WO2023112980A1 - 腫瘍細胞の検出方法および癌の検査方法 - Google Patents

腫瘍細胞の検出方法および癌の検査方法 Download PDF

Info

Publication number
WO2023112980A1
WO2023112980A1 PCT/JP2022/046166 JP2022046166W WO2023112980A1 WO 2023112980 A1 WO2023112980 A1 WO 2023112980A1 JP 2022046166 W JP2022046166 W JP 2022046166W WO 2023112980 A1 WO2023112980 A1 WO 2023112980A1
Authority
WO
WIPO (PCT)
Prior art keywords
tm4sf1
cancer
extracellular vesicles
tumor cells
cells
Prior art date
Application number
PCT/JP2022/046166
Other languages
English (en)
French (fr)
Inventor
篤史 森本
太一 松永
畑下 瑠依 長坂
健太 兜坂
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to JP2023567824A priority Critical patent/JPWO2023112980A1/ja
Publication of WO2023112980A1 publication Critical patent/WO2023112980A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a method for detecting tumor cells and a method for examining cancer.
  • Body fluids such as the blood of cancer patients and culture fluids of cultured tumor cells contain proteins derived from tumor cells.
  • a tumor cell-derived protein is, for example, localized intracellularly in circulating tumor cells (or dead cell debris), or present as a free protein in the blood as a result of extracellular secretion from tumor cells. , and as proteins in extracellular vesicles. By detecting these proteins, information such as early detection of tumors and prediction of the patient's condition after treatment can be obtained.
  • extracellular vesicles which are colloidal particles covered with a lipid bilayer membrane, function as mediators of intercellular communication in vivo, and are associated with diseases such as cancer and physiological phenomena. In recent years, it has been reported that the function of cervical cancer has been reported, and research is underway to elucidate its physiological functions and apply it to disease testing.
  • Patent Document 1 proteins present in plasma and localized on the surface of extracellular vesicles released from tumor cells are analyzed by ELISA (Enzyme-Linked Immuno Sorbent Assay). Disclosed is a method of detection using the method. According to the method, cancer patients and healthy donors can be discriminated.
  • An object of the present invention is to provide a method for detecting tumor cells and a method for examining cancer.
  • TM4SF1 transmembrane 4 L6 family member 1
  • tumor cells can be detected, or cancer can be detected, and the present invention has been completed.
  • a method of detecting tumor cells comprising: detecting TM4SF1 in the sample; The method, wherein the TM4SF1 is TM4SF1 contained in extracellular vesicles or blood.
  • the TM4SF1 is TM4SF1 contained in the extracellular vesicles, The method according to [1], wherein the steps include a step of collecting the extracellular vesicles from the sample, and a step of detecting the TM4SF1 contained in the collected extracellular vesicles.
  • [4] The method according to any one of [1] to [3], wherein the tumor cells are prostate cancer cells, gastric cancer cells, renal cancer cells, or lung cancer cells.
  • a method of testing for cancer in a subject comprising: detecting TM4SF1 in a sample obtained from the subject; The method, wherein the TM4SF1 is TM4SF1 contained in extracellular vesicles or blood.
  • the TM4SF1 is TM4SF1 contained in the extracellular vesicles, The method according to [5], wherein the steps include a step of collecting the extracellular vesicles from the sample, and a step of detecting the TM4SF1 contained in the collected extracellular vesicles.
  • the method of [5] or [6], wherein the sample is a blood-derived sample.
  • the method of any one of [5] to [7], wherein the cancer is prostate cancer, stomach cancer, renal cancer, or lung cancer.
  • TM4SF1 detection results in extracellular vesicles (exosome (EX) fraction and microvesicle (MV) fraction) collected from the culture supernatant of gene-introduced tumor cells. Detection results of TM4SF1-positive extracellular vesicles in healthy subject serum and prostate cancer patient serum. "**": p ⁇ 0.01. Detection results of tumor cell-derived TM4SF1 in blood. Detection results of TM4SF1-positive extracellular vesicles in plasma of healthy subjects and plasma of various cancer patients. "**”: p ⁇ 0.05. "ns": not significant.
  • cancer and “cancer” may be used interchangeably.
  • the detection method of the present invention is a method for detecting tumor cells, comprising the step of detecting TM4SF1 in a sample. In the detection method of the present invention, this step is also called a "detection step”.
  • TM4SF1 is one of the four transmembrane proteins (Transmembrane 4 superfamily, tetraspanin), and is a protein highly expressed in many tumor cells including prostate cancer.
  • TM4SF1 can, for example, be localized intracellularly in circulating tumor cells (or dead cell debris).
  • TM4SF1 may also be present in the blood, for example, as a result of extracellular secretion from tumor cells.
  • TM4SF1 can be present, for example, in blood as a free protein or in a form bound to blood components.
  • TM4SF1 can also be present, for example, as a protein within extracellular vesicles secreted from tumor cells.
  • TM4SF1 to be detected includes TM4SF1 contained in extracellular vesicles or blood.
  • TM4SF1 to be detected particularly includes TM4SF1 contained in extracellular vesicles.
  • "TM4SF1 contained in extracellular vesicles” may mean TM4SF1 localized anywhere in the extracellular vesicles.
  • the localization position of TM4SF1 in extracellular vesicles is not particularly limited.
  • TM4SF1 may be localized, for example, on the surface of an extracellular vesicle, inside an extracellular vesicle, or a combination thereof.
  • TM4SF1 may be localized at least on the surface of extracellular vesicles.
  • TM4SF1 localized on the surface of extracellular vesicles examples include TM4SF1 that penetrates the lipid bilayer membrane of extracellular vesicles and TM4SF1 that binds to the lipid bilayer membrane of extracellular vesicles.
  • TM4SF1 contained in blood may refer to TM4SF1 present in blood either as a free protein or in a form associated with blood components. Examples of blood components include components other than extracellular vesicles present in blood, specifically lipids and proteins.
  • Extracellular vesicles means lipid-coated vesicles with a diameter of 1 nm to 1 ⁇ m released by cells, whether active or passive.
  • Extracellular vesicles include exosomes, microvesicles, ectosomes, membrane particles, exosome-like vesicles, apoptotic vesicles (Nature Reviews Immunology, 9, 581-593 (2009)).
  • extracellular vesicles are composed of lipids and proteins with a composition different from that of the cell membrane (Bioscience, 65, 783-797 (2015)). Localized in extracellular vesicles. For example, when the release source is tumor cells, cancer patients and healthy donors can be discriminated based on the presence or absence of extracellular vesicles released from the cells (Japanese Patent Publication No. 2011-510309).
  • the sample is not particularly limited as long as it can contain TM4SF1 to be detected.
  • a sample that can contain extracellular vesicles or a fraction derived therefrom may be used.
  • Fractions derived from extracellular vesicles include lysates and lysates of extracellular vesicles, and fractions thereof.
  • Fractions derived from extracellular vesicles specifically include fragments of extracellular vesicles (ie, lipid bilayer membranes of fragmented extracellular vesicles).
  • Examples of samples that may contain extracellular vesicles or fractions derived therefrom include body fluids, cell suspensions, culture solutions and culture supernatants after cell culture, lysates of tissues and cells, and fractions thereof. be done.
  • Samples that may contain extracellular vesicles or fractions derived therefrom include, in particular, body fluids and fractions thereof.
  • a bodily fluid or a fraction thereof can be a preferable sample for the purpose of disease testing such as cancer testing, for example.
  • Body fluids and fractions thereof include blood-derived samples such as whole blood, serum, plasma, blood components, blood cells, clots, platelets, fractions thereof, urine, semen, breast milk, sweat, interstitial fluid, Samples from other body fluids such as interstitial lymph, bone marrow fluid, tissue fluid, saliva, gastric fluid, synovial fluid, pleural fluid, bile, ascites, amniotic fluid, fractions thereof and the like are included.
  • Samples include, in particular, blood-derived samples.
  • Blood-derived samples include, inter alia, serum and plasma.
  • a blood-derived sample such as serum or plasma may be pretreated with an anticoagulant such as citric acid, heparin, or EDTA, for example.
  • Blood-derived fractions include blood fractions.
  • Samples that can contain blood or fractions derived therefrom include blood-derived samples as exemplified above.
  • the sample may be obtained from the subject.
  • Subjects are not particularly limited.
  • a subject may be a human or a non-human animal.
  • Non-human animals include mice, rats, guinea pigs, rabbits, dogs, cats, cows, horses, pigs, monkeys, chimpanzees, and birds.
  • a subject may, in particular, be a human.
  • the sample may be subjected to the detection step, for example, as it is, or after being subjected to a treatment such as dilution, concentration, or fractionation.
  • a treatment such as dilution, concentration, or fractionation.
  • extracellular vesicles may be collected from a sample and TM4SF1 contained in the collected extracellular vesicles may be detected.
