WO2023115739A1 - 高硼硅玻璃制瓶机及快吹法生产工艺 - Google Patents

高硼硅玻璃制瓶机及快吹法生产工艺 Download PDF

Info

Publication number
WO2023115739A1
WO2023115739A1 PCT/CN2022/083217 CN2022083217W WO2023115739A1 WO 2023115739 A1 WO2023115739 A1 WO 2023115739A1 CN 2022083217 W CN2022083217 W CN 2022083217W WO 2023115739 A1 WO2023115739 A1 WO 2023115739A1
Authority
WO
WIPO (PCT)
Prior art keywords
blowing
mold
core
puffing
air
Prior art date
Application number
PCT/CN2022/083217
Other languages
English (en)
French (fr)
Inventor
杨鹏
马军
马强
杨晓丽
景光泽
孟凡彪
于道亮
Original Assignee
山东嘉丰玻璃机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东嘉丰玻璃机械有限公司 filed Critical 山东嘉丰玻璃机械有限公司
Publication of WO2023115739A1 publication Critical patent/WO2023115739A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/13Blowing glass; Production of hollow glass articles in gob feeder machines
    • C03B9/14Blowing glass; Production of hollow glass articles in gob feeder machines in "blow" machines or in "blow-and-blow" machines
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/34Glass-blowing moulds not otherwise provided for
    • C03B9/347Construction of the blank or blow mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/36Blow heads; Supplying, ejecting or controlling the air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • a high borosilicate glass bottle making machine and a fast-blowing production process belong to the technical field of glass instruments.
  • High borosilicate glass is a new type of glass product, which has the advantages of low expansion rate, high heat resistance, high strength, high hardness, high light transmittance, high chemical stability, etc. It is especially suitable for the manufacture of vaccine bottles, baby bottles, and medical bottles , oral liquid bottles and other products with high safety requirements.
  • high borosilicate glass bottles the production method commonly used at present is: firstly, the glass tube is formed by a glass tube drawing machine, and then formed into a glass tube by a tube bottle making machine. Small-mouth vaccine bottles, large-mouth baby bottles, etc. have the biggest drawbacks of extremely low efficiency and waste of energy, which limits the promotion and use of high borosilicate glass in glass bottle products.
  • the determinant bottle making machine (hereinafter referred to as the bottle making machine) is an efficient mechanical equipment for manufacturing glass bottles.
  • the multi-component forming machines independently complete the bottle-making production process.
  • the single-group multi-drop forming machine is more efficient than the tubular bottle making machine. 3 ⁇ 5 times, the multi-group bottle making machine is dozens of times more efficient than the tube bottle making machine.
  • the traditional determinant bottle making machine cannot directly produce high borosilicate glass bottles at present, the reasons are:
  • the process flow is roughly as follows: 1), firstly, the funnel 70 moves to the upper port of the initial mold 5, and under the guidance of the funnel 70, the material drop 26 Drop in the preliminary model 5, see Fig. 15 (a). 2), then the funnel 70 is transferred away, the pressure blowing head 72 is transferred to the port of the initial mold 5, the punch 71 enters the initial mold 5 vertically from the bottom of the initial mold 5, and the gob 26 is punched Under the action of the head 71, the inner cavity of the prototype mold 5 is filled to form a prototype embryo body, as shown in Fig. 15(b). 3) Then the turning mechanism in the bottle-making machine transfers the primary body to the forming side.
  • the pressure blowing head 73 on the forming side moves to the die opening of the forming Air is blown at the bottle mouth of the embryo body, so that the primary mold is attached to the inner wall of the forming mold 10 under the action of air pressure to form a molding embryo body, and the glass bottle is formed after cooling, as shown in Figure 15(c). 4) Finally, transfer the formed glass bottle out of the forming mold 10, and so on.
  • the reason why it is difficult to realize is that the whole process is relatively complicated, and its biggest defect is the heat conduction effect of the punch 71 on the gob 26.
  • the punch 71 is generally made of metal, so when the punch 71 stamps the gob 26, it will further accelerate the cooling time of the gob 26 made of high borosilicate material, so that the gob 26 solidifies prematurely, so the original parison After the body is transferred into the molding die 10, it has been difficult to blow molding the preliminary green body. If a non-metallic punch is used, it is difficult to withstand high-speed and high-strength impacts.
  • the process flow is roughly as follows: 1), first, the funnel 70 moves to the upper port of the initial mold 5, and under the guidance of the funnel 70, the material drop 26 drops into the forming mold 5, See Figure 16(a). 2) Then the blowing and puffing head 74 is transferred to the upper port of the funnel 70, and puffs air into the initial mold 5, so that the material drop 6 enters the mouth mold to form a bottle mouth, see Figure 16(b). 3) Then the blowing and puffing head 74 and the funnel device 70 are transferred successively, and after the funnel device 70 is transferred, the blowing and puffing head 74 is transferred to the upper port of the preliminary mold 5 again.
  • the reverse blowing mechanism located at the bottom of the primary mold 5 performs reverse blowing into the primary mold 5, so that the material drop 26 fills the inner cavity of the primary mold 5 to form a primary embryo body, see Figure 16(c) .
  • the primary embryo body is transferred to the molding side, and after entering the molding mold 10, the blowing head 75 on the molding side moves to the die opening of the molding mold 10, and performs normalization from the bottle mouth of the primary embryo body. Blow air to make the initial mold fit the inner wall of the molding die 10 under the action of air pressure to form a molding body, and the glass bottle is formed after cooling, as shown in Figure 16(d). 6) Finally, transfer the formed glass bottle out of the forming mold 10, and so on.
  • the technical problem to be solved by the present invention is: to overcome the deficiencies of the prior art, to provide a high borosilicate glass bottle making machine and a fast-blowing production process, wherein the puffing head is directly puffed after the initial mold is docked, compared with
  • the traditional process reduces the process steps, and at the same time, by setting the core mechanism of the multi-layer core, it only accelerates the solidification at the bottle mouth when the gob is not solidified, avoiding the failure of reverse blowing, especially suitable for the production of high borosilicate glass bottles , compared with the traditional high borosilicate glass bottle production equipment, it has the advantages of high efficiency and high yield.
  • the high borosilicate glass bottle making machine includes a preliminary mold side and a forming side, a preliminary mold is provided on the preliminary mold side, a forming mold is provided on the forming side, and a preliminary mold is provided on the preliminary mold side.
  • a jaw clamp that goes back and forth between the prototype mold and the molding mold.
  • On the prototype side there is an air blowing mechanism that is docked with the upper port of the prototype mold and a reverse blowing mechanism that is docked with the lower port of the prototype mold.
  • the air mechanism is provided with a positive air blowing mechanism docked with the forming mold on the forming side, and is characterized in that: the air blowing mechanism is provided with an air blowing head directly docked with the initial mold and blowing air, and the air blowing head The puffing port at the bottom is opened or closed with the puffing air flow; a core mechanism docked with the primary mold is arranged on the top of the reverse blowing mechanism. A reverse blowing passage communicated with the reverse blowing mechanism is formed at intervals.
  • the puffing mechanism includes a puffing arm fixed to the puffing piston rod, the puffing arm includes a puffing arm body, and a through puffing arm pipeline is provided on the inner wall of the puffing arm body.
  • the two ends of the arm body of the puffing arm are respectively equipped with a puffing cylinder, and the upper part of the cavity of the puffing cylinder is provided with a puffing channel connected with the pipeline of the puffing arm. bottom.
  • a puffing piston is arranged in the inner cavity of the puffing cylinder, the puffing piston is located on the upper part of the puffing head, and a puffing spring is set outside the puffing rod, and the top of the puffing piston is facing the puffing head.
  • the air channel is equipped with an air puffing rod at the bottom of the puffing piston.
  • the puffing rod passes through the center of the puffing head.
  • the puffing rod reciprocates in the puffing head.
  • the opening at the bottom of the puffing head moves back and forth with the puffing rod. and turn it on or off.
  • annular boss is formed at the upper port of the preliminary mold, and a funnel mouth with a thick top and a thin bottom is formed on the inner upper part of the annular boss, and the bottom of the funnel mouth is the inner cavity of the preliminary mold.
  • the middle part of the outer ring of the air head forms a boss, and a groove is formed on the bottom of the boss.
  • a plurality of thermal insulation holes are axially opened from top to bottom on the circumference of the boss on the upper port of the initial mold, and a plurality of thermal insulation holes are axially opened from bottom to top on the circumference of the lower port of the initial mold.
  • a steel ball is respectively placed at the opening of the hole; a thermal insulation groove is arranged around the middle part of the outer surface of the initial mold, and a multi-layer asbestos layer is arranged in the thermal insulation groove from the inside to the outside.
  • the reverse blowing mechanism includes a combination cylinder that penetrates up and down, the lower port of the combination cylinder is docked with the pressure blowing cylinder, a reciprocating base is arranged inside the combination cylinder, and a small-mouth sleeve spring is sleeved outside the base.
  • a jacket fixed on the upper part of the boss at the upper end of the base; the piston rod of the blowing cylinder enters the combined cylinder from bottom to top, passes through the base and extends to the upper part of the base; an inverted blowing pipe is arranged inside the piston rod of the blowing cylinder, A hollow screw is coaxially arranged on the top of the piston rod of the blowing cylinder; the lower port of the hollow screw communicates with the reverse blowing air pipe, and the upper port of the hollow screw enters the core mechanism; a core is set on the outer ring of the hollow screw A joint, the core mechanism is fixed on the top of the core joint, an inner sleeve is fixed on the outer ring of the core joint, and a core spring is sleeved outside the inner sleeve.
  • the reverse blowing mechanism includes a combination cylinder that penetrates up and down, the lower port of the combination cylinder is connected with the blowing cylinder, a reciprocating sleeve is arranged in the combination cylinder, and a large mouth sleeve is set on the outer ring of the sleeve
  • the lower port is connected with the reverse blowing air pipe, and the upper port of the hollow screw enters the core mechanism; the outer ring of the hollow screw is fitted with a core joint, and the core structure is fixed on the top of the core joint.
  • a groove is opened on the inner surface of the barrel, an upper retaining ring is placed in the groove, and a core spring is set on the outer ring of the core joint, and the core spring is located below the upper retaining ring.
  • the core mechanism includes an inner core and an outer core
  • the inner core is located on the surface of the core joint
  • the inner core and the core joint are fixed by a clamp ring sleeved on the outer ring
  • the inner core A plurality of inner core channels are evenly opened inside, and the inner port of the inner core channel communicates with the upper port of the hollow screw, and the outer port of the inner core channel is obliquely opened on the outer ring of the upper surface of the inner core;
  • the positive blowing mechanism includes a blowing arm fixed to the blowing piston rod, the blowing arm includes a blowing arm body, and an arm body bushing penetrating up and down is provided at the end of the blowing arm body , A bushing is set inside the fastening sleeve of the inner ring of the arm body bushing, and a blowing pressure cap that penetrates up and down is installed at the upper port of the arm body bushing, and is installed in the arm body bushing from top to bottom. Enter the blow lock ring, and the blow head connected with the forming mold is installed at the bottom of the blow lock ring;
  • An annular block is arranged on the inner ring of the blow pressure cap, and a blow spring is placed on the lower part of the ring block. contact with the upper surface of the ring.
  • a heating mechanism is provided on the other side opposite to the puffing mechanism, and the heating mechanism includes a primary mold heating unit for heating the inside of the primary mold and heating the puffing head.
  • the heating unit of the puffing head, the heating mechanism includes a main pipeline for conveying gas, a ball valve is connected in parallel on the main pipeline, a hose is connected to the lower port of the ball valve, and a prototype mold nozzle is installed at the lower port of the hose. The mold nozzle is fixed with the heating arm through the bracket;
  • a solenoid valve is also connected in parallel on the main road, and the lower port of the solenoid valve is connected with an air blowing support, and the two ends of the air blowing support are respectively equipped with blowing head nozzles.
  • the blowing head nozzle is arranged on the side of the moving track of the blowing head.
  • Step 1 receiving materials
  • the core mechanism in the reverse blowing mechanism moves, and the inner and outer cores enter the initial mold from the bottom port of the initial mold at the same time, and the material drops into the initial mold;
  • Step 2 breathe out
  • the puffing head in the puffing mechanism moves to the top of the primary mold, and the puffing head descends and directly connects with the primary mold to puff the gobs in the primary mold;
  • Step 3 blow air backwards
  • the core mechanism in the reverse blowing mechanism works, the inner core is separated from the primary mold and the reverse blowing channel is opened at the same time, the reverse blowing gas enters the preliminary mold through the reverse blowing channel, and the material drops are blown back to form the primary mold.
  • the core mechanism in the reverse blowing mechanism moves, and the inner and outer cores are separated from the primary mold, and the jaw clamp drives the primary embryo body to turn from the primary side to the forming side and enter the forming mold;
  • Step 5 is blowing air.
  • the positive blowing mechanism moves to the upper port of the forming mold, and after docking with the forming mold, it performs positive blowing on the primary embryo body in the forming mold. After the primary embryo body is blown to form a molding embryo body, the jaw clamp returns The primary side; or the jaw clamp returns to the primary side before the positive blowing mechanism blows the primary body;
  • the molded green body is transferred out of the mold after being cooled and formed in the mold.
  • the production of high borosilicate glass bottles is realized by using the fast blowing method, which greatly improves the production efficiency compared with the production method of producing high borosilicate glass bottles through glass tubes in the prior art; Compared with the traditional determinant bottle making machine produced by the pressure blowing method, it avoids the defect of the finished product rate caused by the temperature drop of the borosilicate glass gob due to the punch; compared with the traditional determinant bottle making machine using the blow blowing method, the A separate funnel is provided. In the blowing process, the blowing head is used to directly connect with the initial mold and carry out blowing, which reduces the process steps.
  • the gobs are directly guided, and the special funnel in the existing bottle making machine is omitted, which not only reduces the complexity of the bottle making machine in terms of mechanical mechanism, but also does not need to be controlled.
  • the funnel moves back and forth, and the puffing operation can be performed after the puffing head is docked with the initial mold, which greatly reduces the complexity of the software control level, simplifies the process flow, and makes it more in line with the characteristics of high borosilicate glass, which is beneficial to Production of high borosilicate glass bottles.
  • a plurality of heat preservation holes are opened at the upper and lower ports of the initial mold, and steel balls are placed in all the heat preservation holes; a heat preservation groove is opened in the middle of the outer surface of the initial mold, and a heat preservation groove is arranged from inside to outside in the heat preservation groove.
  • Multiple layers of asbestos are used. The solidification time of the high borosilicate drop is delayed by setting the heat preservation hole, the asbestos layer, and setting the steel ball in the heat preservation hole for heat preservation.
