WO2023115980A1 - 一种复合材料及其制备方法和应用 - Google Patents

一种复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023115980A1
WO2023115980A1 PCT/CN2022/111480 CN2022111480W WO2023115980A1 WO 2023115980 A1 WO2023115980 A1 WO 2023115980A1 CN 2022111480 W CN2022111480 W CN 2022111480W WO 2023115980 A1 WO2023115980 A1 WO 2023115980A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyhydroxyalkanoate
composite material
parts
nylon
Prior art date
Application number
PCT/CN2022/111480
Other languages
English (en)
French (fr)
Inventor
郭敏
司徒卫
梁铁贤
宋明
刘志伟
陈欣
李细林
余岳明
尹杰
Original Assignee
广东新会美达锦纶股份有限公司
珠海麦得发生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东新会美达锦纶股份有限公司, 珠海麦得发生物科技股份有限公司 filed Critical 广东新会美达锦纶股份有限公司
Publication of WO2023115980A1 publication Critical patent/WO2023115980A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Definitions

  • the invention belongs to the technical field of composite materials, and in particular relates to a composite material and its preparation method and application.
  • Polyhydroxyalkanoate (referred to as PHA) is a kind of thermoplastic aliphatic biopolyester synthesized by prokaryotic microorganisms as carbon source and energy storage under the condition of carbon and nitrogen nutrition imbalance.
  • the mechanical properties of PHA are similar to some thermoplastic materials such as polyethylene and polypropylene.
  • thermoplastic materials such as polyethylene and polypropylene.
  • PHA materials also have many disadvantages in processing and performance, such as relatively narrow processing window, difficult processing and molding, long molding cycle, poor resilience, and high production costs.
  • PHA PHA
  • the biological modification of PHA is to introduce other functional hydroxy fatty acid chain unit into the PHA molecular chain through microbial fermentation under different carbon sources and different fermentation conditions, so as to achieve the purpose of improving the performance of PHA.
  • grafting and block are the most common methods.
  • the thermal stability of PHA can be improved by grafting maleic anhydride (MA).
  • MA grafting maleic anhydride
  • physical modification is also a common method for PHA modification.
  • blending PHA with polyethylene oxide (PEO) can improve the brittleness of PHA and improve the impact strength of the blended material;
  • blending PHA with polybutylene succinate (PBS) can improve the tensile strength and impact strength of the material. Toughness, the elongation at break can reach 400%;
  • PHA and polylactic acid (PLA) are blended to increase the breaking strength.
  • the present invention proposes a composite material and its preparation method and application, which solves the low toughness and low strength of existing polyhydroxyalkanoate products, and the difficulty of degradation of nylon (abbreviated as PA) The problem.
  • a composite material comprising a skin layer and a core layer, the skin layer is prepared from component A, and the core layer is prepared from component B, wherein,
  • each component includes by weight:
  • each component includes by weight:
  • the nylon is PA6 and PA66.
  • Component A has the characteristics of being dyeable and fully biodegradable.
  • Component A is used as the skin layer to facilitate the dyeing of textiles when the composite material is used in textiles.
  • Component B is located in the core layer and helps the composite material to degrade. , because most of the degradation of the material is disintegrated from the outside to the inside, disintegrated into small fragments (oligomers), and then further degraded.
  • component B can provide sufficient toughness and toughness for the overall composite material. strength.
  • the weight ratio of the component A to the component B is (10-60): (40-90).
  • the polyhydroxyalkanoate has a water content of not more than 30 ppm.
  • the water content of the polyhydroxyalkanoate can be controlled below 30ppm by putting the polyhydroxyalkanoate in a drying device for 8-10 hours and drying at a drying temperature of 70-80°C. If the water content is higher than 30ppm, it will have an impact on the stability of processing, because high water content may cause PHA to decompose during extrusion, melting and high temperature processing, resulting in a decrease in the molecular weight of the material, thereby making the thickness of the composite material uneven. Filaments are prone to breakage during spinning, which affects spinnability, or the final spun filaments are more likely to break, which affects the breaking strength of the filaments.
  • the molar content of 4-hydroxybutyric acid is 7%-25%. As the content of 4-hydroxybutyric acid increases, the material will change from brittle to tough, making the toughness better; but if the content of 4-hydroxybutyric acid is less than 7%, the material is relatively brittle and has low toughness; 4 If the content of -hydroxybutyric acid is higher than 25%, the processing temperature will decrease with the increase of the content, the processing window will be narrowed, and the decomposition temperature will also decrease, making the material easy to decompose.
  • the weight average molecular weight of the polyhydroxyalkanoate is 100000-800000, the melting point of the polyhydroxyalkanoate is 100-160°C, and the melt flow index of the polyhydroxyalkanoate is 5-7g /10min.
  • the weight-average molecular weight of polyhydroxyalkanoate is large, which can increase the melting point of polyhydroxyalkanoate; the melt flow index of polyhydroxyalkanoate is 5-7g/10min, which can make the masterbatch have a better melt index. It has good fluidity and is easy to extrude, ensuring that component A and component B have a good melt extrusion effect when extruded in a composite spinning machine.
