WO2023119791A1 - 鋼の製造方法 - Google Patents

鋼の製造方法 Download PDF

Info

Publication number
WO2023119791A1
WO2023119791A1 PCT/JP2022/037188 JP2022037188W WO2023119791A1 WO 2023119791 A1 WO2023119791 A1 WO 2023119791A1 JP 2022037188 W JP2022037188 W JP 2022037188W WO 2023119791 A1 WO2023119791 A1 WO 2023119791A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
tundish
weir
steel
continuous casting
Prior art date
Application number
PCT/JP2022/037188
Other languages
English (en)
French (fr)
Inventor
章敏 松井
裕計 近藤
洋晴 井戸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023501443A priority Critical patent/JP7477040B2/ja
Priority to CN202280079997.7A priority patent/CN118338977A/zh
Publication of WO2023119791A1 publication Critical patent/WO2023119791A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal

Definitions

  • the present invention relates to a method for promoting the separation and removal of non-metallic inclusions in molten steel in a continuous casting tundish to produce highly clean steel.
  • inclusions include deoxidation products, products of reaction between molten steel, slag and refractories, carbides and nitrides.
  • the inclusions in the molten steel immediately after deoxidation are basically Al 2 O 3 . It is known that CaO—Al 2 O 3 inclusions are formed by reaction.
  • Al in the molten steel reacts with MgO in the slag and refractories to pick up Mg in the molten steel, and this Mg reacts with Al 2 O 3 in the molten steel to form MgO-Al 2 O 3 intervening known to be material.
  • Non-metallic inclusions in molten steel rise to the surface due to the difference in specific gravity from the molten steel and are removed from the molten steel.
  • not all inclusions float, but some remain in the cast slab after continuous casting through the ladle, tundish and mold. If large inclusions exceeding 50 ⁇ m remain in the cast slab, it will lead to defects in the steel product. Therefore, various techniques have been proposed for removing large inclusions from molten steel.
  • Patent Document 1 discloses a technique of installing a three-stage weir in a tundish that supplies molten steel to a mold for continuous casting.
  • three stages of weirs namely, a lower weir, an upper weir, and a lower weir, are sequentially installed in the direction from the immersion position of the injection nozzle to the outflow port of the mold, so that inclusions are removed in the tundish. It is said that it can promote the separation and removal of
  • Patent Document 2 discloses a tundish for continuous casting of steel in which an upper dam and a lower dam are provided between the molten steel injection part from the ladle and the molten steel outlet to the mold. According to Patent Document 2, an upper dam and a lower dam are arranged at the same position in the vertical direction, and a slit is formed between the upper dam and the lower dam through which a main line passes, thereby preventing not only large inclusions but also minute inclusions. Inclusions are sufficiently separated and removed, and the molten steel can be purified.
  • Patent Document 3 discloses a molten steel injection part where the molten steel injection flow collides with the bottom of the tundish, a wall part surrounding the molten steel injection part from four directions and having a notch with an opening width of 1.0 mm or more, and the wall A tundish is disclosed in which a weir having an eave-like portion facing the molten steel injection site at the upper end of the portion is arranged. According to Patent Document 3, by arranging the weir having the eaves-like portion, the floating separation of inclusions in the tundish is promoted, the cleanliness of the molten steel poured into the mold is improved, and the casting produced by continuous casting is improved. It is said that the cleanliness of the piece can be improved.
  • JP-A-7-132353 JP 2007-90424 A Japanese Patent No. 5556421
  • Patent Documents 1 to 3 have relatively complicated weir constructions, and have drawbacks in that the refractory cost is high and the weir production is complicated.
  • the quality of steel materials is closely related to the molten steel throughput (molten steel flow rate per unit time)
  • Patent Document 1 nor Patent Document 2 mentions the molten steel throughput. Therefore, it is difficult to say that Patent Documents 1 to 3 sufficiently disclose the conditions for carrying out these inventions.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a continuous casting tundish with a dam corresponding to the throughput of molten steel. To provide a method for producing steel with high cleanliness by promoting flotation and separation of steel.
  • a steel manufacturing method using a continuous casting tundish wherein the continuous casting tundish has a dam provided between a molten steel injection part and a molten steel outlet to the mold, and the dam has an opening for molten steel to pass through, and the throughput Q (ton/sec) of molten steel passing through the weir and the area S (m 2 ) of the opening are the following (1)
  • a method of manufacturing steel that satisfies the formula. 0.015 ⁇ Q/( ⁇ S) ⁇ 0.065
  • is the density of molten steel (ton/m 3 ).
  • inclusions in molten steel can be efficiently separated and removed in a tundish for continuous casting by installing a weir having an appropriate shape according to the throughput of molten steel in the tundish. It becomes possible to manufacture expensive steel products.
  • FIG. 1 is a bird's-eye view showing a schematic configuration of a continuous casting tundish used in one embodiment of the present invention.
  • FIG. 2 is a schematic side cross-sectional view of the continuous casting tundish shown in FIG.
  • FIG. 3 is a schematic diagram explaining the flow of molten steel in the tundish.
  • FIG. 4 is a schematic diagram showing the shape of the weir.
  • FIG. 5 is a schematic diagram showing another shape of the weir.
  • FIG. 6 is a diagram showing the distribution of molten steel flow velocity on the outermost surface of molten steel in the tundish obtained by numerical simulation.
  • 7 is a diagram showing the relationship between h/H and the number of inclusions of 50 ⁇ m or more in Example 2.
  • FIG. 8 is a diagram showing the relationship between h/H and B10 life in Example 2.
  • FIG. 9 is a schematic plan view of two tundishes with different shapes.
  • FIG. 1 is a bird's-eye view showing a schematic configuration of a continuous casting tundish used in one embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the continuous casting tundish shown in FIG. 1 from the side. .
  • tundish 1 From the ladle 2 placed above the tundish 1 for continuous casting (hereinafter referred to as "tundish 1"), it is stored in the ladle 2 through the injection nozzle 4 installed at the bottom of the ladle 2. Molten steel 11 is poured into the tundish 1 .
  • the tundish 1 has an outer shell 5 and a lining refractory 6 inside the steel shell 5.
  • the bottom surface of the tundish 1 is provided with an outlet 7 for supplying the molten steel 11 to the mold 3 of the continuous casting machine.
  • the molten steel 11 supplied into the mold contacts the mold 3 and is cooled and solidified to form a cast slab 13 having a solidified shell (not shown) as an outer shell and an unsolidified molten steel 11 inside.
  • the cast slab 13 is continuously pulled out below the mold 3 to continuously cast the molten steel 11 .
  • a stopper 9 is provided above the outflow port 7. By moving the stopper 9 up and down, the opening area of the outflow port 7 changes, so that the molten steel flow rate from the tundish 1 to the mold 3 can be adjusted. It has become.
  • a sliding nozzle method may be used instead of the stopper method.
  • a plate-shaped refractory weir 8 is provided inside the tundish 1 between the molten steel injection part where the injection nozzle 4 is installed and the outflow port 7 .
  • One weir 8 is installed on each of the left and right sides of the molten steel pouring part where the pouring nozzle 4 is installed.
  • the weir 8 has an opening 8a at the top, and the molten steel 11 passes through the opening 8a and flows to the outflow port 7. As shown in FIG. Details of the shape of the weir 8 will be described later.
  • the tundish 1 shown in FIG. 1 is a 4-strand tundish in which an injection nozzle 4 is installed in the center of the tundish 1 and two outflow ports 7 are provided on each of the left and right sides of the injection nozzle 4 .
  • the tundish used in the method for manufacturing steel according to the present embodiment is not limited to a 4-strand tundish, and may be, for example, a 2-strand tundish having one outflow port 7 on each side of the injection nozzle 4. , a three-strand shape having two outflow ports 7 on the left side of the injection nozzle 4 and one outflow port 7 on the right side.
  • the required number of strands can be selected according to the continuous casting machine and the production system at that time.
  • the inventors conducted various investigations through water model experiments and numerical analysis in order to formulate measures to promote flotation and separation of non-metallic inclusions in the tundish 1. As a result, the following findings were obtained.
  • the time from when the molten steel 11 is poured into the tundish 1 until it flows out from the outlet 7 (this time is hereinafter referred to as residence time) is need to be longer. If the weir 8 is not provided, the molten steel 11 injected into the tundish 1 through the injection nozzle 4 flows directly along the bottom surface of the tundish 1 to the outflow port 7 and stays there. less time.
  • the present inventors first thought that it was necessary to float the molten steel 11 poured into the tundish 1 inside the tundish 1 and lengthen the route to the outflow port 7 . Therefore, a weir 8 having an upper opening 8a is provided between the molten steel injection part where the injection nozzle 4 is installed and the outlet 7. As shown in FIG. As a result, the molten steel 11 poured into the tundish 1 floats once by the weir 8, passes through the opening 8a of the weir 8, and then flows to the outlet 7, so that the molten steel 11 is poured into the tundish 1. It was thought that the residence time of the molten steel 11 could be lengthened.
