosure.
  • FIG. 3 is a cross-sectional view schematically showing a configuration example of a semiconductor device according to Embodiment 1 of the present disclosure.
  • FIG. 4A is a cross-sectional view showing the manufacturing method of the semiconductor device according to the first embodiment of the present disclosure in order of steps.
  • FIG. 4B is a cross-sectional view showing the manufacturing method of the semiconductor device according to the first embodiment of the present disclosure in order of steps.
  • FIG. 4A is a cross-sectional view showing the manufacturing method of the semiconductor device according to the first embodiment of the present disclosure in order of steps.
  • FIG. 4B is a cross-sectional view showing the manufacturing method of the semiconductor device according to the first embodiment of the present disclosure in order of steps.
  • FIG. 4C is a cross-sectional view showing the manufacturing method of the semiconductor device according to the first embodiment of the present disclosure in order of steps.
  • FIG. 4D is a cross-sectional view showing the manufacturing method of the semiconductor device according to the first embodiment of the present disclosure in order of steps.
  • FIG. 4E is a cross-sectional view showing the manufacturing method of the semiconductor device according to the first embodiment of the present disclosure in order of steps.
  • FIG. 4F is a cross-sectional view showing the manufacturing method of the semiconductor device according to the first embodiment of the present disclosure in order of steps.
  • FIG. 4G is a cross-sectional view showing the manufacturing method of the semiconductor device according to the first embodiment of the present disclosure in order of steps.
  • FIG. 4H is a cross-sectional view showing the manufacturing method of the semiconductor device according to the first embodiment of the present disclosure in order of steps.
  • FIG. 5 is a plan view schematically showing the positional relationship between the opening formed in the process of FIG. 4E and the gate electrode.
  • FIG. 6 is a graph showing the diffusion length of N-type impurities when arsenic (As) is solid-phase diffused from an N+-type semiconductor layer to a semiconductor region (Example).
  • FIG. 7 is a graph showing the diffusion length of the N-type impurity when the N-type impurity is ion-implanted and thermally diffused (comparative example).
  • FIG. 8 is a plan view schematically showing a configuration example of a semiconductor device according to Embodiment 2 of the present disclosure.
  • FIG. 9 is a cross-sectional view schematically showing a configuration example of a semiconductor device according to Embodiment 2 of the present disclosure.
  • FIG. 10 is a cross-sectional view schematically showing a configuration example of a semiconductor device according to Embodiment 2 of the present disclosure.
  • FIG. 11A is a cross-sectional view showing a method for manufacturing a semiconductor device according to Embodiment 2 of the present disclosure in order of steps.
  • FIG. 11B is a cross-sectional view showing the manufacturing method of the semiconductor device according to the second embodiment of the present disclosure in order of steps.
  • FIG. 11C is a cross-sectional view showing the manufacturing method of the semiconductor device according to the second embodiment of the present disclosure in order of steps.
  • FIG. 11D is a cross-sectional view showing the manufacturing method of the semiconductor device according to the second embodiment of the present disclosure in order of steps.
  • FIG. 11E is a cross-sectional view showing the manufacturing method of the semiconductor device according to the second embodiment of the present disclosure in order of steps.
  • FIG. 11F is a cross-sectional view showing the manufacturing method of the semiconductor device according to the second embodiment of the present disclosure in order of steps.
  • FIG. 12 is a plan view schematically showing the positional relationship between the recess (recess pattern) formed in the process of FIG. 11C, the opening formed in the process of FIG. 11D, and the gate electrode.
  • FIG. 13 is a schematic diagram illustrating a configuration example of an imaging device according to Embodiment 3 of the present disclosure.
  • FIG. 14 is a circuit diagram showing a configuration example of a pixel unit according to Embodiment 3 of the present disclosure.
  • FIG. 15 is a plan view schematically showing the positional relationship between the opening and the gate electrode when the MOS transistor described in Embodiment 1 is used as the transfer transistor of the pixel unit PU.
  • directions may be explained using the terms X-axis direction, Y-axis direction, and Z-axis direction.
  • the X-axis direction and the Y-axis direction are directions parallel to the surface 2 a of the semiconductor substrate 2 .
  • the X-axis direction and the Y-axis direction are also referred to as horizontal directions.
  • the Z-axis direction is a direction perpendicular to the surface 2 a of the semiconductor substrate 2 .
  • the Z-axis direction is also referred to as the depth direction.
  • the X-axis direction, Y-axis direction and Z-axis direction are orthogonal to each other.
  • + attached to p or n which indicates the conductivity type of a semiconductor, means that the impurity concentration is relatively high compared to semiconductors not marked with +. However, even if the semiconductors are given the same p and p (or n and n), it does not mean that the semiconductors have exactly the same impurity concentration.
  • FIG. 1 is a plan view schematically showing a configuration example of a semiconductor device 1 according to Embodiment 1 of the present disclosure.
  • 2 and 3 are cross-sectional views schematically showing configuration examples of the semiconductor device 1 according to Embodiment 1 of the present disclosure.
  • FIG. 2 shows a cross section of the plan view shown in FIG. 1 taken along line X1-X1'.
  • FIG. 3 shows a cross section obtained by cutting the plan view shown in FIG. 1 along the line Y1-Y1'. 1, illustration of the N-type semiconductor layer 55 and the contact electrode 57 shown in FIG. 2 is omitted.
  • the semiconductor device 1 includes a semiconductor substrate 2 and an N-type MOS (Metal Oxide Semiconductor) transistor 3 (“field-effect transistor” in the present disclosure) provided on the semiconductor substrate 2. (an example of a “transistor”), and an element isolation layer 5 provided on the semiconductor substrate 2.
  • MOS Metal Oxide Semiconductor
  • the semiconductor substrate 2 is made of single crystal silicon, for example.
  • the semiconductor substrate 2 has a front surface 2a (an example of the “first main surface” of the present disclosure) and a back surface 2b located on the opposite side of the front surface 2a.
  • a MOS transistor 3 is provided on the surface 2 a side of the semiconductor substrate 2 .
  • the element isolation layer 5 is an insulating film for electrically isolating horizontally adjacent elements, and is composed of, for example, a silicon oxide film (SiO 2 film) embedded in a trench.
  • the MOS transistor 3 includes a P-type semiconductor region 10 in which a channel is formed, a gate insulating film 20 , a gate electrode 30 , sidewall insulating films 38 provided on side surfaces of the gate electrode 30 , and semiconductor substrate 2 . an insulating film 50 provided on the source region 41 and the drain region 42, respectively; and an N-type semiconductor layer 55 .
  • the N-type semiconductor layer 55 covers at least part of the sidewall insulating film 38 .
  • the semiconductor region 10 is, for example, a part of the semiconductor substrate 2 and is made of single crystal silicon.
  • the semiconductor region 10 is a P-type well region formed by ion-implanting a P-type impurity such as boron (B) into the N-type semiconductor substrate 2 and thermally diffusing the ions.
  • the gate insulating film 20 is provided so as to cover the upper surface of the semiconductor region 10 .
  • the upper surface of the semiconductor region 10 is part of the surface 2 a of the semiconductor substrate 2 .
  • the gate insulating film 20 is composed of, for example, a SiO 2 film.
  • the gate electrode 30 covers the semiconductor region 10 with the gate insulating film 20 interposed therebetween.
  • the gate electrode 30 is arranged to face the upper surface of the semiconductor region 10 with the gate insulating film 20 interposed therebetween.
  • the source region 41 is provided on the surface 2a of the semiconductor substrate 2 and its vicinity.
  • the source region 41 is connected to one side of the semiconductor region 10 in the X-axis direction.
  • the drain region 42 is provided on the surface 2a of the semiconductor substrate 2 and its vicinity.
  • the drain region 42 is connected to the other side of the semiconductor region 10 in the X-axis direction.
  • the source region 41 and the drain region 42 are each N-type.
  • the source region 41 has an N+ type region 411 (an example of the “N type region” of the present disclosure) and an N ⁇ type region 412 located around the N+ type region 411 .
  • Drain region 42 has an N+ type region 421 (an example of an “N type region” in this disclosure) and an N ⁇ type region 422 located around N+ type region 421 .
  • the insulating film 50 is, for example, a silicon nitride film (SiN film) or a silicon oxide film (SiO 2 film).
  • the thickness of the insulating film 50 is, for example, 5 ⁇ or more and 15 ⁇ or less.
  • the N-type semiconductor layer 55 is, for example, polysilicon, amorphous silicon, or SiGe. Also, the concentration of the N-type impurity in the N-type semiconductor layer 55 is, for example, 1 ⁇ 10 20 /cm 3 or more. Examples of N-type impurities contained in the N-type semiconductor layer 55 include arsenic (As), phosphorus (P), or both.
  • the contact electrode 57 is provided on the N-type semiconductor layer 55 .
  • the contact electrode 57 is composed of, for example, a barrier metal such as a conductive material and tungsten (W). Tungsten (W) is ohmically connected to the N-type semiconductor layer 55 via the barrier metal.
  • the N + -type region 411 of the source region 41 and the N + -type region 421 of the drain region 42 of the MOS transistor 3 have N-type impurities fixed to the semiconductor substrate 2 from the N-type semiconductor layer 55 through the insulating film 50 . It is formed by phase diffusion.
  • the peak concentration of N-type impurities in the N+-type regions 411 and 421 is 1 ⁇ 10 20 /cm 3 or more.
  • the N-type semiconductor layer 55 is ohmic-connected to the N+-type regions 411 and 421 through the insulating film 50 .
  • the contact electrode 57 and the N-type semiconductor layer 55 are ohmic-connected, and the N-type semiconductor layer 55 and the N+-type regions 411 and 421 are also ohmic-connected.
  • an ohmic connection is established between the contact electrode 57 and the N+ type region 411 and between the contact electrode 57 and the N+ type region 421, respectively.
  • the end (bottom) where the N-type impurity concentration is 1 ⁇ 10 17 /cm 3 or less exists within 0.1 ⁇ m from the surface 2 a of the semiconductor substrate 2 . That is, the depth from the surface 2a of the N+ type regions 411 and 421 is 0.1 ⁇ m or less.
  • the N + -type regions 411 and 421 are formed very shallow near the surface 2 a of the semiconductor substrate 2 .
  • the semiconductor device 1 includes a film forming device (including a CVD (Chemical Vapor Deposition) device, an ALD device (Atomic Layer Deposition), and a sputtering device), an etching device, a heat treatment device, an ion implantation device, and a CMP (Chemical Mechanical Polishing) device.
  • a film forming device including a CVD (Chemical Vapor Deposition) device, an ALD device (Atomic Layer Deposition), and a sputtering device
  • an etching device including a CHD (Chemical Vapor Deposition) device, an ALD device (Atomic Layer Deposition), and a sputtering device
  • etching device including a heat treatment device, an ion implantation device, and a CMP (Chemical Mechanical Polishing) device.
  • a heat treatment device including a heat treatment device, an ion implantation device, and a CMP (Chemical Mechanical Polishing) device.
  • CMP
  • FIGS. 4A to 4H are cross-sectional views showing the manufacturing method of the semiconductor device 1 according to the first embodiment of the present disclosure in order of steps.
  • Each cross section in FIGS. 4A to 4H corresponds to the X1-X1' cross section (XZ cross section) shown in FIG.
  • the manufacturing apparatus forms a P-type well region in the semiconductor substrate 2, forms the element isolation layer 5, and then thermally oxidizes the surface 2a of the semiconductor substrate 2 to form the gate insulating film 20.
  • the manufacturing equipment forms a polysilicon film on the gate insulating film 20 using the CVD method.
  • the manufacturing equipment forms a hard mask 61 on the polysilicon film.
  • the hard mask 61 has a shape that covers the region where the gate electrode 30 is formed and opens the other region.
  • the hard mask 61 is composed of, for example, a SiO 2 film.
  • the manufacturing equipment uses the hard mask 61 as a mask to etch and remove the polysilicon film. Thereby, the manufacturing apparatus forms the gate electrode 30 .
  • the manufacturing apparatus uses the hard mask 61 as a mask to ion-implant an N-type impurity such as phosphorus (P) or arsenic (As) into the front surface 2a side of the semiconductor substrate 2 .
  • an N-type impurity such as phosphorus (P) or arsenic (As)
  • the semiconductor substrate 2 is heat-treated to activate the ion-implanted N-type impurity.
  • the N ⁇ -type region 412 of the source region 41 and the N ⁇ -type region 422 of the drain region 42 are formed in self-alignment with the gate electrode 30 .
  • the heat treatment for forming the N ⁇ -type regions 412 and 422 is not performed here, and may be performed together with the heat treatment in a later step (for example, the heat treatment for forming the N + -type regions 411 and 412). .
  • the manufacturing apparatus sequentially deposits a SiO 2 film and a SiN film by, for example, a CVD method, and etch backs the deposited film.
  • sidewall insulating films 38 are formed on the side surfaces of the gate electrode 30, as shown in FIG. 4B.
  • the manufacturing apparatus forms an insulating film 50 on the surface 2a of the semiconductor substrate 2.
  • the manufacturing apparatus forms the insulating film 50 to a thickness of 5 ⁇ or more and 15 ⁇ or less by the ALD method.
  • the insulating film 50 is a SiN film or a SiO2 film.
  • the insulating film 50 is continuously provided on the surface 2 a of the semiconductor substrate 2 , the sidewall insulating film 38 and the hard mask 61 .
  • the manufacturing equipment forms the first interlayer insulating film 63 on the surface 2a of the semiconductor substrate 2 by the CVD method.
  • the manufacturing apparatus forms a resist pattern (not shown) on the first interlayer insulating film 63 and etches the first interlayer insulating film 63 using the resist pattern as a mask.
  • the manufacturing apparatus forms openings H1 and H2 in the first interlayer insulating film 63 over the N ⁇ -type regions 412 and 422 .
  • FIG. 5 is a plan view schematically showing the positional relationship between the openings H1 and H2 formed in the process of FIG. 4E and the gate electrode 30.
  • FIG. 4E and 5 the openings H1 and H2 are formed in self-alignment with the gate electrode 30. As shown in FIGS. 4E and 5, the openings H1 and H2 are formed in self-alignment with the gate electrode 30. As shown in FIGS. 4E and 5, the openings H1 and H2 are formed in self-alignment with the gate electrode 30. As shown in FIGS.
  • the manufacturing apparatus deposits an N-type semiconductor layer 55 doped with an N-type impurity over the entire upper surface 2a of the semiconductor substrate 2 by the CVD method to form openings H1 and H2. embed.
  • the N-type semiconductor layer 55 is, for example, polysilicon, amorphous silicon, or SiGe.
  • the concentration of the N-type impurity in the N-type semiconductor layer 55 is, for example, 1 ⁇ 10 20 /cm 3 or more.
  • Examples of N-type impurities contained in the N-type semiconductor layer 55 include arsenic (As), phosphorus (P), or both.
  • the manufacturing apparatus heat-treats the N-type semiconductor layer 55 and the semiconductor substrate 2 (that is, the entire substrate) so that the N-type impurities form a solid phase from the N-type semiconductor layer 55 to the semiconductor substrate 2 via the insulating film 50 . Diffuse.
