WO2023113381A1 - 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 - Google Patents

유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 Download PDF

Info

Publication number
WO2023113381A1
WO2023113381A1 PCT/KR2022/019929 KR2022019929W WO2023113381A1 WO 2023113381 A1 WO2023113381 A1 WO 2023113381A1 KR 2022019929 W KR2022019929 W KR 2022019929W WO 2023113381 A1 WO2023113381 A1 WO 2023113381A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
ring
organic
layer
Prior art date
Application number
PCT/KR2022/019929
Other languages
English (en)
French (fr)
Inventor
소기호
박종광
이윤석
이선희
문성윤
이인구
정원준
Original Assignee
덕산네오룩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산네오룩스 주식회사 filed Critical 덕산네오룩스 주식회사
Publication of WO2023113381A1 publication Critical patent/WO2023113381A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.
  • the organic light emitting phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
  • An organic electric device using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer is often composed of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic electric device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • Materials used as organic layers in organic electric devices may be classified into light emitting materials and charge transport materials, such as hole injection materials, hole transport materials, electron transport materials, and electron injection materials, according to their functions.
  • the light emitting materials can be classified into high molecular weight and low molecular weight according to molecular weight, and can be classified into fluorescent materials derived from singlet excited states of electrons and phosphorescent materials derived from triplet excited states of electrons according to light emitting mechanisms. there is.
  • light emitting materials may be classified into blue, green, and red light emitting materials and yellow and orange light emitting materials required to realize better natural colors according to the light emitting color.
  • a host/dopant system may be used as a light emitting material in order to increase luminous efficiency.
  • the principle is that when a small amount of a dopant having a smaller energy band gap than the host forming the light emitting layer is mixed into the light emitting layer, excitons generated in the light emitting layer are transported to the dopant to emit light with high efficiency. At this time, since the wavelength of the host moves to the wavelength range of the dopant, light of a desired wavelength can be obtained according to the type of dopant used.
  • a short-wavelength dopant is used as a method used to increase the maximum luminous efficiency, and in the case of a short-wavelength dopant, since the maximum luminous efficiency is higher than that of a conventional long-wavelength dopant, it can be used to increase the efficiency of the overall device.
  • the x color coordinate is very low, so it is applied as a disadvantage in terms of color purity.
  • a host in which the maximum emission wavelength is shifted to a long wavelength is required, and such a host affects not only the maximum emission efficiency but also the lifetime.
  • the present invention calculates the energy level of heterogeneous compounds to be mixed to develop a long-wavelength host, and aims to design an optimal compound based on this.
  • this compound is applied to an organic electric device, the luminous efficiency and stability of the device can be greatly improved.
  • an object of the present invention is to provide a novel compound, an organic electric device using the same, and an electronic device thereof.
  • the present invention provides a compound represented by the following formula (1).
  • the present invention provides an organic electric device and an electronic device including the compound represented by Formula 1 above.
  • the long-wavelength compound according to the present invention By using the long-wavelength compound according to the present invention, high luminous efficiency, low driving voltage and high heat resistance of the device can be achieved, and color purity and lifespan of the device can be greatly improved.
  • 1 to 3 are exemplary views of an organic electroluminescent device according to the present invention.
  • organic electric element 110 first electrode
  • first hole transport layer 340 first light emitting layer
  • second charge generation layer 420 second hole injection layer
  • first, second, A, B, (a), and (b) may be used in describing the components of the present invention. These terms are only used to distinguish the component from other components, and the nature, order, or order of the corresponding component is not limited by the term.
  • an element is described as being “connected,” “coupled to,” or “connected” to another element, that element is or may be directly connected to the other element, but there is another element between the elements. It will be understood that elements may be “connected”, “coupled” or “connected”.
  • halo or halogen is fluorine (F), bromine (Br), chlorine (Cl), or iodine (I) unless otherwise specified.
  • alkyl or “alkyl group” has a single bond of 1 to 60 carbon atoms, and includes a straight-chain alkyl group, a branched-chain alkyl group, a cycloalkyl (alicyclic) group, an alkyl-substituted cycloalkyl group, and the like.
  • alkenyl group has a double bond or triple bond of 2 to 60 carbon atoms, respectively, and includes a straight or branched chain group, unless otherwise specified. , but is not limited thereto.
  • cycloalkyl refers to an alkyl forming a ring having 3 to 60 carbon atoms, but is not limited thereto.
  • alkoxyl group refers to an alkyl group to which an oxygen radical is attached, and has 1 to 60 carbon atoms, unless otherwise specified, and is limited thereto. It is not.
  • aryloxyl group refers to an aryl group to which an oxygen radical is attached, and has 6 to 60 carbon atoms unless otherwise specified, but is not limited thereto.
  • aryl group and arylene group used herein have 6 to 60 carbon atoms, respectively, unless otherwise specified, but are not limited thereto.
  • an aryl group or an arylene group refers to a single-ring or multi-ring aromatic ring, and includes an aromatic ring formed by bonding or reacting with adjacent substituents.
  • the aryl group may be a phenyl group, a biphenyl group, a fluorene group, or a spirofluorene group.
  • aryl refers to a radical substituted with an aryl group.
  • an arylalkyl group is an alkyl group substituted with an aryl group
  • an arylalkenyl group is an alkenyl group substituted with an aryl group
  • a radical substituted with an aryl group has carbon atoms described herein.
  • an arylalkoxy group means an alkoxy group substituted with an aryl group
  • an alkoxylcarbonyl group means a carbonyl group substituted with an alkoxyl group
  • an arylcarbonylalkenyl group means an alkenyl group substituted with an arylcarbonyl group.
  • the arylcarbonyl group is a carbonyl group substituted with an aryl group.
  • heterocyclic group includes at least one heteroatom, has 2 to 60 carbon atoms, includes at least one of a single ring and multiple rings, and includes a heteroaliphatic ring and a heterocyclic group, unless otherwise specified. Contains an aromatic ring. It may also be formed by combining adjacent functional groups.
  • heteroatom refers to N, O, S, P or Si unless otherwise specified.
  • heterocyclic group may include a ring containing SO 2 instead of carbon forming the ring.
  • heterocyclic group includes the following compounds.
  • fluorenyl group or “fluorenylene group” means a monovalent or divalent functional group in which R, R' and R" are all hydrogen in the following structure, respectively, unless otherwise specified, " Substituted fluorenyl group” or “substituted fluorenyl group” means that at least one of the substituents R, R', R" is a substituent other than hydrogen, and R and R' are bonded to each other to form a This includes cases where they form a spy compound together.
  • spiro compound has a 'spiro union', which means a connection formed by two rings sharing only one atom. At this time, the atoms shared by the two rings are called 'spiro atoms', and according to the number of spiro atoms in a compound, they are called 'monospiro-', 'dispiro-', and 'trispiro-', respectively. ' It's called a compound.
  • aliphatic as used herein means an aliphatic hydrocarbon ring having 1 to 60 carbon atoms
  • aliphatic ring means an aliphatic hydrocarbon ring having 3 to 60 carbon atoms.
  • ring refers to a fused ring composed of an aliphatic ring having 3 to 60 carbon atoms, an aromatic ring having 6 to 60 carbon atoms, a heterocyclic ring having 2 to 60 carbon atoms, or a combination thereof, Contains saturated or unsaturated rings.
  • hetero compounds or heteroradicals other than the aforementioned hetero compounds include, but are not limited to, one or more heteroatoms.
  • substituted in the term “substituted or unsubstituted” as used herein means deuterium, halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxyl group, C 1 ⁇ C 20 alkylamine group, C 1 ⁇ C 20 alkylthiophene group, C 6 ⁇ C 20 arylthiophene group, C 2 ⁇ C 20 alkenyl group, C 2 ⁇ C 20 alkynyl group, C 3 ⁇ C 20 cycloalkyl group, C 6 ⁇ C 20 aryl group, deuterium-substituted C 6 ⁇ C 20 aryl group, C 8 ⁇ C 20 arylalkenyl group, silane group, boron group, germanium group, and C 2 ⁇ C 20 means substituted with one or more substituents selected from the group consisting of heterocyclic groups, but is not limited
  • substituent R 1 when a is an integer of 0, substituent R 1 does not exist, and when a is an integer of 1, one substituent R 1 is bonded to any one of the carbon atoms forming the benzene ring, and when a is an integer of 2 or 3
  • R 1 may be the same or different from each other, and when a is an integer of 4 to 6, it is bonded to the carbon of the benzene ring in a similar manner, while indicating the hydrogen bonded to the carbon forming the benzene ring. is omitted.
  • the present invention provides a compound represented by Formula 1 below.
  • L a is a direct bond; phenylene group; naphthylene group; biphenylene group; Or a phenanthrene group;
  • Ar a is a phenyl group; Or a phenanthrenyl group;
  • R 1 , R 2 , R 3 and R 4 are the same or different, and each independently hydrogen; or deuterium;
  • a is an integer from 0 to 5
  • b is an integer from 0 to 6
  • c is an integer from 0 to 4
  • d is an integer from 0 to 7
  • the phenyl group, phenanthrenyl group, phenylene group, naphthylene group, and biphenylene group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ⁇ C 20 Alkylthio group; A C 1 ⁇ C 20 alkoxy group; C 6 ⁇ C 20 aryloxy group; C 1 ⁇ C 20 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 6 ⁇ C 20 aryl group; A deuterium-substituted C 6 ⁇ C 20 aryl group; fluorenyl group; C 2 ⁇ C 20 heterocyclic group; A C 3 ⁇ C 20 cycloalkyl group; C 1 ⁇ C 20 heteroalkyl group; C 7 ⁇ C 20 arylalkyl group; And a C 8 ⁇ C 20 arylalkeny
  • the present invention provides a compound in which Ar a is represented by any one of the following formulas (A-1) to (A-6).
  • R 1 'and R 5 ' are the same or different, and each independently represent hydrogen; heavy hydrogen; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ⁇ C 20 Alkylthio group; A C 1 ⁇ C 20 alkoxy group; C 6 ⁇ C 20 aryloxy group; C 1 ⁇ C 20 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 6 ⁇ C 20 aryl group; A deuterium-substituted C 6 ⁇ C 20 aryl group; fluorenyl group; C 2 ⁇ C 20 heterocyclic group; A C 3 ⁇ C 20 cycloalkyl group; C 1 ⁇ C 20 heteroalkyl group; C 7 ⁇ C 20 arylalkyl group; And a C 8 ⁇ C 20 arylalkenyl group; is selected from the group consisting of, or a plurality
  • a is an integer from 0 to 5
  • e is an integer from 0 to 9 ⁇
  • the present invention provides a compound in which L a is represented by any one of the following formulas (L-1) to (L-14).
  • R 2 'and R 3 ' are the same as the definition of R 1 ',
  • b is an integer from 0 to 6
  • c is an integer from 0 to 4.
  • the present invention provides a compound having a Reorganization Energy value higher than 0.23 of the compound represented by Formula (1).
  • the present invention provides a compound having a Reorganization Energy value higher than 0.23 and lower than 0.29 of the compound represented by Formula (1).
  • Formula (1) may be represented by any one of the following compounds P-1 to P-40.
  • the present invention provides an organic electric device including an anode, a cathode, and an organic material layer formed between the anode and the cathode, wherein the organic material layer includes a single compound or two or more compounds represented by Formula (1). Provides an electric element.
  • the organic material layer includes at least one of a hole injection layer, a hole transport layer, a light emitting auxiliary layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer, and an electron injection layer.
  • the present invention provides an organic electric device including the compound represented by Formula (1) as a host material of the light emitting layer, and a dopant material of the light emitting layer having a maximum light emitting wavelength of 610 nm to 620 nm.
  • the present invention provides an organic electric device including the compound represented by Formula (1) as a host material of the light emitting layer, and a dopant material of the light emitting layer having a maximum light emitting wavelength of 610 nm to 615 nm.
  • the present invention is an organic electric device including a compound represented by the formula (1) as a host material of the light emitting layer, and a compound represented by the following formula (2) or formula (3) as another host material provides
  • Y is O, S, CR'R" or NR a ;
  • R' and R" are each independently a C 6 ⁇ C 60 aryl group; a C 2 ⁇ C 60 heterocyclic group including at least one heteroatom selected from O, N, S, Si and P; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 50 alkyl group; C 2 ⁇ C 20 alkenyl group; C 2 ⁇ C 20 alkynyl group; C 1 ⁇ It is selected from the group consisting of C 30 alkoxyl group; and C 6 ⁇ C 30 aryloxy group; or R' and R" may be bonded to each other to form a ring,
  • R' and R” are aryl groups, they are preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups, such as phenylene, biphenyl, naphthalene, terphenyl, etc. .
  • R' and R” are heterocyclic groups, they may be preferably C 2 ⁇ C 30 heterocyclic groups, more preferably C 2 ⁇ C 24 heterocyclic groups, and examples include pyrazine, thiophene, and pyridine.
  • pyrimidoindole 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzothiophene, benzothieno pyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine and the like.
  • R' and R” are fused ring groups, preferably C 3 ⁇ C 30 aliphatic ring and C 6 ⁇ C 30 aromatic ring fused ring group, more preferably C 3 ⁇ C 24 aliphatic ring and It may be a fused ring group of C 6 ⁇ C 24 aromatic rings.
  • R' and R” are alkyl groups, they may be preferably C 1 -C 30 alkyl groups, more preferably C 1 -C 24 alkyl groups.
  • R' and R” are alkoxy groups, they may preferably be C 1 to C 24 alkoxy groups.
  • R' and R” are aryloxy groups, they may be preferably C 6 -C 24 aryloxy groups.
  • L 1 , L 2 , L 3 and L 4 are each independently a single bond; C 6 ⁇ C 60 arylene group; And C 2 ⁇ C 60 It is selected from the group consisting of a heteroarylene group;
  • L 1 , L 2 , L 3 and L 4 are arylene groups, they may be preferably C 6 to C 30 arylene groups, more preferably C 6 to C 24 arylene groups, for example, phenylene , biphenyl, naphthalene, terphenyl, and the like.
  • L 1 , L 2 , L 3 and L 4 are heteroarylene groups, they may be preferably C 2 -C 30 heteroarylene groups, more preferably C 2 -C 24 heteroarylene groups.
  • R a , Ar 1 , Ar 2 and Ar 3 are each independently a C 6 ⁇ C 60 aryl group; Or a C 2 ⁇ C 60 heteroaryl group;
  • R a , Ar 1 , Ar 2 and Ar 3 are aryl groups, preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups such as phenylene, biphenyl, naphthalene , terphenyl and the like.
  • R a , Ar 1 , Ar 2 and Ar 3 are heteroaryl groups, they may be preferably C 2 -C 30 heteroaryl groups, more preferably C 2 -C 24 heteroaryl groups.
  • Ar 4 is a C 6 ⁇ C 60 aryl group; A C 2 ⁇ C 60 heteroaryl group; And -L'-NR b R c ; It is selected from the group consisting of;
  • Ar 4 is an aryl group, it may be preferably a C 6 -C 30 aryl group, more preferably a C 6 -C 25 aryl group, such as phenylene, biphenyl, naphthalene, terphenyl, and the like.
  • Ar 4 When Ar 4 is a heteroaryl group, it may be preferably a C 2 ⁇ C 30 heteroaryl group, more preferably a C 2 ⁇ C 24 heteroaryl group.
  • L' is a single bond; C 6 ⁇ C 60 arylene group; Fluorenylene group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; and a C 3 ⁇ C 60 aliphatic ring group; wherein R b and R c are each independently a C 6 ⁇ C 60 aryl group; fluorenyl group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; and C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; is selected from the group consisting of;
  • L' is an arylene group
  • it may be preferably a C 6 ⁇ C 30 arylene group, more preferably a C 6 ⁇ C 24 arylene group, for example, phenylene, biphenyl, naphthalene, terphenyl, etc.