  • the present inventors have found that the throughput of the molten steel 11 passing through the weir 8 (molten steel flow rate per unit time) and the area of the opening 8a of the weir 8 greatly affect the floatation of inclusions.
  • the area of the opening 8a of the weir 8 is hereinafter referred to as area S. As shown in FIG.
  • FIG. 3 is a schematic diagram explaining the flow of molten steel 11 within the tundish 1.
  • Molten steel 11 injected into the tundish 1 from the injection nozzle 4 is obstructed by the weir 8, rises along the weir 8, and passes through an opening 8a above the weir 8. After passing through the opening 8a, the molten steel flows in the longitudinal direction of the tundish 1 along the molten steel surface 12 in the tundish 1 and the vicinity of the molten steel surface 12, and reaches the end of the tundish 1 (the short side surface of the tundish 1). It sinks in and flows to the outflow port 7.
  • the factors governing the molten steel flow velocity on the molten steel surface 12 are the molten steel throughput Q (ton/sec) passing through the opening 8a of the weir 8 and the area S (m 2 ) of the opening 8a.
  • Q molten steel throughput
  • molten steel density
  • the present inventors found that by controlling the average flow velocity (m/sec) of the molten steel passing through the opening 8a so as to satisfy the following formula (1), the floatation separation of inclusions is promoted and the cleanliness is improved. It has been found that it becomes possible to manufacture steel products.
  • FIG. 4 is a schematic diagram showing the shape of the weir.
  • An opening 8 a is provided above the weir 8 .
  • the area surrounded by the width W of the opening 8a and the passage height h of the molten steel 11 (hatched area in FIG. 4) is the area S of the opening 8a.
  • the molten steel throughput is determined by the mold size of the continuous caster and the billet withdrawal speed.
  • the width W of the opening 8a and the passage height h of the molten steel 11 may be designed so that the relationship of formula (1) is satisfied.
  • the thickness of the weir 8 may be arbitrarily designed in consideration of the strength of the weir 8, ease of construction, cost, and the like.
  • the weirs 8 may be provided with a through hole 8b.
  • the vent holes 8b may be any number of holes of any size (about 50 mm x 50 mm) that do not affect the flow of molten steel in the tundish 1 and affect the quality of steel products. good.
  • the molten steel throughput Q passing through the opening 8a is 0.15 ton/sec or less, and a particularly remarkable effect is obtained. This is because if the molten steel throughput Q is too large, a corresponding area S of the opening 8a is required, which increases the difficulty of manufacturing and installing the weir and increases the cost.
  • the shape of the opening 8a is not limited to a rectangular shape as shown in FIG. 4.
  • a stepped shape as shown in FIG. It may have a circular shape.
  • the inventors investigated the relationship between the molten steel depth H and the passage height h of the molten steel at the opening 8a. As a result, it was found that the ratio of the molten steel passing height h to the molten steel depth H, that is, h/H, preferably satisfies the following formula (2).
  • the molten steel has a density of 7,050 kg/ m3 , a viscosity coefficient of 0.005 kg/m/sec, a specific heat of 824 J/kg/K, a thermal conductivity of 40.3 W/m/K, and a thermal expansion coefficient of 1.0. 135 ⁇ 10 ⁇ 5 /K.
  • the molten steel flow rate corresponding to a predetermined molten steel throughput from the injection nozzle 4 was defined as a uniform flow rate in the inner diameter of the injection nozzle 4 .
  • the gauge pressure was set to 0 Pa and the molten steel was allowed to flow out.
  • the heat loss on the molten steel surface in the tundish 1 was set to 40 kW/m 2
  • the heat loss from the walls and bottom of the tundish 1 was set to 4 kW/m 2 .
  • FIG. 6 shows the molten steel flow velocity distribution on the outermost surface of the molten steel 11 in the tundish 1, obtained by numerical simulation.
  • FIG. 6 is a view of the tundish viewed from directly above.
  • FIG. 6 is a calculation example of a 5-strand tundish without a weir, under the condition that the molten steel throughput is 0.59 ton/min/strand. As shown in FIG. 6, it is possible to quantitatively evaluate the flow velocity on the outermost surface of molten steel by performing a numerical simulation.
  • the weir 8 having an appropriate shape corresponding to the molten steel throughput is installed in the tundish 1 .
  • inclusions in the molten steel can be efficiently removed and separated in the tundish for continuous casting, and production of highly clean steel products can be realized.
  • bearing steel which is representative of high-cleanliness steel
  • RH vacuum degassing furnace RH vacuum degassing furnace
  • continuous casting machine in an actual machine with a scale of about 200 tons of molten steel per charge. bottom.
  • Bloom slabs obtained by continuous casting were heated in a heating furnace and then hot-rolled into billets having a diameter of 215 mm. This billet was further hot-rolled into a steel bar with a diameter of 60 mm, which was then annealed into a product round bar. A vertical cross-section in the rolling direction at a 1/4 thick part of the product round bar was observed by a microscopic method. The test area was 10000 mm 2 , and the number of inclusions with a diameter of 50 ⁇ m or more was measured.
  • a rolling contact fatigue life test was conducted to evaluate the product life.
  • the product round bar was sliced into rings, roughly machined into discs, subjected to normal quenching and low-temperature tempering heat treatments, and then the surface was machined to produce test specimens.
  • a rolling contact fatigue life test was performed using this test piece. This rolling contact fatigue life test was conducted using a Mori type thrust type rolling contact fatigue tester under the conditions of Hertz maximum contact stress: 5260 MPa, number of repeated stresses: 30 Hz, lubricating oil: #68 turbine oil.
  • Tables 1 and 2 show the operating conditions, the number of inclusions of 50 ⁇ m or more (converted to the number per 1000 mm 2 ), and the evaluation results of the B10 life of the examples of the present invention and the comparative examples.
  • Comparative Examples 5 and 6 the value of Q/( ⁇ S) is larger than the range of the present invention, and the number of inclusions of 50 ⁇ m or more in Comparative Examples 5 and 6 is 1.4 to 1.8. /1000 mm 2 , and the B10 life was 2.9 to 4.4 ⁇ 10 7 , which was slightly inferior. This is probably because the inclusion removal effect was small because the area of the weir opening was small relative to the molten steel throughput.
  • the number of inclusions of 50 ⁇ m or more is 0.2 to 1.0/1000 mm 2 and the B10 life is 7.1 to 9.5 ⁇ 10 7 times, which is good. It was a good result.
  • Example 1 for the sake of simplification, the slab withdrawal speed was fixed at 0.75 m/min, the molten steel depth H was fixed at 570 mm, and the weir opening width W was fixed at 300 mm. It has been confirmed that steel products of good quality can be obtained under the conditions of the present invention as long as they are within the range of the conditions of the present invention. Specifically, check that the billet withdrawal speed is within the range of 0.40 to 2.00 m/min, the molten steel depth H is within the range of 400 to 1000 mm, and the weir opening width W is within the range of 200 to 800 mm. Is going.
  • Example 1 in an actual machine with a scale of about 200 tons of molten steel per charge, the process of converter - ladle refining furnace - RH vacuum degassing furnace - continuous casting machine is representative of high cleanliness steel.
  • the number of inclusions of 50 ⁇ m or more and the B10 life were evaluated in the same manner as in Example 1 while changing the opening width W of the dam and the passage height h of the molten steel. Operating conditions and results are shown in Tables 3 and 4.
  • FIG. 7 shows the relationship between h/H and the number of inclusions of 50 ⁇ m or more
  • FIG. 8 shows the relationship between h/H and B10 life.
  • FIG. 9 is a schematic plan view of two tundishes with different shapes.
  • FIG. 9A is a schematic plan view of tundish A (reference numeral 1A)
  • FIG. 9B is a schematic plan view of tundish B (reference numeral 1B).
  • Two tundishes with different shapes shown in FIG. 9 were prepared, and in the same manner as in Examples 1 and 2, the process of converter - ladle refining furnace - RH vacuum degassing furnace - continuous casting machine Bearing steel, which is a representative of steel, was manufactured.
  • Table 5 shows the operating conditions for tundish A and tundish B, numerical simulation results based thereon, and product quality results.
  • Tundish A has two strands on the left side and one strand on the right side.
  • the tundish B has two strands on the left side and two strands on the right side. Any tundish satisfies the conditions of the formulas (1) and (2).
  • the area ratio of the area where the molten steel flow velocity on the outermost surface of the tundish to the total area of the molten steel surface is 0.03 m / sec or less is 0.03 m / sec for tundish A. 60 and Tundish B was 0.39.
  • the number of inclusions of 50 ⁇ m or more was 0.1/1000 mm 2 for tundish A and 0.4/1000 mm 2 for tundish B.
  • the B10 life was 9.7 ⁇ 10 7 times for the tundish A and 8.9 ⁇ 10 7 times for the tundish B, and the quality of the tundish A was remarkably good. From this result, it was confirmed that if the area ratio of the area of the uppermost surface of the tundish where the molten steel flow velocity is 0.03 m/sec or less to the total area of the molten steel surface is 0.40 or more, steel products of remarkable quality can be manufactured. rice field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