  • the detection step may include, for example, a step of collecting extracellular vesicles from a sample and a step of detecting TM4SF1 contained in the collected extracellular vesicles.
  • a method for collecting extracellular vesicles can be appropriately selected according to various conditions such as the form of the sample and the experimental environment. Methods for collecting extracellular vesicles include ultracentrifugation, sedimentation, size exclusion chromatography, affinity, and polymer precipitation. Ultracentrifugation is the most commonly used method for separating and collecting extracellular vesicles. Ultracentrifugation may be used alone or in combination with other methods.
  • extracellular vesicles with higher purity can be obtained by combining the ultracentrifugation method with the density gradient method or the sucrose cushion method.
  • the sedimentation method is a method of simply sedimenting and recovering a large amount of extracellular vesicles.
  • the size exclusion chromatography method is a method by which highly purified extracellular vesicles can be obtained.
  • the affinity method is a method that can easily concentrate extracellular vesicles using a carrier on which a ligand for a molecule localized on the extracellular vesicle membrane, such as cell membrane phosphatidylserine (PS) or CD9, is immobilized.
  • PS cell membrane phosphatidylserine
  • the polymer precipitation method is a method in which a reagent containing a polymer (eg, ExoQuick manufactured by System Biosciences) is added and centrifuged to collect a precipitate containing extracellular vesicles. According to the polymer precipitation method, intact extracellular vesicles can be collected relatively easily.
  • a reagent containing a polymer eg, ExoQuick manufactured by System Biosciences
  • the extracellular vesicles contained in the sample subjected to the detection step may or may not maintain the vesicle form.
  • Extracellular vesicles may not maintain the vesicle form, for example, by being subjected to a treatment such as disruption or lysis.
  • the sample may be subjected to a treatment such as disruption or lysis of extracellular vesicles contained therein prior to the detection step.
  • Extracellular vesicles may be subjected to a treatment such as disruption or lysis, for example, before being recovered from the sample or after being recovered from the sample.
  • Treatments such as disruption or dissolution of extracellular vesicles can be performed by known methods such as sonication and surfactant treatment.
  • Extracellular vesicles may be fragmented, for example, by a treatment such as disruption or lysis of the extracellular vesicles.
  • TM4SF1 localized on the surface or inside of the extracellular vesicles may be released from the extracellular vesicles by treatment such as disruption or dissolution of the extracellular vesicles.
  • TM4SF1 contained in extracellular vesicles is localized, for example, in fragments of extracellular vesicles (i.e., lipid bilayer membranes of fragmented extracellular vesicles) at the time of performing the detection step. may be free from extracellular vesicles.
  • the "TM4SF1 contained in extracellular vesicles" detected in the detection step includes TM4SF1 localized in fragments of extracellular vesicles (i.e., lipid bilayer membranes of fragmented extracellular vesicles), TM4SF1 released from extracellular vesicles may also be included.
  • TM4SF1 localized in fragments of extracellular vesicles includes TM4SF1 that penetrates the lipid bilayer membrane of fragmented extracellular vesicles, and TM4SF1 that binds to the lipid bilayer membrane of fragmented extracellular vesicles.
  • TM4SF1 is included.
  • the sample may be subjected to the detection step after, for example, solubilizing the cells or cell debris in the sample.
  • Cells and cell debris can be solubilized using, for example, detergents.
  • cells and cell debris can be solubilized using, for example, RIPA Buffer containing surfactant NP-40.
  • the method for detecting TM4SF1 is not particularly limited. Detection of TM4SF1 may be qualitative detection (eg, detection of presence or absence of TM4SF1) or quantitative detection (eg, detection of abundance of TM4SF1). Detection of TM4SF1 may in particular be a quantitative detection. A method for detecting TM4SF1 can be appropriately selected according to conditions such as the form of the sample, localization of TM4SF1, experimental environment, and sensitivity.
  • TM4SF1 can be detected using, for example, an antibody against TM4SF1, an aptamer against TM4SF1, or a dye (for example, a luminescent dye or a fluorescent dye) that can specifically stain TM4SF1.
  • TM4SF1 can also be detected, for example, by mass spectrometry.
  • TM4SF1 may in particular be detected using antibodies against TM4SF1.
  • TM4SF1 can be detected, for example, by EIA (Enzyme Immunoassay) or Western blotting (also referred to as immunoblotting) using an antibody against TM4SF1.
  • EIA methods include ELISA (Enzyme-Linked Immunosorbent Assay) method, CLEIA (Chemiluminescent Enzyme Immunoassay) method, FEIA (Fluorescence Enzyme Immunoassay) method, and ImmunoPCR method. be done.
  • Methods for detecting TM4SF1 include in particular the CLEIA method.
  • the ELISA method for example, can be a preferred method of detecting TM4SF1 in terms of sensitivity and simplicity.
  • TM4SF1 When detecting TM4SF1 localized inside extracellular vesicles, for example, TM4SF1 may be detected by introducing a detection reagent such as an antibody against TM4SF1 into extracellular vesicles, and TM4SF1 may be detected from extracellular vesicles. It may be released and detected.
  • a detection reagent such as an antibody against TM4SF1 into extracellular vesicles
  • TM4SF1 may be detected from extracellular vesicles. It may be released and detected.
  • TM4SF1 When TM4SF1 is detected by an EIA method such as the CLEIA method, the embodiment is not particularly limited. As an example, when performing a sandwich EIA method, such as a sandwich CLEIA method using two antibodies, it may be performed using homologous or different clonal anti-TM4SF1 antibodies. When detecting TM4SF1 present on the surface of extracellular vesicles, an antibody that recognizes an antigen different from TM4SF1 may be used as one of the antibodies. Antibodies that recognize antigens different from TM4SF1 are not particularly limited.
  • Antibodies that recognize antigens different from TM4SF1 include antibodies that recognize four-transmembrane proteins other than TM4SF1, antibodies that recognize integrins, and antibodies that recognize cadherins. Antibodies that recognize antigens different from TM4SF1 include, in particular, antibodies that recognize four-transmembrane proteins other than TM4SF1. Four transmembrane proteins other than TM4SF1 include CD63, CD9 and CD81. Four-pass transmembrane proteins other than TM4SF1 include, inter alia, CD9.
  • an EIA method such as the CLEIA method using a ligand that binds to a lipid localized in the extracellular vesicle membrane may be performed instead of an antibody that recognizes an antigen different from TM4SF1.
  • Lipids localized in extracellular vesicle membranes include phosphatidylserine (PS) and sphingomyelin.
  • carrier used for immobilizing antibodies and ligands when performing EIA methods such as the CLEIA method.
  • carriers include microplates and magnetic fine particles.
  • Carriers include, in particular, magnetic microparticles. Magnetic microparticles, for example, can be a preferable carrier in that the antibodies and ligands described above can be immobilized at a high density, and extracellular vesicles captured by the antibodies and ligands described above can be easily recovered using a magnetic force.
  • reagents such as reaction buffers, washing solutions, detection substrates, and the like used when carrying out EIA methods such as the CLEIA method are not particularly limited.
  • Reagents can be appropriately selected according to various conditions such as antibodies and ligands to be used. Additionally, the detection system may be optimized by adding additives to the reaction buffer or washing solution and/or adjusting the salt concentration of the reaction buffer or washing solution. Optimization of the detection system can be effective, for example, in suppressing non-specific adsorption of contaminants and/or suppressing aggregation of magnetic particles, samples, and the like.
  • additives include surfactants such as Tween 20 (trade name), proteins such as bovine serum albumin (BSA), and amino acids.
  • Detection substrates include colorimetric substrates, fluorescent substrates, luminescent substrates, and radioactive substances. Detection substrates include, in particular, luminescent substrates.
  • a luminescent substrate for example, can be a preferred detection substrate in terms of sensitivity.
  • Luminescent substrates can be used, for example, as detection substrates in the CLEIA method.
  • Luminescent substrates include substrates that emit light by an enzymatic reaction, such as luciferin. That is, for example, luminescence can be generated by labeling an enzyme corresponding to a luminescent substrate with the antibody or ligand described above and allowing it to react with the luminescent substrate.
  • Tumor cells can be detected based on the detection results of TM4SF1.
  • Detection of tumor cells may mean detection of tumor cells present in a sample or detection of tumor cells present in the subject from which the sample is derived. Detection of tumor cells may be qualitative detection (eg, detection of the presence or absence of tumor cells) or quantitative detection (eg, detection of tumor cell abundance). "Detection of tumor cells” also includes detection of the possible presence of tumor cells (ie, identification of the possible presence of tumor cells). Detecting the possibility that tumor cells are present may be qualitative detection (e.g., identifying the presence or absence of the possibility that tumor cells are present) or quantitative detection (e.g., the possibility that tumor cells are present). degree of identification).