  • L' is a heterocyclic group
  • it may be preferably a C 2 ⁇ C 30 heterocyclic group, more preferably a C 2 ⁇ C 24 heterocyclic group, and examples thereof include pyrazine, thiophene, pyridine, and pyrimido.
  • L' is an aliphatic ring group, it is preferably a C 3 -C 30 aliphatic ring group, more preferably a C 3 -C 24 aliphatic ring group.
  • R b and R c are aryl groups, preferably C 6 ⁇ C 30 aryl groups, more preferably C 6 ⁇ C 25 aryl groups, such as phenylene, biphenyl, naphthalene, terphenyl, etc. .
  • R b and R c are heterocyclic groups, they may be preferably C 2 ⁇ C 30 heterocyclic groups, more preferably C 2 ⁇ C 24 heterocyclic groups, and examples include pyrazine, thiophene, and pyridine.
  • pyrimidoindole 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzothiophene, benzothieno pyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine and the like.
  • R b and R c are fused ring groups, preferably C 3 ⁇ C 30 aliphatic ring and C 6 ⁇ C 30 aromatic ring fused ring group, more preferably C 3 ⁇ C 24 aliphatic ring and It may be a fused ring group of C 6 ⁇ C 24 aromatic rings.
  • Ring B is a C 6 ⁇ C 20 aryl group
  • R 5 and R 6 are each the same or different, and each independently hydrogen; heavy hydrogen; halogen; cyano group; nitro group; C 6 ⁇ C 60 aryl group; fluorenyl group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 60 Alkyl group; C 2 ⁇ C 60 Alkenyl group; C 2 ⁇ C 60 alkynyl group; C 1 ⁇ C 60 alkoxy group; And a C 6 ⁇ C 60 aryloxy group; is selected from the group consisting of, or a plurality of adjacent R 5 or a plurality of R 6 may be bonded to each other to form a ring;
  • e and f are independently integers from 0 to 4,
  • the aryl group, arylene group, heterocyclic group, fluorenyl group, fluorenylene group, fused ring group, alkyl group, alkenyl group, alkoxy group, and aryloxy group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ⁇ C 20 Alkylthio group; A C 1 ⁇ C 20 alkoxy group; C 1 ⁇ C 20 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 6 ⁇ C 20 aryl group; A deuterium-substituted C 6 ⁇ C 20 aryl group; fluorenyl group; C 2 ⁇ C 20 heterocyclic group; A C 3 ⁇ C 20 cycloalkyl group; C 7 ⁇ C 20 arylalkyl group; C 8 ⁇ C 20 arylalkenyl
  • the present invention provides an organic electric device in which Chemical Formula (2) is represented by any one of Chemical Formulas (2-1) to Chemical Formulas (2-3) below.
  • R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are each the same or different, and each independently hydrogen; heavy hydrogen; halogen; cyano group; nitro group; C 6 ⁇ C 60 aryl group; fluorenyl group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 60 Alkyl group; C 2 ⁇ C 60 Alkenyl group; C 2 ⁇ C 60 alkynyl group; C 1 ⁇ C 60 alkoxy group; C 6 ⁇ C 60 aryloxy group; and -L'-NR b R c ; or a plurality of adjacent R 7 , or a plurality of R 8 , or a plurality of R 9 , or a plurality of R 10 , or a plurality of R 11 or a plurality of
  • R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are aryl groups, preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups such as phenyl rene, biphenyl, naphthalene, terphenyl, and the like.
  • R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are heterocyclic groups, they are preferably C 2 to C 30 heterocyclic groups, more preferably C 2 to C 24 heterocyclic groups.
  • R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are fused ring groups, preferably a C 3 ⁇ C 30 aliphatic ring and C 6 ⁇ C 30 aromatic ring fused ring group; Preferably, it may be a fused ring group of a C 3 ⁇ C 24 aliphatic ring and a C 6 ⁇ C 24 aromatic ring.
  • R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are alkyl groups, they may be preferably C 1 to C 30 alkyl groups, more preferably C 1 to C 24 alkyl groups. there is.
  • R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are alkenyl groups, they are preferably C 2 to C 30 alkenyl groups, more preferably C 2 to C 24 alkenyl groups. It could be the weather.
  • R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are alkynyl groups, they are preferably C 2 to C 30 alkynyl groups, more preferably C 2 to C 24 alkynes. It could be the weather.
  • R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are alkoxy groups, they may be preferably C 1 to C 30 alkoxy groups, more preferably C 1 to C 24 alkoxy groups. there is.
  • R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are aryloxy groups, they are preferably C 6 to C 30 aryloxy groups, more preferably C 6 to C 24 aryl groups. may be an oxy group.
  • L 1 , L 2 , L 3 , Ar 2 , Ar 3 , L', R b and R c are as defined above;
  • g, j and l are independently integers from 0 to 4
  • h, i and k are independently integers from 0 to 3.
  • the present invention provides an organic electric device in which Chemical Formula (3) is represented by any one of Chemical Formulas (3-1) to Chemical Formulas (3-6) below.
  • R 13 , R 14 and R 15 are the same as the definition of R 5 above,
  • n and o are independently integers from 0 to 4
  • n is an integer from 0 to 2.
  • the present invention provides an organic electric device in which Chemical Formula (3) is represented by any one of Chemical Formulas (3-7) to Chemical Formulas (3-9) below.
  • Ring B, R 5 , R 6 , f, Y, L 4 and Ar 4 are the same as defined above;
  • e' is an integer from 0 to 6 ⁇
  • the present invention provides an organic electric device in which the formula (3) is represented by the following formulas (3-10) to (3-12).
  • Ring B, R 5 , R 6 , e, Y, L 4 and Ar 4 are the same as defined above;
  • f' is an integer from 0 to 6.
  • the present invention provides an organic electric element in which the formula (3) is represented by the following formulas (3-13) to (3-18).
  • the present invention provides an organic electric device in which the formula (3) is represented by the following formula (3-19).
  • Ar 4 and R a are each independently a C 6 ⁇ C 18 aryl group
  • L 4 is a single bond; Or a C 6 ⁇ C 60 arylene group;
  • L 4 is an arylene group
  • it may be preferably a C 6 ⁇ C 30 arylene group, more preferably a C 6 ⁇ C 24 arylene group, for example, phenylene, biphenyl, naphthalene, terphenyl, etc. can
  • R 13 , R 14 , R 15 , n and o are as defined above,
  • n' is an integer from 0 to 6;
  • the present invention provides an organic electric device in which the compound represented by Chemical Formula (2) is represented by any one of the following compounds N-1 to N-100.
  • the present invention provides an organic electric device in which the compound represented by Chemical Formula (3) is represented by any one of the following compounds S-1 to S-112.
  • the organic electric element 100 has a first electrode 110, a second electrode 170, and a chemical formula ( An organic material layer containing a single compound or two or more compounds represented by 1) is provided.
  • the first electrode 110 may be an anode or an anode
  • the second electrode 170 may be a cathode or a cathode
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic material layer may sequentially include a hole injection layer 120 , a hole transport layer 130 , a light emitting layer 140 , an electron transport layer 150 , and an electron injection layer 160 on the first electrode 110 . At this time, other layers except for the light emitting layer 140 may not be formed.
  • a hole blocking layer, an electron blocking layer, a light emitting auxiliary layer 220, a buffer layer 210, and the like may be further included, and the electron transport layer 150 may serve as a hole blocking layer. (See Fig. 2)
  • the organic electric element according to an embodiment of the present invention may further include a protective layer or a light efficiency improvement layer 180 .
  • the light efficiency improving layer may be formed on a surface of both surfaces of the first electrode not in contact with the organic material layer or on a surface of both surfaces of the second electrode not in contact with the organic material layer.
  • the compound according to an embodiment of the present invention applied to the organic layer is a hole injection layer 120, a hole transport layer 130, a light emitting auxiliary layer 220, an electron transport auxiliary layer, an electron transport layer 150, an electron injection layer ( 160), a host or dopant of the light emitting layer 140, or a material of a light efficiency improvement layer.
  • the compound according to formula (1) of the present invention may be used as a host material of the light emitting layer.
  • the organic material layer may include two or more stacks including a hole transport layer, a light emitting layer, and an electron transport layer sequentially formed on the anode, and may further include a charge generation layer formed between the two or more stacks. (See Fig. 3)
  • the selection of the core and the combination of sub-substituents bonded thereto are also very important. It is important, especially when the optimal combination of the energy level and T1 value between each organic material layer and the intrinsic properties of the material (mobility, interfacial properties, etc.) is achieved, long life and high efficiency can be achieved at the same time.
  • An organic electroluminescent device may be manufactured using a physical vapor deposition (PVD) method.
  • PVD physical vapor deposition
  • an anode is formed by depositing a metal or a metal oxide having conductivity or an alloy thereof on a substrate, and a hole injection layer 120, a hole transport layer 130, a light emitting layer 140, an electron transport layer 150 and After forming an organic material layer including the electron injection layer 160, it can be manufactured by depositing a material that can be used as a cathode thereon.
  • the organic material layer is formed by any one of a spin coating process, a nozzle printing process, an inkjet printing process, a slot coating process, a dip coating process, and a roll-to-roll process, and the organic material layer includes the compound as an electron transport material. It provides an organic electric element characterized in that.
  • the present invention provides an organic electric device characterized in that a compound of the same type or a different type of the compound represented by the formula (1) is mixed and used in the organic material layer.
  • the present invention provides a light emitting layer composition including the compound represented by the formula (1), and provides an organic electric device including the light emitting layer.
  • the present invention is a display device including the above organic electric element; and a controller for driving the display device.
  • the present invention provides an electronic device characterized in that the organic electric device is at least one of an organic light emitting device, an organic solar cell, an organic photoreceptor, an organic transistor, and a device for monochromatic or white lighting.
  • the electronic device may be a current or future wired/wireless communication terminal, and includes all electronic devices such as a mobile communication terminal such as a mobile phone, a PDA, an electronic dictionary, a PMP, a remote control, a navigation device, a game machine, various TVs, and various computers.
  • Sub 1 of Reaction Scheme 1 may be synthesized by the reaction pathway of Reaction Scheme 2 below, but is not limited thereto.
  • the compound belonging to Sub 1 may be the following compounds, but is not limited thereto, and Table 1 below shows the FD-MS (Field Desorption-Mass Spectrometry) values of the compounds belonging to Sub 1.
  • the compound belonging to Sub 2 may be the following compounds, but is not limited thereto, and Table 2 below shows the FD-MS values of the compounds belonging to Sub 2.
  • Sub1-1 (20 g, 0.04 mol), Sub2-1 (7.8 g, 0.04 mol), Pd(PPh 3 ) 4 (1.3 g, 0.001 mol), NaOH (4.6 g, 0.12 mol), THF (80 mL) and water (20 mL) were added and reacted at 70°C for 6 hours.
  • the temperature of the reactant is cooled to room temperature, and the reaction solvent is removed. Thereafter, the concentrated reactant was separated using a silica gel column or a recrystallization method to obtain 19 g (88.1%) of product P-1.
  • RE Reorganization energy
  • AO opt Anion geometry of an anion molecule
  • CO opt Cation geometry of a cation molecule
  • Reorganization energy value and mobility are in inverse proportion, and the RE value of each material directly affects mobility under the condition that they have the same r and T values.
  • the relationship between RE value and mobility is expressed as follows.
  • the RE value requires a simulation tool that can calculate the potential energy according to the molecular structure, and we used Gaussian09 (hereinafter G09) and Schrödinger Materials Science's Jaguar (hereinafter JG) module. Both G09 and JG are tools that analyze the characteristics of molecules through quantum mechanical (QM) calculations, and have a function of optimizing the molecular structure or calculating the energy for a given molecular structure (Single-point energy). .
  • G09 Gaussian09
  • JG Schrödinger Materials Science's Jaguar
  • Each cluster server is composed of 4 node workstations and 1 master workstation, and each node uses a central processing unit (CPU) of 36 cores or more for parallel operation through Symmetric Multi-processing (SMP).
  • SMP Symmetric Multi-processing
  • a dopant having a maximum emission wavelength is often moved to a shorter wavelength. Host combinations with such short-wavelength dopants require long-wavelength hosts.
  • the maximum emission wavelength of the dopant and the maximum emission wavelength of the host are affected, and by appropriately adjusting the maximum emission wavelength, in the case of the x color coordinate (0.681 ⁇ 0.684), the y color coordinate, which is the optimal color coordinate. (0.316 ⁇ 0.318).
  • the maximum emission wavelength of the dopant and the maximum emission wavelength of the host are affected, and by appropriately adjusting the maximum emission wavelength, in the case of the x color coordinate (0.681 ⁇ 0.684), the y color coordinate, which is the optimal color coordinate. (0.316 ⁇ 0.318).
  • both the HOMO energy and the LUMO energy of different types of compounds are affected.
  • the two compounds in the case of a compound with a large role of electron donor, it affects the LUMO energy value of the mixture, and conversely, in the case of electron acceptor, it affects the HOMO value of the mixture.
  • the length of the covalent bond is determined according to the type of substituent of the compound, which affects the energy level.
  • An organic light emitting device was fabricated according to a conventional method using the compound obtained through synthesis as a light emitting host material for the light emitting layer.
  • 2-TNATA a ,4-diamine
  • 4-TNATA 4,4-bis[N-(1-naphthyl) -N-phenylamino]biphenyl
  • -NPD 4,4-bis[N-(1-naphthyl) -N-phenylamino]biphenyl
  • compounds (P-1) and (S-109) of the present invention represented by Formula (1) were used in a weight ratio of 5:5, and (D-1) was used as a dopant material in a weight ratio of 95:5.
  • the light emitting layer was deposited with a thickness of 30 nm by doping with .
  • (1,1'-bisphenyl)-4-oleato)bis(2-methyl-8-quinolinolato)aluminum hereinafter abbreviated as BAlq
  • BAlq (1,1'-bisphenyl)-4-oleato)bis(2-methyl-8-quinolinolato)aluminum
  • Alq3 tris(8-quinolinol) aluminum
  • LiF an alkali metal halide
  • Al was deposited to a thickness of 150 nm and used as a cathode to manufacture an organic light emitting device.
  • An organic electroluminescent device was fabricated in the same manner as in Example 1, except that the compound of the present invention shown in Table 6 was used instead of the compound (P-1) of the present invention as the host material of the light emitting layer.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that Comparative Compounds A to C were used as host materials for the light emitting layer.
  • the compound of the present invention when used as a material for the light emitting layer, it can be seen that the driving voltage is lowered and the efficiency and lifetime are significantly improved compared to the case of using Comparative Compounds A to C. More specifically, the compound of the present invention has a higher RE value than the comparative compound. These RE values vary greatly depending on the type of constituents substituted for triazine, and compounds with high RE values have slower mobility than compounds with low RE values.
  • the fact that the compounds of the present invention migrated to the long wavelength is determined from the HOMO energy level of the first compound and the LUMO energy level of the second compound, and it can be confirmed that the measurement results have a narrow band gap compared to the comparative compounds. could This narrow bandgap consequently shifts the maximum emission wavelength to a longer wavelength, and the long-wavelength host exhibited maximum emission efficiency in combination with a short-wavelength dopant.
  • the luminous efficiency of the compound having an RE value of 0.29 is higher than that of the compound having a lower RE value, which may be applied differently depending on the type of the first compound to be combined.
  • deuterium-substituted compounds were applied as an advantage in terms of lifetime.
  • the characteristics were different depending on the types of the first compound and the second compound, and the drive, efficiency, and lifespan were determined by the injection characteristics of holes and electrons into the dopant. Able to know.