連続鋳造用タンディッシュにおいて、溶鋼スループットに応じた堰を設けることで、比較的単純な堰形状で、溶鋼中の介在物の分離除去を促進させ、清浄性の高い鋼を製造する。 本発明に係る鋼の製造方法は、連続鋳造用タンディッシュ1を用いる鋼の製造方法であって、連続鋳造用タンディッシュ1は、溶鋼注入部と鋳型への溶鋼の流出口7との間に設けられる堰8を有し、堰8は、上方に溶鋼11が通過するための開口部8aを有し、堰8を通過する溶鋼11のスループットQ(ton/sec)と、開口部8aの面積S(m2)とが、下記の(1)式を満たす。(1)式において、ρは溶鋼の密度(ton/m3)である。 0.015≦Q/(ρ×S)≦0.065・・・(1)

Description

鋼の製造方法
 本発明は、連続鋳造用タンディッシュ内で溶鋼中の非金属介在物の分離除去を促進させ、清浄性の高い鋼を製造する方法に関する。
 例えば、軸受鋼に代表されるように、優れた転動疲労寿命や静粛性が求められる鋼材においては、鋼中の非金属介在物を極力低減することが必要である。鋼中の非金属介在物(以下、単に「介在物」とも記す)として、脱酸生成物、溶鋼-スラグ-耐火物間の反応による生成物、炭化物や窒化物が挙げられる。
 軸受鋼などのAl脱酸を行う場合には、溶鋼中の脱酸直後の介在物は基本的にAlであるが、例えば、生成したAlが、スラグ中のCaOとの反応によりCaO-Al系介在物となることが知られている。また、溶鋼中のAlがスラグ中や耐火物中のMgOと反応して溶鋼中にMgがピックアップされ、このMgが溶鋼中のAlと反応することでMgO-Al系介在物となることが知られている。
 このように、溶鋼中には様々な形態の介在物が存在している。なかでも、50μmを超えるような大型の介在物が鋼材中に残存した場合には、ほぼ確実に鉄鋼製品の欠陥因子となる。このため、大型の介在物は、確実に溶鋼中から除去する必要がある。
 溶鋼中の非金属介在物は、溶鋼との比重差で浮上し、溶鋼中から除去される。しかし、全ての介在物が浮上するのではなく、取鍋~タンディッシュ~鋳型を経て、連続鋳造後の鋳片内に残存するものもある。50μmを超えるような大型の介在物が鋳片に残存すると、鉄鋼製品の欠陥に繋がる。このため、大型の介在物を溶鋼から除去するための様々な手法が提案されている。
 例えば、特許文献1には、溶鋼を連続鋳造用鋳型に供給するタンディッシュに3段の堰を設置する技術が開示されている。特許文献1によれば、注入ノズル浸漬位置から鋳型への流出口への方向に向かって、下堰、上堰、下堰の3段の堰を順に設置することで、タンディッシュ内において介在物の分離除去を促進できるとしている。
 特許文献2には、取鍋からの溶鋼注入部と鋳型への溶鋼の流出口との間に、上堰と下堰とを設けた鋼の連続鋳造用のタンディッシュが開示されている。特許文献2によれば、上堰と下堰を同じ位置に上下方向に配置し、上堰と下堰との間に要綱が通過するスリットを形成することで、大型介在物のみならず、微小な介在物も十分に分離除去されて、溶鋼を清浄化できるとしている。
 また、特許文献3には、溶鋼注入流がタンディッシュ底部に衝突する溶鋼注入部と、溶鋼注入部位を四方向から囲み、1.0mm以上の開口幅の切り欠きを有する壁部と、該壁部の上端に溶鋼注入部位側を向いた庇状部と、を有する堰が配置されたタンディッシュが開示されている。特許文献3によれば、庇状部を有する堰を配置することで、タンディッシュにおける介在物の浮上分離が促進され、鋳型に注入される溶鋼の清浄性が高まり、連続鋳造によって製造される鋳片の清浄度を向上できるとしている。
特開平7-132353号公報 特開2007-90424号公報 特許第5556421号公報
 しかしながら、上記従来技術には以下の問題がある。即ち、特許文献1-3ともに、比較的複雑な堰の構成であり、耐火物コストが高いことや、堰製作の煩雑さに難点がある。また、鋼材の品質は溶鋼スループット(単位時間あたりの溶鋼流量)と密接な関係があることが知られているが、特許文献1、特許文献2ともに、溶鋼スループットについての言及が無い。このため、特許文献1-3には、これら発明を実施するための条件が十分に開示されているとは言い難い。
 本発明は上記事情に鑑みてなされたもので、その目的とするところは、連続鋳造用タンディッシュに溶鋼スループットに応じた堰を設けることで、比較的単純な堰形状で、溶鋼中の介在物の浮上分離を促進させ、清浄性の高い鋼を製造する方法を提供することである。
 上記課題を解決するための本発明の要旨は以下のとおりである。
 [1] 連続鋳造用タンディッシュを用いる鋼の製造方法であって、前記連続鋳造用タンディッシュは、溶鋼注入部と鋳型への溶鋼の流出口との間に設けられる堰を有し、前記堰は、上方に溶鋼が通過するための開口部を有し、前記堰を通過する溶鋼のスループットQ(ton/sec)と、前記開口部の面積S(m)とが、下記の(1)式を満たす、鋼の製造方法。
 0.015≦Q/(ρ×S)≦0.065・・・(1)
 (1)式において、ρは溶鋼の密度(ton/m)である。
 [2] 前記連続鋳造用タンディッシュにおける溶鋼深さH(m)と、前記開口部での溶鋼の通過高さh(m)とが、下記の(2)式を満たす、[1]に記載の鋼の製造方法。
 0.15≦h/H≦0.45・・・(2)
 [3]前記連続鋳造用タンディッシュにおける溶鋼表面の全面積をA(m)とし、溶鋼表面の溶鋼流速が0.03m/sec以下の面積をA(m)としたとき、A/Aが0.40以上である、[1]または[2]に記載の鋼の製造方法。
 本発明によれば、溶鋼スループットに応じた適切な形状の堰をタンディッシュに設置することで、連続鋳造用タンディッシュにおいて溶鋼中の介在物を効率的に分離除去することができ、清浄性の高い鉄鋼製品を製造することが可能となる。