  • the weight average molecular weight of the nylon is 16000-24000, the melting point of the nylon is 200°C-260°C, and the melt flow index of the nylon is 15-50g/10min.
  • the nylon is nylon 6 or nylon 66.
  • the nucleating agent is sodium benzoate or p-tert-butylbenzoic acid or uracil carboxylic acid.
  • Nucleating agents can increase the rate of crystallization of polyhydroxyalkanoate powders. When polyhydroxyalkanoate is processed at high temperature, the crystallization speed is slow, and the filaments are easy to stick when forming, and the finished silk after processing becomes brittle when it crystallizes after cooling; adding a nucleating agent makes polyhydroxyalkanoate It can also crystallize quickly under processing, so that the material is not easy to stick, more stable during spinning, and also reduces post-crystallization. The finished product is not easy to become brittle when stored, and the toughness of the material is enhanced.
  • the present invention also provides the preparation method of above-mentioned composite material, comprises the following steps:
  • the melting temperature of the first extruder is 160°C to 180°C, if the melting temperature is lower than 150°C, the polyhydroxyalkanoate powder has a high viscosity and it is difficult to feed; if the melting temperature is higher than 180 °C, the polyhydroxyalkanoate powder is prone to degradation.
  • the melting temperature of the second extruder is 220°C-280°C, and the temperature of the composite spinning machine is 220°C-260°C.
  • the processing melting temperature of nylon is 220-280°C, and the processing temperature range of PHA is lower and narrower than that of nylon, which is 160-180°C. If it is only blended for extrusion processing and then composite spinning, the extrusion temperature must be processed within the processing temperature range of nylon (220-280°C), but processing at this temperature will cause partial thermal decomposition of PHA, resulting in odor and The processing stability will be affected, and the performance of the material will also be greatly affected. Therefore, PHA-nylon composite materials cannot be prepared by conventional methods, but must be made into a skin-core structure.
  • the composite spinning sheath-core structure is made.
  • PHA and nylon can be extruded in their respective suitable processing temperature ranges to obtain granules;
  • additional compatibilizers need to be added, and the screening of compatibilizers is difficult.
  • the present invention also provides the application of the above-mentioned composite material in the preparation of textile products, such as non-woven fabrics and other products.
  • the present invention has the following advantages.
  • the composite material provided by the invention has the advantages of degradability and high toughness, and solves the problems of low toughness and difficult degradation of nylon materials existing in existing PHA materials.
  • the composite material provided by the invention can be continuously spun into yarns and used as textile materials, and the manufactured textiles not only have excellent softness, but also have sufficient strength.
  • Fig. 1 is a schematic flow chart of the preparation of the composite material in Example 1 of the present invention.
  • a composite material comprising a skin layer and a core layer, the skin layer is composed of component A, and the core layer is composed of component B, wherein,
  • each component includes by weight:
  • each component includes by weight:
  • the weight ratio of component A to component B is 10:40.
  • the weight-average molecular weight of the polyhydroxyalkanoate is 300,000, the melting point of the polyhydroxyalkanoate is 140° C., and the melt flow index of the polyhydroxyalkanoate is 5 g/10 min.
  • the molar content of 4-hydroxybutyric acid is 7%.
  • the weight average molecular weight of nylon is 16000, the melting point is 200°C, and the melt flow index of nylon is 15g/10min.
  • Fig. 1 is a schematic diagram of the preparation process of the composite material of this embodiment.
  • S1-3 Mix polyhydroxyalkanoate powder and 0.1 part of nucleating agent evenly, melt and extrude through the first twin-screw extruder at 160-180°C, water-cool and pelletize, dry, and make component A;
  • S2-1 Weigh 90 parts of nylon 6, and weigh 10 parts of polyhydroxyalkanoate powder according to weight, wherein the molar content of 4HB in the polyhydroxyalkanoate powder is 7%;
  • S2-3 Mix polyhydroxyalkanoate powder and nylon particles evenly, melt and extrude through the second twin-screw extruder at 220-280°C, water-cool and pelletize, and dry to make component B;
  • a composite material comprising a skin layer and a core layer, the skin layer is composed of component A, and the core layer is composed of component B, wherein,
  • each component includes by weight:
  • each component includes by weight:
  • the weight ratio of component A to component B is 10:90.
  • the weight-average molecular weight of the polyhydroxyalkanoate is 100,000, the melting point of the polyhydroxyalkanoate is 100° C., and the melt flow index of the polyhydroxyalkanoate is 7 g/10 min.
  • the molar content of 4-hydroxybutyric acid was 18%.
  • the weight average molecular weight of nylon is 24000, the melting point is 260°C, and the melt flow index of nylon is 50g/10min.
  • S2-3 Mix polyhydroxyalkanoate powder and nylon granules evenly, melt and extrude through the second twin-screw extruder at 220-280°C, water-cool and pelletize, and dry to make component B;
  • a composite material comprising a skin layer and a core layer, the skin layer is composed of component A, and the core layer is composed of component B, wherein,
  • each component includes by weight:
  • each component includes by weight:
  • the weight ratio of component A to component B is 60:40.