  • the process steps such as puffing and reverse blowing are carried out quickly, which is not only suitable for the production of high borosilicate glass bottles, but also can significantly improve the production efficiency of the traditional blowing process when producing glass bottles of other materials.
  • the broken waist defect can significantly improve the thin bottom defect of the traditional pressure-blow process, and can replace the traditional blow-blow process and the pressure-blow production process to improve product quality and production efficiency.
  • Figure 1 is a top view of a high borosilicate glass bottle making machine.
  • Fig. 2 is a cross-sectional view of the initial molding side and the molding side of Embodiment 1 of the high borosilicate glass bottle making machine.
  • Fig. 3 is a sectional view of the side puffing arm of the first prototype of the high borosilicate glass bottle making machine.
  • Fig. 4 is a cross-sectional view of the small mouth device on the side of the primary shape of the first embodiment of the high borosilicate glass bottle making machine.
  • Fig. 5 is a schematic diagram of the operation of the primary side small mouth device of the first embodiment of the high borosilicate glass bottle making machine.
  • Fig. 6 is a sectional view of the blowing arm on the forming side of the high borosilicate glass bottle making machine embodiment 1.
  • Fig. 7 is a cross-sectional view of the blowing arm on the forming side of the high borosilicate glass bottle making machine embodiment 1 without the forming die.
  • Fig. 8 is a sectional view along A-A in Fig. 7 .
  • Fig. 9 is a structural schematic diagram of a heating device of a high borosilicate glass bottle making machine.
  • Fig. 10 is a sectional view of the initial mold of the high borosilicate glass bottle making machine.
  • Fig. 11 is a working flow diagram of Embodiment 1 of the high borosilicate glass bottle making machine.
  • Fig. 12 is a cross-sectional view of the primary side large mouth device of embodiment 2 of the high borosilicate glass bottle making machine.
  • Fig. 13 is a schematic diagram of the operation of the primary side large mouth device of the second embodiment of the high borosilicate glass bottle making machine.
  • Fig. 14 is a working flow diagram of Embodiment 2 of the high borosilicate glass bottle making machine.
  • Fig. 15 is a flow chart of the prior art bottle making by pressure blowing method.
  • Fig. 16 is a flow chart of the bottle making process in the prior art.
  • Fig. 1 ⁇ 11 is the preferred embodiment of the present invention, below in conjunction with accompanying drawing 1 ⁇ 14 the present invention is described further.
  • the high borosilicate glass bottle making machine (hereinafter referred to as the bottle making machine) includes a main frame 9.
  • one or more bottle making units can be arranged along the direction of the main frame 9.
  • the bottle making machine According to the quantity of bottles produced by one bottle making unit at the same time in one cycle, it can be set as single drop, double drop or multi drop.
  • the surface of the main frame 9 is divided into a preliminary mold side and a molding side, a preliminary mold 5 is arranged in the preliminary mold side, and a forming mold 10 is provided in the molding side.
  • the The forming side is defined as the front side of the bottle making machine
  • the initial molding side is defined as the rear side of the bottle making machine.
  • the left and right ends on the rear side of the prototype 5 are respectively provided with a blank clamp mechanism 2, the blank mold 5 is a split type, and the blank clamp mechanisms 2 on both sides respectively fix half of the blank mold 5 by mechanical arms, Realize the closing and separation of the preliminary mold 5; in the same way, the forming mold clamp mechanism 7 is arranged on both sides of the forming mold 10, and the forming mold 10 is also a split type, and the forming mold clamp mechanism 7 on both sides fixes the forming mold respectively by the mechanical arm Half of 10 realizes the closing and separation of forming die 10.
  • An overturning mechanism 8 is provided between the prototype side and the forming side, and jaw clamps 6 for clamping the embryo body (gob 26) are provided on both sides of the overturning mechanism 8, and the jaw clamps 6 are connected with the overturning mechanism 8 , when the turning mechanism 8 is working, it drives the jaw clamp 6 to turn over, so as to further realize the transfer of the embryo body (material gob 26) from the initial mold side to the forming side.
  • An electric valve box 1 is arranged at the rear end of the main frame 9, and a plurality of valve bodies are arranged in the electric valve box 1, which are used to output the compressed gas required for work to the initial model side and the forming side.
  • One side of the front end of the main frame 9 is provided with a bottle clamping mechanism 11, which is used to remove the finished glass bottle from the molding die 10.
  • the electric valve box 1 and pincer bottle mechanism 11, the structure and working process of the preliminary mold clamp mechanism 2 and forming mold clamp mechanism 7, the jaw clamp 6 and the turning mechanism 8 are the same as those of the traditional bottle making machine, and will not be repeated here.
  • an air puffing mechanism 4 and a heating mechanism 14 are respectively arranged. Realize lifting under the drive of puffing air piston rod 20, and dock with the port of prototype 5 or away from.
  • the heating arm 52 of the heating mechanism 14 realizes lifting and lowering under the action of the internal piston rod at the same time, and approaches and moves away from the preliminary model 5 .
  • the material gob 26 drips into the inside of the preliminary mold 5 from the top of the preliminary mold 5, and then the puffing arm 3 is transferred to the upper port of the preliminary mold 5 under the drive of the puffing piston rod 20, and the puffing arm 3.
  • the blowing head 15 at the bottom is docked with the upper port of the preliminary mold 5, and the puffing operation is performed on the gobs in the preliminary mold 5 through the blowing head 15, and then the blowing mechanism 19 at the bottom of the preliminary mold 5 is used for blowing air.
  • the material gob 26 in the preliminary mold 5 is subjected to back blowing treatment, so that the material drop 26 forms a preliminary embryo body, and then the preliminary mold clamp mechanism 2 drives the preliminary mold 5 to separate, and the jaw clamp in the jaw clamp 6 is clamped on the At the die 17 , the jaw clamp 6 turns the die 17 and the blank body from the prototype side to the molding side under the action of the turning mechanism 8 .
  • the forming die clamp mechanism 7 drives the forming die 10 to close up so that the initial prototype body enters the inside of the forming die 10 , and the bottom of the forming die 10 is a mold bottom 18 .
  • the blowing piston rod 20 in the positive blowing mechanism 12 drives the blowing arm 13 to move to the port of the forming die 10 and docks with the mouth die 17 located at the port of the forming die 10, and then carries out positive blowing to the preliminary embryo body after docking , the primary embryo body forms a molding embryo body under the effect of the blowing mechanism 12 in the molding die 10 .
  • the forming mold clamp mechanism 7 drives the forming mold 10 to separate, and the bottle clamp mechanism 11 transfers the final formed glass bottle out of the forming mold to enter the subsequent process.
  • the above-mentioned puffing arm 3 includes a puffing arm body, and the side part of the puffing arm body is sleeved on the outside of the puffing piston rod 20 and fastened.
  • a blowing arm pipeline 23 is provided on the inner wall of the blowing arm body, and one end of the blowing arm pipeline 23 passes through and communicates with the air supply pipeline.
  • the two ends of the puffing arm body are respectively equipped with puffing air cylinders 24, and the upper part of the puffing cylinder 24 inner chambers is provided with a vertical puffing passage, and the upper end of the puffing passage is communicated with the puffing arm pipeline 23.
  • the bottom of air passage is communicated with the inner cavity of air blowing cylinder 24.
  • An air blowing head 15 is respectively installed at the bottom of the air blowing cylinder 24 inner cavity.
  • An air blowing piston 21 is arranged in the inner cavity of the blowing air cylinder 24, and the blowing air piston 21 is located at the top of the blowing air head 15, and the top of the blowing air piston 21 faces the blowing air passage.
  • a puffing rod 25 is installed, and the bottom of the puffing rod 25 passes through the puffing head 15 downwards and passes through from the bottom of the puffing head 15, and the bottom of the puffing rod 25 is arranged with puffing air
  • the bottom of the head 15 has a smooth docking surface.
  • a boss is formed in the middle of the outer ring of the blowing head 15, and an annular groove is formed on the bottom surface of the boss.
  • the lower part of the blowing head 15 gradually decreases in diameter from the groove downward to form a tapered shape with a thick top and a thin bottom. noodle.
  • the outer sleeve of the puffing piston 21 is provided with a puffing spring 22, the top of the puffing spring 22 is in contact with the puffing piston 21, and the bottom is in indirect contact with the puffing head 25 through a pad cover.
  • the air blowing spring 22 exerts an upward elastic force on the air blowing piston 21 , so that the curved surface at the bottom of the air blowing rod 25 is smoothly connected with the curved surface at the bottom of the air blowing head 15 . Because the curved surface at the bottom of the puffing rod 25 is connected with the curved surface at the bottom of the puffing head 15, when the puffing rod 25 is only subjected to the elastic force of the puffing spring 22, the bottom of the puffing rod 25 will seal the central hole of the puffing head 15. Blocking.
  • annular boss is formed at the upper port of the preliminary mold 5, and a funnel mouth 59 with a thick top and a thin bottom is formed on the inner upper part of the annular boss, and the bottom of the funnel mouth 59 is the preliminary mold. 5 lumens.
  • Back blowing mechanism 19 docks with the inner cavity of preliminary mold 5 from the lower port of preliminary mold 5 inner cavity.
  • the puffing head 15 When the puffing head 15 was docked with the initial mold 5, the puffing head 15 moved to the top of the initial mold 5 with the puffing arm 3 driven by the puffing piston rod 20 and then descended. 5 After docking, the conical surface thicker on the upper part and thinner on the lower part of the blowing head 15 fits with the funnel mouth 59 on the top of the initial mold 5, and at the same time, the depression on the lower surface of the boss in the middle of the initial mold 5 is stuck on the initial mold 5. The outer ring of the top boss locks the split prototype 5.
  • the material gob 26 is directly guided, and the funnel 70 (see Figure 15(a)) specially arranged in the existing bottle making machine is omitted, not only on the mechanical mechanism
  • the complexity of the bottle making machine is reduced, and there is no need to control the reciprocating movement of the funnel 70.
  • the puffing operation can be performed after the puffing head 15 is docked with the initial mold 5, which greatly reduces the complexity of the software control level and simplifies the process. The process makes it more in line with the characteristics of high borosilicate glass, which is conducive to the production of high borosilicate glass bottles.
  • a plurality of thermal insulation holes 61 are axially provided on the boss circumference of the upper port of the preliminary mold 5 from top to bottom, and a plurality of thermal insulation holes 61 are axially provided on the lower port circumference of the preliminary mold 5 from bottom to top.
  • a steel ball 60 is respectively placed at the openings of all the insulation holes 61 .
  • Open the heat preservation groove in the middle part of the outer surface of the prototype mold 5, and in the heat preservation groove be provided with a multi-layer asbestos layer 62 from the inside to the outside.
  • the reverse blowing mechanism 19 adopts a small mouth device suitable for the production of glass bottles with a bottle mouth diameter of 16 mm to 50 mm.
  • the port is fixed coaxially with the pressure-blow cylinder 35 by the upper end cap 78 of the pressure-blow cylinder, and a gland 77 is installed at the upper port of the combination cylinder 76, and a top cover is arranged at the upper port of the combination cylinder 76.
  • a base 33 is arranged inside the coupling cylinder 76, and the base 33 moves up and down in the interior of the coupling cylinder 76 along its axial direction.
  • a protruding platform is provided on the top of the base 33, and a protruding limiting platform is provided on the bottom of the base 33.
  • the bottom outer ring of the base 33 is provided with a spacer ring interlaced with the spacer, and the bottom of the spacer is arranged on the surface of the gland 77, and its top is interlaced with the spacer at the bottom of the base 33. Carry out limit.
  • a small opening sleeve spring 34 is sheathed outside the base 33, the top of the small opening sleeve spring 34 is in contact with the limiting platform on the top of the base 33, and the bottom of the small opening sleeve spring 34 is in contact with the limiting ring.
  • An overcoat 32 is fixed on the top of the boss at the upper end of the base 33 , the outer wall of the overcoat 32 fits with the inwall of the coupling cylinder 76 , and the overcoat 32 moves synchronously with the base 33 in the coupling cylinder 76 .
  • the piston rod of the pressure-blow cylinder 35 enters the combination cylinder 76 from bottom to top, and extends to the top of the base 33 after passing through the center of the base 33 .
  • the inside of the pressure blowing cylinder 35 piston rods is provided with a reverse blowing air pipe, and the top of the pressure blowing cylinder 35 piston rods is coaxially provided with a hollow screw 80, and the hollow screw 80 communicates with the reverse blowing air pipe in the inside of the pressure blowing cylinder 35 piston rods.
  • a lower retaining ring 48 is fixed on the outer ring at the junction of the hollow screw 80 and the piston rod of the blowing cylinder 35 .
  • the outer ring of the hollow screw 80 is sleeved with a small-mouth core joint 29 , and the small-mouth core joint 29 is fixed on the upper surface of the lower retaining ring 48 by the block at the top of the hollow screw 80 .
  • An inner cover 30 is fixed on the outer ring of the small-mouth core joint 29, and the top of the outer surface of the inner cover 30 protrudes outward to form an inner cover stop, and the inner surface of the outer cover 32 protrudes inward to form an outer cover stop. It is set staggered inside and outside with the jacket stopper.
  • a small opening core spring 31 is sheathed on the outside of the inner sleeve 30 , and the small opening core spring 31 is located between the inner sleeve block platform and the lower retaining ring 48 .
  • the inner core 36 is positioned on the surface of the small-mouth core joint 29, and the lower end of the inner core 36 and the upper end of the small-mouth core joint 29 are simultaneously provided with grooves, and the small-mouth device clamp ring 28 is arranged on the inner core 36 and the small-mouth core joint 29 joints, the upper and lower ends of the inner cavity of the small mouth device clamp ring 28 are stuck in the groove of the inner core 36 and the small mouth core joint 29 respectively, and the inner core 36 is fixed on the top of the small mouth core joint 29.
  • the inside of the inner core 36 is evenly provided with a plurality of inclined inner core passages 27.
  • the above-mentioned hollow screw 80 extends to the inside of the inner core 36 and communicates with the inner port of the inner core passage 27.
  • the inner core passage 27 The outer port of the opening is opened on the outer ring of the inner core 36 upper surface.
  • An outer core 37 is fixed above the inner sleeve 30, and the upper part of the outer core 37 extends to the outside of the combined cylinder 76 after passing through the upper end cover 79, and enters the mouth die 17, and is positioned at the edge of the guide ring 38 in the mouth die 17. lower part.
  • the middle part of the upper surface of the outer core 37 forms an outer core sleeve upwards, and the outer core sleeve passes through the guide ring 38 upwards.
  • the inner core 36 is located inside the outer core 37 as a whole, and the center of the upper surface of the inner core 36 protrudes upwards to form an inner core guide rod, and the inner core guide rod passes through the outer core sleeve.
  • the various working states of the small mouth device are as follows:
  • the small-mouth core joint 29 pushes the inner core 36 upward through the small-mouth device clamp ring 28, and the inner core 36 further drives the outer core 37 to move upward synchronously until the upper surface of the outer core 37 contacts the bottom surface of the inner guide ring 38 of the die 17 , the top surface of the inner core guide rod at the upper end of the inner core 36 is aligned with the top surface of the outer core sleeve on the top surface of the outer core 37, and the inner core guide rod and the core sleeve pass through the guide simultaneously.
  • the ring 38 goes inside the die 17 . As shown in Figure 5(a).