  • detection of tumor cells can be performed, for example, by associating the detection results of TM4SF1 with the detection results of tumor cells. That is, the detection method of the present invention may further include a step of associating the detection result of TM4SF1 with the detection result of tumor cells. In the detection method of the present invention, this step is also referred to as "associating step".
  • TM4SF1 when TM4SF1 is detected, it may be determined that there are tumor cells, there is a possibility that there are tumor cells, or there is a high possibility that there are tumor cells. Further, for example, when the detected amount of TM4SF1 is equal to or greater than a predetermined threshold value, or is greater than a predetermined threshold value, the presence of tumor cells, the possibility of the presence of tumor cells, or the possibility of the presence of tumor cells can be judged to be high. Also, for example, it may be determined that the greater the amount of TM4SF1 detected, the greater the abundance of tumor cells or the higher the possibility of the presence of tumor cells.
  • TM4SF1 For example, if TM4SF1 is not detected, it may be determined that there are no tumor cells, that there is no possibility that there are tumor cells, or that there is a low possibility that there are tumor cells. Further, for example, when the detected amount of TM4SF1 is equal to or less than a predetermined threshold value, or is smaller than a predetermined threshold value, there is no tumor cell, there is no possibility that there is a tumor cell, or there is a possibility that there is a tumor cell can be judged to be low. Also, for example, it may be determined that the lower the amount of TM4SF1 detected, the lower the amount of tumor cells present, or the lower the possibility of the presence of tumor cells.
  • the threshold is not particularly limited as long as tumor cells can be detected with the desired accuracy.
  • the threshold can be appropriately set according to various conditions such as the purpose of detecting tumor cells.
  • a threshold may be set, for example, based on the amount of TM4SF1 detected in a control sample for tumor cells.
  • Control samples for tumor cells include positive control samples and negative control samples for tumor cells.
  • a "positive control sample for tumor cells” may mean a sample in which said tumor cells are detected.
  • Positive control samples for tumor cells include those obtained from a subject with a cancer corresponding to the tumor cells (e.g., a subject with prostate cancer when the tumor cells are prostate cancer cells). sample.
  • a "negative control sample for tumor cells” may mean a sample in which the tumor cells are not detected.
  • Negative control samples for tumor cells include samples obtained from subjects (eg, healthy subjects) not suffering from cancer corresponding to the tumor cells.
  • the threshold may be set, for example, based only on the amount of TM4SF1 detected in a positive control sample for tumor cells, or may be set based only on the amount of TM4SF1 detected in a negative control sample for tumor cells. It may be set based on the amount of TM4SF1 detected in both positive and negative control samples for cells.
  • the number of subjects from whom positive and negative control samples for tumor cells are obtained is not particularly limited as long as the tumor cells can be detected with the desired accuracy.
  • the population of subjects from which positive and negative control samples for tumor cells are obtained, respectively, may be one, two or more.
  • the population of subjects from whom positive and negative control samples for tumor cells are obtained, respectively, may be, for example, 5 or more, 10 or more, 20 or more, or 50 or more, 10,000 or less, 1,000 or less, or It may be 100 or less, or a combination thereof.
  • a threshold is set such that, for example, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, or 100% of positive control samples for a tumor cell are considered to be present. you can Also, the threshold is such that, for example, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, or 100% of negative control samples for a tumor cell are judged to be absent.
  • the threshold may be set using software, for example. For example, statistical analysis software may be used to set thresholds that best statistically discriminate between negative and positive controls for tumor cells.
  • the amount of TM4SF1 detected is 1.05 times or more, 1.1 times or more, 1.15 times or more, 1.2 times or more the amount of TM4SF1 detected in a negative control sample for tumor cells
  • Tumor cells are present if they are 1.25-fold or more, 1.3-fold or more, 1.35-fold or more, 1.4-fold or more, 1.45-fold or more, or 1.5-fold or more It may be determined that there may be, or that tumor cells are likely to be present.
  • the type of tumor cell (that is, the type of cancer corresponding to the tumor cell) is not particularly limited.
  • a cancer may be a primary cancer or a metastatic cancer. Cancers include hematopoietic cell malignant tumor, head and neck cancer, brain tumor, breast cancer, endometrial cancer, cervical cancer, ovarian cancer, esophageal cancer, stomach cancer, appendix cancer, colon cancer, liver cancer, gallbladder cancer, bile duct cancer, pancreatic cancer, kidney cancer. cancer, adrenal cancer, gastrointestinal stromal tumor, mesothelioma, thyroid cancer, lung cancer, osteosarcoma, bone cancer, prostate cancer, testicular cancer, bladder cancer, skin cancer, and anal cancer.
  • Hematopoietic cell malignancies include leukemia, lymphoma, and multiple myeloma.
  • Lymphomas include Hodgkin's lymphoma and non-Hodgkin's lymphoma.
  • Head and neck cancers include oral cavity cancer, gingival cancer, tongue cancer, buccal mucosa cancer, salivary gland cancer, and sinus cancer.
  • Cancers include, inter alia, prostate cancer, stomach cancer, renal cancer, and lung cancer. Cancers more particularly include prostate cancer and gastric cancer. Cancer more particularly includes prostate cancer.
  • tumor cells include, inter alia, prostate cancer cells, gastric cancer cells, renal cancer cells, lung cancer cells.
  • Tumor cells more particularly include prostate cancer cells and gastric cancer cells.
  • Tumor cells more particularly include prostate cancer cells.
  • the association step may be performed, for example, by a doctor or by a person other than a doctor.
  • the correlating step may be performed by medical personnel other than a physician, such as, for example, paramedics.
  • the association step may be automatically performed by a computer (specifically, for example, a measuring device or a program).
  • the detection result of TM4SF1 can be used for cancer examination, for example.
  • the detection result of TM4SF1 can be used, for example, to test for cancer in the subject.
  • the testing method of the present invention is a method of testing for cancer in a subject, including the step of detecting TM4SF1 in a sample obtained from the subject. In the inspection method of the present invention, this step is also called a "detection step”.
  • Examination of cancer in a subject includes examination of whether a subject is afflicted with cancer, examination of the possibility of the subject being afflicted with cancer, examination of the possibility or degree of cancer, Examination of the progress (for example, stage) of cancer is mentioned. "Cancer examination” may be read as "cancer diagnosis”.
  • cancer testing can be performed, for example, by associating the detection results of TM4SF1 with the cancer testing results. That is, the testing method of the present invention may further include a step of associating the detection result of TM4SF1 with the test result of cancer. In the inspection method of the present invention, this step is also called an "associating step".
  • TM4SF1 if TM4SF1 is detected, it is determined that the subject has cancer, the subject may have cancer, or the subject is likely to have cancer You can Further, for example, when the detected amount of TM4SF1 is equal to or greater than a predetermined threshold value, or is greater than a predetermined threshold value, the subject is suffering from cancer, the subject may be suffering from cancer, Alternatively, it may be determined that the subject is likely to have cancer. Also, for example, the greater the amount of TM4SF1 detected, the greater the degree of cancer progression (eg, stage) when the subject is afflicted with cancer, or the greater the possibility that the subject is afflicted with cancer. You can
  • TM4SF1 if TM4SF1 is not detected, the subject does not have cancer, the subject is unlikely to have cancer, or the subject is unlikely to have cancer. You can judge. Further, for example, when the detected amount of TM4SF1 is equal to or less than a predetermined threshold value, or is smaller than a predetermined threshold value, the subject does not have cancer, there is no possibility that the subject has cancer, Alternatively, it may be determined that the subject is unlikely to have cancer. Also, for example, the smaller the detected amount of TM4SF1, the smaller the degree of cancer progression (eg, stage) when the subject is afflicted with cancer, or the less likely the subject is afflicted with cancer. You can
  • the threshold is not particularly limited as long as cancer can be tested with the desired accuracy.
  • the threshold value can be appropriately set according to various conditions such as the purpose of cancer examination, for example.
  • a threshold may be set, for example, based on the amount of TM4SF1 detected in a control sample for cancer.
  • Control samples for cancer include positive control samples and negative control samples for cancer.
  • a "positive control sample for cancer” may refer to a sample obtained from a subject suffering from the cancer.
  • a "positive control sample for cancer” may be read as a "positive control sample for tumor cells” corresponding to the cancer.
  • a “negative control sample for cancer” may refer to a sample obtained from a subject (eg, healthy subject) who does not have the cancer in question.
  • a "negative control sample for cancer” may be read as a "negative control sample for tumor cells" corresponding to the cancer.
  • the threshold for example, may be set based only on the amount of TM4SF1 detected in a positive control sample for cancer, may be set based only on the amount of TM4SF1 detected in a negative control sample for cancer, It may be set based on the amount of TM4SF1 detected in both the positive control sample and the negative control sample.
  • the number of subjects from whom positive and negative control samples for cancer are obtained is not particularly limited as long as cancer can be detected with the desired accuracy.