  • the weight-average molecular weight of the polyhydroxyalkanoate is 800,000, the melting point of the polyhydroxyalkanoate is 160°C, and the melt flow index of the polyhydroxyalkanoate is 7g/10min.
  • the molar content of 4-hydroxybutyric acid was 22%.
  • the weight average molecular weight of nylon is 24000, the melting point is 260°C, and the melt flow index of nylon is 50g/10min.
  • S1-3 Mix polyhydroxyalkanoate powder and 0.5 part of uracil carboxylic acid evenly, melt and extrude through the first twin-screw extruder at 160-180°C, water-cool and cut into pellets, and dry to make component A ;
  • S2-3 Mix polyhydroxyalkanoate powder and nylon particles evenly, melt and extrude through the second twin-screw extruder at 220-280°C, water-cool and cut into pellets, and dry to make component B;
  • component B is put into the screw 2 of the twin-screw extruder, and melted and extruded at 220-280°C;
  • a composite material comprising a skin layer and a core layer, the skin layer is composed of component A, and the core layer is composed of component B, wherein,
  • each component includes by weight:
  • each component includes by weight:
  • the weight ratio of component A to component B is 60:90.
  • the weight-average molecular weight of the polyhydroxyalkanoate is 500,000, the melting point of the polyhydroxyalkanoate is 150°C, and the melt flow index of the polyhydroxyalkanoate is 6g/10min.
  • the molar content of 4-hydroxybutyric acid is 25%.
  • the weight average molecular weight of nylon is 16000-24000, the melting point is 200°C-260°C, and the melt flow index of nylon is 15-50g/10min.
  • S1-3 Mix polyhydroxyalkanoate powder and 2 parts of sodium benzoate evenly, melt and extrude through the first twin-screw extruder at 160-180°C, water-cool and pelletize, and dry to prepare component A;
  • S2-3 Mix polyhydroxyalkanoate powder and nylon granules evenly, melt and extrude through the second twin-screw extruder at 220-280°C, water-cool and pelletize, and dry to make component B;
  • the weight ratio of component A and component B is 70:30, and the rest are consistent with Example 1.
  • the composite material prepared in Example 1 of the present invention is used to prepare non-woven fabrics, and the performance test of the prepared non-woven fabrics is carried out according to FZ/T60005-1991.
  • the measured thermal softening temperature is 90 ° C
  • the breaking strength is 3.86 cN/dtex
  • the elongation at break is 39.62%