  • Inverted blowing state when the piston rod of the blowing cylinder 35 is in a free state, the small mouth core spring 31 resets, and the piston rod of the blowing cylinder 35 is pushed down by the lower retaining ring 48, and the piston rod of the blowing cylinder 35 drives the small opening when it goes down.
  • the core joint 29 goes down, and the small-mouth core joint 29 drives the inner core 36 to go down through the small-mouth device clamp ring 28.
  • the inner core guide rod at the upper end of the inner core 36 passes through the outer core casing on the top surface of the outer core 37.
  • the top surface of the inner core 36 is separated from the outer core 37 to form a gap, and the upper port of the inner core channel 27 is opened.
  • the gas blown in from the inverted air blowing pipe enters the inner core channel 27 upwards through the hollow screw 80, and is blown out by the upper port of the inner core channel 27.
  • the gas blown from the inner core channel 27 is further blown out from the opening on the top of the outer core sleeve through the gap between the inner core guide rod and the outer core sleeve and enters the die 17 to blow the material gob 26 back. .
  • Figure 5(b) As shown in Figure 5(b).
  • the blowing arm 13 includes a blowing arm body 40 , and the blowing arm body 40 is sleeved on the outside of the blowing piston rod 39 and fastened.
  • the end of the blowing arm body 40 away from the blowing piston rod 39 is provided with two arm body bushings 42, and a bushing 46 is sleeved inside the inner ring fastening sleeve of the two arm body bushings 42,
  • the arm shaft sleeve 42 penetrates up and down, and blowing pressure caps 43 are respectively installed at the upper ports of the arm body shaft sleeves 42, and the blowing pressure caps 43 penetrate up and down.
  • the air blowing lock ring 41 is loaded from top to bottom, and an air blowing head 47 is respectively installed at the bottom of the air blowing lock ring 41, and the air blowing lock ring 41 and the air blowing head 47 are all connected up and down.
  • the inner ring of the blowing pressure cover 43 is provided with an annular stopper, and a blowing spring 44 is placed on the bottom of the annular stopper.
  • the surface is in contact with the upper surface of the blow lock ring 41 . Therefore, the air blowing channel is formed from top to bottom by the blowing pressure cap 43 , the blowing spring 44 , the blowing pressure ring 45 , the blowing locking ring 41 , and the central hole of the blowing head 47 .
  • the blowing head 47 enters the die 17 and contacts the upper surface of the guide ring 38 . Carry out positive air blowing operation to the initial prototype body in forming mold 10. 7-8, there is a notch on the lock ring 41, and the lower part of the lock rod 49 passes through the notch of the lock ring 41 to position the blowing head 47 and prevent it from rotating and falling off.
  • the heating mechanism 14 includes a primary mold heating unit for radiating heating inside the primary mold 5 and a gas blowing head heating unit for direct flame heating of the gas blowing head 15 .
  • the heating mechanism 14 includes a main pipeline 53 for conveying gas, and a safety valve 50 is installed on the main pipeline 53 through a branch pipeline.
  • a ball valve 51 is connected in parallel by a branch pipeline, and the lower port of the ball valve 51 is connected with a flexible pipe 54 through a solenoid valve 56, and a preliminary mold nozzle 55 is installed at the lower port of the flexible pipe 54.
  • the prototype nozzle 55 is provided with two, respectively corresponding to two separate prototype molds 5, and the two prototype nozzles 55 are fixed with the heating arm 52 through the support, and the heating arm 52 is sleeved on the outside of the heating mechanism 14 piston rod and fasten.
  • the initial mold nozzle 55 moves with the heating mechanism 14 piston rod through the heating arm 52.
  • the initial mold nozzle 55 moves between the initial molds 5, The interior of the corresponding blank mold 5 is radiatively heated by means of a flame.
  • an electromagnetic valve 56 is also connected in parallel through a branch pipeline, and the lower port of the electromagnetic valve 56 is connected with an air puff support 57, and two ends of the air puff support 57 are respectively equipped with air puff head nozzles 58.
  • Two puffing head nozzles 58 are arranged on the sides of the two puffing heads 15 travel tracks.
  • Step 1 receiving materials.
  • the two primary molds 5 are closed by the primary mold clamp mechanism 2, the piston rod of the pressure blowing cylinder 35 at the bottom of the small mouth device rises, and the small mouth core joint 29 is pushed upward through the lower retaining ring 48, and the base 33 is pushed upward at the same time, and passes The base 33 drives the overcoat 32 to go upward.
  • the small-mouth core joint 29 pushes the inner core 36 upward through the small-mouth device clamp ring 28, and the inner core 36 further drives the outer core 37 to move upward synchronously until the upper surface of the outer core 37 contacts the bottom surface of the inner guide ring 38 of the die 17 , the top surface of the inner core guide rod at the upper end of the inner core 36 is aligned with the top surface of the outer core sleeve on the top surface of the outer core 37, and the inner core guide rod and the core sleeve pass through the guide simultaneously.
  • the ring 38 goes inside the die 17 . Under the guiding effect of the funnel mouth 59 at the upper end of the preliminary mold 5, the droplet 26 output from the dripping mechanism drops into the preliminary mold 5, as shown in Fig. 11(a).
  • the blowing process is directly carried out after the dripping is completed, omitting the round-trip process of the funnel 70 in the prior art, and reducing the process flow.
  • the puffing head 15 moves to the top of the prototype 5 under the drive of the puffing arm 3, and the puffing head 15 descends under the drive of the puffing arm 3.
  • the lower part of the air head 15 has a tapered surface that is thicker at the top and thinner at the bottom, and fits the funnel mouth 59 on the top of the prototype 5, and at the same time, the depression on the lower surface of the boss in the middle of the prototype 5 is stuck on the outer ring of the boss at the top of the prototype 5. , the split prototype 5 is locked.
  • the gas enters the puffing cylinder 24 through the puffing arm pipeline 23, and pushes the puffing piston 21.
  • the puffing piston 21 overcomes the elastic force of the puffing spring 22 and descends, and simultaneously drives the puffing rod 25 to descend. After the puffing rod 25 descends, it forms a gap with the bottom of the puffing head 15, and the air flow enters the preliminary mold 5 through the puffing head, and puffs the material drop 26 in the puffing mold 5.
  • the material drop 26 enters the mouth die 17 to form a bottle mouth structure. As shown in Figure 11(b).
  • Step 3 Blow air backwards.
  • the air blowing rod 25 is reset under the elastic force of the air blowing spring 22, and at the same time, the opening at the bottom of the air blowing head 15 is blocked.
  • the piston rod of the pressure blowing cylinder 35 is in a free state, the small mouth core spring 31 resets, and the piston rod of the pressure blowing cylinder 35 is pushed down by the lower retaining ring 48, and the piston rod of the pressure blowing cylinder 35 drives the small mouth core joint 29 when it goes down. Descending, the small-mouth core joint 29 drives the inner core 36 to go down through the small-mouth device clamp ring 28.
  • the inner core guide rod at the upper end of the inner core 36 breaks away from the outer core casing on the top surface of the outer core 37, and at the same time
  • the top surface of the inner core 36 is separated from the outer core 37 to form a gap, and the upper port of the inner core channel 27 is opened.
  • the gas blown in from the inverted air blowing pipe enters the inner core channel 27 upwards through the hollow screw 80, and is blown out by the upper port of the inner core channel 27.
  • the gas blown from the inner core channel 27 is further blown out from the opening on the top of the outer core sleeve through the gap between the inner core guide rod and the outer core sleeve, and blows back into the die 17 to blow the material gob 26 backward. .
  • the gob 26 forms a preliminary embryo body inside the preliminary mold 5 . As shown in Figure 11(c).
  • the outer core sleeve passes through the heat conduction. Continue to cool the gob 26 at the mouth die 17, while blocking the bottle mouth that is not yet fully solidified, so as to prevent the whole gob 26 from coming out of the mouth die 17 when blowing air backwards.
  • the piston rod of the pressure-blow cylinder 35 descends to drive the base 33 to go down, and through the base 33 to drive the jacket 32 to go down, and through the jacket 32 to drive the outer core 37 to go down;
  • the joint drives the inner core 36 to go down through the clamp ring 28 of the small mouth device.
  • the outer core sleeve is released from the die 17.
  • the blank mold clamp mechanism 2 drives the blank mold 5 to separate, and the forming mold clamp mechanism 7 drives the forming mold 10 to separate.
  • the overturning mechanism 8 works to drive the jaw clamp 6 to overturn, the die 17 is turned over synchronously under the clamping action of the jaw 16 in the jaw clamp 6, and the initial embryo body formed by the material gob 26 is blown backwards. 17 turns over to the forming side, and enters in the forming mold 10, and the forming mold clamp mechanism 7 controls the forming mold 10 to close up.
  • Step 5 is blowing air.
  • the blowing piston rod 39 in the positive blowing mechanism 12 drives the blowing arm 13 to move to the upper port of the molding die 10, and the blowing arm 13 descends, so that the blowing head 47 at the lower end of the blowing arm 13 is docked with the die 17, and the blowing After the air arm 13 is docked with the molding die 10 , the blowing head 47 enters the die 17 and contacts the upper surface of the guide ring 38 .
  • the external air source carries out positive blowing in the molding die 10 through the blowing channel formed by the blowing pressure cover 43, the blowing spring 44, the blowing pressure ring 45, the blowing lock ring 41, and the central hole of the blowing head 47, so that the initial The parison body is molded in the molding die 10 .
  • the turning mechanism 8 drives the jaw clamp 6 to rotate in reverse, and the jaw clamp 6 and the die 17 clamped by the jaw 16 return to the initial mold side at the same time.
  • the overturning mechanism 8 can also drive the jaw clamp 6 to reversely rotate before performing the forward blowing, and the mouth mold 17 clamped by the jaw clamp 6 and the jaw 16 is brought back to the initial mold side.
  • the blowing piston rod 39 drives the blowing arm 13 to move to the upper port of the forming die 10, the blowing arm 13 descends and directly connects with the upper port of the forming die 10, and the blowing head 47 enters the forming die 10, and the external air source passes through the blowing pressure.
  • the forming mold clamp mechanism 7 drives the forming mold 10 to separate, and the clamp bottle mechanism 11 moves the forming bottle out of the forming mold 10, and transfers it to the stop plate (not shown in the figure). ), and then through the subsequent bottle-pushing mechanism (not shown in the figure) to the mesh belt of the bottle conveyor (not shown in the figure) for centralized transportation.
  • the reverse blowing mechanism 19 adopts a large-mouth device, which is suitable for the production of glass bottles with a bottle mouth diameter of 38 mm to 90 mm.
  • the large mouth device includes a combination cylinder 76 that penetrates up and down.
  • the upper end cover 78 of the pressure blow cylinder is coaxially fixed with the pressure blow cylinder 35, and the upper port of the combination cylinder 76 is installed.
  • a gland 77 is arranged, and a top cover is provided at the upper port of the joint cylinder 76 .
  • a sleeve 67 is arranged inside the coupling cylinder 76 , and the sleeve 67 moves up and down along its axial direction inside the coupling cylinder 76 .
  • the outer surface of the sleeve 67 is protrudingly provided with a boss, the upper surface of the boss and the inner surface of the upper end cover 79 are staggered inside and outside, and a pad tube 69 is arranged at the bottom of the inner cavity of the combined cylinder 76, and the outer ring of the pad tube 69
  • the sleeve spring 68 of the large mouth is sleeved, and the upper end of the sleeve spring 68 of the big mouth contacts with the lower surface of the sleeve 67 outer surface boss, and the lower end of the sleeve spring 68 of the big mouth contacts with the gland 77.
  • the piston rod of the pressure-blow cylinder 35 enters the combination cylinder 76 from bottom to top, and the inside of the pressure-blow cylinder 35 piston rod is provided with an inverted air pipe, and the top of the pressure-blow cylinder 35 piston rod is coaxially provided with a hollow screw 80.
  • the screw 80 is communicated with the reverse blowing air pipe in the inside of the piston rod of the pressure blowing cylinder 35, and the top of the hollow screw 80 extends upwards to the upper end cover 79 of the combined cylinder 76.
  • the diameter of hollow screw 80 is less than the diameter of pressure-blow cylinder 35 piston rods, and the outer ring set at the junction of hollow screw 80 and pressure-blow cylinder 35 piston rods is fixed with lower retaining ring 48 .
  • the outer ring of the hollow screw 80 is sleeved with a large-mouth core joint 64 , and the large-mouth core joint 64 is fixed on the upper surface of the lower retaining ring 48 by the stopper at the top of the hollow screw 80 .
  • a groove is opened on the inner surface of the sleeve 67, and an upper retaining ring 65 is placed in the groove, and a large-mouth core spring 66 is arranged on the outer ring of the large-mouth core joint 64, and the large-mouth core spring 66 is located on the upper retaining ring 65. And between the lower retaining ring 48.
  • the inner core 36 is positioned on the surface of the wide-mouth core joint 64, and the lower end of the inner core 36 and the upper end of the wide-mouth core joint 64 are simultaneously provided with grooves, and the wide-mouth device clamp ring 63 is arranged on the inner core 36 and the wide-mouth core joint. 64 joints, the upper and lower ends of the inner cavity of the large mouth device clamp ring 63 are stuck in the groove of the inner core 36 and the large mouth core joint 64 respectively, and the inner core 36 is fixed on the top of the large mouth core joint 64.
  • the inside of the inner core 36 is evenly provided with a plurality of inclined inner core passages 27.
  • the above-mentioned hollow screw 80 extends to the inside of the inner core 36 and communicates with the inner port of the inner core passage 27.
  • the inner core passage 27 The outer port of the opening is opened on the outer ring of the inner core 36 upper surface.
  • An outer core 37 is fixed above the inner sleeve 30, and the upper part of the outer core 37 extends to the outside of the combined cylinder 76 after passing through the upper end cover 79, and enters the mouth die 17, and is positioned at the edge of the guide ring 38 in the mouth die 17. lower part.
  • the middle part of the upper surface of the outer core 37 forms an outer core sleeve upwards, and the outer core sleeve passes through the guide ring 38 upwards.
  • the inner core 36 is located inside the outer core 37 as a whole, and the center of the upper surface of the inner core 36 protrudes upwards to form an inner core guide rod, and the inner core guide rod passes through the outer core sleeve.
  • the various working states of the large mouth device are as follows:
  • the large-mouth core joint 64 pushes the inner core 36 upward through the wide-mouth device clamp ring 63, and the inner core 36 further drives the outer core 37 to move upward synchronously until the upper surface of the outer core 37 contacts the bottom surface of the inner guide ring 38 of the die 17 , the top surface of the inner core guide rod at the upper end of the inner core 36 is aligned with the top surface of the outer core sleeve on the top surface of the outer core 37, and the inner core guide rod and the core sleeve pass through the guide simultaneously.
  • the ring 38 goes inside the die 17 . As shown in Figure 13(a).
  • Inverted blowing state when the piston rod of the pressure blowing cylinder 35 is in a free state, the large mouth core spring 66 resets, and the piston rod of the pressure blowing cylinder 35 is pushed down through the lower retaining ring 48, and the piston rod of the pressure blowing cylinder 35 drives the large mouth when it goes down.
  • the core joint 64 goes down, and the large-mouth core joint 64 drives the inner core 36 to go down through the wide-mouth device clamp ring 63.
  • the inner core guide rod on the upper end of the inner core 36 is connected from the outer core casing on the top surface of the outer core 37.
  • the top surface of the inner core 36 is separated from the outer core 37 to form a gap, and the upper port of the inner core channel 27 is opened.
  • the gas blown in from the inverted air blowing pipe enters the inner core channel 27 upwards through the hollow screw 80, and is blown out by the upper port of the inner core channel 27.
  • the gas blown from the inner core channel 27 is further blown out from the opening on the top of the outer core sleeve through the gap between the inner core guide rod and the outer core sleeve and enters the die 17 to blow the material gob 26 back. .
  • Figure 13(b) As shown in Figure 13(b).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