  • the population of subjects from which positive and negative control samples for cancer are obtained, respectively, may be one, two or more.
  • the population of subjects from whom positive and negative control samples for cancer are obtained may be, for example, 5 or more, 10 or more, 20 or more, or 50 or more, and 10,000 or less, 1,000 or less, or 100, respectively. or less, or a combination thereof.
  • a threshold is, for example, determining that 70% or greater, 80% or greater, 90% or greater, 95% or greater, 97% or greater, or 100% of subjects obtaining a positive control sample for the cancer have the cancer. can be set to Also, the threshold is, for example, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, or 100% of the subjects who obtained a negative control sample for cancer do not have the cancer It may be set so that it is determined that The threshold may be set using software, for example. For example, statistical analysis software may be used to set thresholds that best statistically discriminate between negative and positive controls for cancer.
  • the amount of TM4SF1 detected is 1.05 times or more, 1.1 times or more, 1.15 times or more, 1.2 times or more, 1 the subject has cancer if .25 times or more, 1.3 times or more, 1.35 times or more, 1.4 times or more, 1.45 times or more, or 1.5 times or more; It may be determined that the subject is likely to have cancer or that the subject is likely to have cancer.
  • the association step may be performed, for example, by a doctor or by a person other than a doctor.
  • the correlating step may be performed by medical personnel other than a physician, such as, for example, paramedics.
  • the association step may be automatically performed by a computer (specifically, for example, a measuring device or a program).
  • the test results obtained by the test method of the present invention can be used, for example, as preliminary information for medical personnel such as doctors to diagnose cancer in subjects. Therefore, the testing method of the present invention can also be a preliminary method for diagnosing cancer in a subject.
  • the present invention provides a program that causes a computer to execute the steps included in the method of the present invention.
  • the program is also called “the program of the present invention”.
  • the "method of the present invention” may collectively refer to the detection method of the present invention and the inspection method of the present invention.
  • a computer may execute the steps included in the method of the present invention.
  • Computers may perform some or all of the steps involved in the methods of the present invention.
  • a computer for example, may perform the detection and/or prediction steps.
  • medical personnel can obtain a sample such as a blood-derived sample from a subject, perform pretreatment if necessary, and set it in the measurement device.
  • the computer can cause the measurement device to detect TM4SF1 in the sample.
  • the computer can further detect tumor cells or test for cancer in the subject based on the detection of TM4SF1.
  • the computer is further capable of outputting the tumor cell detection results or cancer test results so obtained, so that medical personnel can obtain the tumor cell detection results or cancer test results for testing. It can be used to diagnose cancer of the body.
  • the program of the present invention may be recorded on a computer-readable recording medium and provided.
  • “Computer-readable recording medium” means that information such as data and programs is stored by electrical, magnetic, optical, mechanical, or chemical action, etc., and the stored information can be read by a computer.
  • a recording medium that can Such recording media include floppy (registered trademark) disks, magneto-optical disks, CD-ROMs, CD-R/Ws, DVD-ROMs, DVD-R/Ws, DVD-RAMs, DATs, 8mm tapes, memory cards. , hard disk, ROM (read only memory), and SSD.
  • the program of the present invention may be recorded as a separate program for each step executed by a computer.
  • a method for detecting TM4SF1 includes the steps of releasing extracellular vesicles and detecting TM4SF1 contained in the released extracellular vesicles. Since this method requires a gene transfer step, it cannot be applied to direct disease testing such as detection of tumor cells. I can expect it. Moreover, according to this method, extracellular vesicles released from cultured cells can be detected more easily.
  • the detection protein is not particularly limited.
  • the detection protein can be appropriately selected according to various conditions such as simplicity of experiment and required sensitivity.
  • detection proteins include proteins that catalyze luminescence such as luciferase and ⁇ -galactosidase; fluorescent proteins such as GFP (green fluorescent protein), RFP (red fluorescent protein) and DsRED (Discosoma red fluorescent protein); FLAG tag, MYC tag, Epitope tag peptides such as His tag and V5 tag are included.
  • Examples of luciferases include spiny shrimp-derived luciferase (Nluc), firefly-derived luciferase, and Renilla-derived luciferase.
  • Luciferases include, inter alia, the spiny shrimp luciferase (Nluc).
  • the spiny shrimp-derived luciferase (Nluc) can luminesce a substrate in an ATP-independent manner, has a wide dynamic range of detection, is highly sensitive, and has a higher molecular weight than firefly- and Renilla-derived luciferases and GFP. may be a preferred detection protein due to its small size.
  • the fusion method when designing the fusion protein is not particularly limited.
  • a linker sequence may be inserted between them, or direct fusion may be performed without insertion.
  • Linker sequences include oligonucleotides that encode linkers composed of glycine and serine, such as the GS linker (eg, SEQ ID NO:3). Insertion of such oligonucleotides is expected, for example, to improve the flexibility of the expressed fusion protein.
  • the arrangement of TM4SF1 and the detection protein is also not particularly limited, and TM4SF1 may be arranged on the N-terminal side and the detection protein on the C-terminal side, respectively, or the arrangement may be reversed. Also, a plurality of these proteins may be arranged in tandem. By arranging a plurality of these proteins in tandem, it is expected that, for example, the detection sensitivity will be improved.
  • the method of introducing polynucleotides into cells is not particularly limited.
  • commercially available reagents such as Lipofectamine 3000 (manufactured by ThermoFisher) and FuGENE (manufactured by Promega) may be used to transiently express transgenes, electroporation, PiggyBac system (manufactured by System Biosciences), and the like. may be used to establish a cell line capable of stably expressing the transgene.
  • the base length of the polynucleotide to be introduced is a size (for example, 5 kbp or more) that is difficult to insert into a general animal cell expression plasmid
  • the polynucleotide encoding the detection protein can be added to the genomic DNA possessed by the cell. may be inserted directly into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)-Cas system or TALEN (Transcription Activator-Like Effector Nuclease) using genome editing technology.
  • PC-3 cells and 22Rv1 cells which are human prostate cancer cells, were selected and cultured by the method described below.
  • PC-3 cells Ham's F-12K (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) medium containing 15% (v/v) FBS (fetal bovine serum) 22Rv1 cells: RPMI containing 10% (v/v) FBS -1640 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) medium
  • the cultured human prostate cancer cells were each suspended in the medium used in (1) so as to have 2.5 ⁇ 10 5 cells/mL, seeded in a 6-well plate at 2 mL/well, and suspended.
  • Example 2 Preparation of gene-introduced tumor cells (1) Animal cell expression plasmid (pBApo-EF1 ⁇ Pur DNA [product code: 3244], manufactured by Takara Bio Inc.) having an EF1 ⁇ promoter downstream of the EF1 ⁇ promoter (SEQ ID NO: 1), TM4SF1 (UniProt No. P30408, SEQ ID NO: 2), a protein localized on the surface of extracellular vesicles, GS linker peptide (SEQ ID NO: 3), and nanoluciferase (Nluc), a detection protein (GenBank No. AIS23666).
  • SEQ ID NO: 4 were inserted to construct a recombinant plasmid for expression of the TM4SF1-GS linker-Nluc fusion protein (Fig. 1).
  • Nluc reporter gene inserted into NanoLuc Vector (manufactured by Promega) was used.
  • PC-3 cells were cultured in the same manner as in Example 1 (1), suspended at 5 ⁇ 10 5 cells/mL, seeded at 2 mL/well in a 6-well plate and suspended.
  • the recombinant plasmid constructed in (1) was added to each well so as to be 0 ⁇ g, 0.5 ⁇ g, 1 ⁇ g, 1.5 ⁇ g or 2 ⁇ g, and a gene introduction reagent (Lipofectamine 3000, ThermoFisher) TM4SF1-GS linker-Nluc fusion protein can be expressed in PC-3 cells (hereinafter also simply referred to as "transgenic tumor cells").
  • a gene introduction reagent Lipofectamine 3000, ThermoFisher
  • TM4SF1-GS linker-Nluc fusion protein can be expressed in PC-3 cells (hereinafter also simply referred to as "transgenic tumor cells").
  • Example 3 Recovery of extracellular vesicles (1)
  • the PC-3 cells and 22Rv1 cells obtained in Example 1 and the transgenic tumor cells obtained in Example 2 were further cultured for 3 days, and the culture supernatant was collected. The entire volume (approximately 2 mL) was recovered. After centrifugation at 300 G for 10 minutes at room temperature to remove floating cells, 1.5 mL of supernatant was collected (culture supernatant, hereinafter also referred to as "CM").
  • CM culture supernatant
  • CM was further centrifuged at 3,000 G for 10 minutes at 4°C to remove cell debris, and then 1.2 mL of supernatant was collected.
  • the recovered supernatant was further centrifuged at 16000 G for 60 minutes at 4° C., and 1 mL of the supernatant was transferred to another tube (centrifugation operation A).