  • the heat treatment conditions are, for example, a heat treatment temperature of 1015° C. and a heat treatment time of 10 minutes.
  • the manufacturing apparatus forms an N+ type region 411 of the source region 41 and an N+ type region 421 of the drain region 42 .
  • the manufacturing equipment etches back the N-type semiconductor layer 55 .
  • the N-type semiconductor layer 55 is separated into a portion connected to the N+ type region 411 (hereinafter also referred to as a source pad) and a portion connected to the N+ type region 412 (hereinafter also referred to as a drain pad).
  • the manufacturing apparatus forms a second interlayer insulating film 65 entirely above the surface 2a of the semiconductor substrate 2 by the CVD method.
  • the manufacturing equipment forms a resist pattern (not shown) on the second interlayer insulating film 65 and etches the second interlayer insulating film 65 using the resist pattern as a mask.
  • the manufacturing apparatus provides an opening over the source pad (hereinafter also referred to as a source opening) and an opening over the drain pad (hereinafter also referred to as a drain opening) in the second interlayer insulating film 65. to form
  • the manufacturing apparatus sequentially forms a barrier metal and tungsten (W) over the entire upper surface 2a of the semiconductor substrate 2 by, for example, a CVD method or a sputtering method, and forms a source opening and a drain opening. embed.
  • the manufacturing equipment performs a CMP process on the tungsten (W) film to expose the second interlayer insulating film 65 from under the tungsten (W) film. Thereby, the manufacturing equipment forms contact electrodes 57 on the source pad and the drain pad, respectively.
  • the semiconductor device 1 according to the first embodiment is completed.
  • the present inventor conducted an experiment to compare the diffusion length of N-type impurities by solid-phase diffusion and the diffusion length of N-type impurities by ion implantation.
  • Example FIG. 6 is a graph showing the diffusion length of an N-type impurity when arsenic (As) is solid-phase diffused from an N+ type semiconductor layer to a semiconductor region (Example).
  • the vertical axis indicates the depth from the surface of the silicon (Si) substrate, and the vertical axis indicates the concentration of arsenic (As).
  • 0 on the horizontal axis means the surface of the Si substrate.
  • the present inventor prepared a sample in which a 10.5 ⁇ SiN film was deposited on the surface of a Si substrate and As-doped polysilicon was deposited thereon.
  • the present inventor subjected this sample to heat treatment at 1015° C. for 10 minutes, and evaluated the diffusion concentration and diffusion length of As by SIMS (Secondary Ion Mass Spectrometry) evaluation.
  • SIMS Secondary Ion Mass Spectrometry
  • FIG. 6 it was confirmed that the heat treatment diffused As in the Si substrate in the depth direction of the Si substrate.
  • the peak concentration of As after heat treatment was confirmed to be 1 ⁇ 10 20 /cm 3 near the surface of the Si substrate.
  • the depth (ie, diffusion length) at which the As concentration is 1 ⁇ 10 17 /cm 3 was 0.08 ⁇ m from the surface of the Si substrate. From this result, it was confirmed that a steep and high-dose profile could be formed in the example.
  • a diffusion profile having a peak concentration of N-type impurities of 1 ⁇ 10 20 /cm 3 or more and a minimum concentration of N-type impurities of 1 ⁇ 10 17 /cm 3 is formed within 0.1 ⁇ m from the surface of the Si substrate. It was confirmed that it can be formed in depth.
  • FIG. 7 is a graph showing the diffusion length of the N-type impurity when the N-type impurity is ion-implanted and thermally diffused (comparative example).
  • the vertical axis indicates the depth from the surface of the silicon (Si) substrate, and the vertical axis indicates the concentration of arsenic (As).
  • the present disclosure person prepared a sample in which arsenic (As) was ion-implanted into the surface of a Si substrate.
  • the ion implantation conditions were an implantation energy of 5 keV and a high dose (3 ⁇ 10 15 /cm 2 ).
  • the present inventor performed heat treatment (RTA) on this sample at 1000° C. for 10 seconds, and evaluated the diffusion concentration and diffusion length of As by SIMS evaluation.
  • the heat treatment temperature is lower than that of the example, and the heat treatment time is sufficiently shorter.
  • the heat treatment temperature of the example is 1015°C, while the heat treatment temperature of the comparative example is 1000°C.
  • the heat treatment time of the example is 10 minutes, while the heat treatment time of the comparative example is 10 seconds.
  • the comparative example had a sufficiently smaller thermal history than the example, but the diffusion length was longer in the comparative example.
  • the diffusion length of the example was 0.08 ⁇ m, while the diffusion length of the comparative example was 0.5 ⁇ m or more. From this result, it was confirmed that the diffusion length was suppressed in the example more than in the comparative example. It was confirmed that the diffusion length of the example was suppressed to about 1/5 of the diffusion length of the comparative example.
  • FIGS. 6 and 7 show the diffusion length in the depth direction of the Si substrate, it is believed that the diffusion length in the lateral direction of the Si substrate exhibits the same tendency as in the depth direction.
  • the semiconductor device 1 includes the semiconductor substrate 2 and the MOS transistor 3 provided on the front surface 2a side of the semiconductor substrate 2 .
  • the MOS transistor 3 is provided on the surface 2a side of the semiconductor substrate 2, and is provided on the N + -type regions 411 and 421 that form at least a portion of the source region 41 or at least a portion of the drain region 42, and on the N + -type regions 411 and 421. and an N-type semiconductor layer 55 provided on the N + -type regions 411 and 421 with the insulating film 50 interposed therebetween.
  • an N-type impurity for example, arsenic (As), phosphorus (P), or both
  • As arsenic
  • P phosphorus
  • the manufacturing method of the semiconductor device 1 according to the first embodiment of the present disclosure includes a step of forming an insulating film 50 on a semiconductor substrate 2, a step of forming an N-type semiconductor layer 55 on the insulating film 50, and a step of forming an N-type semiconductor layer 55 is formed on the semiconductor substrate 2 to solid-phase diffuse the N-type impurities from the N-type semiconductor layer 55 into the semiconductor substrate 2 to form the N + -type regions 411 and 421 that will become the source or drain of the MOS transistor 3 .
  • the N + -type regions 411 and 421 can be formed by solid-phase diffusion of the N-type impurities from the N-type semiconductor layer 55 to the semiconductor substrate 2 through the insulating film 50 .
  • the N + -type regions 411 and 421 can be shallowly formed, and lateral diffusion of the N-type impurity can be suppressed.
  • the diffusion of the N-type impurities in the lateral direction can be suppressed, the occurrence of the short channel effect in the MOS transistor 3 can be suppressed, and the effective gate length can be lengthened.
  • the N + -type regions 411 and 421 can be formed with high concentration. Thereby, each contact resistance of the source region 41 and the drain region 42 can be reduced.
  • Embodiment 2 The technology of the present disclosure may be applied to a MOS transistor with a recessed gate structure called FinFET, for example.
  • FIG. 8 is a plan view schematically showing a configuration example of a semiconductor device 1A according to Embodiment 2 of the present disclosure.
  • 9 and 10 are cross-sectional views schematically showing configuration examples of a semiconductor device 1A according to Embodiment 2 of the present disclosure.
  • FIG. 9 shows a cross section of the plan view shown in FIG. 8 taken along line X2-X2'.
  • FIG. 10 shows a cross section obtained by cutting the plan view shown in FIG. 8 along the line Y2-Y2'. 8, illustration of the N-type semiconductor layer 55 and the contact electrode 57 shown in FIG. 9 is omitted.
  • the semiconductor region 10 is a portion formed by etching a portion of the semiconductor substrate 2 on the surface 2a side.
  • the conductivity type of the semiconductor region 10 is P type.
  • the shape of the semiconductor region 10 is, for example, a fin shape.
  • the semiconductor region 10 has, for example, a shape that is long in the X-axis direction and short in the Y-axis direction.
  • a first trench h1 is provided on one side of the semiconductor region 10 and a second trench h2 is provided on the other side of the semiconductor region 10 in the Y-axis direction.
  • the first trench h1 and the second trench h2 are opened on the front surface 2a side of the semiconductor substrate 2, respectively.
  • the gate insulating film 20 continuously covers the top surface 10a of the semiconductor region 10, the first side surface 10b and the second side surface 10c of the semiconductor region 10, the bottom surface of the first trench h1 and the bottom surface of the second trench h2. is provided.
  • the first side surface 10b of the semiconductor region 10 is located on one side of the upper surface 10a in the Y-axis direction.
  • the second side surface 10c of the semiconductor region 10 is located on the other side of the upper surface 10a in the Y-axis direction.
  • the gate insulating film 20 is composed of, for example, a SiO 2 film.
  • the gate electrode 30 covers the semiconductor region 10 with the gate insulating film 20 interposed therebetween.
  • the gate electrode 30 has a first portion 301 facing the top surface 10a of the semiconductor region 10 with the gate insulating film 20 interposed therebetween, and a second portion 302 facing the first side surface 10b of the semiconductor region 10 with the gate insulating film 20 interposed therebetween. , and a third portion 303 facing the second side surface 10c of the semiconductor region 10 with the gate insulating film 20 interposed therebetween.
  • a second portion 302 and a third portion 303 are connected to the lower surface of the first portion 301, respectively.
  • a second portion 302 of the gate electrode 30 is arranged in the first trench h1.
  • a third portion 303 of the gate electrode 30 is arranged in the second trench h2.
  • the semiconductor region 10 is sandwiched from the Y-axis direction by a second portion 302 arranged in the first trench h1 and a third portion 303 arranged in the second trench h2.
  • the gate electrode 30 can simultaneously apply a gate voltage to the upper surface 10a, the first side surface 10b, and the second side surface 10c of the semiconductor region 10.
  • the gate electrode 30 is composed of, for example, an impurity-doped polysilicon (Poly-Si) film.
  • a MOS transistor 3A according to Embodiment 2 of the present disclosure (an example of a “field effect transistor” of the present disclosure) has a first trench h1 and a second trench h2, a second portion 302 and a third portion 303 of the gate electrode 30.
  • the MOS transistor 3A may be called a FinFET (Fin Field Effect Transistor) because the semiconductor region 10 has a fin shape.
  • the MOS transistor 3A may be called a recessed FinFET from the above two shapes.
  • the N + -type region 411 of the source region 41 and the N + -type region 421 of the drain region 42 of the MOS transistor 3A are separated from the N-type semiconductor layer 55 through the insulating film 50 . It is formed by solid-phase diffusion of N-type impurities into the substrate 2 .
  • the peak concentration of N-type impurities in the N+-type regions 411 and 421 is 1 ⁇ 10 20 /cm 3 or more.
  • the N-type semiconductor layer 55 is ohmic-connected to the N+-type regions 411 and 421 through the insulating film 50 .
  • the contact electrode 57 and the N-type semiconductor layer 55 are ohmic-connected, and the N-type semiconductor layer 55 and the N+-type regions 411 and 421 are also ohmic-connected. As a result, an ohmic connection is established between the contact electrode 57 and the N+ type region 411 and between the contact electrode 57 and the N+ type region 421, respectively.
  • the end portions where the N-type impurity concentration is 1 ⁇ 10 17 /cm 3 or less exist within 0.1 ⁇ m from the surface 2 a of the semiconductor substrate 2 . That is, the depth from the surface 2a of the N+ type regions 411 and 421 is 0.1 ⁇ m or less.
  • the N + -type regions 411 and 421 are formed very shallow near the surface 2 a of the semiconductor substrate 2 .
  • 11A to 11F are cross-sectional views showing the manufacturing method of the semiconductor device 1A according to the second embodiment of the present disclosure in order of steps.
  • 11A to 11F correspond to the X2-X2' cross section (XZ cross section) shown in FIG.
  • the manufacturing equipment etches the surface 2a side of the semiconductor substrate 2 to form the first trench h1 and the second trench h2 (see FIG. 10). As a result, Fin-shaped semiconductor regions 10 (see FIG. 10) are formed in the semiconductor substrate 2 .
  • the manufacturing apparatus thermally oxidizes the semiconductor substrate 2 to form the gate insulating film 20 on the upper surface 10a of the semiconductor region 10 and the first side surface 10b and the second side surface 10c (see FIG. 10).
  • the manufacturing equipment forms a polysilicon film on the gate insulating film 20 using the CVD method.
  • the polysilicon film fills the first trench h1 and the second trench h2.
  • the manufacturing equipment forms a hard mask 61 on the polysilicon film.
  • the hard mask 61 has a shape that covers the region where the gate electrode 30 is formed and opens the other regions.
  • the hard mask 61 is composed of, for example, a SiO 2 film.
  • the manufacturing apparatus uses the hard mask 61 as a mask to etch and remove the polysilicon film. Thereby, the manufacturing apparatus forms the gate electrode 30 .
  • the manufacturing apparatus uses the hard mask 61 as a mask to ion-implant an N-type impurity such as phosphorus (P) or arsenic (As) into the front surface 2a side of the semiconductor substrate 2 .
  • an N-type impurity such as phosphorus (P) or arsenic (As)
  • the semiconductor substrate 2 is heat-treated to activate the ion-implanted N-type impurity.
  • the N ⁇ -type region 412 of the source region 41 and the N ⁇ -type region 422 of the drain region 42 are formed in self-alignment with the gate electrode 30 .
  • the heat treatment for forming the N ⁇ -type regions 412 and 422 is not performed here, and may be performed together with the heat treatment in a later step (for example, the heat treatment for forming the N + -type regions 411 and 412). .
  • the manufacturing apparatus sequentially deposits a SiO 2 film and a SiN film by, for example, a CVD method, and etch backs the deposited film. Thereby, as shown in FIG. 11B, the manufacturing apparatus forms sidewall insulating films 38 on the side surfaces of the gate electrode 30 .
  • the manufacturing equipment etches the front surface 2a side of the semiconductor substrate 2 (that is, recesses).
  • the manufacturing apparatus forms recesses H11 in the region where the source is formed and the region where the drain is formed in the semiconductor substrate 2, respectively.
  • the etching conditions are adjusted so that the depth of the recess H11 from the surface 2a is, for example, the same (or substantially the same) as the thickness of the isolation layer 5 from the surface 2a.
  • the manufacturing apparatus forms the insulating film 50 on the surface 2 a of the semiconductor substrate 2 .
  • the manufacturing apparatus forms the insulating film 50 to a thickness of 5 ⁇ or more and 15 ⁇ or less by the ALD method.
  • the insulating film 50 is a SiN film or a SiO2 film.
  • the insulating film 50 is continuously provided on the surface 2a (including the bottom surface and the inner side surface of the recess H11) of the semiconductor substrate 2, the sidewall insulating film 38, and the hard mask 61. As shown in FIG.
  • the manufacturing equipment forms the first interlayer insulating film 63 on the surface 2a of the semiconductor substrate 2 by the CVD method.
  • the manufacturing apparatus partially etches the first interlayer insulating film 63 to form openings H1 and H2 connected to the recess H11 on the recess H11 formed in the recess step.
  • FIG. 12 is a plan view schematically showing the positional relationship between the recess H11 (recess pattern) formed in the process of FIG. 11C, the openings H1 and H2 formed in the process of FIG. 11D, and the gate electrode 30.