  • the overall drive reduction effect, efficiency and lifetime increase effect are brought about through the relationship between the RE value and mobility.
  • substituents substituted for core triazines when a specific substituent is combined, it gives a positive effect on the overall mobility and acts as a hole-electron ratio (eg energy balance, stability, etc.), resulting in overall improved results. can know that
  • the present invention it is possible to manufacture an organic device having excellent device characteristics of high luminance, high luminescence and long lifespan, so there is industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 소자의 발광효율, 안정성 및 수명을 향상시킬 수 있는 신규 화합물 및 이를 이용한 유기전기소자, 그 전자 장치를 제공한다.

Description

유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기전기소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물 층은 유기전기소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등으로 이루어질 수 있다.
유기전기소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다. 그리고 상기 발광 재료는 분자량에 따라 고분자형과 저분자형으로 분류될 수 있고, 발광 메커니즘에 따라 전자의 일중항 여기상태로부터 유래되는 형광 재료와 전자의 삼중항 여기상태로부터 유래되는 인광 재료로 분류될 수 있다. 또한, 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료로 구분될 수 있다.
한편, 발광 재료로서 하나의 물질만 사용하는 경우 분자간 상호 작용에 의하여 최대 발광 파장이 장파장으로 이동하고 색순도가 떨어지거나 발광 감쇄 효과로 소자의 효율이 감소되는 문제가 발생하므로, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여 발광 재료로서 호스트/도판트계를 사용할 수 있다. 그 원리는 발광층을 형성하는 호스트보다 에너지 대역 간극이 작은 도판트를 발광층에 소량 혼합하면, 발광층에서 발생한 엑시톤이 도판트로 수송되어 효율이 높은 빛을 내는 것이다. 이때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
유기전기 발광소자에 있어 가장 문제시되는 것은 수명과 효율인데, 디스플레이가 대면적화되면서 이러한 효율이나 수명 문제는 반드시 해결해야 하는 상황이다. 효율과 수명, 구동전압 등은 서로 연관이 있으며, 효율이 증가되면 상대적으로 구동전압이 떨어지고, 구동전압이 떨어지면서 구동 시 발생하는 주울열(Joule heating)에 의한 유기물질의 결정화가 적어져 결과적으로 수명이 높아지는 경향을 나타낸다.
최대 발광효율을 높이기 위해서 활용되는 방법으로 단파장 도펀트가 사용되고 있으며, 단파장 도펀트의 경우 최대 발광효율이 기존 장파장 도펀트에 비해 높기 때문에 전체적인 소자의 효율을 높이는데 사용될 수 있다. 그러나 x 색좌표가 많이 낮게 나와 색 순도 면에서는 단점으로 적용된다. 이러한 단점을 해결하기 위해 장파장으로 최대 발광파장이 이동된 호스트가 필요하며, 이러한 호스트는 최대 발광효율뿐만 아니라 수명에도 영향을 주게 된다.
하지만 상기 유기물층을 단순히 개선한다고 하여 효율을 극대화시킬 수는 없으며, 각 유기물층 간의 에너지 준위(energy level) 및 T1 값, 물질의 고유특성(이동도(mobility), 계면특성 등) 등이 최적의 조합을 이루었을 때 비로소 긴 수명과 높은 효율을 동시에 달성할 수 있다. 따라서 높은 열적 안정성을 가지며 발광층 내에서 효율적으로 전하 균형(charge balance)을 이룰 수 있는 발광 재료의 개발이 필요한 실정이다. 즉, 유기전기소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지 안정하고 효율적인 유기전기소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이며, 그 중에서도 특히 발광층의 물질에 대한 개발이 절실히 요구되고 있다.
상술한 배경기술의 문제점을 해결하기 위해 본 발명은, 장파장 호스트를 개발하기 위해 혼합되는 이종의 화합물의 에너지 레벨을 계산하였으며, 이를 바탕으로 최적의 화합물을 디자인하는 데 목적이 있다. 또한 이 화합물을 유기전기소자에 적용시 소자의 발광효율 및 안정성을 크게 향상시킬 수 있다는 사실을 밝혀내었다.
이에 본 발명은 신규한 화합물, 이를 이용한 유기전기소자 및 그 전자 장치를 제공하는 것을 목적으로 한다.
본 발명은 하기 화학식 (1)로 표시되는 화합물을 제공한다.
화학식 (1)
Figure PCTKR2022019929-appb-img-000001
다른 측면에서, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기전기소자 및 그 전자 장치를 제공한다.
본 발명에 따른 장파장 화합물을 이용함으로써 소자의 높은 발광효율, 낮은 구동전압 및 고내열성을 달성할 수 있으며, 소자의 색순도 및 수명을 크게 향상시킬 수 있다.
도 1 내지 도 3은 본 발명에 따른 유기전기발광소자의 예시도이다.
100, 200, 300 : 유기전기소자 110 : 제 1전극
120 : 정공주입층 130 : 정공수송층
140 : 발광층 150 : 전자수송층
160 : 전자주입층 170 : 제 2전극
180 : 광효율 개선층 210 : 버퍼층
220 : 발광보조층 320 : 제 1정공주입층
330 : 제 1정공수송층 340 : 제 1발광층
350 : 제 1전자수송층 360 : 제 1전하생성층
361 : 제 2전하생성층 420 : 제 2정공주입층
430 : 제 2정공수송층 440 : 제 2발광층
450 : 제 2전자수송층 CGL : 전하생성층
ST1 : 제 1스택 ST2 : 제 2스택
이하, 본 발명의 실시예를 참조하여 상세하게 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
본 명세서 및 첨부된 청구의 범위에서 사용된 바와 같이, 달리 언급하지 않는 한, 하기 용어의 의미는 하기와 같다:
본 명세서에서 사용된 용어 "할로" 또는 "할로겐"은 다른 설명이 없는 한 불소(F), 브롬(Br), 염소(Cl) 또는 요오드(I)이다.
본 발명에 사용된 용어 "알킬" 또는 "알킬기"는 다른 설명이 없는 한 1 내지 60의 탄소수의 단일결합을 가지며, 직쇄 알킬기, 분지쇄 알킬기, 사이클로알킬(지환족)기, 알킬-치환된 사이클로알킬기, 사이클로알킬-치환된 알킬기를 비롯한 포화 지방족 작용기의 라디칼을 의미한다.
본 발명에 사용된 용어 "알켄일기", "알케닐기" 또는 "알킨일기"는 다른 설명이 없는 한 각각 2 내지 60의 탄소수의 이중결합 또는 삼중결합을 가지며, 직쇄형 또는 측쇄형 사슬기를 포함하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "시클로알킬"은 다른 설명이 없는 한 3 내지 60의 탄소수를 갖는 고리를 형성하는 알킬을 의미하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알콕실기", "알콕시기", 또는 "알킬옥시기"는 산소 라디칼이 부착된 알킬기를 의미하며, 다른 설명이 없는 한 1 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴옥실기" 또는 "아릴옥시기"는 산소 라디칼이 부착된 아릴기를 의미하며, 다른 설명이 없는 한 6 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴기" 및 "아릴렌기"는 다른 설명이 없는 한 각각 6 내지 60의 탄소수를 가지며, 이에 제한되는 것은 아니다. 본 발명에서 아릴기 또는 아릴렌기는 단일 고리 또는 다중 고리의 방향족을 의미하며, 이웃한 치환기가 결합 또는 반응에 참여하여 형성된 방향족 고리를 포함한다. 예컨대, 아릴기는 페닐기, 비페닐기, 플루오렌기, 스파이로플루오렌기일 수 있다.
접두사 "아릴" 또는 "아르"는 아릴기로 치환된 라디칼을 의미한다. 예를 들어 아릴알킬기는 아릴기로 치환된 알킬기이며, 아릴알켄일기는 아릴기로 치환된 알켄일기이며, 아릴기로 치환된 라디칼은 본 명세서에서 설명한 탄소수를 가진다.
또한 접두사가 연속으로 명명되는 경우 먼저 기재된 순서대로 치환기가 나열되는 것을 의미한다. 예를 들어, 아릴알콕시기의 경우 아릴기로 치환된 알콕시기를 의미하며, 알콕실카르보닐기의 경우 알콕실기로 치환된 카르보닐기를 의미하며, 또한 아릴카르보닐알켄일기의 경우 아릴카르보닐기로 치환된 알켄일기를 의미하며 여기서 아릴카르보닐기는 아릴기로 치환된 카르보닐기이다.
본 발명에 사용된 용어 "헤테로고리기"는 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하고, 2 내지 60의 탄소수를 가지며, 단일 고리 및 다중 고리 중 적어도 하나를 포함하며, 헤테로지방족 고리 및 헤테로방향족 고리를 포함한다. 이웃한 작용기가 결합하여 형성될 수도 있다.
본 명세서에서 사용된 용어 "헤테로원자"는 다른 설명이 없는 한 N, O, S, P 또는 Si를 나타낸다.
또한 "헤테로고리기"는 고리를 형성하는 탄소 대신 SO2를 포함하는 고리도 포함할 수 있다. 예컨대, "헤테로고리기"는 다음 화합물을 포함한다.
Figure PCTKR2022019929-appb-img-000002
본 발명에 사용된 용어 "플루오렌일기" 또는 "플루오렌일렌기"는 다른 설명이 없는 한 각각 하기 구조에서 R, R' 및 R"이 모두 수소인 1가 또는 2가 작용기를 의미하며, "치환된 플루오렌일기" 또는 "치환된 플루오렌일렌기"는 치환기 R, R', R" 중 적어도 하나가 수소 이외의 치환기인 것을 의미하며, R과 R'이 서로 결합되어 이들이 결합된 탄소와 함께 스파이로 화합물을 형성한 경우를 포함한다.
Figure PCTKR2022019929-appb-img-000003
본 발명에서 사용된 용어 "스파이로 화합물"은 '스파이로 연결(spiro union)'을 가지며, 스파이로 연결은 2개의 고리가 오로지 1개의 원자를 공유함으로써 이루어지는 연결을 의미한다. 이때, 두 고리에 공유된 원자를 '스파이로 원자'라 하며, 한 화합물에 들어 있는 스파이로 원자의 수에 따라 이들을 각각 '모노스파이로-', '다이스파이로-', '트라이스파이로-' 화합물이라 한다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "지방족"은 탄소수 1 내지 60의 지방족 탄화수소를 의미하며, "지방족고리"는 탄소수 3 내지 60의 지방족 탄화수소 고리를 의미한다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "고리"는 탄소수 3 내지 60의 지방족고리 또는 탄소수 6 내지 60의 방향족고리 또는 탄소수 2 내지 60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화고리를 포함한다.
전술한 헤테로화합물 이외의 그 밖의 다른 헤테로화합물 또는 헤테로라디칼은 하나 이상의 헤테로원자를 포함하며, 여기에 제한되는 것은 아니다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용된 용어 "치환 또는 비치환된"에서 "치환"은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕실기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알켄일기, C2~C20의 알킨일기, C3~C20의 시클로알킬기, C6~C20의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C8~C20의 아릴알켄일기, 실란기, 붕소기, 게르마늄기, 및 C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환됨을 의미하며, 이들 치환기에 제한되는 것은 아니다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용되는 화학식은 하기 화학식의 지수 정의에 의한 치환기 정의와 동일하게 적용된다.
Figure PCTKR2022019929-appb-img-000004
여기서, a가 0의 정수인 경우 치환기 R1은 부존재하며, a가 1의 정수인 경우 하나의 치환기 R1은 벤젠 고리를 형성하는 탄소 중 어느 하나의 탄소에 결합하며, a가 2 또는 3의 정수인 경우 각각 다음과 같이 결합하며 이때 R1은 서로 동일하거나 다를 수 있으며, a가 4 내지 6의 정수인 경우 이와 유사한 방식으로 벤젠 고리의 탄소에 결합하며, 한편 벤젠 고리를 형성하는 탄소에 결합된 수소의 표시는 생략한다.
Figure PCTKR2022019929-appb-img-000005
이하, 본 발명의 일 측면에 따른 화합물 및 이를 포함하는 유기전기소자에 대하여 설명한다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.
화학식 (1)
Figure PCTKR2022019929-appb-img-000006
{상기 화학식 (1)에서,
1) La는 직접결합; 페닐렌기; 나프틸렌기; 바이페닐렌기; 또는 페난트렌기;이며,
2) Ara는 페닐기; 또는 페난트렌일기;이고,
3) R1, R2, R3 및 R4는 각각 동일하거나 상이하며, 서로 독립적으로 수소; 또는 중수소;이고,
4) a는 0 내지 5의 정수이며, b는 0 내지 6의 정수이고, c는 0 내지 4의 정수이며, d는 0 내지 7의 정수이고,
여기서, 상기 페닐기, 페난트렌일기, 페닐렌기, 나프틸렌기 및 바이페닐렌기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C6~C20의 아릴옥시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C1~C20의 헤테로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.}
또한, 본 발명은 상기 Ara가 하기 화학식 (A-1) 내지 화학식 (A-6) 중 어느 하나로 표시되는 화합물을 제공한다.
화학식 (A-1) 화학식 (A-2) 화학식 (A-3)
Figure PCTKR2022019929-appb-img-000007
화학식 (A-4) 화학식 (A-5) 화학식 (A-6)
Figure PCTKR2022019929-appb-img-000008
{상기 화학식 (A-1) 내지 화학식 (A-6)에서,
1) *는 결합위치를 나타내며,
2) R1' 및 R5'은 각각 동일하거나 상이하고, 서로 독립적으로 수소; 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C6~C20의 아릴옥시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C1~C20의 헤테로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택되며, 또는 이웃한 복수의 R1'끼리 또는 복수의 R5'끼리 서로 결합하여 고리를 형성할 수 있고,
3) a는 0 내지 5의 정수이며, e는 0 내지 9의 정수이다.}
또한, 본 발명은 상기 La가 하기 화학식 (L-1) 내지 (L-14) 중 어느 하나로 표시되는 화합물을 제공한다.
화학식 (L-1) 화학식 (L-2) 화학식 (L-3) 화학식 (L-4) 화학식 (L-5)
Figure PCTKR2022019929-appb-img-000009
화학식 (L-6) 화학식 (L-7) 화학식 (L-8) 화학식 (L-9) 화학식 (L-10)
Figure PCTKR2022019929-appb-img-000010
화학식 (L-11) 화학식 (L-12) 화학식 (L-13) 화학식 (L-14)
Figure PCTKR2022019929-appb-img-000011
{상기 화학식 (L-1) 내지 (L-14)에서,
1) *는 결합위치를 나타내며,
2) R2' 및 R3'은 상기 R1'의 정의와 동일하고,
3) b는 0 내지 6의 정수이며, c는 0 내지 4의 정수이다.}
또한, 본 발명은 상기 화학식 (1)로 표시되는 화합물의 Reorganization Energy 값이 0.23보다 높은 값을 갖는 화합물을 제공한다.
또한, 본 발명은 상기 화학식 (1)로 표시되는 화합물의 Reorganization Energy 값이 0.23보다 높고 0.29보다 낮은 값을 갖는 화합물을 제공한다.
상기 화학식 (1)은 하기 화합물 P-1 내지 P-40 중 어느 하나로 표시될 수 있다.
Figure PCTKR2022019929-appb-img-000012
Figure PCTKR2022019929-appb-img-000013
Figure PCTKR2022019929-appb-img-000014
Figure PCTKR2022019929-appb-img-000015
Figure PCTKR2022019929-appb-img-000016
Figure PCTKR2022019929-appb-img-000017
Figure PCTKR2022019929-appb-img-000018
Figure PCTKR2022019929-appb-img-000019
Figure PCTKR2022019929-appb-img-000020
Figure PCTKR2022019929-appb-img-000021
또한, 다른 측면에서 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 상기 화학식 (1)로 표시되는 단독화합물 또는 2 이상의 화합물을 포함하는 유기전기소자를 제공한다.