提供了一种高硼硅玻璃制瓶机及快吹法生产工艺。该高硼硅玻璃制瓶机包括初型侧和成型侧,在初型侧和成型侧分别设置有初型模(5)和成型模(10),在初型侧设置有扑气机构(4)和倒吹气机构,在成型侧设置有正吹气机构(12),在扑气机构(4)中设置有直接与初型模(5)对接的扑气头(15),扑气头(15)底部的扑气口随扑气气流开启或关闭;在倒吹气机构的顶部设置有芯子机构,芯子机构包括内外套设的多层芯子。在利用该制瓶机的快吹法生产工艺中,扑气头与初型模对接后直接进行扑气,减少了工艺步骤,同时通过设置多层芯子的芯子机构,避免了倒吹气失败,尤其适用于高硼硅玻璃瓶的生产,具有效率高且成品率高的优点。

Description

高硼硅玻璃制瓶机及快吹法生产工艺 技术领域
高硼硅玻璃制瓶机及快吹法生产工艺,属于玻璃器械技术领域。
背景技术
高硼硅玻璃是一种新兴的玻璃产品,具有低膨胀率、高耐热、高强度、高硬度、高透光率、高化学稳定性等优点,尤其适用于制造疫苗瓶、奶瓶、医药瓶、口服液瓶等对安全要求较高的产品中。对于高硼硅玻璃材质的玻璃瓶(以下简称高硼硅玻璃瓶)而言,目前普遍采用的生产方式是:首先通过玻璃拉管机成型玻璃管,然后通过管式制瓶机二次成型为小口的疫苗瓶、大口的奶瓶等,其最大的缺陷在于效率极低且造成能源浪费,从而限制了高硼硅玻璃在玻璃瓶产品中的推广和使用。
行列式制瓶机(以下简称制瓶机)是用于制造玻璃瓶的高效机械设备,由多组成型机各自独立完成制瓶生产工艺,单组多滴成型机比管式制瓶机效率高3~5倍,多组制瓶机比管式制瓶机效率高几十倍。然而传统的行列式制瓶机目前无法直接生产高硼硅材质的玻璃瓶,其原因在于:
1、硼硅玻璃材质本身的原因。在材质方面,高硼硅玻璃相比较传统的玻璃,其最大的区别在于:在高硼硅玻璃中掺杂了铝等金属元素,由于金属元素的导热性较好,因此高硼硅玻璃的玻璃料性短,即高硼硅玻璃材质在加工过程中,其固化成型时间较短。因此在通过传统行列式制瓶机生成高硼硅玻璃瓶时,直接导致了效率极低且成品率低(能源浪费)的缺陷。
2、传统制瓶机生产流程的原因。传统的制瓶机在这怒地玻璃瓶的生产过程中,一般分为两种工艺:压吹法和吹吹法。
(1)对于压吹法(包括小口压吹法)而言,其工艺流程大致如下:1)、首先漏斗70移动至初型模5上端口处,在漏斗70的导向作用下,料滴26滴入初型模5内,见图15(a)。2)、然后漏斗70被转移走,压吹扑气头72转移至初型模5的端口处,冲头71自初型模5的底部竖直进入初型模5内,料滴26在冲头71的作用下充满初型模5的内腔形成初型胚体,见图15(b)。3)然后制瓶机中的翻转机构将初型胚体转移至成型侧,在进入成型模10内之后,成型侧的压吹吹气头73移动至成型模10的模口处,自初型胚体的瓶口处进行吹气,使初型模具在气压的作用下与成型模10的内壁贴合形成成型胚体,冷却后玻璃瓶成型,见图15(c)。4)最后将成型的玻璃瓶转移出成型模10,如此往复。
由上述可知,如果通过传统制瓶机的吹吹法生产高硼硅玻璃瓶,难以实现的原因除了整个流程较为繁琐之外,其最大的缺陷在于冲头71对料滴26的导热影响,由于冲头71一般为金属材质,因此冲头71在对料滴26进行冲压的过程中,会进一步加速高硼硅材质的料滴26的冷却时间,使料滴26过早固化,所以当初型胚体转移至成型模10内之后,已经难以将初型胚体吹压成型。如果采用非金属材质的冲头,则难以承受高速度和高强度的冲击。
(2)对于吹吹法而言,其工艺流程大致如下:1)、首先漏斗70移动至初型模5上端口处,在漏斗70的导向作用下,料滴26滴入成型模5内,见图16(a)。2)然后吹吹扑气头74转移至漏斗70的上端口处,向初型模5内进行扑气,使料滴6进入口模中形成瓶口,见图16(b)。3)然后吹吹扑气头74和漏斗装置70先后转移,漏斗装置70转移之后吹吹扑气头74再次转移至初型模5的上端口处。4)随后然后位于初型模5底部的倒吹气机构向初型模5内进行倒吹气,使料滴26充满初型模5的内腔形成初型胚体,见图16(c)。5)初型胚体被转移至成型侧,在进入成型模10内之后,成型侧的吹吹吹气头75移动至成型模10的模口处,自初型胚体的瓶口处进行正吹气,使初型模具在气压的作用下与成型模10的内壁贴合形成成型胚体,冷却后玻璃瓶成型,见图16(d)。6)最后将成型的玻璃瓶转移出成型模10,如此往复。
由上述可知,如果通过传统制瓶机的吹吹法生产高硼硅玻璃瓶,难以实现的原因在于:1)吹吹法整个工艺流程极为繁琐,无法满足高硼硅玻璃材质玻璃料性短特性的要求。2)在初型侧进行倒吹气的过程中,如果倒吹气过晚,则高硼硅玻璃的料滴26已经开始固化,导致倒吹气以及后续的所有工艺失败;如果倒吹气过早,则由于此时高硼硅玻璃的料滴26较软,料滴26整体会在气压的作用下从口模中被吹出,也无法进行后续的所有工艺。
综上所述,基于高硼硅玻璃材质本身的原因,以及传统制瓶机中工艺流程的原因,传统的制瓶机难以生产高硼硅玻璃瓶,即使在通过改变参数后勉强生产,也存在成品率低(能源浪费)、成本高的问题。因此,设计一种能够通过制瓶机生产高硼硅材质玻璃瓶的技术方案,成为本领域亟待解决的问题。
技术问题
本发明要解决的技术问题是:克服现有技术的不足,提供一种高硼硅玻璃制瓶机及快吹法生产工艺,其中扑气头与初型模对接后直接进行扑气,相比较传统工艺,减少了工艺步骤,同时通过设置多层芯子的芯子机构,在料滴尚未固化时仅加速瓶口处固化,避免了倒吹气失败,尤其适用于高硼硅玻璃瓶的生产,相比较传统高硼硅玻璃瓶的生产器械,具有效率高且成品率高的优点。
技术解决方案
本发明解决其技术问题所采用的技术方案是:该高硼硅玻璃制瓶机,包括初型侧和成型侧,在初型侧设置有初型模,在成型侧设置有成型模,在初型侧和成型侧之间设置有往返于初型模和成型模的口钳夹具,在初型侧设置有与初型模上端口对接的扑气机构和与初型模下端口对接的倒吹气机构,在成型侧设置有与成型模对接的正吹气机构,其特征在于:在所述的扑气机构中设置有直接与初型模对接并进行扑气的扑气头,扑气头底部的扑气口随扑气气流开启或关闭;在所述倒吹气机构的顶部设置有与初型模对接的芯子机构,芯子机构包括内外套设的两层,两层芯子之间间隔形成与倒吹气机构连通的倒吹通道。
优选的,所述的扑气机构包括与扑气活塞杆固定的扑气臂,扑气臂包括扑气臂臂体,在扑气臂臂体的内壁设置有贯穿的扑气臂管路,在扑气臂臂体的两端分别安装有扑气气缸,扑气气缸内腔的上部设置有与扑气臂管路连通的扑气通道,所述的扑气头安装在扑气气缸内腔的底部。
优选的,在所述扑气气缸的内腔中设置有扑气活塞,扑气活塞位于扑气头的上部,在扑气杆的外部套设有扑气弹簧,扑气活塞的顶部正对扑气通道,在扑气活塞的底部安装有扑气杆,扑气杆从扑气头中心穿过,扑气杆在扑气头内往复运动,扑气头底部的开口随扑气杆的往复移动而开启或关闭。
优选的,在所述初型模的上端口处形成环形凸台,在环形凸台的内侧上部形成上粗下细的漏斗口,漏斗口的底部为初型模的内腔,在所述扑气头外圈的中部形成凸台,在凸台的底面向上开设形成凹槽,凹槽卡装在初型模上端口环形凸台的外圈,扑气头的下部自凹槽处向下形成与漏斗口贴合的锥形面;
在初型模的上端口的凸台周圈自上而下轴向开设有多个保温孔,在初型模的下端口周圈自下而上轴向开设有多个保温孔,在所有保温孔开口处分别放置有一个钢珠;在初型模的外表面中部周圈开设有保温槽,在保温槽内由内而外套设有多层石棉层。
优选的,所述的倒吹气机构包括上下贯通的结合缸,结合缸的下端口与压吹气缸对接,在结合缸内部设置有往复移动的底座,在底座外部套设有小口套筒弹簧,在底座上端凸台的上部固定有外套;压吹气缸的活塞杆自下而上进入结合缸内,穿过底座后延伸至底座的上部;在压吹气缸活塞杆的内部设置有倒吹气管,在压吹气缸活塞杆的顶部同轴设置有空心螺钉;空心螺钉的下端口与倒吹气管连通,空心螺钉的上端口进入所述的芯子机构内;在空心螺钉的外圈套装有芯子接头,所述的芯子机构固定在芯子接头的顶部,在芯子接头的外圈固定有内套,在内套的外部套装有芯子弹簧。
优选的,所述的倒吹气机构包括上下贯通的结合缸,结合缸的下端口与压吹气缸对接,在结合缸内设置有往复移动的套筒,在套筒的外圈套装有大口套筒弹簧;压吹气缸的活塞杆自下而上进入结合缸内,在压吹气缸活塞杆的内部设置有倒吹气管,在压吹气缸活塞杆的顶部同轴设置有空心螺钉,空心螺钉的下端口与倒吹气管连通,空心螺钉的上端口进入所述的芯子机构内;在空心螺钉的外圈套装有芯子接头,所述的芯子机构固定在芯子接头的顶部,在套筒的内表面开设有凹槽,在凹槽内放置有上挡圈,在芯子接头的外圈套设有芯子弹簧,芯子弹簧位于上挡圈下方。
优选的,所述的芯子机构包括内芯子和外芯子,内芯子位于芯子接头的表面,内芯子和芯子接头通过套设在外圈的夹环固定,在内芯子的内部均匀开设有多个内芯子通道,内芯子通道的内端口与所述空心螺钉的上端口连通,内芯子通道的外端口倾斜开设在内芯子上表面的外圈;外芯子套装在内芯子的外圈,外芯子的上表面中部向上形成外芯子套管,在内芯子的上表面中心处向上凸起形成内芯子导杆,内芯子导杆从外芯子套管中穿过。
优选的,所述的正吹气机构包括与吹气活塞杆固定的吹气臂,吹气臂包括吹气臂臂体,在吹气臂臂体的端部设置有上下贯通的臂体轴套,在臂体轴套的内圈紧固套筒的内部套设有衬套,在臂体轴套的上端口处安装有上下贯通的吹气压盖,在臂体轴套内自上而下装入吹气锁环,在吹气锁环的底部安装有与成型模对接的吹气头;
在吹气压盖的内圈设置有环形挡台,在环形挡台的下部放置有吹气弹簧,吹气弹簧的底部通过压在吹气压环的上表面,吹气压环的下表面与吹气锁环的上表面接触。
优选的,在所述的初型侧,与扑气机构相对的另一侧设置有加热机构,加热机构包括用于对初型模内进行加热的初型模加热单元和对扑气头进行加热的扑气头加热单元,加热机构包括用于输送燃气的主管路,在主管路上并联有球阀,在球阀的下端口连接软管,在软管的下端口处安装有初型模喷嘴,初型模喷嘴通过支架与加热臂固定;
在主管路上还并联电磁阀,电磁阀的下端口连接扑气支架,在扑气支架的两端分别安装有扑气头喷嘴。扑气头喷嘴设置在扑气头行进轨迹的侧部。
高硼硅玻璃制瓶快吹法生产工艺,其特征在于,包括如下步骤:
步骤1,接料;
倒吹气机构中的芯子机构动作,内外两层芯子同时自初型模底部端口进入初型模,料滴滴入初型模内;
步骤2,扑气;
扑气机构中的扑气头移动至初型模的顶部,扑气头下降直接与初型模对接后对初型模内的料滴进行扑气;
步骤3,倒吹气;
扑气完成后,倒吹气机构中芯子机构工作,内层芯子脱离初型模同时开启倒吹通道,倒吹气体经过倒吹通道进入初型模,对料滴进行倒吹气形成初型胚体;
步骤4,翻转。
倒吹气机构中的芯子机构动作,内外两层芯子均从初型模中脱离,口钳夹具带动初型胚体由初型侧翻转至成型侧,进入成型模内;
步骤5,正吹气。
正吹气机构移动至成型模上端口处,与成型模对接后,对成型模内的初型胚体进行正吹气,初型胚体正吹气后形成成型胚体,口钳夹具返回至初型侧;或口钳夹具在正吹气机构对初型胚体进行正吹气之前返回初型侧;
步骤6,转移。
成型胚体在成型模内冷却成型之后转移出成型模。
有益效果
与现有技术相比,本发明所具有的有益效果是:
在本高硼硅玻璃制瓶机中,利用快吹法实现了高硼硅玻璃瓶的生产,与现有技术中通过玻璃管生产高硼硅玻璃瓶的生产方式,大大提高了生产效率;相比较传统采用压吹法生产的行列式制瓶机,避免了因冲头使高硼硅玻璃料滴温度下降而造成成品率的缺陷;相比较传统采用吹吹法的行列式制瓶机,省略了单独设置的漏斗,在扑气工艺中,采用扑气头直接与初型模对接并进行扑气,减少了工艺步骤。
同时针对高硼硅玻璃料滴玻璃料性短的特性,由于采用了多层芯子的芯子机构,在倒吹工艺中,在初型模内料滴尚未固化时仅使瓶口固化,避免了现有技术中过早或过晚进行倒吹气时容易造成倒吹气失败的弊端,尤其适用于高硼硅玻璃瓶的生产,相比较传统高硼硅玻璃瓶的生产器械,具有效率高且成品率高的优点。
通过在初型模的上端口处设置漏斗口,直接对料滴进行导向,省略了现有制瓶机中专门设置的漏斗,不仅在机械机构上降低了制瓶机的复杂程度,且无需控制漏斗进行往返运动,在扑气头与初型模对接后即可进行扑气操作,大大降低了软件控制层面的复杂程度,简化了工艺流程,使之更加符合高硼硅玻璃的特性,有利于高硼硅玻璃瓶的生产。