  • the remaining precipitate was suspended in 1 mL of PBS (Phosphate Buffered Saline) and centrifuged at 16,000 G for 60 minutes at 4° C. After washing, 1 mL of the supernatant was removed.
  • 0.2 mL of the remaining suspension containing the precipitate was used as a microvesicle fraction (hereinafter also referred to as "MV fraction").
  • Example 4 Preparation of Antibody-Immobilized Magnetic Particles
  • Magnetic particle solution having carboxyl groups on the surface (Magnosphere MS300/Carboxyl, 1.0% (w/v) slurry, manufactured by JSR Life Sciences) was added to 400 ⁇ L of 01M MES (2-Morpholinoethanesulfonic acid) buffer solution (pH 6.0) (hereinafter also referred to as “buffer solution A”) (600 ⁇ L) was added.
  • 01M MES (2-Morpholinoethanesulfonic acid) buffer solution pH 6.0
  • EDC-bound magnetic particles were washed once with 1 mL of buffer A, resuspended in 180 ⁇ L of buffer A, and then 20 ⁇ L of a solution containing any of the antibodies shown in [a] and [b] below was added. , and shaken at 37° C. for 3 hours to covalently bind the antibody and the magnetic particles via EDC (that is, immobilize the antibody on the magnetic particles). After immobilization, it was washed once with 1 mL of buffer A containing 0.4 M sodium chloride.
  • PBS containing 1 mg/mL anti-CD9 antibody manufactured by Frontier Laboratories
  • PBS containing 1 mg/mL anti-TM4SF1 antibody manufactured by R&D Systems
  • the antibody-immobilized magnetic particles were washed twice with 1 mL of buffer A containing 0.9% (w/v) Blockmaster CE210 (low protein adsorption polymer, manufactured by JSR Life Sciences), and washed with 500 ⁇ L of buffer A. After resuspension, blocking was performed by shaking overnight (17 to 24 hours) at 37°C.
  • Blockmaster CE210 low protein adsorption polymer, manufactured by JSR Life Sciences
  • Example 5 Measurement of extracellular vesicles released from tumor cells (1) Detection of CD9-positive extracellular vesicles (total extracellular vesicles) (1-1) 3% (w/v) bovine serum albumin (BSA) ) containing PBS (hereinafter also referred to as “BSA buffer”) was added to a 2 mL tube, 10 ⁇ L of the anti-CD9 antibody-immobilized magnetic particles prepared in Example 4 was added, and the mixture was inverted and stirred for 3 minutes.
  • BSA buffer bovine serum albumin
  • washing buffer PBS
  • TM4SF1-positive extracellular vesicles As the antibody-immobilized magnetic particles, the anti-TM4SF1 antibody-immobilized magnetic particles prepared in Example 4 are added in (1-7) as the antibody derived from a 50-fold diluted biotin-modified mouse. TM4SF1-positive extracellular vesicles were detected in the same manner as in (1) except that an anti-TM4SF1 antibody (manufactured by Miltenyi Biotec) was used.
  • the amount of luminescence means the ratio to the average amount of luminescence of PBS, which is the background.
  • CLEIA luminescence was detected in the wells to which the EX fraction derived from the culture supernatant of PC-3 cells and 22Rv1 cells was added. It was confirmed that extracellular vesicles (EX fraction) can be recovered from the cell culture supernatant by the method described in Example 3.
  • TM4SF1-positive extracellular vesicle detection (Example 5 (2))
  • CLEIA was added to the wells containing the EX fraction derived from the culture supernatant of PC-3 cells, which are TM4SF1-positive human prostate cancer cells. Luminescence was detected, but almost no CLEIA luminescence was detected in the wells to which the EX fraction derived from the culture supernatant of 22Rv1 cells, which are TM4SF1-negative human prostate cancer cells, was added. From the above, it can be seen that the presence or absence of TM4SF1 detection in extracellular vesicles (EX fraction) released from tumor cells is associated with the presence or absence of TM4SF1 expression in the tumor cells.
  • Example 6 Measurement of extracellular vesicles released from gene-introduced cancer cells
  • the anti-TM4SF1 antibody-immobilized magnetic particles prepared in Example 4 were added in Example 5 (1-4).
  • the extracellular vesicle suspension the EX fraction derived from the culture supernatant of the transgenic tumor cells obtained in Example 3 (3) or the culture supernatant of the transgenic tumor cells obtained in Example 3 (2) Example 5 (1) except that a 50-fold diluted biotin-modified mouse-derived anti-TM4SF1 antibody solution (manufactured by Miltenyi Biotec) was used as the antibody added to the MV fraction in Example 5 (1-7).
  • TM4SF1-positive extracellular vesicles EX fraction and MV fraction
  • Example 6 The results of Example 6 are shown in Table 2 and FIG.
  • the amount of luminescence shown in Table 2 means the ratio to the average amount of luminescence of PBS, which is the background, and the amount of luminescence shown on the vertical axis in FIG. Mean values and error bars ( ⁇ SD) are meant.
  • TM4SF1-positive extracellular vesicles were detected in both the EX fraction and the MV fraction derived from the culture supernatant of gene-introduced tumor cells. It was also confirmed that the amount of luminescence increased according to the amount of TM4SF1 gene introduced into the cells (that is, the amount of TM4SF1 expression in the gene-introduced tumor cells). From the above results, it was confirmed that TM4SF1 on extracellular vesicles can be detected quantitatively with this CLEIA system. Furthermore, the possibility of a correlation between the TM4SF1 expression level in extracellular vesicles and the TM4SF1 expression level in cells that released the vesicles was also shown.
  • Example 7 Detection of TM4SF1-positive extracellular vesicles in healthy subject serum and prostate cancer patient serum
  • Collection of healthy subject serum (1-1) From three healthy subjects who obtained informed consent, a serum separation agent 4 mL of blood was collected into a blood collection tube (VP-AS054K50 manufactured by Terumo Corporation). After blood collection, the blood collection tube was allowed to stand at room temperature for 60 minutes.
  • Example 5 As the antibody-immobilized magnetic particles, the anti-TM4SF1 antibody-immobilized magnetic particles prepared in Example 4 are added as the extracellular vesicle suspension in Example 5 (1-4), (2- TM4SF1-positive extracellular vesicles in serum were detected in the same manner as in Example 5(1), except that the serum sample prepared in 1) was used.
  • Example 7 The results of Example 7 are shown in Table 3 and FIG.
  • the luminescence levels shown in Table 3 and FIG. 3 mean ratios to the average luminescence levels of PBS, which is the background. Compared to serum samples from healthy subjects, the amount of CLEIA luminescence was significantly increased (p ⁇ 0.01) in serum samples from patients with stage IV prostate cancer. It was confirmed that the number of TM4SF1-positive extracellular vesicles was increased.
  • stage IV prostate cancer patient specimens prostate cancer patient 7, PSA value: 0.06 ng / mL
  • PSA prostate specific antigen
  • the method for detecting TM4SF1-positive extracellular vesicles of the present invention is applicable to the diagnosis of prostate cancer patients in whom PSA does not function as a marker.
  • the detection method of the present invention is a method that can complement the PSA test, and by combining it with the PSA test, a more highly accurate prostate cancer test can be performed.
  • Example 8 Detection of Tumor Cell-Derived TM4SF1 in Blood
  • PC-3 cells were added to blood in order to examine whether tumor cell-derived TM4SF1 in blood can be detected.
  • Example 4 (4) TM4SF1 detection by CLEIA (3-1)
  • the amount of buffer A for resuspending the EDC-bound magnetic particles in Example 4 (4) is 160 ⁇ L, as shown in Example 4 (4) [b].
  • Anti-TM4SF1 antibody-immobilized magnetic particles were prepared in the same manner as in Example 4, except that the amount of the antibody-containing solution added was 40 ⁇ L.
  • Example 8 The results of Example 8 are shown in Table 4 and FIG.
  • the amount of luminescence ie, the amount of TM4SF1 detected
  • TM4SF1 which is a tumor cell-derived protein contained in blood, can be detected.
  • Example 9 Detection of TM4SF1-positive Extracellular Vesicles in Plasma from Healthy Subjects and Plasma from Cancer Patients
  • Example 5 As the antibody-immobilized magnetic particles, the anti-TM4SF1 antibody-immobilized magnetic particles prepared in Example 4 are added in Example 5 (1-4) as the extracellular vesicle suspension (3- Example 5 (1) except that the biotin-modified anti-human CD9 antibody solution obtained in (2-7) was used as the antibody to be added to the plasma sample prepared in 1) in Example 5 (1-7). TM4SF1-positive extracellular vesicles in plasma were detected in a similar manner.