상기 유기물층은 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송보조층, 전자수송층 및 전자주입층 중 적어도 하나를 포함한다.
또한, 본 발명은 상기 화학식 (1)로 표시되는 화합물을 상기 발광층의 호스트 물질로 포함하고, 상기 발광층의 도펀트 물질은 610 nm 내지 620 nm의 최대 발광파장을 갖는 유기전기소자를 제공한다.
또한, 본 발명은 상기 화학식 (1)로 표시되는 화합물을 상기 발광층의 호스트 물질로 포함하고, 상기 발광층의 도펀트 물질은 610 nm 내지 615 nm의 최대 발광파장을 갖는 유기전기소자를 제공한다.
또한, 본 발명은 상기 화학식 (1)로 표시되는 화합물을 상기 발광층의 호스트 물질로 포함하고, 다른 이종의 호스트 물질로 하기 화학식 (2) 또는 화학식 (3)으로 표시되는 화합물을 포함하는 유기전기소자를 제공한다.
화학식 (2) 화학식 (3)
Figure PCTKR2022019929-appb-img-000022
Figure PCTKR2022019929-appb-img-000023
상기 화학식 (2) 및 화학식 (3)에서, 각 기호는 하기와 같이 정의될 수 있다.
1) Y는 O, S, CR'R" 또는 NRa이며,
2) 상기 R' 및 R"은 서로 독립적으로 C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕실기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되고, 또는 R' 및 R"은 서로 결합하여 고리를 형성할 수 있으며,
상기 R' 및 R”이 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 R' 및 R”이 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있으며, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 다이벤조싸이오펜, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
상기 R' 및 R”이 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.
상기 R' 및 R”이 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.
상기 R' 및 R”이 알콕시기인 경우, 바람직하게는 C1~C24의 알콕시기일 수 있다.
상기 R' 및 R”이 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.
3) L1, L2, L3 및 L4는 서로 독립적으로 단일결합; C6~C60의 아릴렌기; 및 C2~C60의 헤테로아릴렌기;로 이루어진 군에서 선택되고,
상기 L1, L2, L3 및 L4가 아릴렌기인 경우, 바람직하게는 C6~C30의 아릴렌기, 더욱 바람직하게는 C6~C24의 아릴렌기일 수 있으며, 예컨대, 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 L1, L2, L3 및 L4가 헤테로아릴렌기인 경우, 바람직하게는 C2~C30의 헤테로아릴렌기, 더욱 바람직하게는 C2~C24의 헤테로아릴렌기일 수 있다.
4) 상기 Ra, Ar1, Ar2 및 Ar3은 서로 독립적으로 C6~C60의 아릴기; 또는 C2~C60의 헤테로아릴기;이며,
상기 Ra, Ar1, Ar2 및 Ar3이 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 Ra, Ar1, Ar2 및 Ar3이 헤테로아릴기인 경우, 바람직하게는 C2~C30의 헤테로아릴기, 더욱 바람직하게는 C2~C24의 헤테로아릴기일 수 있다.
5) Ar4는 C6~C60의 아릴기; C2~C60의 헤테로아릴기; 및 -L'-NRbRc;로 이루어진 군에서 선택되고,
상기 Ar4가 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 Ar4가 헤테로아릴기인 경우, 바람직하게는 C2~C30의 헤테로아릴기, 더욱 바람직하게는 C2~C24의 헤테로아릴기일 수 있다.
6) 상기 L'은 단일결합; C6~C60의 아릴렌기; 플루오렌일렌기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; 및 C3~C60의 지방족고리기;로 이루어진 군에서 선택되며, 상기 Rb 및 Rc는 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; 및 C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기;로 이루어진 군에서 선택되고,
상기 L'이 아릴렌기인 경우, 바람직하게는 C6~C30의 아릴렌기, 더욱 바람직하게는 C6~C24의 아릴렌기일 수 있으며, 예컨대, 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 L'이 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있으며, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 다이벤조싸이오펜, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
상기 L'이 지방족고리기인 경우, 바람직하게는 C3~C30의 지방족고리기, 더욱 바람직하게는 C3~C24의 지방족고리기일 수 있다.
상기 Rb 및 Rc가 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 Rb 및 Rc가 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있으며, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 다이벤조싸이오펜, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
상기 Rb 및 Rc가 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.
7) B환은 C6~C20의 아릴기;이며,
8) R5 및 R6은 각각 동일하거나 상이하고, 서로 독립적으로 수소; 중수소; 할로겐; 시아노기; 니트로기; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C60의 알켄일기; C2~C60의 알킨일기; C1~C60의 알콕시기; 및 C6~C60의 아릴옥시기;로 이루어진 군에서 선택되며, 또는 이웃한 복수의 R5끼리, 혹은 복수의 R6끼리 서로 결합하여 고리를 형성할 수 있고,
9) e 및 f는 서로 독립적으로 0 내지 4의 정수이며,
10) 여기서, 상기 아릴기, 아릴렌기, 헤테로고리기, 플루오렌일기, 플루오렌일렌기, 융합고리기, 알킬기, 알켄일기, 알콕시기 및 아릴옥시기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; C8~C20의 아릴알켄일기; 및 -L'-NRaRb;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.
또한, 본 발명은 상기 화학식 (2)가 하기 화학식 (2-1) 내지 화학식 (2-3) 중 어느 하나로 표시되는 유기전기소자를 제공한다.
화학식(2-1) 화학식 (2-2) 화학식(2-3)
Figure PCTKR2022019929-appb-img-000024
상기 화학식 (2-1) 내지 화학식 (2-3)에서, 각 기호는 하기와 같이 정의될 수 있다.
1) X, X1 및 X2는 상기 Y의 정의와 동일하며,
2) R7, R8, R9, R10, R11 및 R12는 각각 동일하거나 상이하고, 서로 독립적으로 수소; 중수소; 할로겐; 시아노기; 니트로기; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C60의 알켄일기; C2~C60의 알킨일기; C1~C60의 알콕시기; C6~C60의 아릴옥시기; 및 -L'-NRbRc;로 이루어진 군에서 선택되며, 또는 이웃한 복수의 R7끼리, 혹은 복수의 R8끼리, 혹은 복수의 R9끼리, 혹은 복수의 R10끼리, 혹은 복수의 R11끼리, 혹은 복수의 R12끼리 서로 결합하여 고리를 형성할 수 있고,
상기 R7, R8, R9, R10, R11 및 R12가 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 R7, R8, R9, R10, R11 및 R12가 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있으며, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 다이벤조싸이오펜, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
상기 R7, R8, R9, R10, R11 및 R12가 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.
상기 R7, R8, R9, R10, R11 및 R12가 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.
상기 R7, R8, R9, R10, R11 및 R12가 알켄일기인 경우, 바람직하게는 C2~C30의 알켄일기일 수 있으며, 더욱 바람직하게는 C2~C24의 알켄일기일 수 있다.
상기 R7, R8, R9, R10, R11 및 R12가 알킨일기인 경우, 바람직하게는 C2~C30의 알킨일기일 수 있으며, 더욱 바람직하게는 C2~C24의 알킨일기일 수 있다.
상기 R7, R8, R9, R10, R11 및 R12가 알콕시기인 경우, 바람직하게는 C1~C30의 알콕시기일 수 있으며, 더욱 바람직하게는 C1~C24의 알콕시기일 수 있다.
상기 R7, R8, R9, R10, R11 및 R12가 아릴옥시기인 경우, 바람직하게는 C6~C30의 아릴옥시기일 수 있으며, 더욱 바람직하게는 C6~C24의 아릴옥시기일 수 있다.
3) L1, L2, L3, Ar2, Ar3, L', Rb 및 Rc는 상기에서 정의된 바와 동일하며,
4) g, j 및 l은 서로 독립적으로 0 내지 4의 정수이고, h, i 및 k는 서로 독립적으로 0 내지 3의 정수이다.
또한, 본 발명은 상기 화학식 (3)이 하기 화학식 (3-1) 내지 화학식 (3-6) 중 어느 하나로 표시되는 유기전기소자를 제공한다.
화학식(3-1) 화학식 (3-2)
Figure PCTKR2022019929-appb-img-000025
화학식(3-3) 화학식 (3-4)
Figure PCTKR2022019929-appb-img-000026
화학식(3-5) 화학식 (3-6)
Figure PCTKR2022019929-appb-img-000027
{상기 화학식 (3-1) 내지 화학식 (3-6)에서,
1) Y, L4 및 Ar4는 상기에서 정의된 바와 동일하며,
2) R13, R14 및 R15는 상기 R5의 정의와 동일하고,
3) m 및 o는 서로 독립적으로 0 내지 4의 정수이며, n은 0 내지 2의 정수이다.}
또한, 본 발명은 상기 화학식 (3)이 하기 화학식 (3-7) 내지 화학식 (3-9) 중 어느 하나로 표시되는 유기전기소자를 제공한다.
화학식(3-7) 화학식 (3-8)
Figure PCTKR2022019929-appb-img-000028
화학식 (3-9)
Figure PCTKR2022019929-appb-img-000029
{상기 화학식 (3-7) 내지 화학식 (3-9)에서,
1) B환, R5, R6, f, Y, L4 및 Ar4는 상기에서 정의된 바와 동일하며,
2) e'은 0 내지 6의 정수이다.}
또한, 본 발명은 상기 화학식 (3)이 하기 화학식 (3-10) 내지 화학식 (3-12)로 표시되는 유기전기소자를 제공한다.
화학식(3-10) 화학식 (3-11)
Figure PCTKR2022019929-appb-img-000030
화학식 (3-12)
Figure PCTKR2022019929-appb-img-000031
{상기 화학식 (3-10) 내지 화학식 (3-12)에서,
1) B환, R5, R6, e, Y, L4 및 Ar4는 상기에서 정의된 바와 동일하며,
2) f'은 0 내지 6의 정수이다.}
또한, 본 발명은 상기 화학식 (3)이 하기 화학식 (3-13) 내지 화학식 (3-18)로 표시되는 것을 유기전기소자를 제공한다.
화학식(3-13) 화학식 (3-14)
Figure PCTKR2022019929-appb-img-000032
화학식(3-15) 화학식 (3-16)
Figure PCTKR2022019929-appb-img-000033
화학식(3-17) 화학식 (3-18)
Figure PCTKR2022019929-appb-img-000034
{상기 화학식 (3-13) 내지 화학식 (3-18)에서,
1) Y, L4 및 Ar4, R13, R14, R15, m, n 및 o는 상기에서 정의된 바와 동일하고,
2) m' 및 o'은 서로 독립적으로 0 내지 6의 정수이다.}
또한, 본 발명은 상기 화학식 (3)이 하기 화학식 (3-19)로 표시되는 유기전기소자를 제공한다.
화학식(3-19)
Figure PCTKR2022019929-appb-img-000035
상기 화학식 (3-19)에서, 각 기호는 하기와 같이 정의될 수 있다.
1) Ar4 및 Ra는 서로 독립적으로 C6~C18의 아릴기;이며,
2) L4는 단일결합; 또는 C6~C60의 아릴렌기;이고,
상기 L4가 아릴렌기인 경우, 바람직하게는 C6~C30의 아릴렌기, 더욱 바람직하게는 C6~C24의 아릴렌기일 수 있으며, 예컨대, 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
3) R13, R14, R15, n 및 o는 상기에서 정의된 바와 동일하며,
4) m'은 0 내지 6의 정수이다.
또한, 본 발명은 상기 화학식 (2)로 나타내는 화합물이 하기 화합물 N-1 내지 N-100 중 어느 하나로 표시되는 유기전기소자를 제공한다.
Figure PCTKR2022019929-appb-img-000036
Figure PCTKR2022019929-appb-img-000037
Figure PCTKR2022019929-appb-img-000038
Figure PCTKR2022019929-appb-img-000039
Figure PCTKR2022019929-appb-img-000040
Figure PCTKR2022019929-appb-img-000041
Figure PCTKR2022019929-appb-img-000042
Figure PCTKR2022019929-appb-img-000043
Figure PCTKR2022019929-appb-img-000044
Figure PCTKR2022019929-appb-img-000045
Figure PCTKR2022019929-appb-img-000046
Figure PCTKR2022019929-appb-img-000047
Figure PCTKR2022019929-appb-img-000048
Figure PCTKR2022019929-appb-img-000049
Figure PCTKR2022019929-appb-img-000050
Figure PCTKR2022019929-appb-img-000051
Figure PCTKR2022019929-appb-img-000052
Figure PCTKR2022019929-appb-img-000053
Figure PCTKR2022019929-appb-img-000054
Figure PCTKR2022019929-appb-img-000055
Figure PCTKR2022019929-appb-img-000056
Figure PCTKR2022019929-appb-img-000057
Figure PCTKR2022019929-appb-img-000058
Figure PCTKR2022019929-appb-img-000059
Figure PCTKR2022019929-appb-img-000060
또한, 본 발명은 상기 화학식 (3)으로 나타내는 화합물이 하기 화합물 S-1 내지 S-112 중 어느 하나로 표시되는 유기전기소자를 제공한다.
Figure PCTKR2022019929-appb-img-000061
Figure PCTKR2022019929-appb-img-000062
Figure PCTKR2022019929-appb-img-000063
Figure PCTKR2022019929-appb-img-000064
Figure PCTKR2022019929-appb-img-000065
Figure PCTKR2022019929-appb-img-000066
Figure PCTKR2022019929-appb-img-000067
Figure PCTKR2022019929-appb-img-000068
Figure PCTKR2022019929-appb-img-000069
Figure PCTKR2022019929-appb-img-000070
Figure PCTKR2022019929-appb-img-000071
Figure PCTKR2022019929-appb-img-000072
Figure PCTKR2022019929-appb-img-000073
Figure PCTKR2022019929-appb-img-000074
Figure PCTKR2022019929-appb-img-000075
Figure PCTKR2022019929-appb-img-000076
Figure PCTKR2022019929-appb-img-000077
Figure PCTKR2022019929-appb-img-000078
Figure PCTKR2022019929-appb-img-000079
Figure PCTKR2022019929-appb-img-000080
Figure PCTKR2022019929-appb-img-000081
Figure PCTKR2022019929-appb-img-000082
Figure PCTKR2022019929-appb-img-000083
Figure PCTKR2022019929-appb-img-000084
Figure PCTKR2022019929-appb-img-000085
Figure PCTKR2022019929-appb-img-000086
Figure PCTKR2022019929-appb-img-000087
Figure PCTKR2022019929-appb-img-000088
도 1을 참조하여 설명하면, 본 발명에 따른 유기전기소자(100)는 제 1전극(110), 제 2전극(170) 및 제 1전극(110)과 제 2전극(170) 사이에 화학식 (1)로 표시되는 단독화합물 또는 2종 이상의 화합물을 포함하는 유기물층을 구비한다. 이때, 제 1전극(110)은 애노드 또는 양극이고, 제 2전극(170)은 캐소드 또는 음극일 수 있으며, 인버트형의 경우에는 제 1전극이 캐소드이고 제 2전극이 애노드일 수 있다.