通过在初型模的上下端口处开设有多个保温孔,并在所有保温孔内放置钢珠;在初型模的外表面中部周圈开设有保温槽,在保温槽内由内而外套设有多层石棉层。通过设置保温孔、石棉层,并在保温孔内设置钢珠进行保温,延缓了高硼硅料滴的固化时间。
在快发法生产工艺中,扑气、倒吹气等工艺步骤快速进行,不但适合于生产高硼硅玻璃瓶,在生产其他材质的玻璃瓶时,可以明显改善传统吹吹法工艺生产时的断腰缺陷,可以明显改善传统压吹法工艺生产时的薄底缺陷,可以代替传统的吹吹法工艺和压吹法生产工艺,提高制品质量和生产效率。
附图说明
图1为高硼硅玻璃制瓶机俯视图。
图2为高硼硅玻璃制瓶机实施例1初型侧及成型侧剖视图。
图3为高硼硅玻璃制瓶机实施例1初型侧扑气臂剖视图。
图4为高硼硅玻璃制瓶机实施例1初型侧小口装置剖视图。
图5为高硼硅玻璃制瓶机实施例1初型侧小口装置工作示意图。
图6为高硼硅玻璃制瓶机实施例1成型侧吹气臂剖视图。
图7为高硼硅玻璃制瓶机实施例1成型侧吹气臂去除成型模剖视图。
图8为图7中A-A向剖视图。
图9为高硼硅玻璃制瓶机加热装置结构示意图。
图10为高硼硅玻璃制瓶机初型模剖视图。
图11为高硼硅玻璃制瓶机实施例1工作流程图。
图12为高硼硅玻璃制瓶机实施例2初型侧大口装置剖视图。
图13为高硼硅玻璃制瓶机实施例2初型侧大口装置工作示意图。
图14为高硼硅玻璃制瓶机实施例2工作流程图。
图15为现有技术压吹法制瓶工作流程图。
图16为现有技术吹吹法制瓶工作流程图。
其中:1、电气阀箱  2、初型模夹具机构  3、扑气臂  4、扑气机构  5、初型模  6、口钳夹具  7、成型模夹具机构  8、翻转机构  9、主框架  10、成型模  11、钳瓶机构  12、正吹气机构  13、吹气臂  14、加热机构  15、扑气头  16、口钳  17、口模  18、模底  19、倒吹气机构  20、扑气活塞杆  21、扑气活塞  22、扑气弹簧  23、扑气臂管路  24、扑气气缸  25、扑气杆  26、料滴  27、内芯子通道  28、小口装置夹环  29、小口芯子接头  30、内套  31、小口芯子弹簧  32、外套  33、底座  34、小口套筒弹簧  35、压吹气缸  36、内芯子  37、外芯子  38、导环  39、吹气活塞杆  40、吹气臂臂体  41、吹气锁环  42、臂体轴套  43、吹气压盖  44、吹气弹簧  45、吹气压环  46、衬套  47、吹气头  48、下挡圈  49、锁杆  50、安全阀  51、球阀  52、加热臂  53、主管路  54、软管  55、初型模喷嘴  56、电磁阀  57、扑气支架  58、扑气头喷嘴  59、漏斗口  60、钢珠  61、保温孔  62、石棉层  63、大口装置夹环  64、芯子接头  65、上挡圈  66、大口芯子弹簧  67、套筒  68、大口套筒弹簧  69、垫管  70、漏斗  71、冲头  72、压吹扑气头  73、压吹吹气头  74、吹吹扑气头  75、吹吹吹气头  76、结合缸  77、压盖  78、压吹气缸上端盖  79、上端盖  80、空心螺钉。
本发明的实施方式
图1~11是本发明的最佳实施例,下面结合附图1~14对本发明做进一步说明。
高硼硅玻璃制瓶机(以下简称制瓶机),包括主框架9,在本制瓶机中,沿主框架9的方向可设置有一个或多个制瓶单元,在制瓶机中,根据一个制瓶单元一个周期同时生产瓶子的数量,可以设置为单滴料、双滴料或多滴料,在本制瓶机中,以设置为双滴料为例进行说明。
实施例1:
如图1所示,在主框架9表面分为初型侧和成型侧,在初型侧内设置有初型模5,在成型侧内设置有成型模10,在本制瓶机中,将成型侧定义为本制瓶机的前侧,将初型侧定义为本制瓶机的后侧。
在初型模5后侧的左右两端分别设置有初型模夹具机构2,初型模5为分体式,两侧的初型模夹具机构2通过机械臂分别固定初型模5的一半,实现初型模5的合拢和分离;同理,在成型模10两侧设置有成型模夹具机构7,成型模10同样为分体式,两侧的成型模夹具机构7通过机械臂分别固定成型模10的一半,实现成型模10的合拢和分离。
在初型侧和成型侧之间设置有翻转机构8,在翻转机构8的两侧设置有对胚体(料滴26)进行夹持的口钳夹具6,口钳夹具6与翻转机构8连接,翻转机构8工作时带动口钳夹具6翻转,进一步实现将胚体(料滴26)从初型侧转移至成型侧。
在主框架9的后端设置有电气阀箱1,在电气阀箱1内设置有若干阀体,用于向初型侧和成型侧输出工作做需要的压缩气体。在主框架9的前端一侧设置有钳瓶机构11,钳瓶机构11用于将玻璃瓶成品从成型模10中移出。电气阀箱1和钳瓶机构11,初型模夹具机构2和成型模夹具机构7、口钳夹具6和翻转机构8的结构以及工作过程与传统制瓶机相同,在此不再赘述。
在初型模5前端的两侧分别设置有扑气机构4和加热机构14,在扑气机构4中通过扑气活塞杆20(见图3)安装有扑气臂3,扑气臂3在扑气活塞杆20的带动下实现升降,并与初型模5的端口对接或远离。加热机构14的加热臂52同时在其内活塞杆的作用下实现升降,并与初型模5靠近与远离。在成型模10前端还设置有正吹气机构12,在正吹气机构12内通过吹气活塞杆39(见图7)安装有吹气臂13,吹气臂13在吹气活塞杆39的带动下实现升降,并与成型模10的端口对接或远离。
结合图2,料滴26自初型模5的顶部滴入初型模5内部,然后扑气臂3在扑气活塞杆20 的带动下转移至初型模5的上端口处,扑气臂3底部的扑气头15与初型模5的上端口对接,通过扑气头15对初型模5内的料滴进行扑气操作,然后由初型模5底部的倒吹气机构19对初型模5内的料滴26进行倒吹气处理,使料滴26形成初型胚体,然后初型模夹具机构2驱动初型模5分离,口钳夹具6中的口钳夹持在口模17处,口钳夹具6在翻转机构8的作用下将口模17以及初型胚体由初型侧翻转至成型侧。成型模夹具机构7带动成型模10合拢使初型胚体进入成型模10内部,在成型模10的底部为模底18。
正吹气机构12中的吹气活塞杆20带动吹气臂13移动至成型模10的端口处并与位于成型模10端口处的口模17对接,对接后对初型胚体进行正吹气,初型胚体在成型模10内在正吹气机构12 的作用下形成成型胚体。最终成型后,成型模夹具机构7带动成型模10分离,钳瓶机构11将最终成型的玻璃瓶转移出成型模,进入后续工序。
如图3所示,上述的扑气臂3包括扑气臂臂体,扑气臂臂体的侧部套装在扑气活塞杆20的外部并紧固。在扑气臂臂体的内壁设置有贯穿的扑气臂管路23,扑气臂管路23的其中一端贯穿后与供气管路连通。在扑气臂臂体的两端分别安装有扑气气缸24,扑气气缸24内腔的上部设置有竖直方向的扑气通道,扑气通道的上端与扑气臂管路23连通,扑气通道的下部与扑气气缸24的内腔连通。在扑气气缸24内腔的底部分别安装有一个扑气头15。
在扑气气缸24的内腔中设置有扑气活塞21,扑气活塞21位于扑气头15的上部,扑气活塞21的顶部正对扑气通道。在扑气活塞21的底部安装有扑气杆25,扑气杆25的下部向下穿过扑气头15后自扑气头15的底部穿出,在扑气杆25的底部设置与扑气头15底部顺滑对接的曲面。在扑气头15外圈的中部形成凸台,在凸台的底面向上开设形成环形的凹槽,扑气头15的下部自凹槽处向下直径逐渐减小形成上粗下细的锥形面。
在扑气活塞21的外部套设有扑气弹簧22,扑气弹簧22的顶部与扑气活塞21接触,底部与扑气头25通过一个垫套间接接触。扑气弹簧22向扑气活塞21施加向上的弹力,使扑气杆25底部的曲面与扑气头15底部的曲面顺滑连接。由于扑气杆25底部的曲面与扑气头15底部的曲面连接起来,因此扑气杆25在仅受扑气弹簧22的弹力作用时,扑气杆25底部将扑气头15中心孔进行封堵。
结合图10,在本制瓶机中,初型模5的上端口处形成环形凸台,在环形凸台的内侧上部形成上粗下细的漏斗口59,漏斗口59的底部为初型模5的内腔。倒吹气机构19自初型模5内腔的下端口与初型模5的内腔对接。
当扑气头15与初型模5对接时,扑气头15随扑气臂3在扑气活塞杆20的带动下移动至初型模5上方并下降,在扑气头15与初型模5对接后,在扑气头15下部上粗下细的锥形面与初型模5顶部的漏斗口59贴合,同时初型模5中部凸台下表面的凹糟卡在初型模5顶部凸台的外圈,将分体的初型模5进行锁定。
通过在初型模5的上端口处设置漏斗口59,直接对料滴26进行导向,省略了现有制瓶机中专门设置的漏斗70(见图15(a)),不仅在机械机构上降低了制瓶机的复杂程度,且无需控制漏斗70进行往返运动,在扑气头15与初型模5对接后即可进行扑气操作,大大降低了软件控制层面的复杂程度,简化了工艺流程,使之更加符合高硼硅玻璃的特性,有利于高硼硅玻璃瓶的生产。
在初型模5的上端口的凸台周圈自上而下轴向开设有多个保温孔61,在初型模5的下端口周圈自下而上轴向开设有多个保温孔61,在所有保温孔61 开口处分别放置有一个钢珠60。在初型模5的外表面中部周圈开设有保温槽,在保温槽内由内而外套设有多层石棉层62。通过设置保温孔61、石棉层62,并在保温孔61内设置钢珠60进行保温,延缓了料滴26的固化时间。
在本实施例中,倒吹气机构19采用适用于瓶口直径在16mm~50mm玻璃瓶生产的小口装置,如图4所示,小口装置包括上下贯通的结合缸76,在结合缸76的下端口处通过压吹气缸上端盖78与压吹气缸35的同轴固定,在结合缸76的上端口处安装有压盖77,在结合缸76的上端口处设置有顶盖。
在结合缸76内部设置有底座33,底座33在结合缸76的内部沿其轴向上下移动,在底座33的顶部突出设置有凸台,在底座33的底部设置有突出的限位台,在底座33的底部外圈设置有与限位台交错设置的限位圈,限位圈的底部设置在压盖77的表面,其上部与底座33底部的限位台交错设置,对底座33上升位置进行限位。在底座33外部套设有小口套筒弹簧34,小口套筒弹簧34的顶部与底座33顶部的限位台接触,小口套筒弹簧34的底部与限位圈接触。
在底座33上端凸台的上部固定有外套32,外套32的外壁与结合缸76的内壁贴合,外套32随底座33在结合缸76内同步移动。压吹气缸35的活塞杆自下而上进入结合缸76内,并从底座33中心处穿过后延伸至底座33的上部。在压吹气缸35活塞杆的内部设置有倒吹气管,在压吹气缸35活塞杆的顶部同轴设置有空心螺钉80,空心螺钉80在压吹气缸35活塞杆的内部与倒吹气管连通。
在空心螺钉80与压吹气缸35活塞杆交界处的外圈套装固定有下挡圈48。在空心螺钉80的外圈套装有小口芯子接头29,通过空心螺钉80顶部的挡台将小口芯子接头29固定在下挡圈48的上表面。在小口芯子接头29的外圈固定有内套30,在内套30外表面的上部向外突出形成内套挡台,在外套32的内表面向内突出形成外套挡台,内套挡台和外套挡台内外交错设置。在内套30的外部套装有小口芯子弹簧31,小口芯子弹簧31位于内套挡台和下挡圈48之间。
内芯子36位于小口芯子接头29的表面,在内芯子36的下端和小口芯子接头29的上端同时开设有凹槽,小口装置夹环28设置在内芯子36和小口芯子接头29的结合处,小口装置夹环28的内腔的上下两端分别卡在内芯子36和小口芯子接头29的凹槽内,将内芯子36固定在小口芯子接头29的上部。在内芯子36的内部均匀开设有多个倾斜的内芯子通道27,上述的空心螺钉80延伸至内芯子36内部,并与内芯子通道27的内端口连通,内芯子通道27的外端口开设在内芯子36上表面的外圈。
在内套30的上方固定有外芯子37,外芯子37的上部穿过上端盖79后延伸至结合缸76的外部,并进入口模17内,并位于口模17内导环38的下部。外芯子37的上表面中部向上形成外芯子套管,外芯子套管向上穿过导环38。内芯子36整体位于外芯子37的内部,在内芯子36的上表面中心处向上凸起形成内芯子导杆,内芯子导杆从外芯子套管中穿过。
小口装置的各个工作状态如下:
接料状态:此时压吹气缸35的活塞杆上升,通过下挡圈48推动小口芯子接头29上行,同时推动底座33上行,并通过底座33带动外套32上行,此时小口套筒弹簧34处于复位状态。小口芯子接头29通过小口装置夹环28推动内芯子36上行,内芯子36进一步带动外芯子37同步上行,直至外芯子37的上表面与口模17内导环38的底面接触,此时内芯子36上端的内芯子导杆的顶面与外芯子37顶面的外芯子套管的顶面对齐,内芯子导杆与芯子套筒同时穿过导环38进入口模17内部。如图5(a)所示。