  • the openings H1 and H2 are formed so as to entirely cover the recess H11 (recess pattern) in plan view. Further, the openings H1 and H2 are formed by self-alignment with respect to the gate electrode 30 .
  • the manufacturing apparatus deposits an N-type semiconductor layer 55 doped with an N-type impurity over the entire surface 2a of the semiconductor substrate 2 by the CVD method to form openings H1 and H2. embed.
  • the N-type semiconductor layer 55 is, for example, polysilicon, amorphous silicon, or SiGe.
  • the concentration of the N-type impurity in the N-type semiconductor layer 55 is, for example, 1 ⁇ 10 20 /cm 3 or more.
  • Examples of N-type impurities contained in the N-type semiconductor layer 55 include arsenic (As), phosphorus (P), or both.
  • the manufacturing apparatus heat-treats the N-type semiconductor layer 55 and the semiconductor substrate 2 (that is, the entire substrate) so that the N-type impurities form a solid phase from the N-type semiconductor layer 55 to the semiconductor substrate 2 via the insulating film 50 . Diffuse.
  • the heat treatment conditions are, for example, a heat treatment temperature of 1015° C. and a heat treatment time of 10 minutes.
  • the manufacturing equipment forms an N+ type region 411 of the source region 41 and an N+ type region 421 of the drain region 42 .
  • the manufacturing equipment etches back the N-type semiconductor layer 55 .
  • the N-type semiconductor layer 55 is separated into a portion (source pad) connected to the N+ type region 411 and a portion (drain pad) connected to the N+ type region 412 .
  • the manufacturing apparatus forms a second interlayer insulating film 65 entirely above the surface 2a of the semiconductor substrate 2 by the CVD method.
  • the manufacturing equipment partially etches the second interlayer insulating film 65 to form a source opening and a drain opening in the second interlayer insulating film 65 .
  • the manufacturing apparatus sequentially forms a barrier metal and tungsten (W) over the entire surface 2a of the semiconductor substrate 2 by, for example, CVD or sputtering, and performs CMP processing on the tungsten (W) film. to expose the second interlayer insulating film 65 from under the tungsten (W) film. Thereby, the manufacturing equipment forms contact electrodes 57 on the source pad and the drain pad, respectively.
  • the semiconductor device 1A according to the second embodiment is completed.
  • the MOS transistor 3A and its manufacturing method according to the second embodiment have the same effect as the MOS transistor 3 and its manufacturing method according to the first embodiment.
  • the N + -type regions 411 and 421 can be formed by solid phase diffusion of N-type impurities from the N-type semiconductor layer 55 to the semiconductor substrate 2 through the insulating film 50 .
  • the N + -type regions 411 and 421 can be shallowly formed, and lateral diffusion of the N-type impurity can be suppressed.
  • the lateral diffusion of N-type impurities can be suppressed, the occurrence of the short channel effect in the MOS transistor 3A can be suppressed, and the effective gate length can be lengthened.
  • the N + -type regions 411 and 421 can be formed with high concentration. Thereby, each contact resistance of the source region 41 and the drain region 42 can be reduced.
  • the MOS transistor 3A is a FinFET.
  • the gate electrode 30 can simultaneously apply a gate voltage to the semiconductor region 10 from a total of three directions, ie, the upper side and the left and right sides. As a result, the gate electrode 30 can completely deplete the semiconductor region 10, and the S value indicating the sub-threshold characteristics of the MOS transistor 3A can be reduced. High-speed switching operation of the MOS transistor 3A becomes possible.
  • the N-type semiconductor layer 55 is arranged in the recess H11 formed by the recess in the semiconductor substrate 2 .
  • the N-type semiconductor layer 55 on the N+-type region 411 functions as a high-concentration layer of the source region 41 in the same manner as the N+-type region 411 .
  • the N-type semiconductor layer 55 on the N+-type region 421 functions as a high-concentration layer of the drain region 42 similarly to the N+-type region 421 . Due to the N-type semiconductor layer 55 embedded in the concave portion H11, the depth of the high concentration layer of the source region 41 and the depth of the high concentration layer of the drain region 42 are increased, for example, to the same depth as the element isolation layer 5. . This makes it possible to reduce the on-resistance of the MOS transistor 3A.
  • the semiconductor device 1 according to the semiconductor device 1 according to the first embodiment or the semiconductor device 1A according to the second embodiment can be applied to an imaging device.
  • An example of an imaging device to which the semiconductor devices 1 and 1A are applied will be described below.
  • FIG. 13 is a schematic diagram showing a configuration example of the imaging device 100 according to Embodiment 3 of the present disclosure.
  • the imaging device 100 includes a first board section 110 , a second board section 120 and a third board section 130 .
  • the imaging device 100 is an imaging device having a three-dimensional structure configured by bonding a first substrate portion 110, a second substrate portion 120, and a third substrate portion 130 together.
  • the first substrate portion 110, the second substrate portion 120, and the third substrate portion 130 are laminated in this order.
  • the first substrate section 110 has a semiconductor substrate 111 and a plurality of sensor pixels 112 provided on the semiconductor substrate 111 .
  • the multiple sensor pixels 112 perform photoelectric conversion.
  • a plurality of sensor pixels 112 are provided in a matrix in a pixel region 113 on the first substrate section 110 .
  • the second substrate section 120 includes a semiconductor substrate 121, a readout circuit 122 provided on the semiconductor substrate 121, a plurality of pixel drive lines 123 provided on the semiconductor substrate 121 and extending in the row direction, and a plurality of pixel drive lines 123 provided on the semiconductor substrate 121. and a plurality of vertical signal lines 124 extending in the column direction.
  • the readout circuit 122 outputs pixel signals based on the charges output from the sensor pixels 112 .
  • One readout circuit 122 is provided for every four sensor pixels 112 .
  • the third substrate section 130 has a semiconductor substrate 131 and a logic circuit 132 provided on the semiconductor substrate 131 .
  • the logic circuit 132 has a function of processing pixel signals, and has, for example, a vertical drive circuit 133 , a column signal processing circuit 134 , a horizontal drive circuit 135 and a system control circuit 136 .
  • the vertical drive circuit 133 sequentially selects the plurality of sensor pixels 112 in units of rows.
  • the column signal processing circuit 134 performs, for example, correlated double sampling (CDS) processing on pixel signals output from each sensor pixel 112 in a row selected by the vertical drive circuit 133 .
  • the column signal processing circuit 134 extracts the signal level of the pixel signal by performing CDS processing, for example, and holds pixel data corresponding to the amount of light received by each sensor pixel 112 .
  • the horizontal driving circuit 135, for example, sequentially outputs the pixel data held in the column signal processing circuit 134 to the outside.
  • the system control circuit 136 controls driving of each block (vertical drive circuit 133, column signal processing circuit 134, and horizontal drive circuit 135) in the logic circuit 132.
  • FIG. 14 is a circuit diagram showing a configuration example of a pixel unit PU according to Embodiment 3 of the present disclosure.
  • four sensor pixels 112 are electrically connected to one readout circuit 122 to constitute one pixel unit PU.
  • the four sensor pixels 112 share one readout circuit 122 , and each output of the four sensor pixels 112 is input to the shared readout circuit 122 .
  • Each sensor pixel 112 has components in common with each other.
  • identification numbers (1, 2, 3, 4) is given.
  • the identification numbers at the end of the reference numerals of the components of each sensor pixel 112 are omitted.
  • Each sensor pixel 112 includes, for example, a photodiode PD (an example of a “photoelectric conversion element” of the present disclosure), a transfer transistor TR electrically connected to the photodiode PD, and a photodiode PD via the transfer transistor TR. and a floating diffusion FD that temporarily holds the output charge.
  • the photodiode PD performs photoelectric conversion to generate charges according to the amount of light received.
  • a cathode of the photodiode PD is electrically connected to the source of the transfer transistor TR, and an anode of the photodiode PD is electrically connected to a reference potential line (eg ground).
  • a drain of the transfer transistor TR is electrically connected to the floating diffusion FD, and a gate electrode of the transfer transistor TR is electrically connected to the pixel drive line 123 .
  • the transfer transistor TR is, for example, a CMOS (Complementary Metal Oxide Semiconductor) transistor.
  • the floating diffusions FD of each sensor pixel 112 sharing one readout circuit 122 are electrically connected to each other and to the input terminal of the common readout circuit 122 .
  • the readout circuit 122 has, for example, an amplification transistor AMP, a reset transistor RST, and a selection transistor SEL. Note that the selection transistor SEL may be omitted if necessary.
  • the source of the reset transistor RST (the input terminal of the readout circuit 122) is electrically connected to the floating diffusion FD, and the drain of the reset transistor RST is electrically connected to the power supply line VDD and the drain of the amplification transistor AMP.
  • a gate electrode of the reset transistor RST is electrically connected to the pixel drive line 123 (see FIG. 13).
  • a source of the amplification transistor AMP is electrically connected to a drain of the selection transistor SEL, and a gate electrode of the amplification transistor AMP is electrically connected to a source of the reset transistor RST.
  • the source of the selection transistor SEL (the output terminal of the readout circuit 122) is electrically connected to the vertical signal line 124, and the gate electrode of the selection transistor SEL is electrically connected to the pixel driving line 123 (see FIG. 13).
  • the transfer transistor TR transfers the charge of the photodiode PD to the floating diffusion FD when the transfer transistor TR is turned on.
  • the reset transistor RST resets the potential of the floating diffusion FD to a predetermined potential.
  • the potential of the floating diffusion FD is reset to the potential of the power supply line VDD.
  • the selection transistor SEL controls the output timing of the pixel signal from the readout circuit 122 .
  • the amplification transistor AMP generates, as a pixel signal, a voltage signal corresponding to the level of the charge held in the floating diffusion FD.
  • the amplification transistor AMP constitutes a source follower type amplifier, and outputs a pixel signal having a voltage corresponding to the level of charge generated in the photodiode PD.
  • the amplification transistor AMP amplifies the potential of the floating diffusion FD when the selection transistor SEL is turned on, and outputs a voltage corresponding to the potential to the column signal processing circuit 134 via the vertical signal line 124 .
  • the MOS transistor 3 described in the first embodiment or the MOS transistor 3A described in the second embodiment is added to one or more of the reset transistor RST, amplification transistor AMP, transfer transistor TR, and selection transistor SEL. is used.
  • the transfer transistor TR is provided on the first substrate section 110 .
  • the MOS transistor 3 described in the first embodiment or the MOS transistor 3A described in the second embodiment may be used as the transfer transistor TR.
  • the semiconductor substrate 111 corresponds to the semiconductor substrate 2 described in the first and second embodiments.
  • the reset transistor RST, the amplification transistor AMP, and the selection transistor SEL are provided on the second substrate section 120 .
  • the MOS transistor 3 described in the first embodiment or the MOS transistor 3A described in the second embodiment may be used for one or more of the reset transistor RST, amplification transistor AMP, and selection transistor SEL.
  • FIG. 15 is a plan view schematically showing the positional relationship between the opening H1 and the gate electrode 30 when the MOS transistor 3 described in Embodiment 1 is used as the transfer transistor TR of the pixel unit PU.
  • floating diffusion FD corresponds to the source region of MOS transistor 3 .
  • the opening H1 opening above the source region need not be formed in self-alignment with the gate electrode 30. .
  • the imaging device 100 includes a photodiode PD and a semiconductor device for reading charges photoelectrically converted by the photodiode PD.
  • the imaging device 100 includes a semiconductor device 1 (or a semiconductor device 1A) as at least part of this semiconductor device. Since the semiconductor device 1 (or the semiconductor device 1A) suppresses the lateral diffusion of the N-type impurities, it is possible to suppress the occurrence of the short channel effect and increase the effective gate length. In addition, since the lateral diffusion of the N-type impurity is suppressed, the source region 41 and the drain region 42 can be formed with high concentration, and the contact resistance of the source region 41 and the drain region 42 can be reduced. can. Accordingly, it is possible to improve the readout performance of the imaging device 100 .
  • the present disclosure can also take the following configuration.
  • a semiconductor substrate a field effect transistor provided on the first main surface side of the semiconductor substrate;
  • the field effect transistor is an N-type region provided on the first main surface side of the semiconductor substrate and serving as at least part of a source region or at least part of a drain region; an insulating film provided on the N-type region; and an N-type semiconductor layer provided on the N-type region with the insulating film interposed therebetween.
  • the insulating film has a film thickness of 5 ⁇ or more and 15 ⁇ or less.
  • a peak concentration of the N-type impurity in the N-type region is 1 ⁇ 10 20 /cm 3 or more, (1) or (2) above, wherein the end portion where the N-type impurity concentration is 1 ⁇ 10 17 /cm 3 or less in the N-type region exists within 0.1 ⁇ m from the first main surface of the semiconductor substrate. ).
  • the N-type semiconductor layer has an N-type impurity concentration of 1 ⁇ 10 20 /cm 3 or more.
  • the semiconductor device according to (4), wherein the N-type semiconductor layer is polysilicon, amorphous silicon, or SiGe.
  • the field effect transistor is a semiconductor region in which a channel is formed; a gate electrode covering the semiconductor region; a gate insulating film disposed between the semiconductor region and the gate electrode; a sidewall insulating film arranged on the side surface of the gate electrode; The semiconductor device according to any one of (1) to (5), wherein the N-type semiconductor layer covers at least part of the sidewall insulating film.
  • the field effect transistor is a semiconductor region in which a channel is formed; a gate electrode covering the semiconductor region; a gate insulating film disposed between the semiconductor region and the gate electrode;
  • the semiconductor region is the top surface and a first side surface located on one side of the upper surface in the gate width direction of the gate electrode; a second side surface located on the other side of the top surface in the gate width direction;
  • the gate electrode is a first portion facing the top surface with the gate insulating film interposed therebetween; a second portion facing the first side surface with the gate insulating film interposed therebetween;
  • the semiconductor device according to any one of (1) to (6), having a third portion facing the second side surface with the gate insulating film interposed therebetween.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