図1は、本発明の一実施形態で使用する連続鋳造用タンディッシュの概略構成を示す俯瞰図である。 図2は、図1に示す連続鋳造用タンディッシュの側面からの断面概略図である。 図3は、タンディッシュ内における溶鋼の流れを説明する概略図である。 図4は、堰の形状を示す概略図である。 図5は、堰の他の形状を示す概略図である。 図6は、数値シミュレーションによって得られた、タンディッシュ内溶鋼の最表面における溶鋼流速の分布を示す図である。 図7は、実施例2における、h/Hと50μm以上の介在物個数との関係を示す図である。 図8は、実施例2における、h/HとB10寿命との関係を示す図である。 図9は、形状の異なる2つのタンディッシュの概略平面図である。
 以下、添付図面を参照して本発明の実施形態の一例を具体的に説明する。図1は、本発明の一実施形態で使用する連続鋳造用タンディッシュの概略構成を示す俯瞰図であり、図2は、図1に示す連続鋳造用タンディッシュの側面からの断面概略図である。
 連続鋳造用タンディッシュ1(以下、「タンディッシュ1」と記載する。)の上方に配置される取鍋2から、取鍋2の底部に設置される注入ノズル4を通して、取鍋2に収容された溶鋼11をタンディッシュ1の内部に注入する。タンディッシュ1は、外殻を鉄皮5とし、鉄皮5の内側に内張耐火物6が施工されて構成されている。タンディッシュ1の底面には、連続鋳造機の鋳型3へ溶鋼11を供給する流出口7が設けられており、流出口7から浸漬ノズル10を通して鋳型3へ溶鋼11を供給する。鋳型内へ供給された溶鋼11は鋳型3と接触して冷却されて凝固し、外殻を凝固シェル(図示せず)とし、内部を未凝固の溶鋼11とする鋳片13が形成される。この鋳片13が鋳型3の下方に連続的に引き抜かれて、溶鋼11の連続鋳造が行われる。流出口7の上方にはストッパー9が設けられており、ストッパー9が上下に移動することで流出口7の開口面積が変化し、これによりタンディッシュ1から鋳型3への溶鋼流量が調整できるようになっている。なお、鋳型3への溶鋼流量の調整方式は、ストッパー方式でなく、スライディングノズル方式を用いてもよい。
 タンディッシュ1の内部には、注入ノズル4の設置位置である溶鋼注入部と流出口7との間に、板状の耐火物製の堰8が設けられている。堰8は、注入ノズル4の設置位置である溶鋼注入部の左右にそれぞれ1個設置されている。この堰8は上方が開口部8aとなっており、この開口部8aの部分を溶鋼11が通過して流出口7へと流れていく。堰8の形状の詳細については後述する。
 図1に示すタンディッシュ1は、タンディッシュ1の中央部に注入ノズル4が設置され、注入ノズル4の左右に2つずつ流出口7を設けた4ストランド用のタンディッシュである。本実施形態に係る鋼の製造方法で用いられるタンディッシュは、4ストランドのタンディッシュに限るものではなく、例えば、注入ノズル4の左右に流出口7が1つずつ設置された2ストランドでもよいし、注入ノズル4の左側に流出口7が2つ、右側に流出口7が1つの3ストランドといった形状でも構わない。連続鋳造機及びその時々の生産体制に応じて必要なストランド本数を選択することができる。
 本発明者らは、タンディッシュ1内での非金属介在物の浮上分離を促進するための方策を策定すべく、水モデル実験や数値解析による種々の調査を行った。その結果、以下の知見を得た。
 タンディッシュ1内で溶鋼中介在物の浮上を促進させるには、タンディッシュ1に溶鋼11が注入されてから流出口7へと流れ出るまで時間(以下、この時間を滞留時間と記載する。)を長くする必要がある。堰8を設けない場合には、注入ノズル4を介してタンディッシュ1内に注入された溶鋼11は、タンディッシュ1の底面に沿ってダイレクト(直接)に流出口7へと流れてしまい、滞留時間が短くなる。
 したがって、本発明者らは、まずは、タンディッシュ1内に注入した溶鋼11をタンディッシュ1内で浮上させ、流出口7への経路を長くしてやる必要があると考えた。そこで、注入ノズル4の設置位置である溶鋼注入部と流出口7との間に、上方に開口部8aを有する堰8を設けた。これにより、タンディッシュ1内に注入された溶鋼11は、堰8によって一旦浮上し、堰8の開口部8aを通過した後に流出口7へと流れて行くので、タンディッシュ1内に注入された溶鋼11の滞留時間を長くすることができると考えた。
 この時、注入流の浮上を更に促進するために、例えば、特許文献3に開示されている、注入ノズルの下方のタンディッシュ底面に、四角い桝状の耐火物を加えて設置することもより良い方法である。
 また、本発明者らは、堰8を通過する溶鋼11のスループット(単位時間あたりの溶鋼流量)及び堰8の開口部8aの面積が、介在物の浮上に大きく影響を及ぼすことを見出した。以下、堰8の開口部8aの面積を面積Sと記載する。
 図3は、タンディッシュ1内での溶鋼11の流れを説明する概略図である。なお、図3ではストッパー9の記載を省略している。注入ノズル4からタンディッシュ1内に注入された溶鋼11は、行く手を堰8に遮られて堰8に沿って上昇し、堰8の上方の開口部8aを通過する。開口部8aの通過後は、タンディッシュ1内の溶鋼表面12及び溶鋼表面12の近傍に沿ってタンディッシュ1の長手方向に流れ、タンディッシュ1の端部(タンディッシュ1の短辺面)で潜り込み、流出口7へと流れていく。このとき、タンディッシュ1内の溶鋼表面12を流れる溶鋼11の流速が大きすぎると、介在物の浮上時間を稼げないことがわかった。即ち、タンディッシュ1内の溶鋼表面12を流れる溶鋼11の流速を小さくする必要があることを見出した。
 この溶鋼表面12の溶鋼流速を支配する因子は、堰8の開口部8aを通過する溶鋼スループットQ(ton/sec)及び開口部8aの面積S(m)である。溶鋼密度ρ(ton/m)を用いると、開口部8aを通過する溶鋼11の平均流速(m/sec)はQ/(ρ×S)で算出できる。