倒吹状态:当压吹气缸35的活塞杆处于自由状态时,小口芯子弹簧31复位,通过下挡圈48推动压吹气缸35的活塞杆下行,压吹气缸35的活塞杆下行时带动小口芯子接头29下行,小口芯子接头29通过小口装置夹环28带动内芯子36下行,此时内芯子36上端的内芯子导杆从外芯子37顶面的外芯子套管中脱离,同时内芯子36的顶面与外芯子37脱离形成间隙,将内芯子通道27的上端口开启。自倒吹气管吹入的气体向上经过空心螺钉80进入内芯子通道27,并由内芯子通道27的上部端口吹出。自内芯子通道27吹出的气体进一步经过内芯子导杆与外芯子套管之间的间隙自外芯子套管顶部的开口吹出进入口模17内,对料滴26进行倒吹气。如图5(b)所示。
翻转状态:当压吹气缸35的活塞杆下降时,带动底座33下行,并通过底座33带动外套32下行,通过外套32带动外芯子37下行;压吹气缸35的活塞杆同时带动小口芯子接头29下行,芯子接头通过小口装置夹环28带动内芯子36下行。最终使外芯子套管从口模17中脱出,如图5(c)所示。
如图6所示,吹气臂13包括吹气臂臂体40,吹气臂臂体40套装在吹气活塞杆39的外部并紧固。吹气臂臂体40远离吹气活塞杆39的一端设置有两个臂体轴套42,在两个臂体轴套42的内圈紧固套筒的内部分别套设有一个衬套46,臂体轴套42上下贯通,在臂体轴套42的上端口处分别安装有吹气压盖43,吹气压盖43上下贯通。在臂体轴套42内自上而下装入吹气锁环41,在吹气锁环41的底部分别安装有一个吹气头47,吹气锁环41和吹气头47均上下贯通。
在吹气压盖43的内圈设置有环形挡台,在环形挡台的下部放置有吹气弹簧44,吹气弹簧44 的底部通过压在吹气压环45的上表面,吹气压环45的下表面与吹气锁环41的上表面接触。因此自上而下通过吹气压盖43、吹气弹簧44、吹气压环45、吹气锁环41、以及吹气头47的中心孔形成吹气通道。吹气臂13与成型模10对接时,吹气头47进入口模17内,与导环38的上表面接触。对成型模10内的初型胚体进行正吹气操作。结合图7~8,在锁环41上设置有缺口,锁杆49下部穿过锁环41的缺口对吹气头47进行定位并防止旋转脱落。
如图9所示,加热机构14包括用于对初型模5内进行辐射加热的初型模加热单元和对扑气头15进行直接火焰加热的扑气头加热单元。加热机构14包括用于输送燃气的主管路53,在主管路53上通过分支管路安装有安全阀50。在主管路53上通过分支管路并联有球阀51,在球阀51的下端口通过电磁阀56连接软管54,在软管54的下端口处安装有初型模喷嘴55。初型模喷嘴55设置有两个,分别对应两套分体的初型模5,两个初型模喷嘴55通过支架与加热臂52固定,加热臂52套装在加热机构14活塞杆的外部并紧固。
初型模喷嘴55通过加热臂52随加热机构14活塞杆移动,当需要对初型模5进行加热时,在初型模5分开后,初型模喷嘴55移动至初型模5之间,通过火焰对相对应的初型模5的内部进行辐射加热。
在主管路55上还通过分支管路并联电磁阀56,电磁阀56的下端口连接扑气支架57,在扑气支架57的两端分别安装有扑气头喷嘴58。两个扑气头喷嘴58设置在两个扑气头15行进轨迹的侧部,当需要对扑气头15进行加热时,扑气头15在扑气臂3的带动下移动至扑气头喷嘴58处,由扑气头喷嘴58喷出的火焰对相对应的扑气头15进行直接加热。
具体快吹法生产工艺的工作过程及工作原理如下:
步骤1,接料。
通过初型模夹具机构2使两个初型模5合拢,小口装置底部的压吹气缸35的活塞杆上升,通过下挡圈48推动小口芯子接头29上行,同时推动底座33上行,并通过底座33带动外套32上行。小口芯子接头29通过小口装置夹环28推动内芯子36上行,内芯子36进一步带动外芯子37同步上行,直至外芯子37的上表面与口模17内导环38的底面接触,此时内芯子36上端的内芯子导杆的顶面与外芯子37顶面的外芯子套管的顶面对齐,内芯子导杆与芯子套筒同时穿过导环38进入口模17内部。在初型模5上端漏斗口59的导向作用下,自滴料机构输出料滴26滴入初型模5内,如图11(a)所示。
步骤2,扑气。
由于初型模5顶部自带漏斗结构,因此在完成滴料后直接进行扑气工艺,省略了现有技术中漏斗70的往返过程,减少了工艺流程。扑气头15在扑气臂3的带动下移动至初型模5的顶部,扑气头15在扑气臂3的带动下下降,在扑气头15与初型模5对接后,在扑气头15下部上粗下细的锥形面与初型模5顶部的漏斗口59贴合,同时初型模5中部凸台下表面的凹糟卡在初型模5顶部凸台的外圈,将分体的初型模5进行锁定。
气体经过扑气臂管路23进入扑气气缸24内,推动扑气活塞21,扑气活塞21克服扑气弹簧22的弹力作用下降,同时带动扑气杆25下降。扑气杆25下降后与扑气头15底部形成间隙,气流经过扑气头进入初型模5内,对初型模5内的料滴26进行扑气。使料滴26进入口模17内,形成瓶口结构。如图11(b)所示。
步骤3,倒吹气。
在完成扑气工艺后,扑气杆25在扑气弹簧22的弹力作用下复位,同时将扑气头15底部的开口进行封堵。此时压吹气缸35的活塞杆处于自由状态,小口芯子弹簧31复位,通过下挡圈48推动压吹气缸35的活塞杆下行,压吹气缸35的活塞杆下行时带动小口芯子接头29下行,小口芯子接头29通过小口装置夹环28带动内芯子36下行,此时内芯子36上端的内芯子导杆从外芯子37顶面的外芯子套管中脱离,同时内芯子36的顶面与外芯子37脱离形成间隙,将内芯子通道27的上端口开启。自倒吹气管吹入的气体向上经过空心螺钉80进入内芯子通道27,并由内芯子通道27的上部端口吹出。自内芯子通道27吹出的气体进一步经过内芯子导杆与外芯子套管之间的间隙自外芯子套管顶部的开口吹出进入口模17内,对料滴26进行倒吹气。在完成倒吹气工艺后,料滴26在初型模5内部形成初型胚体。如图11(c)所示。
由于内芯子36顶部的内芯子导杆与和外芯子37顶部的外芯子套筒内外套装的结构,在初型模5内部料滴26尚未固化时,外芯子套筒通过导热继续对口模17处的料滴26进行冷却,同时卡住尚未完全固化的瓶口,从而避免在倒吹气时使料滴26整体从口模17中脱出。
步骤4,翻转。
压吹气缸35的活塞杆下降带动底座33下行,并通过底座33带动外套32下行,通过外套32带动外芯子37下行;压吹气缸35的活塞杆同时带动小口芯子接头29下行,芯子接头通过小口装置夹环28带动内芯子36下行。最终使外芯子套管从口模17中脱出。
初型模夹具机构2驱动初型模5分开,成型模夹具机构7驱动成型模10分开。翻转机构8工作,带动口钳夹具6翻转,口模17在口钳夹具6中的口钳16的夹持作用下进行同步翻转,料滴26经倒吹气后形成的初型胚体随口模17翻转至成型侧,并进入成型模10内,成型模夹具机构7控制成型模10合拢。
步骤5,正吹气。
正吹气机构12中的吹气活塞杆39带动吹气臂13移动至成型模10上端口处,吹气臂13下降,使吹气臂13下端的吹气头47与口模17对接,吹气臂13与成型模10对接后,吹气头47进入口模17内,与导环38的上表面接触。
外部气源通过吹气压盖43、吹气弹簧44、吹气压环45、吹气锁环41、以及吹气头47的中心孔形成的吹气通道向成型模10内进行正吹气,使初型胚体在成型模10内成型。如图11(d)所示。在完成正吹气之后,翻转机构8驱动口钳夹具6反向转动,口钳夹具6以及口钳16夹持的口模17同时返回初型侧。
翻转机构8也可以在进行正吹气之前驱动口钳夹具6反向转动,将口钳夹具6以及口钳16夹持的口模17带回初型侧,此时正吹气机构12中的吹气活塞杆39带动吹气臂13移动至成型模10上端口处,吹气臂13下降直接与成型模10的上端口对接,吹气头47进入成型模10内,外部气源通过吹气压盖43、吹气弹簧44、吹气压环45、吹气锁环41、以及吹气头47的中心孔形成的吹气通道向成型模10内进行正吹气,使初型胚体在成型模10内成型。
步骤6,转移。
在成型侧,玻璃瓶在成型模内成型之后,成型模夹具机构7驱动成型模10分开,钳瓶机构11动作将成型瓶转移出成型模10,并转移至停置板(图中未画出)上,然后通过后续的拨瓶机构(图中未画出)到输瓶机网带(图中未画出)上,集中输送。
实施例2:
本实施例与实施例1的区别在于:在本实施例中,倒吹气机构19采用大口装置,适用于瓶口直径在38mm~90mm玻璃瓶的生产。
如图12所示,大口装置包括上下贯通的结合缸76,在结合缸76的下端口处通过压吹气缸上端盖78与压吹气缸35的同轴固定,在结合缸76的上端口处安装有压盖77,在结合缸76的上端口处设置有顶盖。
在结合缸76内设置有套筒67,套筒67在结合缸76的内部沿其轴向上下移动。在套筒67的外表面向外突出设置有凸台,凸台的上表面与上端盖79的内表面内外交错,在结合缸76内腔的底部设置有垫管69,在垫管69的外圈套装有大口套筒弹簧68,大口套筒弹簧68的上端与套筒67外表面凸台的下表面接触,大口套筒弹簧68的下端与压盖77接触。
压吹气缸35的活塞杆自下而上进入结合缸76内,在压吹气缸35活塞杆的内部设置有倒吹气管,在压吹气缸35活塞杆的顶部同轴设置有空心螺钉80,空心螺钉80在压吹气缸35活塞杆的内部与倒吹气管连通,空心螺钉80的顶部向上延伸至结合缸76的上端盖79处。空心螺钉80的直径小于压吹气缸35活塞杆的直径,在空心螺钉80与压吹气缸35活塞杆交界处的外圈套装固定有下挡圈48。
在空心螺钉80的外圈套装有大口芯子接头64,通过空心螺钉80顶部的挡台将大口芯子接头64固定在下挡圈48的上表面。在套筒67的内表面开设有凹槽,在凹槽内放置有上挡圈65,在大口芯子接头64的外圈套设有大口芯子弹簧66,大口芯子弹簧66位于上挡圈65和下挡圈48之间。
内芯子36位于大口芯子接头64的表面,在内芯子36的下端和大口芯子接头64的上端同时开设有凹槽,大口装置夹环63设置在内芯子36和大口芯子接头64的结合处,大口装置夹环63的内腔的上下两端分别卡在内芯子36和大口芯子接头64的凹槽内,将内芯子36固定在大口芯子接头64的上部。在内芯子36的内部均匀开设有多个倾斜的内芯子通道27,上述的空心螺钉80延伸至内芯子36内部,并与内芯子通道27的内端口连通,内芯子通道27的外端口开设在内芯子36上表面的外圈。
在内套30的上方固定有外芯子37,外芯子37的上部穿过上端盖79后延伸至结合缸76的外部,并进入口模17内,并位于口模17内导环38的下部。外芯子37的上表面中部向上形成外芯子套管,外芯子套管向上穿过导环38。内芯子36整体位于外芯子37的内部,在内芯子36的上表面中心处向上凸起形成内芯子导杆,内芯子导杆从外芯子套管中穿过。
大口装置的各个工作状态如下:
接料状态:此时压吹气缸35的活塞杆上升,通过下挡圈48推动大口芯子接头64上行,同时推动套筒67上行,此时大口套筒弹簧68处于复位状态。大口芯子接头64通过大口装置夹环63推动内芯子36上行,内芯子36进一步带动外芯子37同步上行,直至外芯子37的上表面与口模17内导环38的底面接触,此时内芯子36上端的内芯子导杆的顶面与外芯子37顶面的外芯子套管的顶面对齐,内芯子导杆与芯子套筒同时穿过导环38进入口模17内部。如图13(a)所示。
倒吹状态:当压吹气缸35的活塞杆处于自由状态时,大口芯子弹簧66复位,通过下挡圈48推动压吹气缸35的活塞杆下行,压吹气缸35的活塞杆下行时带动大口芯子接头64下行,大口芯子接头64通过大口装置夹环63带动内芯子36下行,此时内芯子36上端的内芯子导杆从外芯子37顶面的外芯子套管中脱离,同时内芯子36的顶面与外芯子37脱离形成间隙,将内芯子通道27的上端口开启。自倒吹气管吹入的气体向上经过空心螺钉80进入内芯子通道27,并由内芯子通道27的上部端口吹出。自内芯子通道27吹出的气体进一步经过内芯子导杆与外芯子套管之间的间隙自外芯子套管顶部的开口吹出进入口模17内,对料滴26进行倒吹气。如图13(b)所示。
翻转状态:当压吹气缸35的活塞杆下降时,带动大口芯子接头64下行,芯子接头通过大口装置夹环63带动内芯子36下行。最终使外芯子套管从口模17中脱出。大口装置夹环63同时通过上挡圈65带动套筒67下行,直至套筒67的底部与套管69接触。如图13(c)所示。
如图14(a)-14(d)所示,制瓶机在装配大口装置时,其工作过程与工作原理与装配小口装置时相同,在此不再赘述。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