不純物の横方向への拡散が抑制された半導体装置及びその製造方法と、この半導体装置を用いた撮像装置とを提供する。半導体装置は、半導体基板と、半導体基板の第1主面側に設けられた電界効果トランジスタと、を備える。電界効果トランジスタは、半導体基板の第1主面側に設けられ、ソース領域の少なくとも一部又はドレイン領域の少なくとも一部となるN型領域と、N型領域上に設けられた絶縁膜と、絶縁膜を介してN型領域上に設けられたN型半導体層と、を有する。

Description

半導体装置及び半導体装置の製造方法、撮像装置
 本開示は、半導体装置及び半導体装置の製造方法、撮像装置に関する。
 CMOS(Complementary Metal Oxide Semiconductor)イメージセンサに用いられる半導体装置として、垂直ゲート電極及びチャネルを有する非平面トランジスタが知られている(例えば、特許文献1参照)。
 また、CMOSイメージセンサに用いられる半導体装置として、掘り込みゲート構造のMOSトランジスタ(FinFET)が知られている(例えば、特許文献2参照)。
特開2006-121093号公報 特開2021-15891号公報
 FinFETにおいて、ソース領域及びドレイン領域を深く形成することで、画素のノイズ特性を改善することが可能である。しかし、ソース領域及びドレイン領域を深く形成するために不純物を深くイオン注入すると、不純物の横方向への拡散が大きくなる。これにより、短チャネル効果が生じ、実効ゲート長が短くなる可能性がある。また、不純物の横方向への拡散が大きいと、不純物濃度が高いソース領域及びドレイン領域を形成することが困難となり、ソース領域及びドレイン領域の各コンタクト抵抗の低減が困難となる可能性がある。
 本開示はこのような事情に鑑みてなされたもので、不純物の横方向への拡散が抑制された半導体装置及びその製造方法と、この半導体装置を用いた撮像装置とを提供することを目的とする。
 本開示の一態様に係る半導体装置は、半導体基板と、前記半導体基板の第1主面側に設けられた電界効果トランジスタと、を備える。前記電界効果トランジスタは、前記半導体基板の前記第1主面側に設けられ、ソース領域の少なくとも一部又はドレイン領域の少なくとも一部となるN型領域と、前記N型領域上に設けられた絶縁膜と、前記絶縁膜を介して前記N型領域上に設けられたN型半導体層と、を有する。
 これによれば、電界効果トランジスタを製造する際に、N型半導体層から絶縁膜を介して半導体基板にN型不純物が固相拡散することによって、N型領域を形成することが可能である。固相拡散によりN型領域が浅く形成されるため、N型不純物の横方向への拡散が抑制された半導体装置を提供することができる。
 本開示の一態様に係る半導体装置の製造方法は、半導体基板に絶縁膜を形成する工程と、前記絶縁膜上にN型半導体層を形成する工程と、前記N型半導体層が形成された前記半導体基板に熱処理を施し、前記N型半導体層から前記半導体基板にN型不純物を固相拡散させて、ソース領域の少なくとも一部又はドレイン領域の少なくとも一部となるN型領域を形成する工程と、を含む。
 これによれば、N型半導体層から絶縁膜を介して半導体基板にN型不純物が固相拡散することによって、N型領域を形成することができる。イオン注入ではなく、固相拡散によってN型不純物を導入することで、N型領域を浅く形成することができ、N型不純物の横方向への拡散を抑制することができる。
 本開示の一態様に係る撮像装置は、光電変換素子と、前記光電変換素子で光電変換された電荷の読み出しを行うための半導体装置と、を備える。前記半導体装置は、半導体基板と、前記半導体基板の第1主面側に設けられた電界効果トランジスタと、を備える。前記電界効果トランジスタは、前記半導体基板の前記第1主面側に設けられ、ソース領域の少なくとも一部又はドレイン領域の少なくとも一部となるN型領域と、前記N型領域上に設けられた絶縁膜と、前記絶縁膜を介して前記N型領域上に設けられたN型半導体層と、を有する。
 これによれば、光電変換素子で光電変換された電荷の読み出しを行うための半導体装置として、N型不純物の横方向への拡散が抑制された半導体装置を用いることができる。これにより、撮像装置の読出し性能の向上を図ることができる。
図1は、本開示の実施形態1に係る半導体装置の構成例を模式的に示す平面図である。 図2は、本開示の実施形態1に係る半導体装置の構成例を模式的に示す断面図である。 図3は、本開示の実施形態1に係る半導体装置の構成例を模式的に示す断面図である。 図4Aは、本開示の実施形態1に係る半導体装置の製造方法を工程順に示す断面図である。 図4Bは、本開示の実施形態1に係る半導体装置の製造方法を工程順に示す断面図である。 図4Cは、本開示の実施形態1に係る半導体装置の製造方法を工程順に示す断面図である。 図4Dは、本開示の実施形態1に係る半導体装置の製造方法を工程順に示す断面図である。 図4Eは、本開示の実施形態1に係る半導体装置の製造方法を工程順に示す断面図である。 図4Fは、本開示の実施形態1に係る半導体装置の製造方法を工程順に示す断面図である。 図4Gは、本開示の実施形態1に係る半導体装置の製造方法を工程順に示す断面図である。 図4Hは、本開示の実施形態1に係る半導体装置の製造方法を工程順に示す断面図である。 図5は、図4Eの工程で形成される開口部とゲート電極との位置関係を模式的に示す平面図である。 図6は、N+型半導体層から半導体領域へヒ素(As)を固相拡散させた場合(実施例)のN型不純物の拡散長を示すグラフである。 図7は、N型不純物をイオン注入し熱拡散させた場合(比較例)のN型不純物の拡散長を示すグラフである。 図8は、本開示の実施形態2に係る半導体装置の構成例を模式的に示す平面図である。 図9は、本開示の実施形態2に係る半導体装置の構成例を模式的に示す断面図である。 図10は、本開示の実施形態2に係る半導体装置の構成例を模式的に示す断面図である。 図11Aは、本開示の実施形態2に係る半導体装置の製造方法を工程順に示す断面図である。 図11Bは、本開示の実施形態2に係る半導体装置の製造方法を工程順に示す断面図である。 図11Cは、本開示の実施形態2に係る半導体装置の製造方法を工程順に示す断面図である。 図11Dは、本開示の実施形態2に係る半導体装置の製造方法を工程順に示す断面図である。 図11Eは、本開示の実施形態2に係る半導体装置の製造方法を工程順に示す断面図である。 図11Fは、本開示の実施形態2に係る半導体装置の製造方法を工程順に示す断面図である。 図12は、図11Cの工程で形成される凹部(リセスパターン)と、図11Dの工程で形成される開口部と、ゲート電極との位置関係を模式的に示す平面図である。 図13は、本開示の実施形態3に係る撮像装置の構成例を示す模式図である。 図14は、本開示の実施形態3に係る画素ユニットの構成例を示す回路図である。 図15は、実施形態1で説明したMOSトランジスタを画素ユニットPUの転送トランジスタに用いた場合の、開口部とゲート電極との位置関係を模式的に示す平面図である。
 以下において、図面を参照して本開示の実施形態を説明する。以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本開示の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。
 以下の説明では、X軸方向、Y軸方向及びZ軸方向の文言を用いて、方向を説明する場合がある。例えば、X軸方向及びY軸方向は、半導体基板2の表面2aに平行な方向である。X軸方向及びY軸方向を水平方向ともいう。Z軸方向は、半導体基板2の表面2aと垂直に交わる方向である。Z軸方向を深さ方向ともいう。X軸方向、Y軸方向及びZ軸方向は、互いに直交する。
 以下の説明において、半導体の導電型を示すpやnに付す+は、+が付記されていない半導体に比して相対的に不純物濃度が高いことを意味する。ただし同じpとp(または、nとn)とが付された半導体であっても、それぞれの半導体の不純物濃度が厳密に同じであることを意味するものではない。
<実施形態1>
(半導体装置の構成例)
 図1は、本開示の実施形態1に係る半導体装置1の構成例を模式的に示す平面図である。図2及び図3は、本開示の実施形態1に係る半導体装置1の構成例を模式的に示す断面図である。図2は、図1に示す平面図をX1-X1´線で切断した断面を示している。図3は、図1に示す平面図をY1-Y1´線で切断した断面を示している。なお、図1では、図2に示すN型半導体層55及びコンタクト電極57の図示を省略している。
 図1から図3に示すように、実施形態1に係る半導体装置1は、半導体基板2と、半導体基板2に設けられたN型のMOS(Metal Oxide Semiconductor)トランジスタ3(本開示の「電界効果トランジスタ」の一例)と、半導体基板2に設けられた素子分離層5と、を備える。
 半導体基板2は、例えば単結晶のシリコンで構成されている。半導体基板2は、表面2a(本開示の「第1主面」の一例)と、表面2aの反対側に位置する裏面2bと、を有する。半導体基板2の表面2a側に、MOSトランジスタ3が設けられている。素子分離層5は、水平方向で隣り合う素子同士を電気的に分離するための絶縁膜であり、例えば、トレンチに埋め込まれたシリコン酸化膜(SiO膜)で構成されている。
 MOSトランジスタ3は、チャネルが形成されるP型の半導体領域10と、ゲート絶縁膜20と、ゲート電極30と、ゲート電極30の側面に設けられたサイドウォール絶縁膜38と、半導体基板2に設けられたソース領域41及びドレイン領域42と、ソース領域41上及びドレイン領域42上にそれぞれ設けられた絶縁膜50と、絶縁膜50を介してソース領域41上及びドレイン領域42上にそれぞれ設けられたN型半導体層55と、を有する。N型半導体層55はサイドウォール絶縁膜38の少なくとも一部を覆っている。
 半導体領域10は、例えば半導体基板2の一部であり、単結晶のシリコンで構成されている。例えば、半導体領域10は、N型の半導体基板2にボロン(B)等のP型不純物をイオン注入し、熱拡散することにより形成された、P型ウェル領域である。
 ゲート絶縁膜20は、半導体領域10の上面を覆うように設けられている。半導体領域10の上面は、半導体基板2の表面2aの一部である。ゲート絶縁膜20は、例えばSiO膜で構成されている。
 ゲート電極30は、ゲート絶縁膜20を介して半導体領域10を覆っている。例えば、ゲート電極30は、半導体領域10の上面とゲート絶縁膜20を介して向かい合うように配置されている。
 ソース領域41は、半導体基板2の表面2aと、その近傍に設けられている。X軸方向において、ソース領域41は、半導体領域10の一方の側に接続している。ドレイン領域42は、半導体基板2の表面2aと、その近傍に設けられている。X軸方向において、ドレイン領域42は、半導体領域10の他方の側に接続している。ソース領域41及びドレイン領域42は、それぞれN型である。
 ソース領域41は、N+型領域411(本開示の「N型領域」の一例)と、N+型領域411の周囲に位置するN-型領域412とを有する。ドレイン領域42は、N+型領域421(本開示の「N型領域」の一例)と、N+型領域421の周囲に位置するN-型領域422とを有する。
 絶縁膜50は、例えばシリコン窒化膜(SiN膜)又はシリコン酸化膜(SiO膜)である。絶縁膜50の厚さは、例えば5Å以上15Å以下である。
 N型半導体層55は、例えばポリシリコン、アモルファスシリコン、又は、SiGeである。また、N型半導体層55におけるN型不純物の濃度は、例えば1×1020/cm以上である。N型半導体層55に含まれるN型不純物として、例えば、ヒ素(As)、リン(P)、又は、その両方が挙げられる。
 コンタクト電極57は、N型半導体層55上に設けられている。コンタクト電極57は、例えば、導電性材料等のバリアメタルと、タングステン(W)とで構成されている。バリアメタルを介してタングステン(W)がN型半導体層55にオーミック接続している。
 後述するように、MOSトランジスタ3のソース領域41のN+型領域411と、ドレイン領域42のN+型領域421は、N型半導体層55から絶縁膜50を介して半導体基板2にN型不純物が固相拡散することによって形成される。N+型領域411、421におけるN型不純物のピーク濃度は1×1020/cm以上である。これにより、N型半導体層55は、絶縁膜50を介してN+型領域411、421とそれぞれオーミック接続している。
 上述したように、コンタクト電極57とN型半導体層55との間がオーミック接続であり、N型半導体層55とN+型領域411、421との間もオーミック接続である。これにより、コンタクト電極57からN+型領域411までの間、及び、コンタクト電極57からN+型領域421までの間は、それぞれオーミック接続となっている。