 本発明者らは、開口部8aを通過する溶鋼の平均流速(m/sec)を、下記(1)式を満たすように制御することで、介在物の浮上分離が促進され、清浄性の高い鉄鋼製品を製造することが可能になることを見出した。
 0.015≦Q/(ρ×S)≦0.065・・・(1)
 Q/(ρ×S)が0.065超の場合には、タンディッシュ1内の溶鋼表面12を流れる溶鋼11の流速が速すぎて、介在物の浮上除去が十分ではない。また、Q/(ρ×S)が0.015を下回る場合には、開口部8aの面積Sが大きくなり過ぎて、開口部8aを通過した後の溶鋼流がタンディッシュ1の端部まで到達せず、ダイレクト(直接)に流出口7へ向かうようになり、介在物の除去が十分ではないことがわかった。
 次に、本実施形態に係る鋼の製造方法で用いるタンディッシュ1の堰8の形状について説明する。図4は、堰の形状を示す概略図である。堰8の上方に開口部8aを設けている。開口部8aの幅Wと、溶鋼11の通過高さhとで囲われた領域(図4の斜線部)が、開口部8aの面積Sとなる。溶鋼スループットは、連続鋳造機の鋳型サイズと鋳片引き抜き速度とによって決定される。この溶鋼スループットと溶鋼深さHとに対して、(1)式の関係が満たせるように、開口部8aの幅W及び溶鋼11の通過高さhを設計すればよい。また、堰8の厚みについては、堰8の強度や施工のしやすさ、コストなどを鑑みて任意に設計すればよい。なお、鋳造終了時に相対する一対の堰8で囲まれた領域に溜まる残鋼量を低減する目的で、堰8に抜き孔8bを設けてもよい。抜き孔8bは、タンディッシュ1内の溶鋼流動に影響せず、鉄鋼製品の品質に影響を及ぼさない程度のサイズ(50mm×50mm程度)の孔を任意の高さに任意の個数で設置すればよい。
 また、本実施形態において、開口部8aを通過する溶鋼スループットQについては、0.15ton/sec以下で、特に顕著な効果があることも確認している。これは、溶鋼スループットQが大きすぎる場合、それに対応する開口部8aの面積Sが必要となるので、堰の製造、設置の難易度が高く、コストが上昇するなどの弊害があるからである。
 更に、開口部8aの形状については、図4に示すような矩形に限らず、例えば図5(A)に示すように、段差を持った形状や、図5(B)に示すように、半円状の形状であってもよい。
 次に、本発明者らは、溶鋼深さHと、開口部8aでの溶鋼の通過高さhとの関係について調査した。その結果、溶鋼深さHに対する溶鋼の通過高さhの比、つまり、h/Hが、下記の(2)式を満たすことが好ましいことがわかった。
 0.15≦h/H≦0.45・・・(2)
 h/Hが0.15を下回る場合、タンディッシュ1内の溶鋼表面12に近い領域のみを溶鋼11が通過することになり、タンディッシュ1内の溶鋼表面上に浮いているタンディッシュスラグを溶鋼流が削り込み、タンディッシュスラグが溶鋼内に混入し、製品欠陥に繋がるおそれがあることがわかった。また、h/Hが0.45を上回る場合、流出口7に近い領域を溶鋼11が通過することになるので、開口部8aを通過した後に溶鋼流がダイレクトに流出口7に向かってしまい、鉄鋼製品の清浄性が低下することがわかった。
 また、本発明者らは、清浄度の高い鉄鋼製品を製造するための影響因子をより定量的に調査するために数値シミュレーションを実施した。以下、その詳細について数値シミュレーションの一例を用いて説明する。
 数値シミュレーションは、汎用の流体解析ソフトを使用した。評価したいタンディッシュ1、注入ノズル4、流出口7、堰8の形状に合わせてモデル形状を作成し、メッシュを生成した。解析は、三次元定常熱流動解析であり、考慮する流体は、溶鋼のみの単相モデルで、非圧縮性流体とした。流動に関する基礎方程式としては、時間平均の質量保存式、時間平均の運動量保存式(ブシネスク近似による浮力項を考慮)、時間平均のエネルギー保存式を考慮した。乱流モデルとしては、標準k-εモデルを用いた。
 次に、数値シミュレーションで用いた溶鋼の物性値について説明する。溶鋼の密度を7050kg/mとし、粘性係数を0.005kg/m/secとし、比熱を824J/kg/Kとし、熱伝導率を40.3W/m/Kとし、熱膨張率を1.135×10-5/Kとした。
 次に、境界条件について説明する。タンディッシュ1内への溶鋼注入(流入)に関しては、注入ノズル4からの所定の溶鋼スループットに応じた溶鋼流量を、注入ノズル4の内径に一様な流速として規定した。流出口7ではゲージ圧を0Paとして溶鋼を流出させた。温度の境界条件としては、タンディッシュ1内の溶鋼表面での熱損失を40kW/mとし、タンディッシュ1の壁面及び底面からの熱損失を4kW/mとした。
 上記の溶鋼の物性値などに関しては、任意の温度における値を使用している。その時々の操業条件に応じて、大きく逸脱しない程度の値に変更してもよい。
 数値シミュレーションによって得られた、タンディッシュ1内の溶鋼11の最表面における溶鋼流速の分布を図6に示す。図6は、タンディッシュを真上から見た図となる。図6は、5ストランドの堰無しタンディッシュの計算事例であり、溶鋼スループットは0.59ton/min/ストランドの条件である。図6に示すように、数値シミュレーションを行うことで、溶鋼最表面の流速を定量的に評価することが可能となる。
 本発明者らは、このような数値シミュレーションを種々の鋳造条件で実施し、実際の製品の品質結果と照合した。その結果、タンディッシュ1内の溶鋼表面の全面積をA(m)とし、溶鋼表面の溶鋼流速が0.03m/sec以下の面積をA(m)としたとき、A/Aが0.40以上であれば、より清浄度の高い鉄鋼製品を安定的に製造できることを見出した。溶鋼表面の溶鋼流速が低い領域を多く確保することで、介在物の浮上分離・除去が安定的に行えるものと推察された。