  1. 高硼硅玻璃制瓶机,包括初型侧和成型侧,在初型侧设置有初型模(5),在成型侧设置有成型模(10),在初型侧和成型侧之间设置有往返于初型模(5)和成型模(10)的口钳夹具(6),在初型侧设置有与初型模(5)上端口对接的扑气机构(4)和与初型模(5)下端口对接的倒吹气机构(19),在成型侧设置有与成型模(10)对接的正吹气机构(12),其特征在于:在所述的扑气机构(4)中设置有直接与初型模(10)对接并进行扑气的扑气头(15),扑气头(15)底部的扑气口随扑气气流开启或关闭;在所述倒吹气机构(19)的顶部设置有与初型模(5)对接的芯子机构,芯子机构包括内外套设的两层,两层芯子之间间隔形成与倒吹气机构(19)连通的倒吹通道。
  2. 根据权利要求1所述的高硼硅玻璃制瓶机,其特征在于:所述的扑气机构(4)包括与扑气活塞杆(20)固定的扑气臂(3),扑气臂(3)包括扑气臂臂体,在扑气臂臂体的内壁设置有贯穿的扑气臂管路(23),在扑气臂臂体的两端分别安装有扑气气缸(24),扑气气缸(24)内腔的上部设置有与扑气臂管路(23)连通的扑气通道,所述的扑气头(15)安装在扑气气缸(24)内腔的底部。
  3. 根据权利要求2所述的高硼硅玻璃制瓶机,其特征在于:在所述扑气气缸(24)的内腔中设置有扑气活塞(21),扑气活塞(21)位于扑气头(15)的上部,在扑气杆(25)的外部套设有扑气弹簧(22),扑气活塞(21)的顶部正对扑气通道,在扑气活塞(21)的底部安装有扑气杆(25),扑气杆(25)从扑气头(15)中心穿过,扑气杆(25)在扑气头(15)内往复运动,扑气头(15)底部的开口随扑气杆(25)的往复移动而开启或关闭。
  4. 根据权利要求1所述的高硼硅玻璃制瓶机,其特征在于:在所述初型模(5)的上端口处形成环形凸台,在环形凸台的内侧上部形成上粗下细的漏斗口(59),漏斗口(59)的底部为初型模(5)的内腔,在所述扑气头(15)外圈的中部形成凸台,在凸台的底面向上开设形成凹槽,凹槽卡装在初型模(5)上端口环形凸台的外圈,扑气头(15)的下部自凹槽处向下形成与漏斗口(59)贴合的锥形面;
    在初型模(5)的上端口的凸台周圈自上而下轴向开设有多个保温孔(61),在初型模(5)的下端口周圈自下而上轴向开设有多个保温孔(61),在所有保温孔(61)开口处分别放置有一个钢珠(60);在初型模(5)的外表面中部周圈开设有保温槽,在保温槽内由内而外套设有多层石棉层(62)。
  5. 根据权利要求1所述的高硼硅玻璃制瓶机,其特征在于:所述的倒吹气机构(19)包括上下贯通的结合缸(76),结合缸(76)的下端口与压吹气缸(35)对接,在结合缸(76)内部设置有往复移动的底座(33),在底座(33)外部套设有小口套筒弹簧(34),在底座(33)上端凸台的上部固定有外套(32);压吹气缸(35)的活塞杆自下而上进入结合缸(76)内,穿过底座(33)后延伸至底座(33)的上部;在压吹气缸(35)活塞杆的内部设置有倒吹气管,在压吹气缸(35)活塞杆的顶部同轴设置有空心螺钉(80);空心螺钉(80)的下端口与倒吹气管连通,空心螺钉(80)的上端口进入所述的芯子机构内;在空心螺钉(80)的外圈套装有芯子接头,所述的芯子机构固定在芯子接头的顶部,在芯子接头的外圈固定有内套(30),在内套(30)的外部套装有芯子弹簧。
  6. 根据权利要求1所述的高硼硅玻璃制瓶机,其特征在于:所述的倒吹气机构(19)包括上下贯通的结合缸(76),结合缸(76)的下端口与压吹气缸(35)对接,在结合缸(76)内设置有往复移动的套筒(67),在套筒(67)的外圈套装有大口套筒弹簧(68);压吹气缸(35)的活塞杆自下而上进入结合缸(76)内,在压吹气缸(35)活塞杆的内部设置有倒吹气管,在压吹气缸(35)活塞杆的顶部同轴设置有空心螺钉(80),空心螺钉(80)的下端口与倒吹气管连通,空心螺钉(80)的上端口进入所述的芯子机构内;在空心螺钉(80)的外圈套装有芯子接头,所述的芯子机构固定在芯子接头的顶部,在套筒(67)的内表面开设有凹槽,在凹槽内放置有上挡圈(65),在芯子接头的外圈套设有芯子弹簧,芯子弹簧位于上挡圈(65)下方。
  7. 根据权利要求5或6所述的高硼硅玻璃制瓶机,其特征在于:所述的芯子机构包括内芯子(36)和外芯子(37),内芯子(36)位于芯子接头的表面,内芯子(36)和芯子接头通过套设在外圈的夹环固定,在内芯子(36)的内部均匀开设有多个内芯子通道(27),内芯子通道(27)的内端口与所述空心螺钉(80)的上端口连通,内芯子通道(27)的外端口倾斜开设在内芯子(36)上表面的外圈;外芯子(37)套装在内芯子(36)的外圈,外芯子(37)的上表面中部向上形成外芯子套管,在内芯子(36)的上表面中心处向上凸起形成内芯子导杆,内芯子导杆从外芯子套管中穿过。
  8. 根据权利要求1所述的高硼硅玻璃制瓶机,其特征在于:所述的正吹气机构(12)包括与吹气活塞杆(39)固定的吹气臂(13),吹气臂(13)包括吹气臂臂体(40),在吹气臂臂体(40)的端部设置有上下贯通的臂体轴套(42),在臂体轴套(42)的内圈紧固套筒的内部套设有衬套(46),在臂体轴套(42)的上端口处安装有上下贯通的吹气压盖(43),在臂体轴套(42)内自上而下装入吹气锁环(41),在吹气锁环(41)的底部安装有与成型模(10)对接的吹气头(47);
    在吹气压盖(43)的内圈设置有环形挡台,在环形挡台的下部放置有吹气弹簧(44),吹气弹簧(44)的底部通过压在吹气压环(45)的上表面,吹气压环(45)的下表面与吹气锁环(41)的上表面接触。
  9. 根据权利要求1所述的高硼硅玻璃制瓶机,其特征在于:在所述的初型侧,与扑气机构(4)相对的另一侧设置有加热机构(14),加热机构(14)包括用于对初型模(5)内进行加热的初型模加热单元和对扑气头(15)进行加热的扑气头加热单元,加热机构(14)包括用于输送燃气的主管路(53),在主管路(53)上并联有球阀(51),在球阀(51)的下端口连接软管(54),在软管(54)的下端口处安装有初型模喷嘴(55),初型模喷嘴(55)通过支架与加热臂(52)固定;
    在主管路(55)上还并联电磁阀(56),电磁阀(56)的下端口连接扑气支架(57),在扑气支架(57)的两端分别安装有扑气头喷嘴(58),扑气头喷嘴(58)设置在扑气头(15)行进轨迹的侧部。
  10. 利用权利要求1~9任一项所述的高硼硅玻璃制瓶机实现的高硼硅玻璃制瓶快吹法生产工艺,其特征在于,包括如下步骤:
    步骤1,接料;
    倒吹气机构(19)中的芯子机构动作,内外两层芯子同时自初型模(5)底部端口进入初型模(5),料滴(26)滴入初型模(5)内;
    步骤2,扑气;
    扑气机构(4)中的扑气头(15)移动至初型模(5)的顶部,扑气头(15)下降直接与初型模(5)对接后对初型模(5)内的料滴(26)进行扑气;
    步骤3,倒吹气;
    扑气完成后,倒吹气机构(19)中芯子机构工作,内层芯子脱离初型模(5)同时开启倒吹通道,倒吹气体经过倒吹通道进入初型模(5),对料滴(26)进行倒吹气形成初型胚体;
    步骤4,翻转;
    倒吹气机构(19)中的芯子机构动作,内外两层芯子均从初型模(5)中脱离,口钳夹具(6)带动初型胚体由初型侧翻转至成型侧,进入成型模(10)内;
    步骤5,正吹气;
    正吹气机构(12)移动至成型模(10)上端口处,与成型模(10)对接后,对成型模(10)内的初型胚体进行正吹气,初型胚体正吹气后形成成型胚体,口钳夹具(6)返回至初型侧;或口钳夹具(6)在正吹气机构(12)对初型胚体进行正吹气之前返回初型侧;
    步骤6,转移;
    成型胚体在成型模内冷却成型之后转移出成型模(10)。
PCT/CN2022/083217 2021-12-23 2022-03-26 高硼硅玻璃制瓶机及快吹法生产工艺 WO2023115739A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111587185.7A CN114105448B (zh) 2021-12-23 2021-12-23 高硼硅玻璃制瓶机及快吹法生产工艺
CN202111587185.7 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023115739A1 true WO2023115739A1 (zh) 2023-06-29