유기물층은 제 1전극(110) 상에 순차적으로 정공주입층(120), 정공수송층(130), 발광층(140), 전자수송층(150) 및 전자주입층(160)을 포함할 수 있다. 이때, 발광층(140)을 제외한 나머지 층들이 형성되지 않을 수 있다. 정공저지층, 전자저지층, 발광보조층(220), 버퍼층(210) 등을 더 포함할 수도 있고, 전자수송층(150) 등이 정공저지층의 역할을 할 수도 있을 것이다. (도 2 참조)
또한, 본 발명의 일 실시예에 따른 유기전기소자는 보호층 또는 광효율 개선층(180)을 더 포함할 수 있다. 이러한 광효율 개선층은 제 1전극의 양면 중 유기물층과 접하지 않는 면 또는 제 2전극의 양면 중 유기물층과 접하지 않는 면에 형성될 수 있다. 상기 유기물층에 적용되는 본 발명의 일 실시예에 따른 화합물은 정공주입층(120), 정공수송층(130), 발광보조층(220), 전자수송보조층, 전자수송층(150), 전자주입층(160), 발광층(140)의 호스트 또는 도펀트, 또는 광효율 개선층의 재료로 사용될 수 있을 것이다. 바람직하게는 예컨대, 본 발명의 화학식 (1)에 따른 화합물은 발광층의 호스트 재료로 사용될 수 있다.
상기 유기물층은 상기 양극 상에 순차적으로 형성된 정공수송층, 발광층 및 전자수송층을 포함하는 스택을 둘 이상 포함할 수 있으며, 상기 둘 이상의 스택 사이에 형성된 전하생성층을 더 포함할 수 있다. (도 3 참조)
한편, 동일한 코어일지라도 어느 위치에 어느 치환기를 결합시키냐에 따라 밴드갭(band gap), 전기적 특성, 계면 특성 등이 달라질 수 있으므로, 코어의 선택 및 이에 결합된 서브(sub)-치환체의 조합도 아주 중요하며, 특히 각 유기물층 간의 에너지 level 및 T1 값, 물질의 고유특성(mobility, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있다.
본 발명의 일 실시예에 따른 유기전기발광소자는 PVD(physical vapor deposition) 방법을 이용하여 제조될 수 있다. 예컨대, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층(120), 정공수송층(130), 발광층(140), 전자수송층(150) 및 전자주입층(160)을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
또한, 본 발명에서 상기 유기물층은 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정 및 롤투롤 공정 중 어느 하나에 의해 형성되며, 상기 유기물층은 전자수송재료로 상기 화합물을 포함하는 것을 특징으로 하는 유기전기소자를 제공한다.
또 다른 구체적인 예로서, 본 발명은 상기 유기물층에 상기 화학식 (1)로 표시되는 화합물의 동종 또는 이종의 화합물이 혼합되어 사용되는 것을 특징으로 하는 유기전기소자를 제공한다.
또한, 본 발명은 상기 화학식 (1)로 표시되는 화합물을 포함하는 발광층 조성물을 제공하고, 상기 발광층을 포함하는 유기전기소자를 제공한다.
또한, 본 발명은 상기한 유기전기소자를 포함하는 디스플레이장치; 및 상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자 장치를 제공한다.
또 다른 측면에서 상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용 소자 중 적어도 하나인 것을 특징으로 하는 전자 장치를 본 발명에서 제공한다. 이때, 전자 장치는 현재 또는 장래의 유무선 통신단말기일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자 장치를 포함한다.
이하에서, 본 발명의 상기 화학식 (1)로 표시되는 화합물의 합성예 및 본 발명의 유기전기소자의 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명의 하기 실시예로 한정되는 것은 아니다.
[합성예]
본 발명에 따른 화학식 (1)로 표시되는 화합물(final products)은 하기 반응식 1과 같이 Sub 1과 Sub 2를 반응시켜 합성되며, 이에 한정되는 것은 아니다.
<반응식 1>
Figure PCTKR2022019929-appb-img-000089
I. Sub 1의 합성
상기 반응식 1의 Sub 1은 하기 반응식 2의 반응경로에 의해 합성될 수 있으나, 이에 한정되는 것은 아니다.
<반응식 2>
Figure PCTKR2022019929-appb-img-000090
Sub 1에 속하는 구체적 화합물의 합성예는 다음과 같다.
1. Sub1-1 합성예
Figure PCTKR2022019929-appb-img-000091
(1) Sub1-1b 합성
Sub1-1a (50 g, 0.27 mol)에 4,4,5,5-tetramethyl-2-(6-phenylnaphthalen-2-yl)-1,3,2-dioxaborolane (89.7 g, 0.27 mol), Pd(PPh3)4 (9.4 g, 0.008 mol), NaOH (32.6 g, 0.82 mol), THF (543 mL) 및 물 (150 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 반응물의 온도를 상온으로 식히고, 반응용매를 제거한다. 이후 농축된 반응물을 실리카겔 컬럼 또는 재결정 방법을 이용하여 분리하여 생성물 Sub1-1b 72 g (75.3%)을 얻었다.
(2) Sub1-1 합성
Sub1-1b (50 g, 0.14 mol)에 4,4,5,5-tetramethyl-2-(4-(naphthalen-1-yl)phenyl)-1,3,2-dioxaborolane (46.9 g, 0.14 mol), Pd(PPh3)4 (4.9 g, 0.003 mol), NaOH (17 g, 0.43 mol), THF (285 mL) 및 물 (100 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 반응물의 온도를 상온으로 식히고, 반응용매를 제거한다. 이후 농축된 반응물을 실리카겔 컬럼 또는 재결정 방법을 이용하여 분리하여 생성물 Sub1-1 68 g (92.1%)을 얻었다.
2. Sub1-3 합성예
Figure PCTKR2022019929-appb-img-000092
(1) Sub1-3b 합성
Sub1-1a (50 g, 0.27 mol)에 4,4,5,5-tetramethyl-2-(6-(phenyl-d5)naphthalen-2-yl-1,3,4,5,7,8-d6)-1,3,2-dioxaborolane (92.7 g, 0.27 mol), Pd(PPh3)4 (9.4 g, 0.008 mol), NaOH (32.6 g, 0.82 mol), THF (550 mL) 및 물 (180 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 Sub1-1b의 분리방법을 이용하여 생성물 Sub1-3b 78 g (79.1%)을 얻었다.
(2) Sub1-3 합성
Sub1-3b (50 g, 0.14 mol)에 4,4,5,5-tetramethyl-2-(4-(naphthalen-1-yl)phenyl)-1,3,2-dioxaborolane (45.5 g, 0.14 mol), Pd(PPh3)4 (4.8 g, 0.004 mol), NaOH (16.5 g, 0.41 mol), THF (275 mL) 및 물 (90 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 Sub1-1의 분리방법을 이용하여 생성물 Sub1-3 66 g (90.2%)을 얻었다.
3. Sub1-5 합성예
Figure PCTKR2022019929-appb-img-000093
(1) Sub1-5b 합성
Sub1-1a (30 g, 0.16 mol)에 4,4,5,5-tetramethyl-2-(6-phenylnaphthalen-2-yl-1-d)-1,3,2-dioxaborolane (54 g, 0.16 mol), Pd(PPh3)4 (5.7 g, 0.005 mol), NaOH (19.6 g, 0.49 mol), THF (330 mL) 및 물 (110 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 Sub1-1b의 분리방법을 이용하여 생성물 Sub1-7b 42 g (73%)을 얻었다.
(2) Sub1-5 합성
Sub1-5b (30 g, 0.08 mol)에 4,4,5,5-tetramethyl-2-(4-(naphthalen-1-yl)phenyl)-1,3,2-dioxaborolane (28 g, 0.08 mol), Pd(PPh3)4 (2.9 g, 0.003 mol), NaOH (10.2 g, 0.25 mol), THF (170 mL) 및 물 (60 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 Sub1-1의 분리방법을 이용하여 생성물 Sub1-5 40 g (90%)을 얻었다.
한편, Sub 1에 속하는 화합물은 아래와 같은 화합물일 수 있으나, 이에 한정되는 것은 아니며, 하기 표 1은 Sub 1에 속하는 화합물의 FD-MS (Field Desorption-Mass Spectrometry) 값을 나타낸 것이다.
Figure PCTKR2022019929-appb-img-000094
Figure PCTKR2022019929-appb-img-000095
화합물 FD-MS 화합물 FD-MS
Sub1-1 m/z=519.15(C35H22ClN3=520.03) Sub1-2 m/z=524.18(C35H17D5ClN3=525.06)
Sub1-3 m/z=530.22(C35H11D11ClN3=531.1) Sub1-4 m/z=534.24(C35H7D15ClN3=535.12)
Sub1-5 m/z=520.16(C35H21DClN3=521.04) Sub1-6 m/z=531.23(C35H10D12ClN3=532.11)
Sub1-7 m/z=526.19(C35H15D7ClN3=527.07) Sub1-8 m/z=525.19(C35H16D6ClN3=526.07)
Sub1-9 m/z=526.19(C35H15D7ClN3=527.07)    
한편, Sub 2에 속하는 화합물은 아래와 같은 화합물일 수 있으나, 이에 한정되는 것은 아니며, 하기 표 2는 Sub 2에 속하는 화합물의 FD-MS 값을 나타낸 것이다.
Figure PCTKR2022019929-appb-img-000096
Figure PCTKR2022019929-appb-img-000097
Figure PCTKR2022019929-appb-img-000098
Figure PCTKR2022019929-appb-img-000099
Figure PCTKR2022019929-appb-img-000100
Figure PCTKR2022019929-appb-img-000101
Figure PCTKR2022019929-appb-img-000102
화합물 FD-MS 화합물 FD-MS
Sub2-1 m/z=204.13(C12H17BO2=204.08) Sub2-2 m/z=254.15(C16H19BO2=254.14)
Sub2-3 m/z=254.15(C16H19BO2=254.14) Sub2-4 m/z=280.16(C18H21BO2=280.17)
Sub2-5 m/z=280.16(C18H21BO2=280.17) Sub2-6 m/z=280.16(C18H21BO2=280.17)
Sub2-7 m/z=330.18(C22H23BO2=330.23) Sub2-8 m/z=330.18(C22H23BO2=330.23)
Sub2-9 m/z=330.18(C22H23BO2=330.23) Sub2-10 m/z=330.18(C22H23BO2=330.23)
Sub2-11 m/z=330.18(C22H23BO2=330.23) Sub2-12 m/z=330.18(C22H23BO2=330.23)
Sub2-13 m/z=330.18(C22H23BO2=330.23) Sub2-14 m/z=330.18(C22H23BO2=330.23)
Sub2-15 m/z=330.18(C22H23BO2=330.23) Sub2-16 m/z=330.18(C22H23BO2=330.23)
Sub2-17 m/z=330.18(C22H23BO2=330.23) Sub2-18 m/z=330.18(C22H23BO2=330.23)
Sub2-19 m/z=330.18(C22H23BO2=330.23) Sub2-20 m/z=330.18(C22H23BO2=330.23)
Sub2-21 m/z=304.16(C20H21BO2=304.2) Sub2-22 m/z=304.16(C20H21BO2=304.2)
Sub2-23 m/z=304.16(C20H21BO2=304.2) Sub2-24 m/z=304.16(C20H21BO2=304.2)
Sub2-25 m/z=304.16(C20H21BO2=304.2) Sub2-26 m/z=356.19(C24H25BO2=356.27)
Sub2-27 m/z=356.19(C24H25BO2=356.27) Sub2-28 m/z=356.19(C24H25BO2=356.27)
Sub2-29 m/z=380.19(C26H25BO2=380.29) Sub2-30 m/z=380.19(C26H25BO2=380.29)
Sub2-31 m/z=356.19(C24H25BO2=356.27) Sub2-32 m/z=380.19(C26H25BO2=380.29)
Sub2-33 m/z=356.19(C24H25BO2=356.27) Sub2-34 m/z=430.21(C30H27BO2=430.35)
Sub2-35 m/z=456.23(C32H29BO2=456.39) Sub2-36 m/z=432.23(C30H29BO2=432.37)
Sub2-37 m/z=406.21(C28H27BO2=406.33) Sub2-38 m/z=384.22(C26H21D4BO2=384.32)
II. Final Product 합성
1. P-1 합성예
Figure PCTKR2022019929-appb-img-000103
Sub1-1 (20 g, 0.04 mol), Sub2-1 (7.8 g, 0.04 mol), Pd(PPh3)4 (1.3 g, 0.001 mol), NaOH (4.6 g, 0.12 mol), THF (80 mL) 및 물 (20 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 반응물의 온도를 상온으로 식히고, 반응용매를 제거한다. 이후 농축된 반응물을 실리카겔 컬럼 또는 재결정 방법을 이용하여 분리하여 생성물 P-1 19 g (88.1%)을 얻었다.
2. P-6 합성예
Figure PCTKR2022019929-appb-img-000104
Sub1-1 (20 g, 0.04 mol), Sub2-6 (10.8 g, 0.04 mol), Pd(PPh3)4 (1.3 g, 0.001 mol), NaOH (4.6 g, 0.12 mol), THF (80 mL) 및 물 (20 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 P-6 22 g (89.8%)을 얻었다.
3. P-17 합성예
Figure PCTKR2022019929-appb-img-000105
Sub1-1 (20 g, 0.04 mol), Sub2-17 (12.7 g, 0.04 mol), Pd(PPh3)4 (1.3 g, 0.001 mol), NaOH (4.6 g, 0.12 mol), THF (80 mL) 및 물 (20 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 P-17 23 g (87%)을 얻었다.
4. P-24 합성예
Figure PCTKR2022019929-appb-img-000106
Sub1-1 (30 g, 0.06 mol), Sub2-24 (17.5 g, 0.06 mol), Pd(PPh3)4 (2 g, 0.002 mol), NaOH (6.9 g, 0.17 mol), THF (120 mL) 및 물 (40 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 P-24 35 g (91.8%)을 얻었다.
5. P-38 합성예
Figure PCTKR2022019929-appb-img-000107
Sub1-2 (30 g, 0.06 mol), Sub2-1 (11.7 g, 0.06 mol), Pd(PPh3)4 (2 g, 0.002 mol), NaOH (6.9 g, 0.17 mol), THF (120 mL) 및 물 (40 mL)을 첨가하고, 70℃에서 6시간 반응시켰다. 반응이 종료되면, 상기 표기된 P-1의 분리방법을 이용하여 생성물 P-38 30 g (92.8%)을 얻었다.
한편, 상기와 같은 합성예에 따라 제조된 본 발명의 화합물 P-1 내지 P-40, N-1 내지 N-100, S-1내지 S-112의 FD-MS 값은 하기 표 3과 같다.