 以上説明したように、本実施形態に係る鋼の製造方法によれば、溶鋼スループットに応じた適切な形状の堰8をタンディッシュ1に設置する。これにより、連続鋳造用タンディッシュにおいて溶鋼中の介在物を効率的に除去分離することができ、清浄性の高い鉄鋼製品の製造が実現できる。
 以下、本発明を実施例によってさらに説明する。1チャージの溶鋼量が約200トンの規模の実機にて、転炉-取鍋精錬炉-RH真空脱ガス炉-連続鋳造機の工程で、高清浄度鋼の代表として挙げられる軸受鋼を製造した。
 図1及び図2に相当する4ストランドのタンディッシュを用いて、連続鋳造機にてブルーム鋳片(300×400mm断面、鋳片引き抜き速度;0.75m/min)を製造した。また、堰については、図4に相当するものを使用した。一部の水準においては、1つのストランドを閉止して、3ストランドでの連続鋳造も行った。また、堰を設置しないタンディッシュを用いた比較例(比較例1、2)、及び、堰を設置したものの、Q/(ρ×S)が(1)式を満たさない条件で連続鋳造した比較例(比較例3~6)も実施した。
 連続鋳造で得られたブルーム鋳片を、加熱炉で加熱した後、直径215mmのビレットに熱間圧延した。このビレットを更に熱間圧延によって直径60mmの棒鋼とし、焼鈍処理を経て、製品丸棒とした。この製品丸棒の1/4厚部における圧延方向の縦断面を、検鏡法によって観察した。被検面積は10000mmとし、直径50μm以上の介在物個数を測定した。
 また、製品寿命の評価のために、転動疲労寿命試験を実施した。転動疲労寿命試験は、上記製品丸棒を輪切りにして円盤に粗加工し、通常の焼入れ及び低温焼戻しの熱処理を施した後に、表面を機械仕上げ加工して試験片を製作した。この試験片を用いて転動疲労寿命試験を行った。この転動疲労寿命試験には森式スラスト型転動疲労試験機を用い、ヘルツ最大接触応力:5260MPa、繰り返し応力数:30Hz、潤滑油:#68タービン油の条件で行った。試験は、試験片が剥離するまでの負荷回数を測定し、その試験結果がワイブル分布に従うものとして、試験片数の10%が疲労破壊する寿命(B10寿命)をワイブル確率紙により求めた。介在物個数及びB10寿命評価は、左右のストランドからそれぞれサンプルを採取して評価した。
 表1及び表2に、本発明例及び比較例の操業条件及び50μm以上の介在物個数(1000mmあたりの個数に換算)、B10寿命の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 堰を設置していない比較例1、2は、50μm以上の介在物個数が2.0~2.4個/1000mであり、B10寿命が0.3~0.6×10回であり、劣位であった。
 比較例3、4は、右ストランド側のQ/(ρ×S)の値が本発明の範囲外であり、この右ストランド側の製品丸棒では、50μm以上の介在物個数が1.6個/1000mであり、B10寿命が3.5~4.1×10回であった。これらの値は、Q/(ρ×S)の値が本発明の範囲内である左ストランド側と比較してやや劣位であった。右ストランド側は、溶鋼スループットに対して堰の開口部の面積が大きすぎるために、十分な介在物除去効果を発揮できなかったと考えられる。なお、比較例3、4は、左ストランド側は本発明の範囲を満足するが、1チャージ全体では本発明の範囲を満足しないので、比較例と表示した。
 比較例5、6は、Q/(ρ×S)の値が本発明の範囲よりも大きいものであり、比較例5、6での50μm以上の介在物個数は1.4~1.8個/1000mmであり、B10寿命が2.9~4.4×10であり、やや劣位であった。これは、溶鋼スループットに対して堰の開口部の面積が小さいために、介在物除去効果が小さかったと考えられる。
 一方、本発明例1~8においては、50μm以上の介在物個数が0.2~1.0個/1000mmであり、B10寿命が7.1~9.5×10回であり、良好な結果であった。
 なお、実施例1では簡単のために、鋳片引き抜き速度が0.75m/minの一定、溶鋼深さHも570mmの一定とし、堰の開口幅Wも300mmで固定しているが、これ以外の条件においても、本発明の条件の範囲内であれば良好な品質の鉄鋼製品が得られることを確認している。具体的には、鋳片引き抜き速度が0.40~2.00m/minの範囲内、溶鋼深さHが400~1000mmの範囲内、堰の開口幅Wが200~800mmの範囲内で確認を行っている。
 実施例1と同様に、1チャージの溶鋼量が約200トンの規模の実機にて、転炉-取鍋精錬炉-RH真空脱ガス炉-連続鋳造機の工程で、高清浄度鋼の代表として挙げられる軸受鋼を製造した。堰の開口幅W及び溶鋼の通過高さhを変化させ、50μm以上の介在物個数及びB10寿命の評価を実施例1と同一の方法で実施した。操業条件及び結果を表3及び表4に示す。また、図7に、h/Hと50μm以上の介在物個数との関係を示し、図8に、h/HとB10寿命との関係を示す。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 表3、表4、図7、図8に示す結果より、h/Hが0.15~0.45の範囲において、50μm以上の介在物個数は少なく、且つ、B10寿命は高位であることから、より品質の良い鉄鋼製品を製造可能なことが確認された。
 図9は、形状の異なる2つのタンディッシュの概略平面図である。図9(A)はタンディッシュA(符号1A)の概略平面図であり、図9(B)はタンディッシュB(符号1B)の概略平面図である。図9に示した形状の異なる2つのタンディッシュを準備し、実施例1及び実施例2と同様に、転炉-取鍋精錬炉-RH真空脱ガス炉-連続鋳造機の工程で、高清浄度鋼の代表として挙げられる軸受鋼を製造した。タンディッシュA及びタンディッシュBにおける操業条件と、それに基づく数値シミュレーション結果と、製品品質結果とを表5に示す。
Figure JPOXMLDOC01-appb-T000005
 