 また、N+型領域411、421において、N型不純物の濃度が1×1017/cm以下となる端部(底部)は、半導体基板2の表面2aから0.1μm以内に存在する。即ち、N+型領域411、421の表面2aからの深さは0.1μm以下である。N+型領域411、421は、半導体基板2の表面2a付近にごく浅く形成されている。
(半導体装置の製造方法)
 次に、本開示の実施形態1に係る半導体装置1の製造方法を工程順に説明する。なお、半導体装置1は、成膜装置(CVD(Chemical Vapor Deposition)装置、ALD装置(Atomic Layer Deposition)、スパッタ装置を含む)、エッチング装置、熱処理装置、イオン注入装置、CMP(Chemical Mechanical Polishing)装置など、各種の装置を用いて製造される。以下、これらの装置を、製造装置と総称する。
 図4Aから図4Hは、本開示の実施形態1に係る半導体装置1の製造方法を工程順に示す断面図である。図4Aから図4Hの各断面は、図2に示したX1-X1´断面(X-Z断面)に対応している。
 図4Aにおいて、製造装置は、半導体基板2にP型のウェル領域を形成し、素子分離層5を形成した後、半導体基板2の表面2aを熱酸化して、ゲート絶縁膜20を形成する。次に、製造装置は、CVD法を用いて、ゲート絶縁膜20上にポリシリコン膜を形成する。次に、製造装置は、ポリシリコン膜上にハードマスク61を形成する。ハードマスク61は、ゲート電極30が形成される領域を覆い、それ以外の領域を開口する形状を有する。ハードマスク61は、例えばSiO膜で構成されている。
 次に、製造装置は、ハードマスク61をマスクに用いて、ポリシリコン膜をエッチングして除去する。これにより、製造装置は、ゲート電極30を形成する。
 次に、製造装置は、ハードマスク61をマスクに用いて、半導体基板2の表面2a側にリン(P)又はヒ素(As)等のN型不純物をイオン注入する。イオン注入後、半導体基板2に熱処理を施して、イオン注入したN型不純物を活性化させる。これにより、ゲート電極30に対してセルフアラインで、ソース領域41のN-型領域412と、ドレイン領域42のN-型領域422とを形成する。なお、N-型領域412、422を形成するための熱処理は、ここでは行わず、後の工程の熱処理(例えば、N+型領域411、412を形成するための熱処理)と兼用で行ってもよい。
 次に、製造装置は、例えば、CVD法でSiO膜とSiN膜とを順次堆積させ、堆積した膜をエッチバックする。これにより、図4Bに示すように、ゲート電極30の側面にサイドウォール絶縁膜38を形成する。
 次に、図4Cに示すように、製造装置は、半導体基板2の表面2a上に絶縁膜50を形成する。例えば、製造装置は、ALD法で、絶縁膜50を5Å以上15Å以下の厚さに形成する。絶縁膜50は、SiN膜又はSiO膜である。絶縁膜50は、半導体基板2の表面2a上とサイドウォール絶縁膜38上及びハードマスク61上に連続して設けられる。
 次に、図4Dに示すように、製造装置は、CVD法で、半導体基板2の表面2a上に第1層間絶縁膜63を形成する。次に、製造装置は、第1層間絶縁膜63上にレジストパターン(図示せず)を形成し、レジストパターンをマスクに第1層間絶縁膜63をエッチングする。これにより、図4Eに示すように、製造装置は、第1層間絶縁膜63に、N-型領域412、422上を開口する開口部H1、H2を形成する。
 図5は、図4Eの工程で形成される開口部H1、H2とゲート電極30との位置関係を模式的に示す平面図である。図4E及び図5に示すように、開口部H1、H2は、ゲート電極30に対してセルフアラインで形成される。
 次に、図4Fに示すように、製造装置は、CVD法で、N型不純物がドープされたN型半導体層55を半導体基板2の表面2aの上方全体に堆積して開口部H1、H2を埋め込む。上述したように、N型半導体層55は、例えばポリシリコン、アモルファスシリコン、又は、SiGeである。また、N型半導体層55におけるN型不純物の濃度は、例えば1×1020/cm以上である。N型半導体層55に含まれるN型不純物として、例えば、ヒ素(As)、リン(P)、又は、その両方が挙げられる。
 次に、製造装置は、N型半導体層55及び半導体基板2(すなわち、基板全体)に熱処理を施して、N型半導体層55から絶縁膜50を介して半導体基板2にN型不純物が固相拡散させる。熱処理の条件は、例えば、熱処理温度が1015℃、熱処理時間が10分である。これにより、図4Gに示すように、製造装置は、ソース領域41のN+型領域411と、ドレイン領域42のN+型領域421とを形成する。
 次に、製造装置は、N型半導体層55をエッチバックする。これにより、N型半導体層55は、N+型領域411に接続する部位(以下、ソースパッドともいう)と、N+型領域412に接続する部位(以下、ドレインパッドともいう)とに分離される。
 次に、図4Hに示すように、製造装置は、CVD法で、半導体基板2の表面2aの上方全体に第2層間絶縁膜65を形成する。次に、製造装置は、第2層間絶縁膜65上にレジストパターン(図示せず)を形成し、レジストパターンをマスクに第2層間絶縁膜65をエッチングする。これにより、製造装置は、第2層間絶縁膜65にソースパッド上を開口する開口部(以下、ソース開口部ともいう)と、ドレインパッド上を開口する開口部(以下、ドレイン開口部ともいう)とを形成する。
 次に、製造装置は、例えばCVD法又はスパッタ法で、半導体基板2の表面2aの上方全体にバリアメタルと、タングステン(W)とを順次成膜して、ソース開口部とドレイン開口部とを埋め込む。
 次に、製造装置は、タングステン(W)膜にCMP処理を施して、タングステン(W)膜下から第2層間絶縁膜65を露出させる。これにより、製造装置は、ソースパッド上とドレインパッド上とにそれぞれコンタクト電極57を形成する。以上の工程を経て、実施形態1に係る半導体装置1が完成する。
(拡散長)
 本開示者は、固相拡散によるN型不純物の拡散長と、イオン注入によるN型不純物の拡散長とを比較する実験を行った。
(1)実施例
 図6は、N+型半導体層から半導体領域へヒ素(As)を固相拡散させた場合(実施例)のN型不純物の拡散長を示すグラフである。図6において、縦軸はシリコン(Si)基板の表面からの深さを示し、縦軸はヒ素(As)の濃度を示す。横軸の0は、Si基板の表面を意味する。
 本開示者は、Si基板の表面にSiN膜10.5Å堆積させ、Asをドープしたポリシリコンを堆積させたサンプルを用意した。本開示者は、このサンプルに1015℃、10分の熱処理を行い、SIMS(Secondary Ion Mass Spectrometry)評価によりAsの拡散濃度と、拡散長を評価した。図6に示すように、熱処理により、Si基板中のAsはSi基板の深さ方向へ拡散することが確認された。熱処理後のAsのピーク濃度は、Si基板の表面付近で1×1020/cmの濃度で確認された。また、As濃度が1×1017/cmとなる深さ(すなわち、拡散長)は、Si基板の表面から0.08μmの位置であった。この結果から、実施例では、急峻で高ドーズなプロファイルを形成できることが確認された。
 すなわち、N型不純物のピーク濃度が1×1020/cm以上であり、N型不純物の最小濃度が1×1017/cmである拡散プロファイルを、Si基板の表面から0.1μm以内の深さに形成可能であることが確認された。
(2)比較例
 図7は、N型不純物をイオン注入し熱拡散させた場合(比較例)のN型不純物の拡散長を示すグラフである。図7において、縦軸はシリコン(Si)基板の表面からの深さを示し、縦軸はヒ素(As)の濃度を示す。本開示者は、比較例として、Si基板の表面にヒ素(As)をイオン注入したサンプルを用意した。イオン注入の条件は、注入エネルギーが5keVで、高ドーズ量(3×1015/cm)とした。本開示者は、このサンプルに1000℃、10秒の熱処理(RTA)を行い、SIMS評価によりAsの拡散濃度と、拡散長を評価した。
 図7に示すように、Si基板の表面付近ではAs濃度が1×1021/cmである高ドーズなプロファイルであるが、As濃度が1×1017/cmとなる深さ(すなわち、拡散長)は、Si基板の表面から0.5μmよりも深い位置であった。
(3)評価結果
 上記の比較例は、実施例よりも熱処理温度が低く、熱処理時間は十分に短い。実施例の熱処理温度は1015℃であるのに対して、比較例の熱処理温度は1000℃である。実施例の熱処理時間は10分であるのに対して、比較例の熱処理時間は10秒である。実施例に対して比較例は熱履歴が十分小さいが、拡散長は比較例の方が長かった。実施例の拡散長は0.08μmであるのに対して、比較例の拡散長は0.5μm以上であった。この結果から、実施例は、比較例よりも拡散長が抑制されることが確認された。実施例の拡散長は、比較例の拡散長の1/5程度に抑制されていることが確認された。
 なお、図6及び図7では、Si基板の深さ方向への拡散長を示しているが、Si基板の横方向への拡散長についても深さ方向と同様の傾向を示すと考えられる。
(実施形態1の効果)
 以上説明したように、本開示の実施形態1に係る半導体装置1は、半導体基板2と、半導体基板2の表面2a側に設けられたMOSトランジスタ3と、を備える。MOSトランジスタ3は、半導体基板2の表面2a側に設けられ、ソース領域41の少なくとも一部又はドレイン領域42の少なくとも一部となるN+型領域411、421と、N+型領域411、421上に設けられた絶縁膜50と、絶縁膜50を介してN+型領域411、421上に設けられたN型半導体層55と、を有する。
 これによれば、MOSトランジスタ3を製造する際に、N型半導体層55から絶縁膜50を介して半導体基板2にN型不純物(例えば、ヒ素(As)、リン(P)、又は、その両方)が固相拡散することによって、N+型領域411、421を形成することが可能である。固相拡散によりN+型領域411、421が浅く形成されるため、N型不純物の横方向への拡散が抑制された半導体装置1を提供することができる。
 本開示の実施形態1に係る半導体装置1の製造方法は、半導体基板2に絶縁膜50を形成する工程と、絶縁膜50上にN型半導体層55を形成する工程と、N型半導体層55が形成された半導体基板2に熱処理を施し、N型半導体層55から半導体基板2にN型不純物を固相拡散させて、MOSトランジスタ3のソース又はドレインとなるN+型領域411、421を形成する工程と、を含む。
 これによれば、N型半導体層55から絶縁膜50を介して半導体基板2にN型不純物が固相拡散することによって、N+型領域411、421を形成することができる。イオン注入ではなく、固相拡散によってN型不純物を導入することで、N+型領域411、421を浅く形成することができ、N型不純物の横方向への拡散を抑制することができる。
 N型不純物の横方向への拡散を抑制することができるため、MOSトランジスタ3において短チャネル効果の発生を抑制することができ、実効ゲート長を長くすることができる。また、N型不純物の横方向への拡散が抑制されるため、N+型領域411、421を高濃度に形成することができる。これにより、ソース領域41及びドレイン領域42の各コンタクト抵抗を低減することができる。
<実施形態2>
 本開示の技術は、例えばFinFETと呼ばれる、掘り込みゲート構造のMOSトランジスタに適用してもよい。
(半導体装置の構成例)
 図8は、本開示の実施形態2に係る半導体装置1Aの構成例を模式的に示す平面図である。図9及び図10は、本開示の実施形態2に係る半導体装置1Aの構成例を模式的に示す断面図である。図9は、図8に示す平面図をX2-X2´線で切断した断面を示している。図10は、図8に示す平面図をY2-Y2´線で切断した断面を示している。なお、図8では、図9に示すN型半導体層55及びコンタクト電極57の図示を省略している。
 図8から図10に示す半導体装置1Aにおいて、半導体領域10は、半導体基板2の表面2a側の一部をエッチングすることにより形成された部位である。半導体領域10の導電型は、P型である。半導体領域10の形状は、例えばフィン(Fin)形状である。半導体領域10は、例えばX軸方向に長く、Y軸方向に短い形状を有する。
 Y軸方向において、半導体領域10の一方の側には第1トレンチh1が設けられ、半導体領域10の他方の側には第2トレンチh2が設けられている。第1トレンチh1及び第2トレンチh2は、それぞれ半導体基板2の表面2a側に開口している。
 ゲート絶縁膜20は、半導体領域10の上面10aと、半導体領域10の第1側面10b及び第2側面10cと、第1トレンチh1の底面及び第2トレンチh2の底面とを連続して覆うように設けられている。半導体領域10の第1側面10bは、Y軸方向において上面10aの一方の側に位置する。半導体領域10の第2側面10cは、Y軸方向において上面10aの他方の側に位置する。ゲート絶縁膜20は、例えばSiO膜で構成されている。