  • the work of break is 60.12N.cm. It can be seen that the composite material provided by the invention can be applied to textiles with higher requirements on strength and other properties.

Abstract

本发明提供了一种复合材料,其包含皮层和芯层,所述皮层由组分A组成,所述芯层由组分B组成,其中,组分A中,各组分按重量份计,包含:聚羟基脂肪酸酯10~60份和成核剂0.1~2份;组分B中,各组分按重量份计,包含:尼龙80~95份和PHA 5~20份。组分A具有可染色和可生物全降解的优点,组分B具有高韧性高强度的优点,两者做成皮芯结构的复合长丝,解决了现有PHA材料存在的韧性低以及尼龙材料难降解的问题。本发明提供的复合材料可以继续纺成纱线,用作纺织品材料,制得的纺织品具有优异的柔软性和强度。

Description

一种复合材料及其制备方法和应用 技术领域
本发明属于复合材料技术领域,具体涉及一种复合材料及其制备方法和应用。
背景技术
聚羟基脂肪酸酯(简称PHA)是原核微生物在碳、氮营养失衡的情况下,作为碳源和能源贮存而合成的一类热塑性脂肪族生物聚酯。PHA的力学性能与某些热塑性材料如聚乙烯、聚丙烯类似。与一般的脂肪族聚酯一样,PHA材料也存在着加工和性能上的许多缺点,如加工窗口相对较窄、加工成型困难、成型周期长、回弹性差、同时生产成本还较高。
因此,国内外专家和学者对PHA进行了改性研究,如生物改性、化学改性和物理改性等,以提高性能,降低生产成本,推进应用。PHA的生物改性是通过微生物发酵,在不同碳源、不同发酵条件下,在PHA分子链引入其他功能的羟基脂肪酸链节单元,以达到改善PHA性能的目的。PHA的化学改性中,接枝和嵌段是最为常见的方法。例如,可以通过接枝顺丁烯二酸酐(MA)来提高PHA的热稳定性。此外,物理改性也是PHA改性的常用方法。如PHA与聚氧化乙烯(PEO)共混,可以改善PHA的脆性,提高共混材料的冲击强度;PHA与聚丁二酸丁二醇酯(PBS)共混,可以提高材料的拉伸强度和韧性,断裂伸长率可达400%;PHA与聚乳酸(PLA)共混,断裂强度增加。
目前,如何改善PHA材料性能上的缺陷,尤其是韧性等力学性能,仍是大多数学者在研究的课题。
发明内容
为了克服上述现有技术的缺陷,本发明提出了一种复合材料及其制备方法和应用,解决了现有聚羟基脂肪酸酯产品存在的韧性低和强度低,以及尼龙(简称PA)不易降解的问题。
具体通过以下技术方案实现:
一种复合材料,包含皮层和芯层,所述皮层由组分A制备而成,所述芯层由组分B制备而成,其中,
组分A中,各组分按重量份计,包含:
聚羟基脂肪酸酯  10~60份
成核剂          0.1~2份
组分B中,各组分按重量份计,包含:
尼龙            80~95份
聚羟基脂肪酸酯  5~20份。
优选地,所述尼龙为PA6和PA66。
组分A具有可染色以及可生物全降解的特性,将组分A作为皮层,有助于复合材料用于纺织品时,方便纺织品染色,组分B位于芯层,有助于该复合材料发生降解,因为材料发生降解大部分都是由外到内先进行崩解,崩解成小碎片(低聚物),再发生进一步的降解,此外组分B能够为整体的复合材料提供足够的韧性和强度。
进一步地,所述组分A与所述组分B的重量比为(10~60):(40~90)。
优选地,所述聚羟基脂肪酸酯的含水量不超过30ppm。具体地,可以通过将所述聚羟基脂肪酸酯放入干燥设备中干燥8~10小时,干燥温度设置为70~80℃,使所述聚羟基脂肪酸酯的含水量控制在30ppm以下。若含水量高于30ppm,对加工的稳定性会产生影响,因为含水量高可能会引发 PHA在挤出熔融高温加工时发生分解,导致材料分子量下降,从而使复合材料的粗细不均匀导致在纺织成丝时易发生断丝等现象,影响可纺性,或最终纺成的丝更易断裂,影响丝的断裂强度。
进一步地,所述聚羟基脂肪酸酯中,4-羟基丁酸的摩尔含量为7%~25%。材料会随着4-羟基丁酸的含量增大而发生从脆性到韧性的转变,使得韧性更好;但若4-羟基丁酸的含量低于7%,则材料比较脆,韧性低;4-羟基丁酸的含量若高于25%,则加工温度随着含量的增大而降低,加工窗口变窄,分解温度也随之降低,使得材料容易发生分解。
进一步地,所述聚羟基脂肪酸酯的重均分子量为100000~800000,所述聚羟基脂肪酸酯的熔点为100~160℃,所述聚羟基脂肪酸酯的熔体流动指数为5~7g/10min。聚羟基脂肪酸酯的重均分子量大,可提高聚羟基脂肪酸酯的熔点;聚羟基脂肪酸酯熔体流动指数在5~7g/10min,可以使母粒具有较好的熔融指数,熔融后流动性好,便于挤出,确保组分A和组分B在复合纺丝机中挤出时具有良好的熔融挤出效果。
进一步地,所述尼龙的重均分子量为16000~24000,尼龙的熔点为200℃~260℃,尼龙的熔体流动指数15~50g/10min。优选地,尼龙为尼龙6或尼龙66。
优选地,成核剂为苯甲酸钠或对叔丁基苯甲酸或尿嘧啶羧酸。成核剂可提高聚羟基脂肪酸酯粉末的结晶速率。聚羟基脂肪酸酯在高温加工时,结晶速度慢,成型时长丝易黏连,且加工后成品丝冷却后发生后结晶时变得易脆;加入成核剂,使得聚羟基脂肪酸酯在高温加工下也能快速结晶,这样材料不易黏连、在纺丝加工时更稳定,也减少后结晶现象,成品保存时不易变脆,增强材料的韧性。
本发明还提供上述复合材料的制备方法,包括以下步骤:
S1:称取组分A的各组分,混合、干燥后,经第一挤出机熔融、挤出、冷却、切粒、干燥,得到组分A;
S2:称取组分B的各组分,混合后,经第二挤出机熔融、挤出、冷却、切粒、干燥,得到组分B;
S3:将组分A和组分B分别从复合纺丝机的不同投料口投入,进行皮芯复合纺丝,再经过冷却、牵伸,制得复合材料。