 タンディッシュAは、左側ストランド数が2基であり、右側ストランド数が1基である。タンディッシュBは、左側ストランド数が2基であり、右側ストランド数が2基である。いずれのタンディッシュも(1)式及び(2)式の条件を満たしている。また、操業条件から各タンディッシュの数値シミュレーションを行った結果、溶鋼表面の全面積に対するタンディッシュ最表面の溶鋼流速が0.03m/sec以下となる面積の面積比は、タンディッシュAが0.60であり、タンディッシュBが0.39であった。
 この操業条件下で製造した製品の品質結果は、50μm以上の介在物個数は、タンディッシュAが0.1個/1000mmであり、タンディッシュBが0.4個/1000mmであった。また、B10寿命は、タンディッシュAが9.7×10回であり、タンディッシュBが8.9×10回であり、タンディッシュAの品質が顕著に良好であった。この結果から、溶鋼表面の全面積に対するタンディッシュ最表面の溶鋼流速が0.03m/sec以下となる面積の面積比が0.40以上であれば顕著な品質の鉄鋼製品を製造できることが確認された。
 このように、本発明にて明示したように、溶鋼スループットに応じて、堰の開口部の適切な面積を設計することで、清浄性が高く、疲労寿命が良好な鉄鋼製品の製造が実現できることが確認された。
 1 連続鋳造用タンディッシュ
 2 取鍋
 3 鋳型
 4 注入ノズル
 5 鉄皮
 6 内張耐火物
 7 流出口
 8 堰
 8a 開口部
 9 ストッパー
 10 浸漬ノズル
 11 溶鋼
 12 溶鋼表面
 13 鋳片