 ゲート電極30は、ゲート絶縁膜20を介して半導体領域10を覆っている。例えば、ゲート電極30は、半導体領域10の上面10aとゲート絶縁膜20を介して向かい合う第1部位301と、半導体領域10の第1側面10bとゲート絶縁膜20を介して向かい合う第2部位302と、半導体領域10の第2側面10cとゲート絶縁膜20を介して向かい合う第3部位303と、を有する。第1部位301の下面に、第2部位302と第3部位303とがそれぞれ接続している。
 第1トレンチh1には、ゲート電極30の第2部位302が配置されている。第2トレンチh2には、ゲート電極30の第3部位303が配置されている。半導体領域10は、第1トレンチh1に配置された第2部位302と、第2トレンチh2に配置された第3部位303とによって、Y軸方向から挟まれている。
 これにより、ゲート電極30は、半導体領域10の上面10aと、第1側面10bと、第2側面10cとにゲート電圧を同時に印加することができる。つまり、ゲート電極30は、半導体領域10に対して、上側と左右両側の計3方向からゲート電圧を同時に印加することができる。これにより、ゲート電極30は、半導体領域10を完全空乏化することが可能となっている。なお、ゲート電極30は、例えば、不純物がドープされたポリシリコン(Poly-Si)膜で構成されている。
 本開示の実施形態2に係るMOSトランジスタ3A(本開示の「電界効果トランジスタ」の一例)は、第1トレンチh1と第2トレンチh2とにゲート電極30の第2部位302と第3部位303とがそれぞれ配置されている形状から、掘り込みゲート構造のMOSトランジスタと呼んでもよい。または、MOSトランジスタ3Aは、半導体領域10がフィン形状を有することから、フィンフェット(FinFET:Fin Field Effect Transistor)と呼んでもよい。あるいは、MOSトランジスタ3Aは、上記2つの形状から、掘り込みFinFETと呼んでもよい。
 実施形態1と同様に、実施形態2においても、MOSトランジスタ3Aのソース領域41のN+型領域411と、ドレイン領域42のN+型領域421は、N型半導体層55から絶縁膜50を介して半導体基板2にN型不純物が固相拡散することによって形成される。N+型領域411、421におけるN型不純物のピーク濃度は1×1020/cm以上である。これにより、N型半導体層55は、絶縁膜50を介してN+型領域411、421とそれぞれオーミック接続している。
 また、コンタクト電極57とN型半導体層55との間がオーミック接続であり、N型半導体層55とN+型領域411、421との間もオーミック接続である。これにより、コンタクト電極57からN+型領域411までの間、及び、コンタクト電極57からN+型領域421までの間は、それぞれオーミック接続となっている。
 また、N+型領域411、421において、N型不純物の濃度が1×1017/cm以下となる端部は、半導体基板2の表面2aから0.1μm以内に存在する。即ち、N+型領域411、421の表面2aからの深さは0.1μm以下である。N+型領域411、421は、半導体基板2の表面2a付近にごく浅く形成されている。
(半導体装置の製造方法)
 次に、本開示の実施形態2に係る半導体装置1の製造方法を工程順に説明する。
 図11Aから図11Fは、本開示の実施形態2に係る半導体装置1Aの製造方法を工程順に示す断面図である。図11Aから図11Fの各断面は、図9に示したX2-X2´断面(X-Z断面)に対応している。
 図11Aにおいて、製造装置は、半導体基板2の表面2a側をエッチングして第1トレンチh1及び第2トレンチh2(図10参照)を形成する。これにより、半導体基板2にFin形状の半導体領域10(図10参照)が形成される。次に、製造装置は、半導体基板2を熱酸化して、半導体領域10の上面10aと、第1側面10b及び第2側面10c(図10参照)にゲート絶縁膜20を形成する。
 次に、製造装置は、CVD法を用いて、ゲート絶縁膜20上にポリシリコン膜を形成する。ポリシリコン膜によって、第1トレンチh1及び第2トレンチh2は埋め込まれる。次に、製造装置は、ポリシリコン膜上にハードマスク61を形成する。ハードマスク61は、ゲート電極30が形成される領域を覆い、それ以外の領域を開口する形状を有する。ハードマスク61は、例えばSiO膜で構成されている。次に、製造装置は、ハードマスク61をマスクに用いて、ポリシリコン膜をエッチングして除去する。これにより、製造装置は、ゲート電極30を形成する。
 次に、製造装置は、ハードマスク61をマスクに用いて、半導体基板2の表面2a側にリン(P)又はヒ素(As)等のN型不純物をイオン注入する。イオン注入後、半導体基板2に熱処理を施して、イオン注入したN型不純物を活性化させる。これにより、ゲート電極30に対してセルフアラインで、ソース領域41のN-型領域412と、ドレイン領域42のN-型領域422とを形成する。なお、N-型領域412、422を形成するための熱処理は、ここでは行わず、後の工程の熱処理(例えば、N+型領域411、412を形成するための熱処理)と兼用で行ってもよい。
 次に、製造装置は、例えば、CVD法でSiO膜とSiN膜とを順次堆積させ、堆積した膜をエッチバックする。これにより、図11Bに示すように、製造装置は、ゲート電極30の側面にサイドウォール絶縁膜38を形成する。
 次に、製造装置は、ハードマスク61及びサイドウォール絶縁膜38をマスクに用いて、半導体基板2の表面2a側をエッチングする(すなわち、リセスする)。これにより、図11Cに示すように、製造装置は、半導体基板2において、ソースが形成される領域とドレインが形成される領域とにそれぞれ凹部H11を形成する。凹部H11の表面2aからの深さは、例えば、素子分離層5の表面2aからの厚さと同じ(または、ほぼ同じ)となるように、エッチング条件を調整する。
 次に、製造装置は、半導体基板2の表面2a上に絶縁膜50を形成する。例えば、製造装置は、ALD法で、絶縁膜50を5Å以上15Å以下の厚さに形成する。絶縁膜50は、SiN膜又はSiO膜である。絶縁膜50は、半導体基板2の表面2a(凹部H11の底面と内側面とを含む)上とサイドウォール絶縁膜38上及びハードマスク61上に連続して設けられる。
 次に、図11Dにおいて、製造装置は、CVD法で、半導体基板2の表面2a上に第1層間絶縁膜63を形成する。次に、製造装置は、第1層間絶縁膜63を部分的にエッチングして、リセス工程で形成した凹部H11上に、凹部H11に接続する開口部H1、H2をそれぞれ形成する。
 図12は、図11Cの工程で形成される凹部H11(リセスパターン)と、図11Dの工程で形成される開口部H1、H2と、ゲート電極30との位置関係を模式的に示す平面図である。図12に示すように、開口部H1、H2は、平面視で凹部H11(リセスパターン)を全て覆うように形成される。また、開口部H1、H2は、ゲート電極30に対してセルフアラインで形成される。
 次に、図11Dに示すように、製造装置は、CVD法で、N型不純物がドープされたN型半導体層55を半導体基板2の表面2aの上方全体に堆積して開口部H1、H2を埋め込む。上述したように、N型半導体層55は、例えばポリシリコン、アモルファスシリコン、又は、SiGeである。また、N型半導体層55におけるN型不純物の濃度は、例えば1×1020/cm以上である。N型半導体層55に含まれるN型不純物として、例えば、ヒ素(As)、リン(P)、又は、その両方が挙げられる。
 次に、製造装置は、N型半導体層55及び半導体基板2(すなわち、基板全体)に熱処理を施して、N型半導体層55から絶縁膜50を介して半導体基板2にN型不純物が固相拡散させる。熱処理の条件は、例えば、熱処理温度が1015℃、熱処理時間が10分である。これにより、図11Eに示すように、製造装置は、ソース領域41のN+型領域411と、ドレイン領域42のN+型領域421とを形成する。
 次に、製造装置は、N型半導体層55をエッチバックする。これにより、N型半導体層55は、N+型領域411に接続する部位(ソースパッド)と、N+型領域412に接続する部位(ドレインパッド)とに分離される。
 次に、図11Fに示すように、製造装置は、CVD法で、半導体基板2の表面2aの上方全体に第2層間絶縁膜65を形成する。次に、製造装置は、第2層間絶縁膜65を部分的にエッチングして、第2層間絶縁膜65にソース開口部とドレイン開口部とを形成する。
 次に、製造装置は、例えばCVD法又はスパッタ法で、半導体基板2の表面2aの上方全体にバリアメタルと、タングステン(W)とを順次成膜し、タングステン(W)膜にCMP処理を施して、タングステン(W)膜下から第2層間絶縁膜65を露出させる。これにより、製造装置は、ソースパッド上とドレインパッド上とにそれぞれコンタクト電極57を形成する。以上の工程を経て、実施形態2に係る半導体装置1Aが完成する。
(実施形態2の効果)
 実施形態2に係るMOSトランジスタ3Aとその製造方法は、実施形態1に係るMOSトランジスタ3とその製造方法と同様の効果を奏する。例えば、N型半導体層55から絶縁膜50を介して半導体基板2にN型不純物が固相拡散することによって、N+型領域411、421を形成することができる。イオン注入ではなく、固相拡散によってN型不純物を導入することで、N+型領域411、421を浅く形成することができ、N型不純物の横方向への拡散を抑制することができる。
 N型不純物の横方向への拡散を抑制することができるため、MOSトランジスタ3Aにおいて短チャネル効果の発生を抑制することができ、実効ゲート長を長くすることができる。また、N型不純物の横方向への拡散が抑制されるため、N+型領域411、421を高濃度に形成することができる。これにより、ソース領域41及びドレイン領域42の各コンタクト抵抗を低減することができる。
 また、MOSトランジスタ3Aは、FinFETである。ゲート電極30は、半導体領域10に対して、上側と左右両側の計3方向からゲート電圧を同時に印加することができる。これにより、ゲート電極30は、半導体領域10を完全空乏化することが可能となり、MOSトランジスタ3Aのサブスレッシュホールド特性を示すS値の低減が可能になる。MOSトランジスタ3Aの高速スイッチング動作が可能になる。
 また、この例では、半導体基板2において、リセスにより形成された凹部H11内にN型半導体層55が配置される。これにより、N+型領域411上のN型半導体層55は、N+型領域411と同様にソース領域41の高濃度層として機能する。N+型領域421上のN型半導体層55は、N+型領域421と同様にドレイン領域42の高濃度層として機能する。凹部H11に埋め込まれたN型半導体層55によって、ソース領域41の高濃度層の深さと、ドレイン領域42の高濃度層の深さとが増大し、例えば素子分離層5と同程度の深さとなる。これにより、MOSトランジスタ3Aのオン抵抗の低減が可能である。
<実施形態3>
(撮像装置の一例)
 実施形態1に係る半導体装置1に係る半導体装置1、又は、実施形態2に係る半導体装置1Aは、撮像装置に適用可能である。以下、半導体装置1、1Aが適用される撮像装置の一例を説明する。
 図13は、本開示の実施形態3に係る撮像装置100の構成例を示す模式図である。撮像装置100は、第1基板部110と、第2基板部120と、第3基板部130とを備えている。撮像装置100は、第1基板部110と、第2基板部120と、第3基板部130とを貼り合わせて構成された3次元構造の撮像装置である。第1基板部110と、第2基板部120と、第3基板部130は、この順に積層されている。
 第1基板部110は、半導体基板111と、半導体基板111に設けられた複数のセンサ画素112とを有する。複数のセンサ画素112は、光電変換を行う。複数のセンサ画素112は、第1基板部110における画素領域113内に行列状に設けられている。第2基板部120は、半導体基板121と、半導体基板121に設けられた読み出し回路122と、半導体基板121に設けられて行方向に延在する複数の画素駆動線123と、半導体基板121に設けられて列方向に延在する複数の垂直信号線124とを有する。読み出し回路122は、センサ画素112から出力された電荷に基づく画素信号を出力する。読み出し回路122は、4つのセンサ画素112ごとに1つずつ設けられている。
 第3基板部130は、半導体基板131と、半導体基板131に設けられたロジック回路132を有する。ロジック回路132は、画素信号を処理する機能を有し、例えば、垂直駆動回路133、カラム信号処理回路134、水平駆動回路135及びシステム制御回路136を有する。