进一步地,所述第一挤出机的熔融温度为160℃~180℃,若熔融温度低于150℃,则聚羟基脂肪酸酯粉末的粘度较大,进料困难;若熔融温度高于180℃,则聚羟基脂肪酸酯粉末容易发生降解。所述第二挤出机的熔融温度为220℃~280℃,所述复合纺丝机的温度为220℃~260℃。
尼龙的加工熔融温度在220-280℃,PHA的加工温度区间比尼龙的加工温度区间更低且更窄,为160-180℃。如果只是共混进行挤出加工后再进行复合纺丝,挤出温度必须要在尼龙的加工温度区间(220-280℃)进行加工,但这个温度加工会使PHA发生部分热分解,产生气味和影响加工稳定性,材料的性能也会受到较大的影响,所以不能通过常规方法制备PHA-尼龙复合材料,而是要做成皮芯结构。
与直接共混相比,做成复合纺丝皮芯结构,第一,可以使PHA和尼龙在各自适合的加工温度区间进行挤出加工得到颗粒;第二,经由复合纺丝机进行纺丝,得到的皮芯结构的丝纤维,该结构皮层和芯层能最大的保留各自材料的优点,皮层具有可染色和可生物全降解的优点,芯层具有高韧性高强度的优点,避免了直接共混导致组分间材料互相影响,从而导致材料性能的波动,加工稳定性也得到了保证;第三,如果采用直接共混,各组分比例的差异会导致材料间混合不均匀,影响加工温度性和复合材料的性能,需要添加额外的相容剂,而相容剂筛选有难度。
本发明还提供上述复合材料在制备纺织制品上的应用,如无纺布等产品。
本发明与现有技术相比,具有如下优点。
本发明提供的复合材料具有可降解、韧性高的优点,解决了现有PHA材料存在的韧性低以及尼龙材料难降解的问题。本发明提供的复合材料可以继续纺成纱线,用作纺织品材料,制成的纺织品既具有优良的柔软性,又具有足够的强度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1的复合材料的制备流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种复合材料,包含皮层和芯层,皮层由组分A组成,芯层由组分B组成,其中,
组分A中,各组分按重量份计,包含:
聚羟基脂肪酸酯(珠海麦得发生物科技)  10份
苯甲酸钠        0.1份
组分B中,各组分按重量份计,包含:
尼龙(新会美达锦纶)            90份
聚羟基脂肪酸酯  10份。
组分A与组分B的重量比为10:40。
聚羟基脂肪酸酯的重均分子量为300000,聚羟基脂肪酸酯的熔点为140℃,聚羟基脂肪酸酯的熔体流动指数为5g/10min。聚羟基脂肪酸酯中,4-羟基丁酸的摩尔含量为7%。
尼龙的重均分子量为16000,熔点为200℃,尼龙的熔体流动指数15g/10min。
参见图1,图1为本实施例复合材料的制备流程示意图。
本实施例的制备方法如下:
S1-1:称取10份聚羟基脂肪酸酯粉末,其中聚羟基脂肪酸酯粉末的4羟基丁酸的摩尔含量为7%;
S1-2:将聚羟基脂肪酸酯粉末放入到真空转鼓干燥设备中干燥8小时,干燥温度设置为70℃,聚羟基脂肪酸酯粉末的含水量控制在30PPM以下;
S1-3:将聚羟基脂肪酸酯粉末和0.1份成核剂混合均匀,经第一双螺杆挤出机在160~180℃下熔融挤出并水冷切粒,干燥,制成组分A;
S2-1:称取90份尼龙6,照重量计算,称取10份聚羟基脂肪酸酯粉末,其中聚羟基脂肪酸酯粉末中的4HB摩尔含量为7%;
S2-2:将聚羟基脂肪酸酯粉末放入到真空转鼓干燥设备中干燥8小时,干燥温度设置为70℃,聚羟基脂肪酸酯粉末的含水量控制在30PPM以下;
S2-3:将聚羟基脂肪酸酯粉末和尼龙颗粒混合均匀,经第二双螺杆挤 出机在220~280℃下熔融挤出并水冷切粒,干燥,制成组分B;
S3-1:按重量比,将组分A投入双螺杆挤出机的螺杆1里,在160~180℃下熔融挤出;
S3-2:按重量比,将组分B投入双螺杆挤出机的螺杆2里,在220~280℃下熔融挤出;
S3-3:熔融后的A物料和B物料分别进入皮芯复合纺丝组件,在220~260℃下计量挤出,形成复合材料的初生丝,再经过冷却和牵伸制得复合材料。
实施例2
一种复合材料,包含皮层和芯层,皮层由组分A组成,芯层由组分B组成,其中,
组分A中,各组分按重量份计,包含:
聚羟基脂肪酸酯  30份
对叔丁基苯甲酸  1份
组分B中,各组分按重量份计,包含:
尼龙            80份
聚羟基脂肪酸酯   5份。
组分A与组分B的重量比为10:90。
聚羟基脂肪酸酯的重均分子量为100000,聚羟基脂肪酸酯的熔点为100℃,聚羟基脂肪酸酯的熔体流动指数为7g/10min。聚羟基脂肪酸酯中,4-羟基丁酸的摩尔含量为18%。
尼龙的重均分子量为24000,熔点为260℃,尼龙的熔体流动指数50g/10min。
本实施例的制备方法如下:
S1-1:称取30份聚羟基脂肪酸酯粉末,其中聚羟基脂肪酸酯粉末的4羟基丁酸的摩尔含量为18%;
S1-2:将聚羟基脂肪酸酯粉末放入到真空转鼓干燥设备中干燥9小时,干燥温度设置为70℃,聚羟基脂肪酸酯粉末的含水量控制在30PPM以下;
S1-3:将聚羟基脂肪酸酯粉末和1份对叔丁基苯甲酸混合均匀,经第一双螺杆挤出机在160~180℃下熔融挤出并水冷切粒,干燥,制成组分A;
S2-1:称取80份尼龙66颗粒,以及5份聚羟基脂肪酸酯粉末,其中聚羟基脂肪酸酯粉末中的4HB摩尔含量为18%;
S2-2:将聚羟基脂肪酸酯粉末放入到真空转鼓干燥设备中干燥9小时,干燥温度设置为70℃,聚羟基脂肪酸酯粉末的含水量控制在30PPM以下;
S2-3:将聚羟基脂肪酸酯粉末和尼龙颗粒混合均匀,经第二双螺杆挤出机在220~280℃下熔融挤出并水冷切粒,干燥,制成组分B;
S3-1:按重量比,将组分A投入双螺杆挤出机的螺杆1里,在160~180℃下熔融挤出;
S3-2:按重量比,将组分B投入双螺杆挤出机的螺杆2里,在220~280℃下熔融挤出;