화합물 FD-MS 화합물 FD-MS
P-1 m/z=561.22(C41H27N3=561.69) P-2 m/z=611.24(C45H29N3=611.75)
P-3 m/z=611.24(C45H29N3=611.75) P-4 m/z=637.25(C47H31N3=637.79)
P-5 m/z=637.25(C47H31N3=637.79) P-6 m/z=637.25(C47H31N3=637.79)
P-7 m/z=687.27(C51H33N3=687.85) P-8 m/z=687.27(C51H33N3=687.85)
P-9 m/z=687.27(C51H33N3=687.85) P-10 m/z=687.27(C51H33N3=687.85)
P-11 m/z=687.27(C51H33N3=687.85) P-12 m/z=687.27(C51H33N3=687.85)
P-13 m/z=687.27(C51H33N3=687.85) P-14 m/z=687.27(C51H33N3=687.85)
P-15 m/z=687.27(C51H33N3=687.85) P-16 m/z=687.27(C51H33N3=687.85)
P-17 m/z=687.27(C51H33N3=687.85) P-18 m/z=687.27(C51H33N3=687.85)
P-19 m/z=687.27(C51H33N3=687.85) P-20 m/z=687.27(C51H33N3=687.85)
P-21 m/z=661.25(C49H31N3=661.81) P-22 m/z=661.25(C49H31N3=661.81)
P-23 m/z=661.25(C49H31N3=661.81) P-24 m/z=661.25(C49H31N3=661.81)
P-25 m/z=661.25(C49H31N3=661.81) P-26 m/z=713.28(C53H35N3=713.88)
P-27 m/z=713.28(C53H35N3=713.88) P-28 m/z=713.28(C53H35N3=713.88)
P-29 m/z=737.28(C55H35N3=737.91) P-30 m/z=737.28(C55H35N3=737.91)
P-31 m/z=713.28(C53H35N3=713.88) P-32 m/z=713.28(C53H35N3=713.88)
P-33 m/z=737.28(C55H35N3=737.91) P-34 m/z=787.3(C59H37N3=787.97)
P-35 m/z=813.31(C61H39N3=814) P-36 m/z=789.31(C59H39N3=789.98)
P-37 m/z=763.3(C57H37N3=763.94) P-38 m/z=566.25(C41H22D5N3=566.72)
P-39 m/z=741.31(C55H31D4N3=741.93) P-40 m/z=572.29(C41H16D11N3=572.76)
N-1 m/z=487.19(C36H25NO=487.6) N-2 m/z=553.19(C40H27NS=553.72)
N-3 m/z=563.26(C43H33N=563.74) N-4 m/z=602.27(C45H34N2=602.78)
N-5 m/z=517.15(C36H23NOS=517.65) N-6 m/z=603.2(C44H29NS=603.78)
N-7 m/z=735.29(C57H37N=735.93) N-8 m/z=562.24(C42H30N2=562.72)
N-9 m/z=565.17(C40H23NO3=565.63) N-10 m/z=581.14(C40H23NO2S=581.69)
N-11 m/z=823.24(C59H37NS2=824.07) N-12 m/z=727.3(C54H37N3=727.91)
N-13 m/z=627.22(C46H29NO2=627.74) N-14 m/z=633.16(C44H27NS2=633.83)
N-15 m/z=675.29(C52H37N=675.88) N-16 m/z=678.3(C51H38N2=678.88)
N-17 m/z=669.21(C48H31NOS=669.84) N-18 m/z=785.22(C56H35NS2=786.02)
N-19 m/z=617.18(C44H27NOS=617.77) N-20 m/z=601.2(C44H27NO2=601.71)
N-21 m/z=779.32(C59H41NO=779.98) N-22 m/z=583.23(C42H33NS=583.79)
N-23 m/z=679.32(C52H41N=679.91) N-24 m/z=726.27(C54H34N2O=726.88)
N-25 m/z=593.18(C42H27NOS=593.74) N-26 m/z=774.22(C54H34N2S2=775)
N-27 m/z=557.24(C40H31NO2=557.69) N-28 m/z=652.25(C48H32N2O=652.8)
N-29 m/z=619.29(C46H37NO=619.81) N-30 m/z=603.2(C44H29NS=603.78)
N-31 m/z=813.3(C62H39NO=814) N-32 m/z=784.29(C57H40N2S=785.02)
N-33 m/z=577.2(C42H27NO2=577.68) N-34 m/z=607.14(C42H25NS2=607.79)
N-35 m/z=801.34(C62H43N=802.03) N-36 m/z=575.24(C42H29N3=575.72)
N-37 m/z=577.2(C42H27NO2=577.68) N-38 m/z=607.14(C42H25NS2=607.79)
N-39 m/z=801.34(C62H43N=802.03) N-40 m/z=575.24(C42H29N3=575.72)
N-41 m/z=601.2(C44H27NO2=601.71) N-42 m/z=471.11(C31H21NS2=471.64)
N-43 m/z=675.29(C52H37N=675.88) N-44 m/z=727.3(C54H37N3=727.91)
N-45 m/z=603.2(C44H29NS=603.78) N-46 m/z=561.16(C38H27NS2=561.76)
N-47 m/z=799.32(C62H41N=800.02) N-48 m/z=702.27(C52H34N2O=702.86)
N-49 m/z=729.27(C54H35NO2=729.88) N-50 m/z=785.22(C56H35NS2=786.02)
N-51 m/z=812.32(C62H40N2=813.02) N-52 m/z=681.22(C48H31N3S=681.86)
N-53 m/z=615.18(C44H25NO3=615.69) N-54 m/z=763.15(C52H29NS3=763.99)
N-55 m/z=593.31(C45H39N=593.81) N-56 m/z=840.33(C62H40N4=841.03)
N-57 m/z=657.18(C46H27NO2S=657.79) N-58 m/z=824.23(C58H36N2S2=825.06)
N-59 m/z=1195.42(C91H57NS=1196.52) N-60 m/z=656.19(C46H28N2OS=656.8)
N-61 m/z=607.16(C42H25NO2S=607.73) N-62 m/z=773.2(C54H31NO3S=773.91)
N-63 m/z=1013.4(C79H51N=1014.28) N-64 m/z=758.24(C54H34N2OS=758.94)
N-65 m/z=623.14(C42H25NOS2=623.79) N-66 m/z=763.16(C52H29NO2S2=763.93)
N-67 m/z=799.2(C56H33NOS2=800.01) N-68 m/z=743.23(C54H33NOS=743.92)
N-69 m/z=872.25(C62H36N2O2S=873.04) N-70 m/z=772.22(C54H32N2O2S=772.92)
N-71 m/z=830.28(C61H38N2S=831.05) N-72 m/z=808.25(C58H33FN2O2=808.91)
N-73 m/z=929.21(C64H35NO3S2=930.11) N-74 m/z=963.27(C68H41N3S2=964.22)
N-75 m/z=809.24(C58H35NO2S=809.98) N-76 m/z=893.29(C66H39NO3=894.04)
N-77 m/z=794.28(C58H38N2S=795.02) N-78 m/z=900.26(C64H40N2S2=901.16)
N-79 m/z=758.28(C55H38N2S=758.98) N-80 m/z=1082.37(C81H50N2S=1083.37)
N-81 m/z=573.25(C44H31N=573.74) N-82 m/z=649.28(C50H35N=649.84)
N-83 m/z=699.29(C54H37N=699.9) N-84 m/z=699.29(C54H37N=699.9)
N-85 m/z=673.28(C52H35N=673.86) N-86 m/z=649.28(C50H35N=649.84)
N-87 m/z=625.28(C48H35N=625.82) N-88 m/z=673.28(C52H35N=673.86)
N-89 m/z=773.31(C60H39N=773.98) N-90 m/z=749.31(C58H39N=749.96)
N-91 m/z=699.29(C54H37N=699.9) N-92 m/z=599.26(C46H33N=599.78)
N-93 m/z=639.26(C48H33NO=639.8) N-94 m/z=765.25(C57H35NS=765.97)
N-95 m/z=677.31(C52H39N=677.89) N-96 m/z=727.3(C54H37N3=727.91)
N-97 m/z=657.18(C46H27NO2S=657.79) N-98 m/z=641.20(C46H27NO3=641.73)
N-99 m/z=657.18(C46H27NO2S=657.79) N-100 m/z=691.21(C50H29NO3=691.79)
S-1 m/z=408.16(C30H20N2=408.5) S-2 m/z=534.21(C40H26N2=534.66)
S-3 m/z=560.23(C42H28N2=560.7) S-4 m/z=584.23(C44H28N2=584.72)
S-5 m/z=560.23(C42H28N2=560.7) S-6 m/z=634.24(C48H30N2=634.78)
S-7 m/z=610.24(C46H30N2=610.76) S-8 m/z=498.17(C36H22N2O=498.59)
S-9 m/z=574.2(C42H26N2O=574.68) S-10 m/z=660.26(C50H32N2=660.82)
S-11 m/z=686.27(C52H34N2=686.86) S-12 m/z=620.14(C42H24N2S2=620.79)
S-13 m/z=640.2(C46H28N2S=640.8) S-14 m/z=560.23(C42H28N2=560.7)
S-15 m/z=558.21(C42H26N2=558.68) S-16 m/z=548.19(C40H24N2O=548.65)
S-17 m/z=573.22(C42H27N3=573.7) S-18 m/z=564.17(C40H24N2S=564.71)
S-19 m/z=574.2(C42H26N2O=574.68) S-20 m/z=564.17(C40H24N2S=564.71)
S-21 m/z=564.17(C40H24N2S=564.71) S-22 m/z=813.31(C61H39N3=814)
S-23 m/z=696.26(C53H32N2=696.85) S-24 m/z=691.23(C49H29N3O2=691.79)
S-25 m/z=710.27(C54H34N2=710.88) S-26 m/z=610.24(C46H30N2=610.76)
S-27 m/z=670.15(C46H26N2S2=670.85) S-28 m/z=640.29(C48H36N2=640.83)
S-29 m/z=598.2(C44H26N2O=598.71) S-30 m/z=623.24(C46H29N3=623.76)
S-31 m/z=458.18(C34H22N2=458.56) S-32 m/z=548.19(C40H24N2O=548.65)
S-33 m/z=508.19(C38H24N2=508.62) S-34 m/z=508.19(C38H24N2=508.62)
S-35 m/z=623.24(C46H29N3=623.76) S-36 m/z=564.17(C40H24N2S=564.71)
S-37 m/z=627.2(C46H29NS=627.81) S-38 m/z=505.1(C34H19NS2=505.65)
S-39 m/z=514.15(C36H22N2S=514.65) S-40 m/z=575.17(C42H25NS=575.73)
S-41 m/z=642.21(C46H30N2S=642.82) S-42 m/z=575.17(C42H25NS=575.73)
S-43 m/z=606.18(C42H26N2OS=606.74) S-44 m/z=575.17(C42H25NS=575.73)
S-45 m/z=551.17(C40H25NS=551.71) S-46 m/z=607.14(C42H25NS2=607.79)
S-47 m/z=525.16(C38H23NS=525.67) S-48 m/z=642.21(C46H30N2S=642.82)
S-49 m/z=548.19(C40H24N2O=548.65) S-50 m/z=473.14(C34H19NO2=473.53)
S-51 m/z=566.15(C39H22N2OS=566.68) S-52 m/z=459.16(C34H21NO=459.55)
S-53 m/z=473.14(C34H19NO2=473.53) S-54 m/z=523.16(C38H21NO2=523.59)
S-55 m/z=539.13(C38H21NOS=539.65) S-56 m/z=548.19(C40H24N2O=548.65)
S-57 m/z=489.12(C34H19NOS=489.59) S-58 m/z=545.09(C36H19NOS2=545.67)
S-59 m/z=549.17(C40H23NO2=549.63) S-60 m/z=565.15(C40H23NOS=565.69)
S-61 m/z=523.16(C38H21NO2=523.59) S-62 m/z=598.2(C44H26N2O=598.71)
S-63 m/z=539.13(C38H21NOS=539.65) S-64 m/z=589.15(C42H23NOS=589.71)
S-65 m/z=498.17(C36H22N2O=498.59) S-66 m/z=509.18(C38H23NO=509.61)
S-67 m/z=548.19(C40H24N2O=548.65) S-68 m/z=549.17(C40H23NO2=549.63)
S-69 m/z=449.12(C32H19NS=449.57) S-70 m/z=439.1(C30H17NOS=439.53)
S-71 m/z=647.22(C49H29NO=647.78) S-72 m/z=717.28(C52H35N3O=717.87)
S-73 m/z=459.16(C34H21NO=459.55) S-74 m/z=533.18(C40H23NO=533.63)
S-75 m/z=525.16(C38H23NS=525.67) S-76 m/z=564.17(C40H24N2S=564.71)
S-77 m/z=575.19(C42H25NO2=575.67) S-78 m/z=663.22(C49H29NO2=663.78)
S-79 m/z=647.22(C49H29NO=647.78) S-80 m/z=496.16(C36H20N2O=496.57)
S-81 m/z=565.15(C40H23NOS=565.69) S-82 m/z=505.1(C34H19NS2=505.65)
S-83 m/z=765.25(C56H35NOSi=765.99) S-84 m/z=615.17(C44H25NOS=615.75)
S-85 m/z=603.17(C43H25NOS=603.74) S-86 m/z=772.29(C59H36N2=772.95)
S-87 m/z=802.33(C61H42N2=803.02) S-88 m/z=607.23(C47H29N=607.76)
S-89 m/z=524.23(C39H28N2=524.67) S-90 m/z=665.22(C49H31NS=665.85)
S-91 m/z=633.25(C49H31N=633.79) S-92 m/z=775.29(C59H37NO=775.95)
S-93 m/z=535.23(C41H29N=535.69) S-94 m/z=623.22(C47H29NO=623.76)
S-95 m/z=687.2(C51H29NS=687.86) S-96 m/z=735.29(C57H37N=735.93)
S-97 m/z=611.26(C47H33N=611.79) S-98 m/z=679.23(C50H33NS=679.88)
S-99 m/z=787.32(C61H41N=788.01) S-100 m/z=743.33(C55H41N3=743.95)
S-101 m/z=485.21(C37H27N=485.63) S-102 m/z=471.2(C36H25N=471.6)
S-103 m/z=571.19(C43H25NO=571.68) S-104 m/z=584.23(C44H28N2=584.72)
S-105 m/z=539.24(C40H21D5N2=539.69) S-106 m/z=453.15(C32H15NS=471.6)
S-107 m/z=563.26(C43H26D4NO=563.74) S-108 m/z=589.26(C44H23D5N2=584.72)
S-109 m/z=587.24(C44H25D3N2=587.74) S-110 m/z=584.23(C44H28N2=584.72)
S-111 m/z=584.23.(C44H28N2=584.72) S-112 m/z=589.26(C44H23D5N2=589.75)
발명의 설명
재배열 에너지(Reorganization Energy; 이하, RE로 약기함)란 전하(전자, 정공) 이동 시 분자 구조 배치 변화에 따라 손실되는 에너지를 말한다. 분자 기하학(Molecular geometry)에 의존하며, 중성 상태와 전하 상태에서의 구조적 차이가 작을수록 그 값이 작아지는 특징을 가진다. RE값은 아래와 같은 계산식에 의해 구할 수 있다.
Figure PCTKR2022019929-appb-img-000108
각각의 인자는 하기와 같이 정의될 수 있다.
- NONE: 중성(Neutral) 분자의 중성 기하학(Neutral geometry) (이하, NO opt.)
- NOAE: 중성(Neutral) 분자의 음이온 기하학(Anion geometry)
- NOCE: 중성(Neutral) 분자의 양이온 기하학(Cation geometry)
- AONE: 음이온(Anion) 분자의 중성 기하학(Neutral geometry)
- AOAE: 음이온(Anion) 분자의 음이온 기하학(Anion geometry) (이하, AO opt.)
- CONE: 양이온(Cation) 분자의 중성 기하학(Neutral geometry)
- COCE: 양이온(Cation) 분자의 양이온 기하학(Cation geometry) (이하, CO opt.)
재배열 에너지(Reorganization Energy) 값과 이동도(mobility)는 반비례 관계에 있으며, 동일한 r, T값을 가진다는 조건에서 각각의 재료는 RE값이 mobility에 직접 영향을 준다. RE값과 mobility의 관계식은 아래와 같이 표현된다.
Figure PCTKR2022019929-appb-img-000109
각각의 인자는 하기와 같이 정의될 수 있다.
- λ : 재배열 에너지(Reorganization energy)
- μ : 이동도(mobility)
- r : 이량체 변위(dimer displacement)
- t : 분자간 전하 이동 매트릭스 요소(intermolecular charge transfer matrix element)
상기 식에 의해서 RE값이 낮은 값을 가질수록 mobility는 빨라진다는 것을 알 수 있다. 발광체, 즉 도펀트에서의 exciton 형성이 잘 이루어지기 위해서는 호스트 화합물로부터 도펀트로 전달되는 전자와 정공의 비율이 균형(charge balance)을 이루어야 한다. RE값이 낮고 Mobility가 빨라 도펀트로의 전하 수송이 유용한 화합물은 도펀트에 더욱 많은 exciton을 형성시켜 높은 효율의 가능성을 제공하지만, 한쪽 화합물이 다른 이종의 화합물에 비해 너무 낮은 RE값을 가지는 경우 도펀트로의 charge balance가 맞지 않아 전하를 과잉 주입하게 되어 수명과 효율 모두에서 역효과를 가지게 된다.