 垂直駆動回路133は、例えば、複数のセンサ画素112を行単位で順に選択する。カラム信号処理回路134は、例えば、垂直駆動回路133によって選択された行の各センサ画素112から出力される画素信号に対して、相関二重サンプリング(Correlated Double Sampling:CDS)処理を施す。カラム信号処理回路134は、例えば、CDS処理を施すことにより、画素信号の信号レベルを抽出し、各センサ画素112の受光量に応じた画素データを保持する。水平駆動回路135は、例えば、カラム信号処理回路134に保持されている画素データを順次、外部に出力する。システム制御回路136は、例えば、ロジック回路132内の各ブロック(垂直駆動回路133、カラム信号処理回路134及び水平駆動回路135)の駆動を制御する。
 図14は、本開示の実施形態3に係る画素ユニットPUの構成例を示す回路図である。図14に示すように、撮像装置100では、4つのセンサ画素112が1つの読み出し回路122に電気的に接続されて、1つの画素ユニットPUを構成している。4つのセンサ画素112は、1つの読み出し回路122を共有しており、4つのセンサ画素112の各出力は共有する読み出し回路122に入力される。
 各センサ画素112は、互いに共通の構成要素を有する。図14では、各センサ画素112の構成要素を互いに区別するために、各センサ画素112の構成要素の符号(例えば、後述のPD、TG、FD)の末尾に識別番号(1,2,3,4)が付与されている。以下では、各センサ画素112の構成要素を互いに区別する必要のない場合には、各センサ画素112の構成要素の符号の末尾の識別番号を省略するものとする。
 各センサ画素112は、例えば、フォトダイオードPD(本開示の「光電変換素子」の一例)と、フォトダイオードPDと電気的に接続された転送トランジスタTRと、転送トランジスタTRを介してフォトダイオードPDから出力された電荷を一時的に保持するフローティングディフュージョンFDと、を有する。フォトダイオードPDは、光電変換を行って受光量に応じた電荷を発生する。フォトダイオードPDのカソードが転送トランジスタTRのソースに電気的に接続されており、フォトダイオードPDのアノードが基準電位線(例えばグラウンド)に電気的に接続されている。転送トランジスタTRのドレインがフローティングディフュージョンFDに電気的に接続され、転送トランジスタTRのゲート電極は画素駆動線123に電気的に接続されている。転送トランジスタTRは、例えば、CMOS(Complementary Metal Oxide Semiconductor)トランジスタである。
 1つの読み出し回路122を共有する各センサ画素112のフローティングディフュージョンFDは、互いに電気的に接続されるとともに、共通の読み出し回路122の入力端に電気的に接続されている。読み出し回路122は、例えば、増幅トランジスタAMPと、リセットトランジスタRST及び選択トランジスタSELとを有する。なお、選択トランジスタSELは、必要に応じて省略してもよい。
 リセットトランジスタRSTのソース(読み出し回路122の入力端)がフローティングディフュージョンFDに電気的に接続されており、リセットトランジスタRSTのドレインが電源線VDD及び増幅トランジスタAMPのドレインに電気的に接続されている。リセットトランジスタRSTのゲート電極は画素駆動線123(図13参照)に電気的に接続されている。増幅トランジスタAMPのソースが選択トランジスタSELのドレインに電気的に接続されており、増幅トランジスタAMPのゲート電極がリセットトランジスタRSTのソースに電気的に接続されている。選択トランジスタSELのソース(読み出し回路122の出力端)が垂直信号線124に電気的に接続されており、選択トランジスタSELのゲート電極が画素駆動線123(図13参照)に電気的に接続されている。
 転送トランジスタTRは、転送トランジスタTRがオン状態となると、フォトダイオードPDの電荷をフローティングディフュージョンFDに転送する。リセットトランジスタRSTは、フローティングディフュージョンFDの電位を所定の電位にリセットする。リセットトランジスタRSTがオン状態となると、フローティングディフュージョンFDの電位を電源線VDDの電位にリセットする。選択トランジスタSELは、読み出し回路122からの画素信号の出力タイミングを制御する。
 増幅トランジスタAMPは、画素信号として、フローティングディフュージョンFDに保持された電荷のレベルに応じた電圧の信号を生成する。増幅トランジスタAMPは、ソースフォロア型のアンプを構成しており、フォトダイオードPDで発生した電荷のレベルに応じた電圧の画素信号を出力するものである。増幅トランジスタAMPは、選択トランジスタSELがオン状態となると、フローティングディフュージョンFDの電位を増幅して、その電位に応じた電圧を、垂直信号線124を介してカラム信号処理回路134に出力する。
 本開示の実施形態3では、リセットトランジスタRST、増幅トランジスタAMP、転送トランジスタTR及び選択トランジスタSELのうちの1つ以上に、実施形態1で説明したMOSトランジスタ3又は実施形態2で説明したMOSトランジスタ3Aが用いられる。
 例えば、図14に示すように、転送トランジスタTRは、第1基板部110に設けられている。転送トランジスタTRに、実施形態1で説明したMOSトランジスタ3又は実施形態2で説明したMOSトランジスタ3Aが用いられてもよい。この場合、半導体基板111が実施形態1、2で説明した半導体基板2に相当する。
 また、図14に示すように、リセットトランジスタRST、増幅トランジスタAMP及び選択トランジスタSELは、第2基板部120に設けられている。リセットトランジスタRST、増幅トランジスタAMP及び選択トランジスタSELのうちの1つ以上に、実施形態1で説明したMOSトランジスタ3又は実施形態2で説明したMOSトランジスタ3Aが用いられてもよい。
 なお、図15は、実施形態1で説明したMOSトランジスタ3を画素ユニットPUの転送トランジスタTRに用いた場合の、開口部H1とゲート電極30との位置関係を模式的に示す平面図である。図15に示す例ではフローティングディフュージョンFDがMOSトランジスタ3のソース領域に相当する。図15に示すように、本開示の実施形態において、ソース領域(この例では、フローティングディフュージョンFD)上を開口する開口部H1は、ゲート電極30に対してセルフアラインで形成されていなくてもよい。
 以上説明したように、本開示の実施形態3に係る撮像装置100は、フォトダイオードPDと、フォトダイオードPDで光電変換された電荷の読出しを行うための半導体装置とを備える。撮像装置100は、この半導体装置の少なくとも一部として、半導体装置1(または、半導体装置1A)を備える。半導体装置1(または、半導体装置1A)は、N型不純物の横方向への拡散が抑制されているため、短チャネル効果の発生を抑制することができ、実効ゲート長を長くすることができる。また、N型不純物の横方向への拡散が抑制されるため、ソース領域41及びドレイン領域42を高濃度に形成することができ、ソース領域41及びドレイン領域42の各コンタクト抵抗を低減することができる。これにより、撮像装置100の読出し性能の向上を図ることができる。
<その他の実施形態>
 上記のように、本開示は実施形態及び変形例によって記載したが、この開示の一部をなす論述及び図面は本開示を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。例えば、本開示の「半導体装置」の用途は、撮像装置100に限定されない。本開示の「半導体装置」は、撮像装置100以外の他の電子機器に用いてもよい。
 このように、本技術はここでは記載していない様々な実施形態等を含むことは勿論である。上述した実施形態及び変形例の要旨を逸脱しない範囲で、構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。また、本明細書に記載された効果はあくまでも例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本開示は以下のような構成も取ることができる。
(1)
 半導体基板と、
 前記半導体基板の第1主面側に設けられた電界効果トランジスタと、を備え、
 前記電界効果トランジスタは、
 前記半導体基板の前記第1主面側に設けられ、ソース領域の少なくとも一部又はドレイン領域の少なくとも一部となるN型領域と、
 前記N型領域上に設けられた絶縁膜と、
 前記絶縁膜を介して前記N型領域上に設けられたN型半導体層と、を有する半導体装置。
(2)
 前記絶縁膜の膜厚は、5Å以上15Å以下である、前記(1)に記載の半導体装置。
(3)
 前記N型領域におけるN型不純物のピーク濃度は1×1020/cm以上であり、
 前記N型領域においてN型不純物の濃度が1×1017/cm以下となる端部は、前記半導体基板の前記第1主面から0.1μm以内に存在する、前記(1)又は(2)に記載の半導体装置。
(4)
 前記N型半導体層におけるN型不純物の濃度は、1×1020/cm以上である、前記(1)から(3)のいずれか1項に記載の半導体装置。
(5)
 前記N型半導体層は、ポリシリコン、アモルファスシリコン、又は、SiGeである、前記(4)に記載の半導体装置。
(6)
 前記電界効果トランジスタは、
 チャネルが形成される半導体領域と、
 前記半導体領域を覆うゲート電極と、
 前記半導体領域と前記ゲート電極との間に配置されたゲート絶縁膜と、
 前記ゲート電極の側面に配置されるサイドウォール絶縁膜と、を有し、
 前記N型半導体層は前記サイドウォール絶縁膜の少なくとも一部を覆っている、前記(1)から(5)のいずれか1項に記載の半導体装置。
(7)
 前記電界効果トランジスタは、
 チャネルが形成される半導体領域と、
 前記半導体領域を覆うゲート電極と、
 前記半導体領域と前記ゲート電極との間に配置されたゲート絶縁膜と、を有し、
 前記半導体領域は、
 上面と、
 前記ゲート電極のゲート幅方向において前記上面の一方の側に位置する第1側面と、
 前記ゲート幅方向において前記上面の他方の側に位置する第2側面と、を有し、
 前記ゲート電極は、
 前記上面と前記ゲート絶縁膜を介して向かい合う第1部位と、
 前記第1側面と前記ゲート絶縁膜を介して向かい合う第2部位と、
 前記第2側面と前記ゲート絶縁膜を介して向かい合う第3部位と、を有する前記(1)から(6)のいずれか1項に記載の半導体装置。
(8)
 前記N型半導体層は、前記絶縁膜を介して前記N型領域にオーミック接続している、前記(1)から(7)のいずれか1項に記載の半導体装置。
(9)
 半導体基板に絶縁膜を形成する工程と、
 前記絶縁膜上にN型半導体層を形成する工程と、
 前記N型半導体層が形成された前記半導体基板に熱処理を施し、前記N型半導体層から前記半導体基板にN型不純物を固相拡散させて、ソース領域の少なくとも一部又はドレイン領域の少なくとも一部となるN型領域を形成する工程と、を含む半導体装置の製造方法。
(10)
 光電変換素子と、
 前記光電変換素子で光電変換された電荷の読み出しを行うための半導体装置と、を備え、
 前記半導体装置は、
 半導体基板と、
 前記半導体基板の第1主面側に設けられた電界効果トランジスタと、を備え、
 前記電界効果トランジスタは、
 前記半導体基板の前記第1主面側に設けられ、ソース領域の少なくとも一部又はドレイン領域の少なくとも一部となるN型領域と、
 前記N型領域上に設けられた絶縁膜と、
 前記絶縁膜を介して前記N型領域上に設けられたN型半導体層と、を有する撮像装置。
1、1A 半導体装置
2 半導体基板
2a 表面
2b 裏面
3、3A MOSトランジスタ
5 素子分離層
10 半導体領域
10a 上面
10b 第1側面
10c 第2側面
20 ゲート絶縁膜
30 ゲート電極
38 サイドウォール絶縁膜
41 ソース領域
42 ドレイン領域
50 絶縁膜
55 N型半導体層
57 コンタクト電極
61 ハードマスク
63 第1層間絶縁膜
65 第2層間絶縁膜
100 撮像装置
110 第1基板部
111 半導体基板
112 センサ画素
113 画素領域
120 第2基板部
121 半導体基板
122 読み出し回路
123 画素駆動線
124 垂直信号線
130 第3基板部
131 半導体基板
132 ロジック回路
133 垂直駆動回路
134 カラム信号処理回路
135 水平駆動回路
136 システム制御回路
301 第1部位
302 第2部位
303 第3部位
411、421 N+型領域
412、422 N-型領域
AMP 増幅トランジスタ
FD フローティングディフュージョン
h1 第1トレンチ
h2 第2トレンチ
H1、H2 開口部
H11 凹部
PD フォトダイオード
PU 画素ユニット
RST リセットトランジスタ
SEL 選択トランジスタ
TR 転送トランジスタ
VDD 電源線