S3-3:熔融后的A物料和B物料分别进入皮芯复合纺丝组件,在220~260℃下计量挤出,形成复合材料的初生丝,再经过冷却和牵伸制得复合材料。
实施例3
一种复合材料,包含皮层和芯层,皮层由组分A组成,芯层由组分B组成,其中,
组分A中,各组分按重量份计,包含:
聚羟基脂肪酸酯   50份
尿嘧啶羧酸      0.5份
组分B中,各组分按重量份计,包含:
尼龙            85份
聚羟基脂肪酸酯  10份。
组分A与组分B的重量比为60:40。
聚羟基脂肪酸酯的重均分子量为800000,聚羟基脂肪酸酯的熔点为160℃,聚羟基脂肪酸酯的熔体流动指数为7g/10min。聚羟基脂肪酸酯中,4-羟基丁酸的摩尔含量为22%。
尼龙的重均分子量为24000,熔点为260℃,尼龙的熔体流动指数50g/10min。
本实施例的制备方法如下:
S1-1:称取50份聚羟基脂肪酸酯粉末,其中聚羟基脂肪酸酯粉末的4羟基丁酸的摩尔含量为22%;
S1-2:将聚羟基脂肪酸酯粉末放入到真空转鼓干燥设备中干燥8小时,干燥温度设置为80℃,聚羟基脂肪酸酯粉末的含水量控制在30PPM以下;
S1-3:将聚羟基脂肪酸酯粉末和0.5份尿嘧啶羧酸混合均匀,经第一双螺杆挤出机在160~180℃下熔融挤出并水冷切粒,干燥,制成组分A;
S2-1:称取85份尼龙6颗粒以及10份聚羟基脂肪酸酯粉末,其中聚羟基脂肪酸酯粉末中的4HB摩尔含量为22%;
S2-2:将聚羟基脂肪酸酯粉末放入到真空转鼓干燥设备中干燥8小时,干燥温度设置为80℃,聚羟基脂肪酸酯粉末的含水量控制在30PPM以下;
S2-3:将聚羟基脂肪酸酯粉末和尼龙颗粒混合均匀,经第二双螺杆挤出机在220~280℃下熔融挤出并水冷切粒,干燥,制成组分B;
S3-1:按重量比,将组分A投入双螺杆挤出机的螺杆1里,在160~ 180℃下熔融挤出;
S3-2:将重量比,将组分B投入双螺杆挤出机的螺杆2里,在220~280℃下熔融挤出;
S3-3:熔融后的A物料和B物料分别进入皮芯复合纺丝组件,在220~260℃下计量挤出,形成复合材料的初生丝,再经过冷却和牵伸制得复合材料。
实施例4
一种复合材料,包含皮层和芯层,皮层由组分A组成,芯层由组分B组成,其中,
组分A中,各组分按重量份计,包含:
聚羟基脂肪酸酯    60份
苯甲酸钠         2份
组分B中,各组分按重量份计,包含:
尼龙             95份
聚羟基脂肪酸酯   5份。
组分A与组分B的重量比为60:90。
聚羟基脂肪酸酯的重均分子量为500000,聚羟基脂肪酸酯的熔点为150℃,聚羟基脂肪酸酯的熔体流动指数为6g/10min。聚羟基脂肪酸酯中,4-羟基丁酸的摩尔含量为25%。
尼龙的重均分子量为16000~24000,熔点为200℃~260℃,尼龙的熔体流动指数15~50g/10min。
本实施例的制备方法如下:
S1-1:称取60份聚羟基脂肪酸酯粉末,其中聚羟基脂肪酸酯粉末的4羟基丁酸的摩尔含量为25%;
S1-2:将聚羟基脂肪酸酯粉末放入到真空转鼓干燥设备中干燥8小时,干燥温度设置为70℃,聚羟基脂肪酸酯粉末的含水量控制在30PPM以下;
S1-3:将聚羟基脂肪酸酯粉末和2份苯甲酸钠混合均匀,经第一双螺杆挤出机在160~180℃下熔融挤出并水冷切粒,干燥,制成组分A;
S2-1:称取95份尼龙66颗粒以及5份聚羟基脂肪酸酯粉末,其中聚羟基脂肪酸酯粉末中的4HB摩尔含量为25%;
S2-2:将聚羟基脂肪酸酯粉末放入到真空转鼓干燥设备中干燥8小时,干燥温度设置为70℃,聚羟基脂肪酸酯粉末的含水量控制在30PPM以下;
S2-3:将聚羟基脂肪酸酯粉末和尼龙颗粒混合均匀,经第二双螺杆挤出机在220~280℃下熔融挤出并水冷切粒,干燥,制成组分B;
S3-1:按重量比,将组分A投入双螺杆挤出机的螺杆1里,在160~180℃下熔融挤出;
S3-2:按重量比,将组分B投入双螺杆挤出机的螺杆2里,在220~280℃下熔融挤出;
S3-3:熔融后的A物料和B物料分别进入皮芯复合纺丝组件,在220~260℃下计量挤出,形成复合材料的初生丝,再经过冷却和牵伸制得复合材料。
对比例1
本对比例1中,聚羟基脂肪酸酯粉末的含水量为35PPM,其余和实施例1一致。
对比例2
本对比例中,组分A和组分B的重量比为70:30,其余和实施例1一致。
对实施例及对比例制备的复合材料按GB/14344-2008进行拉伸性能测试,结果如表1所示。
Figure PCTCN2022111480-appb-000001
由实施例和对比例的数据可以看出,由于聚羟基脂肪酸酯的含水量以及复合材料中组分A和组分B的配比不合适,对比例的断裂强度、断裂伸长率以及断裂功均比实施例差,说明对比例的材料强度远不如实施例。
实施例5
用本发明实施例1制得的复合材料制备无纺布,对所制得的无纺布按FZ/T60005-1991进行性能测试,测得热软化温度为90℃,断裂强度为3.86cN/dtex,断裂伸长率为39.62%,断裂功为60.12N.cm,可见,本发明提供的复合材料可以适用于对强度等性能要求较高的纺织品上。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种复合材料,其特征在于,包含皮层和芯层,所述皮层由组分A制备而成,所述芯层由组分B制备而成,其中,
    组分A中,各组分按重量份计,包含:
    聚羟基脂肪酸酯  10~60份
    成核剂          0.1~2份
    组分B中,各组分按重量份计,包含:
    尼龙          80~95份
    聚羟基脂肪酸酯  5~20份。
  2. 根据权利要求1所述的复合材料,其特征在于,所述组分A与所述组分B的重量比为(10~60):(40~90)。
  3. 根据权利要求1所述的复合材料,其特征在于,所述聚羟基脂肪酸酯的含水量不超过30ppm。