  • Example 9 The results of Example 9 are shown in Table 5 and FIG. Compared to plasma samples from healthy subjects, the amount of CLEIA luminescence was significantly increased (p ⁇ 0.05) in plasma samples from patients with stage IV gastric cancer, and TM4SF1-positive extracellular vesicles in plasma from gastric cancer patients. was confirmed to increase. In addition, compared to plasma samples from healthy subjects, the amount of CLEIA luminescence is increased in plasma samples from stage IV renal cancer patients and lung cancer patients, and TM4SF1-positive cells in the plasma of renal cancer patients and lung cancer patients A tendency for the number of outer vesicles to increase was confirmed. From the above results, it was shown that the detection method of the present invention is applicable to the diagnosis of gastric cancer patients, renal cancer patients, and lung cancer patients (especially gastric cancer patients).
  • the detection method of the present invention is applicable to the diagnosis of cancer patients with multiple types of cancer, such as prostate cancer patients and gastric cancer patients. It is suggested that the detection method of is applicable to many other cancer types in which TM4SF1 is highly expressed.
  • tumor cells especially prostate cancer cells and gastric cancer cells
  • cancer in particular, prostate cancer and gastric cancer in a subject can be tested simply and with high accuracy.
  • prostate cancer testing is based on the concentration (PSA value) of prostate specific antigen (PSA) in the blood.
  • PSA value concentration of prostate specific antigen
  • the PSA value may show an abnormal value due to prostatic hyperplasia, inflammation, etc., and it cannot be determined that all subjects with an abnormal PSA value have prostate cancer. It was necessary for the examiner to perform a highly invasive prostate needle biopsy.
  • prostate cancer can be examined using an index different from the PSA value, so it is expected that the accuracy of detecting prostate cancer will be improved as compared with the case where the PSA value alone is used.
  • the method of the present invention like the PSA level test, uses a blood sample, so the burden on the subject can be reduced as compared with prostate needle biopsy.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明の課題は、腫瘍細胞の検出方法および癌の検査方法を提供することにある。試料中のTM4SF1(transmembrane 4 L6 family member 1)であって細胞外小胞または血液に含まれるものを検出することで、前記課題を解決する。

Description

腫瘍細胞の検出方法および癌の検査方法
 本発明は、腫瘍細胞の検出方法および癌の検査方法に関する。
 がん患者の血液などの体液や培養腫瘍細胞の培養液などには、腫瘍細胞由来のタンパク質が含まれている。腫瘍細胞由来のタンパク質は、例えば、血中循環腫瘍細胞(もしくは死細胞デブリス)の細胞内に局在する場合や、腫瘍細胞から細胞外に分泌された結果、血中に遊離タンパクとして存在する場合、および細胞外小胞内のタンパク質として存在する場合がある。これらのタンパク質を検出することによって、腫瘍の早期発見や治療後の患者の状態の予測などの情報を得ることができる。その中でも特に、細胞外小胞は、脂質二重膜で覆われたコロイド状の粒子であり、生体内の細胞間コミュニケーションの媒介役としての機能や、がん等の疾患や生理現象との関連性が近年報告されており、生理学的な機能の解明や疾患検査への応用に向けた研究が進められている。
 細胞外小胞を利用した疾患検査として、特許文献1には、血漿中に存在する、腫瘍細胞から放出された細胞外小胞表面に局在するタンパク質を、ELISA(Enzyme-Linked Immuno Sorbent Assay)法を用いて検出する方法を開示している。当該方法によれば、がん患者と健常ドナーとを判別できる。
特表2011-510309号公報
 本発明の課題は、腫瘍細胞の検出方法および癌の検査方法を提供することにある。
 上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、試料中のTM4SF1(transmembrane 4 L6 family member 1)であって細胞外小胞または血液に含まれるものを検出することで、腫瘍細胞の検出でき、または癌を検査できることを見出し、本発明を完成させた。
 すなわち本発明は以下の通り例示できる。
[1]
 腫瘍細胞を検出する方法であって、
 試料中のTM4SF1を検出する工程
 を含み、
 前記TM4SF1が、細胞外小胞または血液に含まれるTM4SF1である、方法。
[2]
 前記TM4SF1が、前記細胞外小胞に含まれるTM4SF1であり、
 前記工程が、前記細胞外小胞を前記試料から回収する工程と、当該回収した細胞外小胞に含まれる前記TM4SF1を検出する工程を含む、[1]に記載の方法。
[3]
 前記試料が、血液由来試料である、[1]または[2]に記載の方法。
[4]
 前記腫瘍細胞が、前立腺癌細胞、胃癌細胞、腎癌細胞、または肺癌細胞である、[1]~[3]のいずれかに記載の方法。
[5]
 被験体における癌を検査する方法であって、
 被験体から得られた試料中のTM4SF1を検出する工程
 を含み、
 前記TM4SF1が、細胞外小胞または血液に含まれるTM4SF1である、方法。
[6]
 前記TM4SF1が、前記細胞外小胞に含まれるTM4SF1であり、
 前記工程が、前記細胞外小胞を前記試料から回収する工程と、当該回収した細胞外小胞に含まれる前記TM4SF1を検出する工程を含む、[5]に記載の方法。
[7]
 前記試料が、血液由来試料である、[5]または[6]に記載の方法。
[8]
 前記癌が、前立腺癌、胃癌、腎癌、または肺癌である、[5]~[7]のいずれかに記載の方法。
腫瘍細胞への遺伝子導入に用いたプラスミドのマップ。 遺伝子導入腫瘍細胞の培養上清から回収した細胞外小胞(エクソソーム(EX)画分およびマイクロベシクル(MV)画分)におけるTM4SF1の検出結果。 健常者血清および前立腺がん患者血清中のTM4SF1陽性細胞外小胞の検出結果。「**」:p<0.01。 血液中からの腫瘍細胞由来TM4SF1の検出結果。 健常者血漿および各種がん患者血漿中のTM4SF1陽性細胞外小胞の検出結果。「**」:p<0.05。「ns」:not significant。
 以下、本発明を詳細に説明する。本明細書において、「癌」と「がん」は、代替可能に用いられてよい。
<1>本発明の検出方法