Claims (10)

  1.  半導体基板と、
     前記半導体基板の第1主面側に設けられた電界効果トランジスタと、を備え、
     前記電界効果トランジスタは、
     前記半導体基板の前記第1主面側に設けられ、ソース領域の少なくとも一部又はドレイン領域の少なくとも一部となるN型領域と、
     前記N型領域上に設けられた絶縁膜と、
     前記絶縁膜を介して前記N型領域上に設けられたN型半導体層と、を有する半導体装置。
  2.  前記絶縁膜の膜厚は、5Å以上15Å以下である、請求項1に記載の半導体装置。
  3.  前記N型領域におけるN型不純物のピーク濃度は1×1020/cm以上であり、
     前記N型領域においてN型不純物の濃度が1×1017/cm以下となる端部は、前記半導体基板の前記第1主面から0.1μm以内に存在する、請求項1に記載の半導体装置。
  4.  前記N型半導体層におけるN型不純物の濃度は、1×1020/cm以上である、請求項1に記載の半導体装置。
  5.  前記N型半導体層は、ポリシリコン、アモルファスシリコン、又は、SiGeである、請求項4に記載の半導体装置。
  6.  前記電界効果トランジスタは、
     チャネルが形成される半導体領域と、
     前記半導体領域を覆うゲート電極と、
     前記半導体領域と前記ゲート電極との間に配置されたゲート絶縁膜と、
     前記ゲート電極の側面に配置されるサイドウォール絶縁膜と、を有し、
     前記N型半導体層は前記サイドウォール絶縁膜の少なくとも一部を覆っている、請求項1に記載の半導体装置。
  7.  前記電界効果トランジスタは、
     チャネルが形成される半導体領域と、
     前記半導体領域を覆うゲート電極と、
     前記半導体領域と前記ゲート電極との間に配置されたゲート絶縁膜と、を有し、
     前記半導体領域は、
     上面と、
     前記ゲート電極のゲート幅方向において前記上面の一方の側に位置する第1側面と、
     前記ゲート幅方向において前記上面の他方の側に位置する第2側面と、を有し、
     前記ゲート電極は、
     前記上面と前記ゲート絶縁膜を介して向かい合う第1部位と、
     前記第1側面と前記ゲート絶縁膜を介して向かい合う第2部位と、
     前記第2側面と前記ゲート絶縁膜を介して向かい合う第3部位と、を有する請求項1に記載の半導体装置。
  8.  前記N型半導体層は、前記絶縁膜を介して前記N型領域にオーミック接続している、請求項1に記載の半導体装置。
  9.  半導体基板に絶縁膜を形成する工程と、
     前記絶縁膜上にN型半導体層を形成する工程と、
     前記N型半導体層が形成された前記半導体基板に熱処理を施し、前記N型半導体層から前記半導体基板にN型不純物を固相拡散させて、ソース領域の少なくとも一部又はドレイン領域の少なくとも一部となるN型領域を形成する工程と、を含む半導体装置の製造方法。
  10.  光電変換素子と、
     前記光電変換素子で光電変換された電荷の読み出しを行うための半導体装置と、を備え、
     前記半導体装置は、
     半導体基板と、
     前記半導体基板の第1主面側に設けられた電界効果トランジスタと、を備え、
     前記電界効果トランジスタは、
     前記半導体基板の前記第1主面側に設けられ、ソース領域の少なくとも一部又はドレイン領域の少なくとも一部となるN型領域と、
     前記N型領域上に設けられた絶縁膜と、
     前記絶縁膜を介して前記N型領域上に設けられたN型半導体層と、を有する撮像装置。
PCT/JP2022/042451 2021-12-22 2022-11-15 半導体装置及び半導体装置の製造方法、撮像装置 WO2023119955A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-208515 2021-12-22
JP2021208515A JP2023093102A (ja) 2021-12-22 2021-12-22 半導体装置及び半導体装置の製造方法、撮像装置

Publications (1)

Publication Number Publication Date
WO2023119955A1 true WO2023119955A1 (ja) 2023-06-29

Family

ID=86902160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042451 WO2023119955A1 (ja) 2021-12-22 2022-11-15 半導体装置及び半導体装置の製造方法、撮像装置

Country Status (2)

Country Link
JP (1) JP2023093102A (ja)
WO (1) WO2023119955A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172178A (ja) * 2002-11-18 2004-06-17 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP2005259939A (ja) * 2004-03-11 2005-09-22 Toshiba Corp 半導体装置及びその製造方法
JP2021034435A (ja) * 2019-08-20 2021-03-01 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置およびその製造方法、並びに電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172178A (ja) * 2002-11-18 2004-06-17 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP2005259939A (ja) * 2004-03-11 2005-09-22 Toshiba Corp 半導体装置及びその製造方法
JP2021034435A (ja) * 2019-08-20 2021-03-01 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置およびその製造方法、並びに電子機器

Also Published As

Publication number Publication date
JP2023093102A (ja) 2023-07-04

Similar Documents

Publication Publication Date Title
US20090166693A1 (en) Image Sensor and Manufacturing Method Thereof
US20150155173A1 (en) Method for manufacturing semiconductor device
JP4783050B2 (ja) 半導体装置及びその製造方法
CN103137621A (zh) 半导体器件及其制造方法
US20180070041A1 (en) Solid-state image sensor, method of manufacturing the same, and camera
US6093609A (en) Method for forming semiconductor device with common gate, source and well
US6849890B2 (en) Semiconductor device and manufacturing method thereof
US10777596B2 (en) Imaging apparatus, method of manufacturing the same, and device
US20220367545A1 (en) Semiconductor device and imaging device
US20130026565A1 (en) Low rdson resistance ldmos
US6218210B1 (en) Method for fabricating image sensor with extended pinned photodiode
JP2012238760A (ja) 半導体装置およびその製造方法
JP2006202860A (ja) 半導体装置及びその製造方法
WO2023119955A1 (ja) 半導体装置及び半導体装置の製造方法、撮像装置
JP2013069913A (ja) 半導体装置およびその製造方法
US6232208B1 (en) Semiconductor device and method of manufacturing a semiconductor device having an improved gate electrode profile
KR20070029369A (ko) 암전류 발생을 억제할 수 있는 이미지센서 제조 방법
KR101063690B1 (ko) 반도체 소자 및 그 제조 방법
US7884399B2 (en) Semiconductor device and method of fabricating the same
KR100935269B1 (ko) 이미지 센서 및 그 제조방법
JP2015046505A (ja) 半導体装置およびその製造方法
KR100591172B1 (ko) 모스 트랜지스터의 제조 방법
CN103094217A (zh) 晶体管、晶体管制作方法及包括该晶体管的半导体器件
JP5630939B2 (ja) 半導体装置及びその製造方法
KR100605908B1 (ko) 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910674

Country of ref document: EP

Kind code of ref document: A1