  4. 根据权利要求1所述的复合材料,其特征在于,所述聚羟基脂肪酸酯中,4-羟基丁酸的摩尔含量为7~25%。
  5. 根据权利要求1所述的复合材料,其特征在于,所述聚羟基脂肪酸酯的重均分子量为100000~800000,所述聚羟基脂肪酸酯的熔体流动指数为5~7g/10min。
  6. 根据权利要求1所述的复合材料,其特征在于,所述尼龙的重均分子量为16000~24000,所述尼龙的熔体流动指数15~50g/10min。
  7. 根据权利要求1所述的复合材料,其特征在于,成核剂为苯甲酸钠或对叔丁基苯甲酸或尿嘧啶羧酸。
  8. 一种根据权利要求1-7任一项所述的复合材料的制备方法,其特征在于,包括以下步骤:
    S1:称取组分A的各组分,混合、干燥后,经第一挤出机熔融、挤出、 冷却、切粒、干燥,得到组分A;
    S2:称取组分B的各组分,混合后,经第二挤出机熔融、挤出、冷却、切粒、干燥,得到组分B;
    S3:将组分A和组分B分别从复合纺丝机的不同投料口投入,进行皮芯复合纺丝,再经过冷却、牵伸,制得复合材料。
  9. 根据权利要求8所述的复合材料的制备方法,其特征在于,所述第一挤出机的熔融温度为160℃~180℃,所述第二挤出机的熔融温度为220℃~280℃,所述复合纺丝机的温度为220℃~260℃。
  10. 根据权利要求1-7任一项所述的复合材料在制备纺织制品上的应用。
PCT/CN2022/111480 2021-12-24 2022-08-10 一种复合材料及其制备方法和应用 WO2023115980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111603143.8A CN114262952B (zh) 2021-12-24 2021-12-24 一种复合材料及其制备方法和应用
CN202111603143.8 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023115980A1 true WO2023115980A1 (zh) 2023-06-29

Family

ID=80830220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111480 WO2023115980A1 (zh) 2021-12-24 2022-08-10 一种复合材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114262952B (zh)
WO (1) WO2023115980A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262952B (zh) * 2021-12-24 2023-03-21 珠海麦得发生物科技股份有限公司 一种复合材料及其制备方法和应用
CN115109453B (zh) * 2022-06-17 2023-03-21 广东冠粤路桥有限公司 一种道路标线材料添加剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090068463A1 (en) * 2005-10-19 2009-03-12 Katsuhiko Mochizuki Crimped Yarn, Method for Manufacture thereof, and Fiber Structure
CN101538750A (zh) * 2008-03-18 2009-09-23 天津国韵生物材料有限公司 聚羟基脂肪酸酯纤维及其制备方法
JP2013036131A (ja) * 2011-08-05 2013-02-21 Nippon Ester Co Ltd ポリエステル芯鞘複合繊維
CN106521701A (zh) * 2016-09-22 2017-03-22 江南大学 一种皮芯结构聚(3‑羟基丁酸酯‑co‑3‑羟基戊酸酯)纤维、非织造材料及其制备方法
CN106626535A (zh) * 2016-11-08 2017-05-10 江南大学 一种高纤维体积含量phbv单聚合物复合材料及其制备方法
CN111876846A (zh) * 2020-07-10 2020-11-03 深圳市骏鼎达新材料股份有限公司 复合尼龙单丝及其制备方法
CN212236352U (zh) * 2019-12-03 2020-12-29 江南大学 一种高强高效聚(3-羟基丁酸酯-co-3-羟基戊酸酯)滤料
CN114262952A (zh) * 2021-12-24 2022-04-01 珠海麦得发生物科技股份有限公司 一种复合材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4048935B2 (ja) * 2002-04-12 2008-02-20 チッソ株式会社 生分解性複合繊維及びこれを用いた繊維構造物、吸収性物品
CN101550273A (zh) * 2009-05-08 2009-10-07 东华大学 改性聚(3-羟基丁酸酯-3-羟基戊酸酯)及纺丝方法
CN101660222B (zh) * 2009-08-24 2012-08-15 江苏鹰翔化纤股份有限公司 锦纶与聚丁二酸丁二醇酯皮芯纤维的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090068463A1 (en) * 2005-10-19 2009-03-12 Katsuhiko Mochizuki Crimped Yarn, Method for Manufacture thereof, and Fiber Structure