 本発明の検出方法は、試料中のTM4SF1を検出する工程を含む、腫瘍細胞を検出する方法である。本発明の検出方法においては、同工程を、「検出工程」ともいう。
 TM4SF1は、4回膜貫通タンパク質(Transmembrane 4 superfamily、tetraspanin)の一つであり、前立腺がんを含む多くの腫瘍細胞で高発現しているタンパク質である。TM4SF1は、例えば、血中循環腫瘍細胞(もしくは死細胞デブリス)の細胞内に局在し得る。また、TM4SF1は、例えば、腫瘍細胞から細胞外に分泌された結果、血液中に存在し得る。TM4SF1は、具体的には、例えば、血液中に、遊離タンパクとして、または血液成分と結合した形態で、存在し得る。また、TM4SF1は、例えば、腫瘍細胞から分泌された細胞外小胞内のタンパク質として存在し得る。検出するTM4SF1としては、細胞外小胞または血液に含まれるTM4SF1が挙げられる。検出するTM4SF1としては、特に、細胞外小胞に含まれるTM4SF1が挙げられる。「細胞外小胞に含まれるTM4SF1」とは、細胞外小胞のいずれかの位置に局在するTM4SF1を意味してよい。細胞外小胞におけるTM4SF1の局在位置は、特に制限されない。TM4SF1は、例えば、細胞外小胞の表面、細胞外小胞の内部、またはそれらの組み合わせに局在していてよい。TM4SF1は、少なくとも、細胞外小胞の表面に局在していてよい。細胞外小胞の表面に局在するTM4SF1としては、細胞外小胞の脂質二重膜を貫通しているTM4SF1や細胞外小胞の脂質二重膜に結合しているTM4SF1が挙げられる。「血液に含まれるTM4SF1」とは、血液中に、遊離タンパク質として、または血液成分と結合した形態で、存在するTM4SF1を意味してよい。血液成分としては、血液中に存在する細胞外小胞以外の成分が挙げられ、具体的には、脂質やタンパク質が挙げられる。
 「細胞外小胞」とは、能動的または受動的であるかに関わらず細胞が放出した直径1nmから1μmの脂質で覆われた小胞を意味する。細胞外小胞としては、エクソソーム(exosomes)、マイクロベシクル(microvesicles)、エクトソーム(ectosomes)、メンブレンパーティクル(membrane particles)、エクソソーム様小胞(exosome like vesicles)、アポトーシス小胞(apoptotic vesicles)が挙げられる(Nature Reviews Immunology,9,581-593(2009))。一般的に、細胞外小胞は、細胞膜とは異なる組成の脂質やタンパク質で構成されているが(Bioscience,65,783-797(2015))、放出元の細胞の特徴を反映したタンパク質等が細胞外小胞に局在する。例えば、放出元が腫瘍細胞である場合、当該細胞から放出される細胞外小胞の有無によって、がん患者と健常ドナーとを判別できる(特表2011-510309号公報)。
 試料は、検出するTM4SF1が含まれ得るものであれば、特に制限されない。
 すなわち、細胞外小胞に含まれるTM4SF1を検出する場合、試料としては、細胞外小胞またはそれに由来する画分が含まれ得る試料を用いてよい。細胞外小胞に由来する画分としては、細胞外小胞の破砕物や溶解物、それらの分画物が挙げられる。細胞外小胞に由来する画分として、具体的には、細胞外小胞の断片(すなわち、断片化した細胞外小胞の脂質二重膜)が挙げられる。細胞外小胞またはそれに由来する画分が含まれ得る試料としては、体液、細胞懸濁液、細胞培養後の培養液や培養上清、組織や細胞の破砕液、それらの分画物が挙げられる。細胞外小胞またはそれに由来する画分が含まれ得る試料としては、特に、体液やその分画物が挙げられる。体液やその分画物は、例えば、がん検査等の疾患検査を目的とした場合の好ましい試料であり得る。体液やその分画物としては、全血、血清、血漿、血液成分、血球、血餅、血小板、それらの分画物等の血液由来試料や、尿、精液、母乳、汗、間質液、間質性リンパ液、骨髄液、組織液、唾液、胃液、関節液、胸水、胆汁、腹水、羊水、それらの分画物等の他の体液由来試料が挙げられる。試料としては、特に、血液由来試料が挙げられる。血液由来試料としては、特に、血清や血漿が挙げられる。血清や血漿等の血液由来試料は、例えば、あらかじめクエン酸、ヘパリン、EDTA等の抗凝固剤で処理したものであってもよい。
 また、血液に含まれるTM4SF1を検出する場合、試料としては、血液またはそれに由来する画分が含まれ得る試料を用いてよい。血液に由来する画分としては、血液の分画物が挙げられる。血液またはそれに由来する画分が含まれ得る試料としては、上記例示したような血液由来試料が挙げられる。
 試料は、被験体から取得されたものであってよい。被験体は、特に制限されない。被験体は、ヒトであってもよく、ヒト以外の動物であってもよい。ヒト以外の動物としては、マウス、ラット、モルモット、ウサギ、イヌ、ネコ、ウシ、ウマ、ブタ、サル、チンパンジー、鳥が挙げられる。被験体は、特に、ヒトであってよい。
 試料は、例えば、そのまま、あるいは希釈、濃縮、または分画等の処理に供してから、検出工程に供してよい。例えば、細胞外小胞に含まれるTM4SF1を検出する場合、細胞外小胞を試料から回収し、回収した細胞外小胞に含まれるTM4SF1を検出してもよい。すなわち、検出工程は、例えば、細胞外小胞を試料から回収する工程と、回収した細胞外小胞に含まれるTM4SF1を検出する工程を含んでいてもよい。例えば、試料中の細胞外小胞の数が少ない場合でも、試料中の細胞外小胞を回収してから検出工程を実施することにより、効率的にTM4SF1を検出できると期待される。細胞外小胞の回収方法は、試料の形態や実験環境等の諸条件に応じて、適宜選択できる。細胞外小胞の回収方法としては、超遠心法、沈降法、サイズ排除クロマトグラフィー法、アフィニティー法、ポリマー沈殿法が挙げられる。超遠心法は、最も一般的に行なわれる細胞外小胞の分離回収法である。超遠心法は、単独で利用してもよく、他の方法を組み合わせて利用してもよい。例えば、超遠心法と密度勾配法またはスクロースクッション法を組み合わせることによって、より純度の高い細胞外小胞が得られる。沈降法は、大量の細胞外小胞を単純に沈降させて回収する方法である。サイズ排除クロマトグラフィー法は、精製度の高い細胞外小胞が得られる方法である。アフィニティー法は、細胞膜ホスファチジルセリン(PS)やCD9などの細胞外小胞膜に局在する分子に対するリガンドを固定化した担体を用いて、簡便に細胞外小胞を濃縮可能な方法である。アフィニティー法によれば、特に、前記リガンドに対し結合性を有する特定の細胞外小胞のサブタイプが選択的に回収され得る。ポリマー沈殿法は、ポリマーを含む試薬(例えばSystem Biosciences社製ExoQuick)を添加し、遠心分離することで、細胞外小胞を含む沈殿を回収する方法である。ポリマー沈殿法によれば、比較的簡便にインタクトな細胞外小胞を回収できる。
 検出工程に供される試料に含まれる細胞外小胞は、小胞の形態を維持していてもよく、維持していなくてもよい。細胞外小胞は、例えば、破砕または溶解等の処理に供されたことにより、小胞の形態を維持していなくてもよい。言い換えると、試料は、例えば、それに含まれる細胞外小胞を破砕または溶解等の処理に供してから、検出工程に供してよい。細胞外小胞は、例えば、試料から回収される前、または試料から回収された後に、破砕または溶解等の処理に供してよい。細胞外小胞の破砕または溶解等の処理は、例えば、超音波処理や界面活性剤処理等の公知の方法により実施できる。細胞外小胞の破砕または溶解等の処理により、例えば、細胞外小胞が断片化されてよい。また、細胞外小胞の破砕または溶解等の処理により、例えば、細胞外小胞の表面または内部に局在するTM4SF1を細胞外小胞から遊離してよい。言い換えると、細胞外小胞に含まれるTM4SF1は、検出工程の実施時点では、例えば、細胞外小胞の断片(すなわち、断片化した細胞外小胞の脂質二重膜)に局在していてもよく、細胞外小胞から遊離していてもよい。すなわち、検出工程で検出される「細胞外小胞に含まれるTM4SF1」には、細胞外小胞の断片(すなわち、断片化した細胞外小胞の脂質二重膜)に局在するTM4SF1や、細胞外小胞から遊離したTM4SF1も包含されてよい。細胞外小胞の断片に局在するTM4SF1としては、断片化した細胞外小胞の脂質二重膜を貫通しているTM4SF1や断片化した細胞外小胞の脂質二重膜に結合しているTM4SF1が挙げられる。
 また、試料は、例えば、試料中の細胞や細胞デブリスを可溶化してから、検出工程に供してよい。細胞や細胞デブリスは、例えば、界面活性剤を利用して可溶化することができる。細胞や細胞デブリスは、具体的には、例えば、界面活性剤NP-40を含むRIPA Bufferを利用して可溶化することができる。
 TM4SF1の検出方法は、特に制限されない。TM4SF1の検出は、定性的な検出(例えば、TM4SF1の有無の検出)であってもよく、定量的な検出(例えば、TM4SF1の存在量の検出)であってもよい。TM4SF1の検出は、特に、定量的な検出であってよい。TM4SF1の検出方法は、試料の形態、TM4SF1の局在、実験環境、感度等の諸条件に応じて、適宜選択できる。