Family

ID=80362167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083217 WO2023115739A1 (zh) 2021-12-23 2022-03-26 高硼硅玻璃制瓶机及快吹法生产工艺

Country Status (2)

Country Link
CN (1) CN114105448B (zh)
WO (1) WO2023115739A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117303716A (zh) * 2023-10-11 2023-12-29 安徽鑫民玻璃股份有限公司 一种耐热性高硼硅玻璃循环式生产设备
CN117383799A (zh) * 2023-10-31 2024-01-12 安徽鑫民玻璃股份有限公司 一种高精度节能型玻璃成型机
CN117510046A (zh) * 2024-01-04 2024-02-06 德州晶华药用玻璃有限公司 一种用于中硼硅玻璃模制瓶生产的恒温模具

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105448B (zh) * 2021-12-23 2022-08-09 山东嘉丰玻璃机械有限公司 高硼硅玻璃制瓶机及快吹法生产工艺
CN114275998B (zh) * 2021-12-23 2022-08-09 山东嘉丰玻璃机械有限公司 多料重多规格玻璃瓶的生产装备
CN115304246B (zh) * 2022-09-05 2023-12-05 山东嘉丰玻璃机械有限公司 制瓶机扑气封底机构
CN116395940B (zh) * 2023-03-17 2024-02-13 江苏新奥得玻璃制品股份有限公司 一种玻璃酒瓶吹制设备及其吹制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190313345A (en) * 1903-06-15 1903-07-23 Heinrich Severin Glass Blowing Machine.
CN202465482U (zh) * 2011-12-22 2012-10-03 荆门市楚大机电有限公司 一种玻璃制瓶初型机
CN104556637A (zh) * 2013-10-14 2015-04-29 青岛市首胜实业有限公司 玻璃瓶吹-吹法成型工艺
CN108059323A (zh) * 2016-11-09 2018-05-22 梁泽超 一种玻璃瓶吹法成型工艺
CN108585445A (zh) * 2018-07-11 2018-09-28 山东嘉丰玻璃机械有限公司 一种四滴料多功能制瓶机及其小口压吹生产工艺
CN208500735U (zh) * 2018-07-11 2019-02-15 山东嘉丰玻璃机械有限公司 一种四滴料多功能制瓶机
CN209292201U (zh) * 2018-11-01 2019-08-23 杭州余杭振华日化玻璃有限公司 一种用于玻璃制瓶的扑气装置
CN113511801A (zh) * 2021-07-28 2021-10-19 安徽杜氏高科玻璃有限公司 一种基于高硼硅玻璃生产用吹塑定型方法
CN114105448A (zh) * 2021-12-23 2022-03-01 山东嘉丰玻璃机械有限公司 高硼硅玻璃制瓶机及快吹法生产工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2681674T3 (es) * 2011-05-06 2018-09-14 Graphic Packaging International, Llc Procedimiento para la formación de una caja de cartón con característica de protección de los artículos

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190313345A (en) * 1903-06-15 1903-07-23 Heinrich Severin Glass Blowing Machine.
CN202465482U (zh) * 2011-12-22 2012-10-03 荆门市楚大机电有限公司 一种玻璃制瓶初型机
CN104556637A (zh) * 2013-10-14 2015-04-29 青岛市首胜实业有限公司 玻璃瓶吹-吹法成型工艺
CN108059323A (zh) * 2016-11-09 2018-05-22 梁泽超 一种玻璃瓶吹法成型工艺
CN108585445A (zh) * 2018-07-11 2018-09-28 山东嘉丰玻璃机械有限公司 一种四滴料多功能制瓶机及其小口压吹生产工艺
CN208500735U (zh) * 2018-07-11 2019-02-15 山东嘉丰玻璃机械有限公司 一种四滴料多功能制瓶机
CN209292201U (zh) * 2018-11-01 2019-08-23 杭州余杭振华日化玻璃有限公司 一种用于玻璃制瓶的扑气装置
CN113511801A (zh) * 2021-07-28 2021-10-19 安徽杜氏高科玻璃有限公司 一种基于高硼硅玻璃生产用吹塑定型方法
CN114105448A (zh) * 2021-12-23 2022-03-01 山东嘉丰玻璃机械有限公司 高硼硅玻璃制瓶机及快吹法生产工艺

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117303716A (zh) * 2023-10-11 2023-12-29 安徽鑫民玻璃股份有限公司 一种耐热性高硼硅玻璃循环式生产设备
CN117303716B (zh) * 2023-10-11 2024-03-19 安徽鑫民玻璃股份有限公司 一种耐热性高硼硅玻璃循环式生产设备
CN117383799A (zh) * 2023-10-31 2024-01-12 安徽鑫民玻璃股份有限公司 一种高精度节能型玻璃成型机
CN117383799B (zh) * 2023-10-31 2024-04-19 安徽鑫民玻璃股份有限公司 一种高精度节能型玻璃成型机
CN117510046A (zh) * 2024-01-04 2024-02-06 德州晶华药用玻璃有限公司 一种用于中硼硅玻璃模制瓶生产的恒温模具
CN117510046B (zh) * 2024-01-04 2024-03-12 德州晶华药用玻璃有限公司 一种用于中硼硅玻璃模制瓶生产的恒温模具

Also Published As

Publication number Publication date
CN114105448B (zh) 2022-08-09
CN114105448A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023115739A1 (zh) 高硼硅玻璃制瓶机及快吹法生产工艺
US3775084A (en) Pressurizer apparatus for glass ribbon machine
US3729302A (en) Removal of glass article from ribbon forming machine by vibrating force
US2890483A (en) Machine for forming plastic containers
US4009018A (en) Glassware forming machine of the I. S. type with in-line mold motion
US2353825A (en) Apparatus for molding thermoplastic materials
JPH08506558A (ja) ガラス製品の搬送
CN104108856B (zh) 用于制作特大玻璃瓶的制瓶机及生产工艺
MXNL04000071A (es) Metodo y maquina para la produccion de articulos de vidrio huecos.
WO2011035503A1 (zh) 灌装机
JP5524003B2 (ja) 長ストロークの吹込みヘッド機構
US4137061A (en) Apparatus for forming glass containers
CN110386754B (zh) 一种制瓶行列机的成型系统
US1601836A (en) Forming machine
CN216584707U (zh) 一种玻璃瓶的快吹制瓶机
CN110776245A (zh) 一种行列机小口瓶压吹模具
CN106079245B (zh) 多色产品瞬时冷热成型方法及成型设备
CN211078881U (zh) 一种行列机小口瓶压吹模具
CN211712945U (zh) 一种制瓶行列机的成型系统
CN113511801A (zh) 一种基于高硼硅玻璃生产用吹塑定型方法
CN203782016U (zh) 一种制瓶行列机正吹气机构
JPH08109027A (ja) ガラス容器の製造方法
CN1039293C (zh) 二工位吹塑成型装置
US4094656A (en) Method for forming glass containers
US3729301A (en) Method of shaping glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909077

Country of ref document: EP

Kind code of ref document: A1