RE값은 분자 구조에 따른 퍼텐셜 에너지를 계산할 수 있는 시뮬레이션 툴을 필요로 하며, 자사에서는 Gaussian09 (이하, G09)와 슈뢰딩거 재료 과학(Schrodinger Materials Science)의 Jaguar (이하, JG)모듈을 사용하였다. G09와 JG 모두 양자역학적(이하, QM) 계산을 통해 분자의 특성을 분석하는 툴이며, 분자 구조를 최적화(Optimization)하거나 주어진 분자 구조에 대한 에너지를 계산하는(Single-point energy) 기능을 가지고 있다.
분자 구조에서 QM 계산을 하는 과정은 큰 계산 자원을 요구하며 자사에서는 이러한 계산을 위해 2개의 클러스터 서버를 사용하고 있다. 각 클러스터 서버는 4개의 노드 워크스테이션과 1개의 마스터 워크스테이션으로 구성되어 있으며, 각 노드는 36 코어 이상의 중앙처리장치(CPU)를 사용하여 대칭형 멀티프로세싱(Symmetric Multi-processing; SMP)을 통한 병렬 연산(Parallel computing)으로 분자 QM 계산을 진행하였다.
G09를 활용하여 재배치 에너지에 필요한 중성/전하 상태에서 최적화된 분자 구조와 그 퍼텐셜 에너지(NONE / COCE)를 계산한다. 2개의 최적화 구조에 전하만을 바꾸어 중성 상태에 최적화된 구조의 전하 상태 퍼텐셜 에너지(NOCE)와 전하 상태에 최적화된 구조의 중성 상태 퍼텐셜 에너지(CONE)를 계산하였다. 이후 아래 관계식에 따라 재배치 에너지를 계산하였다.
Figure PCTKR2022019929-appb-img-000110
슈뢰딩거는 이와 같은 계산 과정을 자동으로 진행하는 기능을 제공하기 때문에 기본 상태의 분자 구조(NO)를 제공하는 것만으로 JG 모듈을 통해 각 상태에 따른 퍼텐셜 에너지를 순차적으로 계산하고 RE값을 계산하였다.
한편, 상기와 같은 계산법 따라 계산된 본 발명의 RE값은 하기 표 4와 같다.
화합물 Reorganization Energy
P-1 0.29
P-3 0.24
P-25 0.23
한편, 상기와 같은 계산법 따라 계산된 비교예 화합물의 RE값은 하기 표 5와 같다.
화합물 Reorganization Energy
비교화합물 A 0.15
비교화합물 B 0.21
비교화합물C 0.22
최근 개발되는 도펀트 중 최대 발광파장을 가지는 도펀트의 경우 단파장으로 이동한 경우가 많다. 이러한 단파장 도펀트와의 호스트 조합은 장파장 호스트가 필요하다. 색 좌표를 형성할 때 도펀트의 최대 발광파장과 호스트의 최대 발광파장이 영향을 주며, 최대 발광파장을 적절하게 조절함에 따라 최적의 색 좌표인 x색좌표의 경우 (0.681~0.684), y색좌표의 경우 (0.316~0.318)에 맞게 디자인할 수 있다.물질을 디자인할 때 최대 발광파장을 장파장화 시키는 방법으로는 밴드갭(band gap)을 좁게 디자인하여 장파장화 시키는 방법이 일반적이며, 본 발명에서도 이와 같은 방법을 활용하였다. 최근 개발되는 호스트의 경우 2종의 화합물을 혼합하여 사용하는데, 이때 서로 다른 이종의 화합물의 HOMO 에너지와 LUMO 에너지 모두가 영향을 주게 된다. 두 화합물 중 전자주개의 역할이 큰 화합물의 경우 혼합물의 LUMO 에너지값에 영향을 주고, 반대로 전자받개의 경우에는 혼합물의 HOMO 값에 영향을 준다. 화합물의 치환기의 종류에 따라 공유결합의 길이가 결정되고, 이는 에너지레벨에 영향을 주게 된다.
[실시예 1] 적색유기발광소자 (인광호스트)
합성을 통해 얻은 화합물을 발광층의 발광 호스트 물질로 사용하여 통상적인 방법에 따라 유기전계 발광소자를 제작하였다. 먼저, 유리 기판에 형성된 ITO층(양극) 상에 N1-(naphthalen-2-yl)-N4, N4-bis(4-(naphthalen-2-yl(phenyl)amino)phenyl)-N1-phenylbenzene-1,4-diamine (2-TNATA로 약기함) 막을 진공증착하여 60 nm 두께의 정공주입층을 형성한 후, 정공주입층 위에 정공수송 화합물로서 4,4-비스[N-(1-나프틸)-N-페닐아미노]비페닐 (이하 -NPD로 약기함) 60 nm 두께로 진공증착하여 정공수송층을 형성하였다. 정공수송층 상부에 호스트로서는 화학식 (1)로 표시되는 본 발명화합물 (P-1)과 (S-109)를 중량비 5:5로 사용하였으며, 도판트 물질로 (D-1)를 95:5 중량비로 도핑하여 30 nm 두께로 발광층을 증착하였다. 이어서 홀저지층으로 (1,1’-비스페닐)-4-올레이토)비스(2-메틸-8-퀴놀린올레이토)알루미늄(이하 BAlq로 약기함)을 10 nm 두께로 진공증착하고, 전자수송층으로 트리스(8-퀴놀리놀)알루미늄(이하 Alq3로 약칭함)을 40 nm 두께로 성막하였다. 이후, 전자주입층으로 할로젠화 알칼리 금속인 LiF를 0.2 nm 두께로 증착하고, 이어서 Al을 150 nm의 두께로 증착하여 음극으로 사용함으로써 유기전계발광소자를 제조하였다.
<S-109> <N-97> <D-1>
Figure PCTKR2022019929-appb-img-000111
[실시예 2] 내지 [실시예 20]
발광층의 호스트 물질로 본 발명의 화합물 (P-1) 대신 하기 표 6에 기재된 본 발명의 화합물을 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기 발광소자를 제작하였다.
[비교예 1] 내지 [비교예 6]
발광층의 호스트 물질로 비교화합물 A 내지 비교화합물 C를 사용하는 점을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 A> <비교화합물 B> <비교화합물 C>
Figure PCTKR2022019929-appb-img-000112
이와 같이 제조된 상기 실시예 1 내지 실시예 20과 비교예 1 내지 비교예 6에 의해 제조된 유기전기소자들에 순바이어스 직류전압을 가하여 포토리서치(photo research)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 2500cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 하기 표 6은 소자 제작 및 평가한 결과를 나타낸다.
제1화합물 제2화합물 구동전압
(V)
전류
(mA/cm2)
휘도
(cd/m2)
효율
(cd/A)
T(95)
비교예(1) S-109 비교화합물 A 4.9 13.5 2500 18.5 89.7
비교예(2) 비교화합물 B 5.0 10.9 2500 22.9 110.7
비교예(3) 비교화합물 C 5.1 10.1 2500 24.7 105.6
비교예(4) N-97 비교화합물 A 4.8 15.2 2500 16.4 77.7
비교예(5) 비교화합물 B 4.9 11.7 2500 21.3 103.4
비교예(6) 비교화합물 C 5.0 11.0 2500 22.8 99.2
실시예(1) S-109 P-1 4.7 7.4 2500 33.9 147.5
실시예(2) P-3 4.8 7.6 2500 33.1 140.2
실시예(3) P-6 4.6 7.9 2500 31.8 145.0
실시예(4) P-9 4.8 7.6 2500 32.7 146.3
실시예(5) P-17 4.7 8.0 2500 31.1 139.1
실시예(6) P-24 4.8 7.7 2500 32.4 143.9
실시예(7) P-25 4.9 7.8 2500 32.1 141.4
실시예(8) P-30 4.9 8.1 2500 30.9 137.8
실시예(9) P-38 4.7 7.5 2500 33.3 148.8
실시예(10) P-39 4.9 7.9 2500 31.5 142.6
실시예(11) N-97 P-1 4.6 7.5 2500 33.2 134.1
실시예(12) P-3 4.8 7.7 2500 32.5 127.9
실시예(13) P-6 4.6 8.0 2500 31.3 131.6
실시예(14) P-9 4.7 7.7 2500 32.3 132.9
실시예(15) P-17 4.7 8.1 2500 30.7 124.7
실시예(16) P-24 4.8 7.8 2500 31.9 130.4
실시예(17) P-25 4.7 7.9 2500 31.7 128.1
실시예(18) P-30 4.9 8.2 2500 30.4 124.4
실시예(19) P-38 4.6 7.6 2500 32.9 135.3
실시예(20) P-39 4.8 8.1 2500 31.0 129.2
상기 표 6의 결과로부터 알 수 있듯이, 본 발명의 화합물을 발광층 재료로 사용할 경우, 비교화합물 A 내지 비교화합물 C를 사용한 경우에 비해 구동전압이 낮아지고 효율과 수명이 현저히 개선되는 것을 알 수 있다. 보다 상세히 설명하면, 본 발명의 화합물은 비교화합물에 비해 높은 RE값을 가진다. 이러한 RE값은 트리아진에 치환된 구성요소의 종류에 따라 크게 달라지며, 높은 RE값을 갖는 화합물은 낮은 RE값을 갖는 화합물에 비해 mobility가 느리다. 일반적으로 mobility가 빠르면 구동전압이 당겨지는 효과를 갖게 되지만, 본 발명의 경우 과도하게 낮은 RE값은 너무 빠른 mobility를 가지게 되고 결과적으로 정공의 주입 및 이동도와 큰 차이가 나며, 도펀트로의 전자와 정공의 주입특성을 악화시켜 효율 및 수명이 감소된다.결과적으로 제1 화합물과 제2 화합물의 전자와 정공의 조합이 전체적인 소자 결과에 큰 영향을 준다는 것을 알 수 있다. 뿐만 아니라 전체적인 발광 효율의 경우 앞에서 언급한 두 호스트와의 조합뿐만 아니라 이러한 호스트와 도펀트와의 조합 역시 중요하게 적용된다. 본 발명에서는 단파장으로 이동된 도펀트를 사용하여 최대 발광효율을 높여주었지만 이러한 도펀트를 사용할 경우에는 색 좌표의 색순도를 맞추기 어렵다. 가장 높은 효율을 보이는 색 좌표의 조절을 위해서는 장파장 호스트를 사용해야 하는데, 본 발명의 화합물들이 장파장으로 이동된 화합물들이다.
본 발명의 화합물들이 장파장으로 이동했다는 것은 제1 화합물의 HOMO 에너지 레벨과 제2 화합물의 LUMO 에너지 레벨에서 결정되며, 측정결과 비교예 화합물들에 비해 좁은 영역의 밴드갭(Band gap)을 가지는 것을 확인할 수 있었다. 이러한 좁은 밴드갭은 결과적으로 최대 발광파장을 장파장으로 이동시키게 되며, 이러한 장파장 호스트는 단파장 도펀트와의 조합으로 최대 발광효율을 나타내었다.
본 발명의 화합물의 비교를 통해 0.29의 RE값을 가지는 화합물의 발광효율이 이보다 낮은 RE값을 가지는 화합물에 비해 높은 것을 확인할 수 있었으며, 이는 조합되는 제1 화합물의 종류에 따라 다르게 적용될 수도 있다. 일반적으로 중수소가 치환된 화합물의 경우 수명 측면에서 장점으로 적용되었다.
결론적으로 복수의 혼합물로 발광층을 구성했을 경우 제1 화합물과 제2 화합물의 종류에 따라 그 특성이 다르게 나타났으며, 도펀트로의 정공과 전자의 주입특성에 따라 구동, 효율, 수명이 결정되는 것을 알 수 있다. 본 발명에서는 RE값과 mobility의 관계를 통해 전체적인 구동 감소효과, 효율 및 수명 상승효과를 가져오게 된다는 것을 알 수 있다. 뿐만 아니라 핵심 트리아진에 치환되는 치환기에 대한 발명으로 특정 치환기의 조합시 전체적인 mobility에 긍정적인 효과를 주어 정공과 전자의 비율(예를 들면 energy balance, 안정성 등)로 작용하여 전체적으로 개선된 결과를 보여주는 것을 알 수 있다.
이상의 설명은 본 발명의 예시적으로 설명한 것에 불과한 것으로, 본 발명에 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내의 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.
본 발명에 따르면, 고휘도, 고발광 및 장수명의 우수한 소자특성을 갖는 유기소자를 제조할 수 있어 산업상 이용가능성이 있다.

Claims (23)

  1. 하기 화학식 (1)로 표시되는 화합물
    화학식 (1)
    Figure PCTKR2022019929-appb-img-000113
    {상기 화학식 (1)에서,
    1) La는 직접결합; 페닐렌기; 나프틸렌기; 바이페닐렌기; 또는 페난트렌기;이며,
    2) Ara는 하기 화학식 (A-1) 내지 화학식 (A-6) 중 어느 하나로 표시되고,
    화학식 (A-1) 화학식 (A-2) 화학식 (A-3)
    Figure PCTKR2022019929-appb-img-000114
    화학식 (A-4) 화학식 (A-5) 화학식 (A-6)
    Figure PCTKR2022019929-appb-img-000115
    상기 화학식 (A-1) 내지 화학식 (A-6)에서,
    *는 결합위치를 나타내며,
    R1' 및 R5'은 각각 동일하거나 상이하고, 서로 독립적으로 수소; 중수소; C6~C20의 아릴기; 및 중수소로 치환된 C6~C20의 아릴기;로 이루어진 군에서 선택되며, 또는 이웃한 복수의 R1'끼리 또는 복수의 R5'끼리 서로 결합하여 고리를 형성할 수 있고,
    a는 0 내지 5의 정수이며, e는 0 내지 9의 정수이고,
    3) R1, R2, R3 및 R4는 각각 동일하거나 상이하며, 서로 독립적으로 수소; 또는 중수소;이고,
    4)a는 0 내지 5의 정수이며, b는 0 내지 6의 정수이고, c는 0 내지 4의 정수이며, d는 0 내지 7의 정수이다.