Claims (3)

  1.  連続鋳造用タンディッシュを用いる鋼の製造方法であって、
     前記連続鋳造用タンディッシュは、溶鋼注入部と鋳型への溶鋼の流出口との間に設けられる堰を有し、
     前記堰は、上方に溶鋼が通過するための開口部を有し、前記堰を通過する溶鋼のスループットQ(ton/sec)と、前記開口部の面積S(m)とが、下記の(1)式を満たす、鋼の製造方法。
     0.015≦Q/(ρ×S)≦0.065・・・(1)
     (1)式において、ρは溶鋼の密度(ton/m)である。
  2.  前記連続鋳造用タンディッシュにおける溶鋼深さH(m)と、前記開口部での溶鋼の通過高さh(m)とが、下記の(2)式を満たす、請求項1に記載の鋼の製造方法。
     0.15≦h/H≦0.45・・・(2)
  3.  前記連続鋳造用タンディッシュにおける溶鋼表面の全面積をA(m)とし、溶鋼表面の溶鋼流速が0.03m/sec以下の面積をA(m)としたとき、A/Aが0.40以上である、請求項1または請求項2に記載の鋼の製造方法。
PCT/JP2022/037188 2021-12-21 2022-10-04 鋼の製造方法 WO2023119791A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023501443A JP7477040B2 (ja) 2021-12-21 2022-10-04 鋼の製造方法
CN202280079997.7A CN118338977A (zh) 2021-12-21 2022-10-04 钢的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021206707 2021-12-21
JP2021-206707 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023119791A1 true WO2023119791A1 (ja) 2023-06-29

Family

ID=86901909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037188 WO2023119791A1 (ja) 2021-12-21 2022-10-04 鋼の製造方法

Country Status (3)

Country Link
JP (1) JP7477040B2 (ja)
CN (1) CN118338977A (ja)
WO (1) WO2023119791A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157748A (ja) * 1987-09-18 1989-06-21 Kawasaki Steel Corp 連続鋳造用タンディッシュのカセット式堰
JPH0466251A (ja) * 1990-07-02 1992-03-02 Kawasaki Steel Corp 溶鋼へのスラグ巻込み防止方法
JPH04344854A (ja) * 1991-05-17 1992-12-01 Nippon Steel Corp 連続鋳造方法
JPH09262649A (ja) * 1996-03-27 1997-10-07 Nisshin Steel Co Ltd タンディシュ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157748A (ja) * 1987-09-18 1989-06-21 Kawasaki Steel Corp 連続鋳造用タンディッシュのカセット式堰
JPH0466251A (ja) * 1990-07-02 1992-03-02 Kawasaki Steel Corp 溶鋼へのスラグ巻込み防止方法
JPH04344854A (ja) * 1991-05-17 1992-12-01 Nippon Steel Corp 連続鋳造方法
JPH09262649A (ja) * 1996-03-27 1997-10-07 Nisshin Steel Co Ltd タンディシュ

Also Published As

Publication number Publication date
JPWO2023119791A1 (ja) 2023-06-29
CN118338977A (zh) 2024-07-12
JP7477040B2 (ja) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2013190799A1 (ja) 高清浄度鋼鋳片の製造方法及びタンディッシュ
JP4772798B2 (ja) 極低炭素鋳片の製造方法
JP4271551B2 (ja) タンディッシュによる高清浄度鋼の連続鋳造装置
WO2023119791A1 (ja) 鋼の製造方法
JP2011143449A (ja) 連続鋳造用タンディッシュにおける介在物除去方法
JP5831163B2 (ja) 高清浄度鋼の製造方法
CN112296286B (zh) 钢水连续铸造隔离板结构
Ueyama et al. Development of high quality heavy plates on steelmaking process at Kimitsu Works
JP2006239746A (ja) 鋼の連続鋳造用タンディッシュ
JP3365362B2 (ja) 連続鋳造方法
JP4725245B2 (ja) 連続鋳造用タンディッシュ及び鋳片の製造方法
JP2012006025A (ja) 連続鋳造による高清浄度鋼鋳片の製造方法
JP2012020315A (ja) 連続鋳造による高清浄度鋼鋳片の製造方法
JP3375862B2 (ja) ブローホールの発生しない極低炭素鋼の製造方法
JP3464856B2 (ja) 高清浄度鋼連続鋳造用タンディッシュ
JP4474948B2 (ja) 鋼の連続鋳造方法
JP4220848B2 (ja) 加熱機能を備えた鋼の連続鋳造用タンディッシュ
JP7200811B2 (ja) 鋼の連続鋳造方法
JP5831138B2 (ja) 連続鋳造による高清浄度鋼鋳片の製造方法
JP4319072B2 (ja) 介在物浮上性に優れるタンディシュ
JP5673162B2 (ja) 連続鋳造方法および連続鋳造装置
KR20090066839A (ko) 연속 주조용 턴디쉬
JP3470537B2 (ja) 連続鋳造用タンディッシュにおける介在物除去方法
JP5850776B2 (ja) 連続鋳造用タンディッシュ
Naidek et al. Effective technical solutions for the refining of steel from nonmetallic inclusions in continuous caster tundishes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023501443

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910517

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280079997.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE