WO2023116334A1 - 一种聚酯复合材料及其制备方法和应用 - Google Patents

一种聚酯复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023116334A1
WO2023116334A1 PCT/CN2022/134020 CN2022134020W WO2023116334A1 WO 2023116334 A1 WO2023116334 A1 WO 2023116334A1 CN 2022134020 W CN2022134020 W CN 2022134020W WO 2023116334 A1 WO2023116334 A1 WO 2023116334A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
polyester composite
calcium
glass fiber
material according
Prior art date
Application number
PCT/CN2022/134020
Other languages
English (en)
French (fr)
Inventor
郑一泉
陈平绪
叶南飚
王丰
丁超
冯健
付学俊
吴长波
刘鑫鑫
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2023116334A1 publication Critical patent/WO2023116334A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • C08K5/03Halogenated hydrocarbons aromatic, e.g. C6H5-CH2-Cl
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the invention relates to the technical field of polymer materials, in particular to a polyester composite material and its preparation method and application.
  • Thermoplastic polyester materials have the advantages of excellent electrical properties and mechanical properties, as well as low price, and are widely used in electronic and electrical industries for the preparation of motors, relays and capacitors. With the gradual improvement of flame retardant standards for electrical appliances, some materials requiring high ignition temperature of hot wire are gradually accepted by the majority of enterprises, but the traditional bromine-antimony flame-retardant thermoplastic polyester materials have problems such as low ignition temperature of hot wire, which affects the material's performance. use.
  • CN102250450A points out that the introduction of a char-forming agent is used to improve the ignition temperature of the thermoplastic polyester hot wire of the hot wire.
  • CN101928449A points out that antimony trioxide, antimony pentoxide, sodium antimonate, zinc borate, etc. are introduced into thermoplastic polyester to improve the ignition performance of the hot wire of the material.
  • antimony-containing compounds have certain toxicity, which prevents them from being used in fields that are often in contact with the human body.
  • zinc borate has a great influence on the mechanical properties of polyester composite materials, and it is difficult to add a large amount.
  • the addition of borate is likely to cause black spots in the production process (see Figure 1 of the specification), which affects the appearance quality of the product, especially the appearance of the white product.
  • the purpose of the present invention is to provide a polyester composite material with the advantages of high GWIT and good mechanical properties.
  • Another object of the present invention is to provide the preparation method and application of the above-mentioned polyester composite material.
  • a kind of polyester composite material, by weight, comprises following component:
  • thermoplastic polyester resin 100 parts of thermoplastic polyester resin
  • Calcium borate and/or calcium metaborate with 0.02-0.4 times the glass fiber content.
  • the content of calcium borate and/or calcium metaborate is 0.05-0.25 times that of glass fiber.
  • Calcium borate and calcium metaborate are anhydrous calcium borate and anhydrous calcium metaborate, that is, they do not contain crystal water.
  • the weight ratio of calcium borate and calcium metaborate is 1:1-3. In order to achieve a balance between mechanical properties and GWIT at the same time, calcium borate and calcium metaborate are compounded. At the above weight ratio, GWIT can be further improved, and it is suitable for products with higher GWIT values.
  • the average particle size range of calcium borate and calcium metaborate is 0.3-15 microns, preferably 0.5-5 microns.
  • the chemical formula of calcium borate is: Ca 3 (BO 3 ) 2 .
  • the chemical formula of calcium metaborate is: CaB 2 O 4 .
  • the used calcium borate and calcium metaborate that realize the object of the present invention can be commercially available product and can also be derived from self-made product, and method is as follows:
  • Polyacrylamide ACUSOL TM 445N was purchased from Dow Chemicals;
  • CaCO 3 , acetone and boric acid were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
  • Preparation of calcium borate Dissolve 0.5kg of ACUSOL TM 445N in 200kg of deionized water, stir evenly at room temperature, add 18.6kg of boric acid into the aqueous solution, and gradually add 12.3kg of CaCO3 into the above-mentioned high-speed stirring aqueous solution, when there is no gas
  • a calcium borate suspension is obtained, filtered and dried to obtain a calcium borate powder, and the powder is screened to obtain calcium borate with different particle sizes.
  • Preparation of calcium metaborate Dissolve 0.8kg of ACUSOL TM 445N in 200kg of deionized water, stir well at room temperature, add 28.6kg of boric acid into the aqueous solution, and gradually add 11kg of CaCO3 into the above-mentioned high-speed stirring aqueous solution, when there is no gas When it is produced, calcium borate suspension is obtained, filtered and dried to obtain calcium borate powder, and the powder is screened to obtain calcium metaborate with different particle sizes.
  • the calcium borate and calcium metaborate obtained by the above method have a purity greater than 99%, hardly contain other metal ions, and do not contain crystal water.
  • the existing commercially available calcium borate and calcium metaborate are mainly obtained from natural minerals through crushing and screening.
  • calcium borate is also called colemanite, which has crystal water and a small amount of other impurities such as silicon, iron, aluminum and other elements.
  • the existing commercially available calcium metaborate also has crystal water.
  • the average retention length of the glass fibers is between 60-400 microns, preferably the average retention length is between 150-350 microns, and more preferably the average retention length is between 200-300 microns.
  • the glass fiber can be long glass fiber or chopped glass fiber, and the retention length of the glass fiber in the resin matrix is mainly controlled by controlling the screw speed (the addition of different glass fibers at the same speed will also cause a slight change in the retention length) .
  • thermoplastic polyester resin is selected from at least one of PBT, PET, PETG and PC.
  • the brominated flame retardant is selected from the group consisting of decabromodiphenylethane, brominated polystyrene polybrominated styrene, brominated epoxy resin, pentabromobenzyl polyacrylate, brominated polycarbonate, brominated bis At least one of phenol A, tetrabromophthalimide, bromotriazine, and brominated melamine.
  • auxiliary agents can be antioxidants and lubricants.
  • the preparation method of the polyester composite material of the present invention comprises the following steps: uniformly mixing the components except the glass fibers according to the proportion, feeding them into the twin-screw extruder through the main feeding port, feeding the glass fibers sideways,
  • the polyester composite material is obtained by melting and shearing, the temperature range of the screw barrel is 210-230° C., and the rotation speed is 200-500 rpm.
  • polyester composite material of the present invention is used for motors and capacitor casings in electronic appliances.
  • the GWIT of polyester composite materials should be greater than 825°C
  • the notched impact strength of cantilever beams should be greater than 5.1kJ/m 2
  • the flexural modulus should be greater than 4100MPa.
  • the present invention finds that anhydrous calcium borate and calcium metaborate can significantly improve the GWIT of the polyester composite material, maintain high flame retardancy, and compared to other inorganic substances (antimony-containing inorganic compounds, zinc borate, etc.) for the polyester composite material
  • inorganic substances antimony-containing inorganic compounds, zinc borate, etc.
  • the compounding of calcium borate and calcium metaborate can further improve GWIT, which is suitable for products with higher GWIT values.
  • FIG. 1 Black dot photo.
  • the raw material sources used in the present invention are as follows:
  • PET KH2678C, Yingkou Kanghui Petrochemical Co., Ltd.;
  • Brominated polystyrene Saytex HP-5010PST.
  • Calcium borate A the average particle size is 0.32 microns, does not contain crystal water, self-made;
  • Calcium borate B the average particle size is 0.50 microns, does not contain crystal water, self-made
  • Calcium borate C the average particle size is 4.9 microns, does not contain crystal water, self-made;
  • Calcium borate D the average particle size is 14.8 microns, does not contain crystal water, self-made
  • Calcium metaborate the average particle size is 0.51 microns, does not contain crystal water, self-made
  • Hydrous calcium metaborate Aladdin, Ca(BO 2 ) 2 2H 2 O;
  • Zinc borate Firebrake ZB, Rio Tinto;
  • Antimony white Xikuangshan Flashing Star Antimony Industry Co., Ltd.;
  • Lubricant stearate, commercially available.
  • polyester composite materials According to the proportion, mix the components except the glass fiber evenly, feed into the twin-screw extruder through the main feed port, feed the glass fiber side, and pass through the melting 1. Shearing to obtain polyester composite materials, the temperature range of the screw barrel is 210-230°C, and the rotating speed is 200-500rpm (see the table for detailed rotating speed).
  • GWIT glow wire ignition temperature
  • Black spots put 100g of extruded polyester composite material particles (3mm in diameter and 5mm in length) in a tray, and visually observe the black spots (heterochromic spots) in them. For black spots with a diameter greater than 0.5mm Dots (heterochromatic dots) are counted.
  • Average retention length of glass fibers Take 5 grams of particles and place them in a crucible, place them in a muffle furnace at 650°C for 2 hours, then take them out and cool them to room temperature, then place the remaining solid powder on a secondary microscope for observation , to distinguish the length, read 200 glass fibers continuously, and finally carry out mathematical average to obtain the average retention length.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 PBT 100 the 100 100 100 PET the 100 the the the Decabromodiphenylethane 20 20 the 30 15 brominated polystyrene the the 20 the the glass fiber 50 50 50 20 80 calcium borate B 5 5 5 0.5 8 lubricant the the the the 0.3 Screw speed, rpm 450 450 430 400 400 Average retention length of glass fiber, micron 234 230 243 240 256 GWIT, °C 900 930 825 900 850 Izod notched impact strength, kJ/m 2 7.5 6.3 6.1 6.9 8.2 Flexural modulus, MPa 7300 8300 7500 7800 7200 black spot none none none none none none flame retardant V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0
  • the retention length of glass fibers significantly affects the GWIT value and mechanical properties: the most preferred is 200-300 microns, at this time the GWIT is 900 ° C, and the mechanical properties can also meet the requirements of most products; the second preferred 150- 350 microns, when the glass fiber retention length is close to 150 microns, the GWIT is 900°C, and the mechanical properties are low, but it can be applied to scenes that do not require particularly high mechanical properties.
  • the glass fiber retention length is close to 350 microns, although the GWIT is 875°C
  • the mechanical properties are relatively high, and it is suitable for scenes that require higher mechanical properties.
  • the retention length of the glass is close to 60 microns, the GWIT reaches 930°C. Although the mechanical properties are low, it is suitable for scenarios with low requirements for mechanical properties but higher requirements for GWIT temperature.
  • Example 20 Example 21
  • Example 22 Example 23
  • Example 24 Example 25
  • PBT 100 100 100 100 100 100 100 100 100 100 Decabromodiphenylethane 20 20 20 20 20 20 glass fiber 50 50 50 50 50 50 50 50 50
  • calcium borate B the 3.33 2.5 1.67 1.25 1 calcium metaborate 5 1.67 2.5 3.33 3.75 4 Screw speed, rpm 400 400 400 400 400 400 400 Average retention length of glass fiber, micron 237 246 236 240 244 241 GWIT, °C 875 900 930 930 930 900 Izod notched impact strength, kJ/m 2 7.1 6.9 7.2 7.5 7.9 7.8 Flexural modulus, MPa 7300 7900 7300 7250 7200 7100 black spot none none none none none none none flame retardant V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0
  • Comparative example 1 Comparative example 2 Comparative example 3 Comparative example 4 Comparative example 5 Comparative example 6
  • PBT 100 100 100 100 100 100 100 Decabromodiphenylethane 20 20 20 20 20 20 20 glass fiber 50 50 50 50 50 50 50 calcium borate B 0.5 25 the the the the Colemanite the the 5 the the the Hydrous Calcium Metaborate the the the 5 the the Zinc borate the the the the the 5 the Antimony white the the the the the the the 5 Screw speed, rpm 450 450 450 450 450 450 Average retention length of glass fiber, micron 232 244 239 233 248 242 GWIT, °C 825 850 800 775 825 750 Izod notched impact strength, kJ/m 2 9.1 3.1 5.3 4.5 2.1 7.3 Flexural modulus, MPa 7300 8200 7700 7900 7300 7150 black spot 8 none 11 none 9 10 flame retardant V-1 V-0 V-1 V-0 V-0 V-0 V-0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种聚酯复合材料,按重量份计,包括以下组分:热塑性聚酯树脂100份;溴系阻燃剂15-30份;玻璃纤维20-80份;玻璃纤维重量含量0.02-0.4倍的硼酸钙和/或偏硼酸钙。本发明发现硼酸钙和/或偏硼酸钙与玻璃纤维协效下能够有效提高聚酯复合材料的GWIT,也能够降低加工过程的黑点。

Description

一种聚酯复合材料及其制备方法和应用 技术领域
本发明涉及高分子材料技术领域,特别是涉及一种聚酯复合材料及其制备方法和应用。
背景技术
热塑性聚酯材料具有电性能优异和力学性能,以及价格低廉等优势,广泛应用于电子电气等行业,用于制备马达,继电器和电容器等。随着电器阻燃标准逐渐提升,一些要求高热丝引燃温度的材料要求逐渐被广大企业所接受,但是传统的溴锑阻燃热塑性聚酯材料存在热丝引燃温度低等问题,影响材料的使用。
CN102250450A指出采用引入成炭剂改善热丝热塑性聚酯热丝引燃温度。CN101928449A指出在热塑性聚酯中引入三氧化二锑、五氧化二锑、锑酸钠、硼酸锌等提升材料的热丝引燃性能。但是,含锑化合物具有一定毒性,使其无法应用在经常与人体接触的领域,同时硼酸锌对于聚酯复合材料的力学性能影响较大,很难大量添加。并且,现有技术中,硼酸盐的加入容易造成生产过程中的黑点现象(参见说明书附图1),影响产品的外观品质,尤其是白色产品的外观。
发明内容
本发明的目的在于,提供一种具有高GWIT优点的聚酯复合材料,并且力学性能好。本发明的另一目的在于,提供上述聚酯复合材料的制备方法和应用。
本发明是通过以下技术方案实现的:
一种聚酯复合材料,按重量份计,包括以下组分:
热塑性聚酯树脂    100份;
溴系阻燃剂        15-30份;
玻璃纤维          20-80份;
玻璃纤维含量0.02-0.4倍的硼酸钙和/或偏硼酸钙。
硼酸钙和/或偏硼酸钙的含量为玻璃纤维含量的0.05-0.25倍。
硼酸钙和偏硼酸钙是无水硼酸钙和无水偏硼酸钙,即不含有结晶水。
硼酸钙和偏硼酸钙的重量比为1:1-3。为了同时实现力学性能与GWIT的平衡,对硼酸钙和偏硼酸钙进行复配,在上述重量比时,能够进一步提升GWIT,适用于对GWIT数值更高的产品中。
硼酸钙、偏硼酸钙的平均粒径范围是0.3-15微米,优选0.5-5微米。
硼酸钙的化学式为:Ca 3(BO 3) 2
偏硼酸钙的化学式为:CaB 2O 4
实现本发明目的所用的硼酸钙和偏硼酸钙可以是市售产品也可以来源于自制产品,方法如下:
聚丙烯酰胺ACUSOL TM 445N从Dow化学购买;
CaCO 3、丙酮和硼酸从上海阿拉丁生化科技股份有限公司购买。
硼酸钙的制备:将0.5kg的ACUSOL TM 445N溶解于200kg的去离子水中,在室温下搅拌均匀,18.6kg硼酸加入水溶液中,12.3kg的CaCO 3逐渐加入上述高速搅拌的水溶液中,当没有气体产生时,得到硼酸钙悬浮液,过滤干燥得到硼酸钙的粉体,粉体通过筛选得到不同的粒径的硼酸钙。
偏硼酸钙的制备:将0.8kg的ACUSOL TM 445N溶解于200kg的去离子水中,在室温下搅拌均匀,28.6kg硼酸加入水溶液中,11kg的CaCO 3逐渐加入上述高速搅拌的水溶液中,当没有气体产生时,得到硼酸钙悬浮液,过滤干燥得到硼酸钙的粉体,粉体通过筛选得到不同的粒径的偏硼酸钙。
通过上述方法得到的硼酸钙与偏硼酸钙纯度大于99%,几乎不含有其他金属离子、并且不含有结晶水。
现有市售的硼酸钙与偏硼酸钙主要来源于天然矿物通过粉碎、筛选后得到。其中硼酸钙也称为硬硼酸钙石,具有结晶水,也含有少量其他杂质如含硅、铁、铝等元素。现有市售的偏硼酸钙也具有结晶水。
在聚酯复合材料的树脂基体中,玻璃纤维的平均保留长度在60-400微米之间,优选平均保留长度在150-350微米之间,进一步优先平均保留长度在200-300微米之间。玻璃纤维可以是长玻纤或短切玻纤,主要是通过控制螺杆的转速来控制玻纤在树脂基体中的保留长度(同一转速下不同玻纤的添加量也会造成保留长度少许的改变)。
所述的热塑性聚酯树脂选自PBT、PET、PETG、PC中的至少一种。
所述的溴系阻燃剂选自十溴二苯乙烷、溴化聚苯乙烯聚溴化苯乙烯、溴化环氧树脂、聚丙烯酸五溴苄酯、溴化聚碳酸脂、溴化双酚A、四溴邻苯二甲亚酰胺、溴代三嗪、溴化三聚氰胺中的至少一种。
可以根据实际需要决定是否加入0-2份助剂,所述的助剂可以是抗氧剂、润滑剂。
本发明的聚酯复合材料的制备方法,包括以下步骤:按照配比,将除玻璃纤维之外的组分混合均匀,通过主喂料口喂入双螺杆挤出机中,玻璃纤维侧喂,通过熔融、剪切得到聚酯 复合材料,螺筒温度范围是210-230℃、转速为200-500rpm。
本发明的聚酯复合材料的应用,用于电子电器中马达、电容器外壳。
为了应用于电子电器中马达、电容器外壳,聚酯复合材料的GWIT应大于825℃,悬臂梁缺口冲击强度大于5.1kJ/m 2,弯曲模量大于4100MPa。
本发明具有如下有益效果:
本发明发现,无水硼酸钙和偏硼酸钙能够显著提高聚酯复合材料的GWIT、保持高阻燃性,并且相对于其他无机物(含锑无机化合物、硼酸锌等)对于聚酯复合材料的力学性能影响较小,并且能够减少加工过程的黑点,提高聚酯复合材料的外观,具有极大的应用价值。
进一步的,通过硼酸钙和偏硼酸钙的复配,能够进一步提升GWIT,适用于对GWIT数值更高的产品中。
附图说明
图1:黑点照片。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明所用原材料来源如下:
PBT:1200-211M,长春化工(江苏)有限公司;
PET:KH2678C,营口康辉石化有限公司;
玻璃纤维:ECS301HP-3,重庆国际复合材料有限公司;
十溴二苯乙烷:Saytex 8010;
溴化聚苯乙烯:Saytex HP-5010PST。
硼酸钙A:平均粒径为0.32微米,不含有结晶水,自制;
硼酸钙B:平均粒径为0.50微米,不含有结晶水,自制;
硼酸钙C:平均粒径为4.9微米,不含有结晶水,自制;
硼酸钙D:平均粒径为14.8微米,不含有结晶水,自制;
偏硼酸钙:平均粒径为0.51微米,不含有结晶水,自制;
硬硼酸钙石:平均粒径为17.2微米,含有结晶水,土耳其ETI公司;
含水偏硼酸钙:阿拉丁,Ca(BO 2) 2·2H 2O;
硼酸锌:Firebrake ZB,力拓公司;
锑白:锡矿山闪星锑业有限责任公司;
润滑剂:硬脂酸酯,市售。
实施例和对比例聚酯复合材料的制备方法:按照配比,将除玻璃纤维之外的组分混合均匀,通过主喂料口喂入双螺杆挤出机中,玻璃纤维侧喂,通过熔融、剪切得到聚酯复合材料,螺筒温度范围是210-230℃、转速为200-500rpm(详细转速见表格)。
各项测试方法:
(1)GWIT:IEC 60695-2-13:2014材料的灼热丝引燃温度(GWIT)试验方法。
(2)悬臂梁缺口冲击强度:按照GB/T1843-2008,悬臂梁冲击强度测定。
(3)弯曲模量:按照ISO178-2010塑料弯曲性能测定。
(4)黑点:将100g挤出的聚酯复合材料粒子(每个粒子直径3mm,长5mm),放于托盘中,目测其中的黑点(异色点),对于直径大于0.5mm的黑点(异色点)进行计数。
(5)阻燃性:采用UL94-2018进行阻燃等级测试。
(6)玻纤平均保留长度:取5克粒子置于坩埚中,放置于650℃的马弗炉烧2小时,然后取出冷却至常温,然后把剩余的固体粉末放置于二次元显微镜上进行观察,分辨其中的长度,连续读数200根玻璃纤维,最后进行数学平均得到平均保留长度。
表1:实施例1-5聚酯复合材料各组分含量(重量份)及测试结果
  实施例1 实施例2 实施例3 实施例4 实施例5
PBT 100   100 100 100
PET   100      
十溴二苯乙烷 20 20   30 15
溴化聚苯乙烯     20    
玻璃纤维 50 50 50 20 80
硼酸钙B 5 5 5 0.5 8
润滑剂         0.3
螺杆转速,转/分 450 450 430 400 400
玻纤平均保留长度,微米 234 230 243 240 256
GWIT,℃ 900 930 825 900 850
悬臂梁缺口冲击强度,kJ/m 2 7.5 6.3 6.1 6.9 8.2
弯曲模量,MPa 7300 8300 7500 7800 7200
黑点
阻燃性 V-0 V-0 V-0 V-0 V-0
表2:实施例6-12聚酯复合材料各组分含量(重量份)及测试结果
Figure PCTCN2022134020-appb-000001
Figure PCTCN2022134020-appb-000002
由实施例1/6-12可知,玻璃纤维保留长度显著影响GWIT数值以及力学性能:最优选200-300微米,此时GWIT为900℃、力学性也能满足多数产品的要求;次优选150-350微米,当玻纤保留长度接近150微米时GWIT为900℃、力学性能较低,但是可以应用在对力学性能要求不是特别高的场景,当玻纤保留长度接近350微米时虽然GWIT为875℃但是力学性能较高,适用于对力学性能要求更高的场景。当玻璃的保留长度接近60微米时,GWIT达到930℃,虽然力学性能较低,但是适用于对于力学性能需求低但对于GWIT温度要求更高的场景中。
表3:实施例13-19聚酯复合材料各组分含量(重量份)及测试结果
Figure PCTCN2022134020-appb-000003
由实施例1/13-16可知,硼酸钙与玻璃纤维的优选配比下无黑点,并且GWIT达到900℃,悬臂梁缺口冲击强度与弯曲模量也够保持在较高的水平。
由实施例1/17-19可知,硼酸钙粒径显著影响GWIT、力学性能,在优选的粒径范围内GWIT、缺口冲击强度更高、阻燃性更好。
表4:实施例20-25聚酯复合材料各组分含量(重量份)及测试结果
  实施例20 实施例21 实施例22 实施例23 实施例24 实施例25
PBT 100 100 100 100 100 100
十溴二苯乙烷 20 20 20 20 20 20
玻璃纤维 50 50 50 50 50 50
硼酸钙B   3.33 2.5 1.67 1.25 1
偏硼酸钙 5 1.67 2.5 3.33 3.75 4
螺杆转速,转/分 400 400 400 400 400 400
玻纤平均保留长度,微米 237 246 236 240 244 241
GWIT,℃ 875 900 930 930 930 900
悬臂梁缺口冲击强度,kJ/m 2 7.1 6.9 7.2 7.5 7.9 7.8
弯曲模量,MPa 7300 7900 7300 7250 7200 7100
黑点
阻燃性 V-0 V-0 V-0 V-0 V-0 V-0
由实施例1/20-25可知,在硼酸钙:偏硼酸钙=1:1-3范围内时,GWIT更高。
表5:对比例聚酯复合材料各组分含量(重量份)及测试结果
  对比例1 对比例2 对比例3 对比例4 对比例5 对比例6
PBT 100 100 100 100 100 100
十溴二苯乙烷 20 20 20 20 20 20
玻璃纤维 50 50 50 50 50 50
硼酸钙B 0.5 25        
硬硼酸钙石     5      
含水偏硼酸钙       5    
硼酸锌         5  
锑白           5
螺杆转速,转/分 450 450 450 450 450 450
玻纤平均保留长度,微米 232 244 239 233 248 242
GWIT,℃ 825 850 800 775 825 750
悬臂梁缺口冲击强度,kJ/m 2 9.1 3.1 5.3 4.5 2.1 7.3
弯曲模量,MPa 7300 8200 7700 7900 7300 7150
黑点 8 11 9 10
阻燃性 V-1 V-0 V-1 V-0 V-0 V-0
由对比例1/2可知,当硼酸钙的添加量过低时不仅阻燃性达不到V-0,而且黑点数量多;当硼酸钙的添加量过多时,悬臂梁缺口冲击强度过低。
由对比例3可知,市售的天然矿物获得的硬硼酸钙石无法实现降低黑点的技术效果,并且阻燃性、GWIT较差。
由对比例4可知,市售的含水偏硼酸钙对于GWIT的提升不如无水偏硼酸钙。
由对比例5可知,硼酸锌对于力学性能的影响较大,并且无法抑制黑点。
由对比例6可知,锑白作为阻燃协效剂时GWIT较低,并且无法抑制黑点。

Claims (10)

  1. 一种聚酯复合材料,其特征在于,按重量份计,包括以下组分:
    热塑性聚酯树脂        100份;
    溴系阻燃剂            15-30份;
    玻璃纤维              20-80份;
    玻璃纤维重量含量0.02-0.4倍的硼酸钙和/或偏硼酸钙。
  2. 根据权利要求1所述的聚酯复合材料,其特征在于,硼酸钙和/或偏硼酸钙的含量为玻璃纤维含量的0.05-0.25倍。
  3. 根据权利要求1或2所述的聚酯复合材料,其特征在于,硼酸钙和偏硼酸钙为无水硼酸钙、无水偏硼酸钙。
  4. 根据权利要求1或2所述的聚酯复合材料,其特征在于,硼酸钙和偏硼酸钙的重量比为1:(1-3)。
  5. 根据权利要求1或2所述的聚酯复合材料,其特征在于,硼酸钙和偏硼酸钙的平均粒径范围是0.3-15微米,优选0.5-5微米。
  6. 根据权利要求1或2所述的聚酯复合材料,其特征在于,在聚酯复合材料的树脂基体中,玻璃纤维的平均保留长度在60-400微米之间,优选平均保留长度在150-350微米之间,进一步优选平均保留长度在200-300微米之间。
  7. 根据权利要求1或2所述的聚酯复合材料,其特征在于,所述的热塑性聚酯树脂选自PBT、PET、PETG、PC中的至少一种;所述的溴系阻燃剂选自十溴二苯乙烷、溴化聚苯乙烯、聚溴化苯乙烯、溴化环氧树脂、聚丙烯酸五溴苄酯、溴化聚碳酸脂、溴化双酚A、四溴邻苯二甲亚酰胺、溴代三嗪、溴化三聚氰胺中的至少一种。
  8. 根据权利要求1或2所述的聚酯复合材料,其特征在于,按重量份计,还包括0-2份助剂,所述的助剂选自抗氧剂、润滑剂中的至少一种。
  9. 权利要求1-8任一项所述聚酯复合材料的制备方法,其特征在于,包括以下步骤:按照配比,将除玻璃纤维之外的组分混合均匀,通过主喂料口喂入双螺杆挤出机中,玻璃纤维侧喂,通过熔融、剪切得到聚酯复合材料,螺筒温度范围是210-230℃、螺杆转速为200-500rpm。
  10. 权利要求1-8任一项所述聚酯复合材料的应用,其特征在于,用于电子电器中马达、电容器外壳。
PCT/CN2022/134020 2021-12-20 2022-11-24 一种聚酯复合材料及其制备方法和应用 WO2023116334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111561203.4 2021-12-20
CN202111561203.4A CN114456550B (zh) 2021-12-20 2021-12-20 一种聚酯复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023116334A1 true WO2023116334A1 (zh) 2023-06-29

Family

ID=81405925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134020 WO2023116334A1 (zh) 2021-12-20 2022-11-24 一种聚酯复合材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114456550B (zh)
WO (1) WO2023116334A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456550B (zh) * 2021-12-20 2023-11-07 金发科技股份有限公司 一种聚酯复合材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115651A (ja) * 2002-09-26 2004-04-15 Asahi Kasei Chemicals Corp 難燃性ポリアミド樹脂組成物
JP2011127048A (ja) * 2009-12-21 2011-06-30 Mitsubishi Engineering Plastics Corp 難燃性ポリブチレンテレフタレート系樹脂組成物
JP5091367B1 (ja) * 2011-10-24 2012-12-05 パナソニック株式会社 絶縁部品用熱可塑性樹脂組成物と絶縁部品
WO2013085789A1 (en) * 2011-12-09 2013-06-13 Icl-Ip America Inc. Low antimony or antimony trioxide-free flame retarded thermoplastic composition
JP2014125515A (ja) * 2012-12-26 2014-07-07 Mitsubishi Engineering Plastics Corp 回路遮断器用ポリエステル系樹脂組成物
CN104797654A (zh) * 2012-11-19 2015-07-22 三井化学株式会社 聚酯树脂组合物及其制造方法、含有该聚酯树脂组合物的照相机模块
JP2020007390A (ja) * 2018-07-03 2020-01-16 ポリプラスチックス株式会社 電気絶縁部品用難燃性ポリブチレンテレフタレート樹脂組成物
CN114456550A (zh) * 2021-12-20 2022-05-10 金发科技股份有限公司 一种聚酯复合材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1288260A1 (en) * 2001-08-29 2003-03-05 Albemarle Corporation Flame retardant compositions
JP5543789B2 (ja) * 2010-01-22 2014-07-09 三菱エンジニアリングプラスチックス株式会社 熱伝導性ポリアルキレンテレフタレート系樹脂組成物および樹脂成形体
JP6456291B2 (ja) * 2013-09-10 2019-01-23 ウィンテックポリマー株式会社 難燃性ポリブチレンテレフタレート樹脂組成物
CN105504707B (zh) * 2016-02-24 2018-04-06 江苏美奥新材料有限公司 一种导热增韧阻燃增强的pbt塑料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115651A (ja) * 2002-09-26 2004-04-15 Asahi Kasei Chemicals Corp 難燃性ポリアミド樹脂組成物
JP2011127048A (ja) * 2009-12-21 2011-06-30 Mitsubishi Engineering Plastics Corp 難燃性ポリブチレンテレフタレート系樹脂組成物
JP5091367B1 (ja) * 2011-10-24 2012-12-05 パナソニック株式会社 絶縁部品用熱可塑性樹脂組成物と絶縁部品
WO2013085789A1 (en) * 2011-12-09 2013-06-13 Icl-Ip America Inc. Low antimony or antimony trioxide-free flame retarded thermoplastic composition
CN104797654A (zh) * 2012-11-19 2015-07-22 三井化学株式会社 聚酯树脂组合物及其制造方法、含有该聚酯树脂组合物的照相机模块
JP2014125515A (ja) * 2012-12-26 2014-07-07 Mitsubishi Engineering Plastics Corp 回路遮断器用ポリエステル系樹脂組成物
JP2020007390A (ja) * 2018-07-03 2020-01-16 ポリプラスチックス株式会社 電気絶縁部品用難燃性ポリブチレンテレフタレート樹脂組成物
CN114456550A (zh) * 2021-12-20 2022-05-10 金发科技股份有限公司 一种聚酯复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114456550B (zh) 2023-11-07
CN114456550A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
EP2524945B1 (en) Thermoplastic resin composition and molded item formed from same
JP4904865B2 (ja) 樹脂組成物ならびにそれからなる成形品
WO2023116334A1 (zh) 一种聚酯复合材料及其制备方法和应用
WO2021253772A1 (zh) 一种低烟密度高性能无卤阻燃增强pbt复合物及其制备方法
WO2013001750A1 (ja) 熱可塑性樹脂組成物ならびにそれらからなる成形品
KR101965675B1 (ko) 난연성 폴리에스테르 조성물
CN107177176A (zh) 具有导热和导电功能的高模量pbt组合物及其制备方法
JP2015101730A (ja) ポリエステル組成物
EP3868817A1 (de) Hochvoltkomponenten
WO2022110664A1 (zh) 一种低烟密度无卤阻燃增强pbt/pet复合物及其制备方法和应用
EP1127090B2 (en) Thermoplastic article having low clarity and low haze
JP3785017B2 (ja) ポリブチレンテレフタレート樹脂組成物からなる成形品
JP2013173873A (ja) 熱可塑性樹脂組成物ならびにそれらからなる成形品
US5194481A (en) Flame-retardant polyester resin compositions
JP7472273B2 (ja) 高電圧用構成部品
JP7167210B2 (ja) 高電圧用構成材料
CN115322488A (zh) 一种阻燃聚丙烯复合材料及其制备方法和应用
JP2000313790A (ja) 樹脂組成物およびそれからなる電気・電子部品
WO2017017875A1 (ja) 高反射難燃熱可塑性樹脂組成物、成形体及び照明機器用反射板
CN112759904A (zh) 一种高抗黄变阻燃pbt及其制备方法和应用
JPWO2003048253A1 (ja) 難燃性樹脂組成物
JP2002234950A (ja) 電磁波シールド成形品および電磁波シールド成形品用熱可塑性樹脂組成物
JP2901721B2 (ja) 難燃性スチレン系樹脂組成物
JP5114656B2 (ja) 難燃性樹脂組成物
EP3792302A1 (de) Hochvoltkomponenten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909649

Country of ref document: EP

Kind code of ref document: A1