    여기서, 상기 페닐렌기, 나프틸렌기, 바이페닐렌기 및 페난트렌기는 각각 중수소; C6~C20의 아릴기; 및 중수소로 치환된 C6~C20의 아릴기; 로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있다.}
  2. 제1항에 있어서, 상기 La는 하기 화학식 (L-1) 내지 (L-14) 중 어느 하나로 표시되는 것을 특징으로 하는 화합물
    화학식 (L-1) 화학식 (L-2) 화학식 (L-3) 화학식 (L-4) 화학식 (L-5)
    Figure PCTKR2022019929-appb-img-000116
    화학식 (L-6) 화학식 (L-7) 화학식 (L-8) 화학식 (L-9) 화학식 (L-10)
    Figure PCTKR2022019929-appb-img-000117
    화학식 (L-11) 화학식 (L-12) 화학식 (L-13) 화학식 (L-14)
    Figure PCTKR2022019929-appb-img-000118
    {상기 화학식 (L-1) 내지 (L-14)에서,
    1) *는 결합위치를 나타내며,
    2) R2' 및 R3'은 상기 청구항 1의 R1'의 정의와 동일하고,
    3) b는 0 내지 6의 정수이며, c는 0 내지 4의 정수이다.}
  3. 제1항에 있어서, Reorganization Energy 값이 0.23보다 높은 값을 갖는 것을 특징으로 화합물
  4. 제1항에 있어서, Reorganization Energy 값이 0.23보다 높고 0.29보다 낮은 값을 갖는 것을 특징으로 하는 화합물
  5. 제1항에 있어서, 상기 화학식 (1)은 하기 화합물 P-1 내지 P-40 중 어느 하나로 표시되는 것을 특징으로 하는 화합물
    Figure PCTKR2022019929-appb-img-000119
    Figure PCTKR2022019929-appb-img-000120
    Figure PCTKR2022019929-appb-img-000121
    Figure PCTKR2022019929-appb-img-000122
    Figure PCTKR2022019929-appb-img-000123
    Figure PCTKR2022019929-appb-img-000124
    Figure PCTKR2022019929-appb-img-000125
    Figure PCTKR2022019929-appb-img-000126
    Figure PCTKR2022019929-appb-img-000127
    Figure PCTKR2022019929-appb-img-000128
  6. 양극, 음극 및 상기 양극과 음극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 제1항의 화학식 (1)로 표시되는 단독화합물 또는 2 이상의 화합물을 포함하는 것을 특징으로 하는 유기전기소자
  7. 제6항에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송보조층, 전자수송층 및 전자주입층 중 적어도 하나를 포함하는 것을 특징으로 하는 유기전기소자
  8. 제7항에 있어서, 제1항의 화학식 (1)로 표시되는 화합물을 상기 발광층의 호스트 물질로 포함하고, 상기 발광층의 도펀트 물질은 610 nm 내지 620 nm의 최대 발광파장을 갖는 것을 특징으로 하는 유기전기소자
  9. 제7항에 있어서, 제1항의 화학식 (1)로 표시되는 화합물을 상기 발광층의 호스트 물질로 포함하고, 상기 발광층의 도펀트 물질은 610 nm 내지 615 nm의 최대 발광파장을 갖는 것을 특징으로 하는 유기전기소자
  10. 제7항에 있어서, 제1항의 화학식 (1)로 표시되는 화합물을 상기 발광층의 호스트 물질로 포함하고, 다른 이종의 호스트 물질로 하기 화학식 (2) 또는 화학식 (3)으로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기전기소자
    화학식 (2) 화학식 (3)
    Figure PCTKR2022019929-appb-img-000129
    Figure PCTKR2022019929-appb-img-000130
    {상기 화학식 (2) 및 화학식 (3)에서,
    1) Y는 O, S, CR'R" 또는 NRa이며,
    2) 상기 R' 및 R"은 서로 독립적으로 C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕실기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되고, 또는 R' 및 R"은 서로 결합하여 고리를 형성할 수 있으며,
    3) L1, L2, L3 및 L4는 서로 독립적으로 단일결합; C6~C60의 아릴렌기; 및 C2~C60의 헤테로아릴렌기;로 이루어진 군에서 선택되고,
    4) 상기 Ra, Ar1, Ar2 및 Ar3은 서로 독립적으로 C6~C60의 아릴기; 또는 C2~C60의 헤테로아릴기;이며,
    5) Ar4는 C6~C60의 아릴기; C2~C60의 헤테로아릴기; 및 -L'-NRbRc;로 이루어진 군에서 선택되고,
    6) 상기 L'은 단일결합; C6~C60의 아릴렌기; 플루오렌일렌기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; 및 C3~C60의 지방족고리기;로 이루어진 군에서 선택되며, 상기 Rb 및 Rc는 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; 및 C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기;로 이루어진 군에서 선택되고,
    7) B환은 C6~C20의 아릴기;이며,
    8) R5 및 R6은 각각 동일하거나 상이하고, 서로 독립적으로 수소; 중수소; 할로겐; 시아노기; 니트로기; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C60의 알켄일기; C2~C60의 알킨일기; C1~C60의 알콕시기; 및 C6~C60의 아릴옥시기;로 이루어진 군에서 선택되며, 또는 이웃한 복수의 R5끼리, 혹은 복수의 R6끼리 서로 결합하여 고리를 형성할 수 있고,
    9) e 및 f는 서로 독립적으로 0 내지 4의 정수이며,
    10) 여기서, 상기 아릴기, 아릴렌기, 헤테로고리기, 플루오렌일기, 플루오렌일렌기, 융합고리기, 알킬기, 알켄일기, 알콕시기 및 아릴옥시기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; C8~C20의 아릴알켄일기; 및 -L'-NRaRb;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.}
  11. 제10항에 있어서, 상기 화학식 (2)가 하기 화학식 (2-1) 내지 화학식 (2-3) 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자
    화학식(2-1) 화학식 (2-2) 화학식(2-3)
    Figure PCTKR2022019929-appb-img-000131
    {상기 화학식 (2-1) 내지 화학식 (2-3)에서,
    1) X, X1 및 X2는 상기 청구항 10의 Y의 정의와 동일하며,
    2) R7, R8, R9, R10, R11 및 R12는 각각 동일하거나 상이하고, 서로 독립적으로 수소; 중수소; 할로겐; 시아노기; 니트로기; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C60의 알켄일기; C2~C60의 알킨일기; C1~C60의 알콕시기; C6~C60의 아릴옥시기; 및 -L'-NRbRc;로 이루어진 군에서 선택되며, 또는 이웃한 복수의 R7끼리, 혹은 복수의 R8끼리, 혹은 복수의 R9끼리, 혹은 복수의 R10끼리, 혹은 복수의 R11끼리, 혹은 복수의 R12끼리 서로 결합하여 고리를 형성할 수 있고,
    3) L1, L2, L3, Ar2, Ar3, L', Rb 및 Rc는 상기 청구항 10에서 정의된 바와 동일하며,
    4) g, j 및 l은 서로 독립적으로 0 내지 4의 정수이고, h, i 및 k는 서로 독립적으로 0 내지 3의 정수이다.}
  12. 제10항에 있어서, 상기 화학식 (3)이 하기 화학식 (3-1) 내지 화학식 (3-6) 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자
    화학식(3-1) 화학식 (3-2)
    Figure PCTKR2022019929-appb-img-000132
    화학식(3-3) 화학식 (3-4)
    Figure PCTKR2022019929-appb-img-000133
    화학식(3-5) 화학식 (3-6)
    Figure PCTKR2022019929-appb-img-000134
    {상기 화학식 (3-1) 내지 화학식 (3-6)에서,
    1) Y, L4 및 Ar4는 상기 청구항 10에서 정의된 바와 동일하며,
    2) R13, R14 및 R15는 상기 청구항 10의 R5의 정의와 동일하고,
    3) m 및 o는 서로 독립적으로 0 내지 4의 정수이며, n은 0 내지 2의 정수이다.}
  13. 제10항에 있어서, 상기 화학식 (3)이 하기 화학식 (3-7) 내지 화학식 (3-9) 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자
    화학식(3-7) 화학식 (3-8)
    Figure PCTKR2022019929-appb-img-000135
    화학식 (3-9)
    Figure PCTKR2022019929-appb-img-000136
    {상기 화학식 (3-7) 내지 화학식 (3-9)에서,
    1) B환, R5, R6, f, Y, L4 및 Ar4는 상기 청구항 10에서 정의된 바와 동일하며,
    2) e'은 0 내지 6의 정수이다.}
  14. 제10항에 있어서, 상기 화학식 (3)이 하기 화학식 (3-10) 내지 화학식 (3-12)로 표시되는 것을 특징으로 하는 유기전기소자
    화학식(3-10) 화학식 (3-11)
    Figure PCTKR2022019929-appb-img-000137
    화학식 (3-12)
    Figure PCTKR2022019929-appb-img-000138
    {상기 화학식 (3-10) 내지 화학식 (3-12)에서,
    1) B환, R5, R6, e, Y, L4 및 Ar4는 상기 청구항 10에서 정의된 바와 동일하며,
    2) f'은 0 내지 6의 정수이다.}
  15. 제10항에 있어서, 상기 화학식 (3)이 하기 화학식 (3-13) 내지 화학식 (3-18)로 표시되는 것을 특징으로 하는 유기전기소자
    화학식(3-13) 화학식 (3-14)
    Figure PCTKR2022019929-appb-img-000139
    화학식(3-15) 화학식 (3-16)
    Figure PCTKR2022019929-appb-img-000140
    화학식(3-17) 화학식 (3-18)
    Figure PCTKR2022019929-appb-img-000141
    {상기 화학식 (3-13) 내지 화학식 (3-18)에서,
    1) Y, L4 및 Ar4는 상기 청구항 10에서 정의된 바와 동일하며,
    2) R13, R14, R15, m, n 및 o는 상기 청구항 12에서 정의된 바와 동일하고,
    3) m' 및 o'은 서로 독립적으로 0 내지 6의 정수이다.}
  16. 제10항에 있어서, 상기 화학식 (3)이 하기 화학식 (3-19)로 표시되는 것을 특징으로 하는 유기전기소자
    화학식(3-19)
    Figure PCTKR2022019929-appb-img-000142
    {상기 화학식 (3-19)에서,
    1) Ar4 및 Ra는 서로 독립적으로 C6~C18의 아릴기;이며,
    2) L4는 단일결합; 또는 C6~C60의 아릴렌기;이고,
    3) R13, R14, R15, n 및 o는 상기 청구항 12에서 정의된 바와 동일하며,
    4) m'은 0 내지 6의 정수이다.}
  17. 제10항에 있어서, 상기 화학식 (2)로 표시되는 화합물은 하기 화합물 N-1 내지 N-100 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자
    Figure PCTKR2022019929-appb-img-000143
    Figure PCTKR2022019929-appb-img-000144
    Figure PCTKR2022019929-appb-img-000145
    Figure PCTKR2022019929-appb-img-000146
    Figure PCTKR2022019929-appb-img-000147
    Figure PCTKR2022019929-appb-img-000148
    Figure PCTKR2022019929-appb-img-000149
    Figure PCTKR2022019929-appb-img-000150
    Figure PCTKR2022019929-appb-img-000151
    Figure PCTKR2022019929-appb-img-000152
    Figure PCTKR2022019929-appb-img-000153
    Figure PCTKR2022019929-appb-img-000154
    Figure PCTKR2022019929-appb-img-000155
    Figure PCTKR2022019929-appb-img-000156
    Figure PCTKR2022019929-appb-img-000157
    Figure PCTKR2022019929-appb-img-000158
    Figure PCTKR2022019929-appb-img-000159
    Figure PCTKR2022019929-appb-img-000160
    Figure PCTKR2022019929-appb-img-000161
    Figure PCTKR2022019929-appb-img-000162
    Figure PCTKR2022019929-appb-img-000163
    Figure PCTKR2022019929-appb-img-000164
    Figure PCTKR2022019929-appb-img-000165
    Figure PCTKR2022019929-appb-img-000166
    Figure PCTKR2022019929-appb-img-000167
  18. 제10항에 있어서, 상기 화학식 (3)으로 표시되는 화합물은 하기 화합물 S-1 내지 S-112 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자
    Figure PCTKR2022019929-appb-img-000168
    Figure PCTKR2022019929-appb-img-000169
    Figure PCTKR2022019929-appb-img-000170
    Figure PCTKR2022019929-appb-img-000171
    Figure PCTKR2022019929-appb-img-000172
    Figure PCTKR2022019929-appb-img-000173
    Figure PCTKR2022019929-appb-img-000174
    Figure PCTKR2022019929-appb-img-000175
    Figure PCTKR2022019929-appb-img-000176
    Figure PCTKR2022019929-appb-img-000177
    Figure PCTKR2022019929-appb-img-000178
    Figure PCTKR2022019929-appb-img-000179
    Figure PCTKR2022019929-appb-img-000180
    Figure PCTKR2022019929-appb-img-000181
    Figure PCTKR2022019929-appb-img-000182
    Figure PCTKR2022019929-appb-img-000183
    Figure PCTKR2022019929-appb-img-000184
    Figure PCTKR2022019929-appb-img-000185
    Figure PCTKR2022019929-appb-img-000186
    Figure PCTKR2022019929-appb-img-000187
    Figure PCTKR2022019929-appb-img-000188
    Figure PCTKR2022019929-appb-img-000189
    Figure PCTKR2022019929-appb-img-000190
    Figure PCTKR2022019929-appb-img-000191
    Figure PCTKR2022019929-appb-img-000192
    Figure PCTKR2022019929-appb-img-000193
    Figure PCTKR2022019929-appb-img-000194
    Figure PCTKR2022019929-appb-img-000195
  19. 제6항에 있어서, 상기 제 1전극과 상기 제 2전극의 일면 중 상기 유기물층과 반대되는 적어도 일면에 형성되는 광효율 개선층을 더 포함하는 유기전기소자
  20. 제6항에 있어서, 상기 유기물층은 제 1전극 상에 순차적으로 형성된 정공수송층, 발광층 및 전자수송층을 포함하는 스택을 둘 이상 포함하는 것을 특징으로 하는 유기전기소자
  21. 제6항에 있어서, 상기 유기물층은 상기 둘 이상의 스택 사이에 형성된 전하생성층을 더 포함하는 것을 특징으로 하는 유기전기소자
  22. 제6항의 유기전기소자를 포함하는 디스플레이장치; 및 상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자 장치
  23. 제22항에 있어서, 상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용소자 중 적어도 하나인 것을 특징으로 하는 전자 장치
PCT/KR2022/019929 2021-12-13 2022-12-08 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 WO2023113381A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210177804A KR102377494B1 (ko) 2021-12-13 2021-12-13 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR10-2021-0177804 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023113381A1 true WO2023113381A1 (ko) 2023-06-22

Family

ID=80991729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019929 WO2023113381A1 (ko) 2021-12-13 2022-12-08 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Country Status (2)

Country Link
KR (1) KR102377494B1 (ko)
WO (1) WO2023113381A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113233987B (zh) * 2021-04-21 2022-05-20 陕西莱特迈思光电材料有限公司 一种含氮化合物及包含其的电子元件和电子装置
WO2023033355A1 (ko) * 2021-09-01 2023-03-09 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2023112915A1 (ja) * 2021-12-14 2023-06-22 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
KR20240025997A (ko) * 2022-08-19 2024-02-27 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자 및 유기물층용 조성물
KR102510831B1 (ko) * 2022-10-26 2023-03-16 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200017727A (ko) * 2018-08-09 2020-02-19 덕산네오룩스 주식회사 이종 화합물의 혼합물을 호스트로 포함하는 유기전기소자 및 그 전자 장치
KR20200129334A (ko) * 2019-05-08 2020-11-18 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
KR20200131681A (ko) * 2019-05-14 2020-11-24 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
KR20200145223A (ko) * 2019-06-21 2020-12-30 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
KR102303189B1 (ko) * 2020-10-26 2021-09-16 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200017727A (ko) * 2018-08-09 2020-02-19 덕산네오룩스 주식회사 이종 화합물의 혼합물을 호스트로 포함하는 유기전기소자 및 그 전자 장치
KR20200129334A (ko) * 2019-05-08 2020-11-18 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
KR20200131681A (ko) * 2019-05-14 2020-11-24 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
KR20200145223A (ko) * 2019-06-21 2020-12-30 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
KR102303189B1 (ko) * 2020-10-26 2021-09-16 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Also Published As

Publication number Publication date
KR102377494B1 (ko) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2023113381A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020231197A1 (ko) 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2021085982A1 (ko) 복수의 발광보조층을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
WO2021045590A1 (en) Compound for organic electronic element, organic electronic element using the same, and electronic device thereof
WO2020130392A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020106032A1 (ko) 신규한 보론 화합물 및 이를 포함하는 유기발광소자
WO2014178532A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2022010305A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2023282535A1 (ko) 유기전기소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2023177216A1 (ko) 유기전기소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2013108997A1 (ko) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2020085797A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021206477A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020130394A1 (ko) 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2022191466A1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2021145651A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019022435A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021080333A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2022004994A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021153931A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2023085606A1 (ko) 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2016089165A2 (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
WO2020122461A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015083974A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2023033510A1 (ko) 유기전기소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907848

Country of ref document: EP

Kind code of ref document: A1