CN101538750A (zh) * 2008-03-18 2009-09-23 天津国韵生物材料有限公司 聚羟基脂肪酸酯纤维及其制备方法
JP2013036131A (ja) * 2011-08-05 2013-02-21 Nippon Ester Co Ltd ポリエステル芯鞘複合繊維
CN106521701A (zh) * 2016-09-22 2017-03-22 江南大学 一种皮芯结构聚(3‑羟基丁酸酯‑co‑3‑羟基戊酸酯)纤维、非织造材料及其制备方法
CN106626535A (zh) * 2016-11-08 2017-05-10 江南大学 一种高纤维体积含量phbv单聚合物复合材料及其制备方法
CN212236352U (zh) * 2019-12-03 2020-12-29 江南大学 一种高强高效聚(3-羟基丁酸酯-co-3-羟基戊酸酯)滤料
CN111876846A (zh) * 2020-07-10 2020-11-03 深圳市骏鼎达新材料股份有限公司 复合尼龙单丝及其制备方法
CN114262952A (zh) * 2021-12-24 2022-04-01 珠海麦得发生物科技股份有限公司 一种复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OLKHOV ANATOLY, GUR'EV VLADIMIR, AKATOV VLADIMIR, MASTALYGINA ELENA, IORDANSKII ALEXEY, SEVASTYANOV VICTOR I.: "Composite tendon implant based on nanofibrillar polyhydroxybutyrate and polyamide filaments", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, vol. 106, no. 10, 1 October 2018 (2018-10-01), US , pages 2708 - 2713, XP093075749, ISSN: 1549-3296, DOI: 10.1002/jbm.a.36469 *

Also Published As

Publication number Publication date
CN114262952A (zh) 2022-04-01
CN114262952B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2023115980A1 (zh) 一种复合材料及其制备方法和应用
Hassan et al. Dynamic mechanical properties and thermal stability of poly (lactic acid) and poly (butylene succinate) blends composites
CN105220264B (zh) 一种改性聚乳酸纤维及其制备方法
US20100130699A1 (en) Polylactic acid composition and fiber thereof
US20120107527A1 (en) Use of polymer blends for producing slit film tapes
KR20160094836A (ko) 고 권축 특성을 갖는 2성분 복합 섬유, 복합체 얀 및 직물
CN112126051B (zh) 一种高熔融指数可降解聚合物及其制备方法
CN102251308A (zh) 一种有色消光涤纶长丝的制备方法
US20120292808A1 (en) Process for producing shaped articles of poly(trimethylene arylate)/polystyrene
CN114410091A (zh) 一种耐高温抗冲击高强度的改性聚乳酸材料及其制备方法
CN104695047A (zh) 一种新型的高柔软性聚乳酸纤维复合材料及其制备方法
JP4617872B2 (ja) ポリ乳酸繊維
CN109706539A (zh) 一种负离子聚乳酸纤维及其制备方法
CN113583407A (zh) 一种含羧酸盐成核剂的聚乳酸组合物及其制备方法
US20120296043A1 (en) Poly(trimethylene arylate)/polystyrene composition and process for preparing
CN105200552B (zh) 高耐热高强度的聚乳酸纤维及其制备方法
CN102875987B (zh) 一种有机成核剂及其制备和应用
CN110387597B (zh) 一种基于一步法牵伸工艺的高强尼龙6长丝及其制备方法
CN113249815A (zh) 一种生物可降解pga熔融纺丝成形的方法
CN113402868A (zh) 一种超支化聚酯改性聚乳酸/聚碳酸亚丙酯复合材料的制备方法
CN106337213A (zh) 一种易结晶聚酯纤维的制造方法
JP2012241150A (ja) ポリ乳酸樹脂とポリエチレンテレフタレート樹脂からなるポリマーアロイおよびその製造方法
CN111304774A (zh) 全降解主动杀菌型环保无纺布纤维的生产工艺
CN113968923B (zh) 一种聚丙烯树脂粉料、粒子及无纺布的制备方法
CN111218730A (zh) 一种耐高温聚乳酸纤维及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909310

Country of ref document: EP

Kind code of ref document: A1