 TM4SF1は、例えば、TM4SF1に対する抗体、TM4SF1に対するアプタマー、またはTM4SF1に特異的に染色可能な色素(例えば発光色素や蛍光色素)を利用して検出することができる。また、TM4SF1は、例えば、質量分析法により検出することもできる。TM4SF1は、特に、TM4SF1に対する抗体を利用して検出してよい。TM4SF1は、具体的には、例えば、TM4SF1に対する抗体を利用した、EIA(Enzyme Immunoassay)法またはウェスタンブロット法(イムノブロット法ともいう)により、検出することができる。EIA法としては、ELISA(Enzyme-Linked ImmunoSorbent Assay)法、CLEIA(Chemiluminescent Enzyme Immunoassay)法、FEIA(Fluorescence Enzyme Immunoassay)法、ImmunoPCR法が挙げられる。TM4SF1の検出方法としては、特に、CLEIA法が挙げられる。ELISA法は、例えば、感度と簡易性の点で好ましいTM4SF1の検出方法であり得る。細胞外小胞の内部に局在するTM4SF1を検出する場合、例えば、TM4SF1に対する抗体等の検出用試薬を細胞外小胞に導入してTM4SF1を検出してもよく、TM4SF1を細胞外小胞から遊離させて検出してもよい。検出用試薬を細胞外小胞に導入して細胞外小胞の内部に局在するタンパク質を検出する方法については、例えば、WO2021/132489の記載を参照できる。
 CLEIA法等のEIA法によりTM4SF1を検出する場合、その実施態様は、特に制限されない。一例として、2つの抗体を用いたサンドイッチCLEIA法等のサンドイッチEIA法を実施する場合、同種または異なるクローンの抗TM4SF1抗体を用いて実施してもよい。細胞外小胞の表面に存在するTM4SF1を検出する場合には、TM4SF1と異なる抗原を認識する抗体を一方の抗体として用いてもよい。TM4SF1とは異なる抗原を認識する抗体は、特に制限されない。TM4SF1とは異なる抗原を認識する抗体としては、TM4SF1以外の4回膜貫通タンパク質を認識する抗体、integrinを認識する抗体、cadherinを認識する抗体が挙げられる。TM4SF1とは異なる抗原を認識する抗体としては、特に、TM4SF1以外の4回膜貫通タンパク質を認識する抗体が挙げられる。TM4SF1以外の4回膜貫通タンパク質としては、CD63、CD9、CD81が挙げられる。TM4SF1以外の4回膜貫通タンパク質としては、特に、CD9が挙げられる。また、TM4SF1とは異なる抗原を認識する抗体の代わりに、細胞外小胞膜に局在する脂質に結合するリガンドを用いたCLEIA法等のEIA法を実施してもよい。細胞外小胞膜に局在する脂質としては、ホスファチジルセリン(PS)やスフィンゴミエリンが挙げられる。
 CLEIA法等のEIA法を実施する際の抗体やリガンドの固定化に用いる担体は、特に制限されない。担体としては、マイクロプレートや磁性微粒子が挙げられる。担体としては、特に、磁性微粒子が挙げられる。磁性微粒子は、例えば、前述した抗体やリガンドを高密度に固定化でき、かつ前述した抗体やリガンドで捕捉した細胞外小胞を磁力を用いて容易に回収できる点で好ましい担体であり得る。また、CLEIA法等のEIA法を実施する際に用いる反応緩衝液、洗浄液、検出基質等の試薬は、特に制限されない。試薬は、使用する抗体やリガンド等の諸条件に応じて、適宜選択できる。さらに、反応緩衝液や洗浄液に添加剤を添加すること、および/または反応緩衝液や洗浄液の塩濃度を調節することにより、検出系を最適化してもよい。検出系の最適化は、例えば、夾雑物の非特異吸着の抑制、および/または磁性粒子や試料等の凝集の抑制に有効であり得る。添加剤としては、Tween 20(商品名)等の界面活性剤、ウシ血清アルブミン(BSA)等のタンパク質、アミノ酸が挙げられる。検出基質としては、比色基質、蛍光基質、発光基質、放射性物質が挙げられる。検出基質としては、特に、発光基質が挙げられる。発光基質は、例えば、感度の点で好ましい検出基質であり得る。発光基質は、例えば、CLEIA法における検出基質として利用できる。発光基質としては、ルシフェリン等の酵素反応により発光を生じる基質が挙げられる。すなわち、例えば、発光基質に対応した酵素を前述した抗体やリガンドに標識し発光基質と反応させることにより発光が生じ得る。
 TM4SF1の検出結果に基づき、腫瘍細胞を検出することができる。「腫瘍細胞の検出」とは、試料に存在する腫瘍細胞の検出または試料が由来する被験体に存在する腫瘍細胞の検出を意味してよい。腫瘍細胞の検出は、定性的な検出(例えば、腫瘍細胞の有無の検出)であってもよく、定量的な検出(例えば、腫瘍細胞の存在量の検出)であってもよい。「腫瘍細胞の検出」には、腫瘍細胞が存在する可能性の検出(すなわち、腫瘍細胞が存在する可能性の同定)も包含される。腫瘍細胞が存在する可能性の検出は、定性的な検出(例えば、腫瘍細胞が存在する可能性の有無の同定)であってもよく、定量的な検出(例えば、腫瘍細胞が存在する可能性の程度の同定)であってもよい。
 腫瘍細胞の検出は、具体的には、例えば、TM4SF1の検出結果と腫瘍細胞の検出結果とを関連付けることにより、実施できる。すなわち、本発明の検出方法は、さらに、TM4SF1の検出結果と腫瘍細胞の検出結果とを関連付ける工程を含んでいてよい。本発明の検出方法においては、同工程を、「関連付け工程」ともいう。
 例えば、TM4SF1が検出された場合に、腫瘍細胞が存在する、腫瘍細胞が存在する可能性がある、または腫瘍細胞が存在する可能性が高いと判断してよい。また、例えば、TM4SF1の検出量が、所定の閾値以上である、または所定の閾値より大きい場合に、腫瘍細胞が存在する、腫瘍細胞が存在する可能性がある、または腫瘍細胞が存在する可能性が高いと判断してよい。また、例えば、TM4SF1の検出量が多い程、腫瘍細胞の存在量が多い、または腫瘍細胞が存在する可能性が高いと判断してよい。
 例えば、TM4SF1が検出されなかった場合に、腫瘍細胞が存在しない、腫瘍細胞が存在する可能性がない、または腫瘍細胞が存在する可能性が低いと判断してよい。また、例えば、TM4SF1の検出量が、所定の閾値以下である、または所定の閾値より小さい場合に、腫瘍細胞が存在しない、腫瘍細胞が存在する可能性がない、または腫瘍細胞が存在する可能性が低いと判断してよい。また、例えば、TM4SF1の検出量が少ない程、腫瘍細胞の存在量が少ない、または腫瘍細胞が存在する可能性が低いと判断してよい。
 閾値は、所望の精度で腫瘍細胞を検出できる限り、特に制限されない。閾値は、例えば、腫瘍細胞の検出の目的等の諸条件に応じて適宜設定できる。閾値は、例えば、腫瘍細胞についての対照試料におけるTM4SF1の検出量に基づいて設定してよい。腫瘍細胞についての対照試料としては、腫瘍細胞についての陽性対照試料や陰性対照試料が挙げられる。「腫瘍細胞についての陽性対照試料」とは、当該腫瘍細胞が検出される試料を意味してよい。腫瘍細胞についての陽性対照試料としては、当該腫瘍細胞に対応する癌に罹患している被験体(例えば、腫瘍細胞が前立腺癌細胞である場合、前立腺癌に罹患している被験体)から得られた試料が挙げられる。「腫瘍細胞についての陰性対照試料」とは、当該腫瘍細胞が検出されない試料を意味してよい。腫瘍細胞についての陰性対照試料としては、当該腫瘍細胞に対応する癌に罹患していない被験体(例えば、健常者)から得られた試料が挙げられる。閾値は、例えば、腫瘍細胞についての陽性対照試料におけるTM4SF1の検出量のみに基づいて設定してもよく、腫瘍細胞についての陰性対照試料におけるTM4SF1の検出量のみに基づいて設定してもよく、腫瘍細胞についての陽性対照試料と陰性対照試料の両方におけるTM4SF1の検出量に基づいて設定してもよい。腫瘍細胞についての陽性対照試料と陰性対照試料を取得する被験体の数は、所望の精度で腫瘍細胞を検出できる限り、特に制限されない。腫瘍細胞についての陽性対照試料と陰性対照試料を取得する被験体の個体数は、それぞれ、1であってもよく、2またはそれ以上であってもよい。腫瘍細胞についての陽性対照試料と陰性対照試料を取得する被験体の個体数は、それぞれ、例えば、5以上、10以上、20以上、または50以上であってもよく、10000以下、1000以下、または100以下であってもよく、それらの組み合わせであってもよい。閾値は、例えば、腫瘍細胞についての陽性対照試料の70%以上、80%以上、90%以上、95%以上、97%以上、または100%で当該腫瘍細胞が存在すると判断されるように設定してよい。また、閾値は、例えば、腫瘍細胞についての陰性対照試料の70%以上、80%以上、90%以上、95%以上、97%以上、または100%で当該腫瘍細胞が存在しないと判断されるように設定してよい。閾値は、例えば、ソフトウェアを用いて設定してもよい。例えば、統計解析ソフトウェアを用い、腫瘍細胞についての陰性対照と陽性対照とを統計学的に最も適切に判別できるような閾値を設定してもよい。
 具体的には、例えば、TM4SF1の検出量が、腫瘍細胞についての陰性対照試料におけるTM4SF1の検出量の1.05倍以上、1.1倍以上、1.15倍以上、1.2倍以上、1.25倍以上、1.3倍以上、1.35倍以上、1.4倍以上、1.45倍以上、または1.5倍以上である場合に、腫瘍細胞が存在する、腫瘍細胞が存在する可能性がある、または腫瘍細胞が存在する可能性が高いと判断してもよい。
 腫瘍細胞の種類(すなわち、腫瘍細胞に対応する癌の種類)は、特に制限されない。癌は、原発癌でもよく、転移癌であってもよい。癌としては、造血細胞悪性腫瘍、頭頚部癌、脳腫瘍、乳癌、子宮体癌、子宮頚癌、卵巣癌、食道癌、胃癌、虫垂癌、大腸癌、肝癌、胆嚢癌、胆管癌、膵癌、腎癌、副腎癌、消化管間質腫瘍、中皮腫、甲状腺癌、肺癌、骨肉腫、骨癌、前立腺癌、精巣腫瘍、膀胱癌、皮膚癌、肛門癌が挙げられる。造血細胞悪性腫瘍としては、白血病、リンパ腫、多発性骨髄腫が挙げられる。リンパ腫としては、ホジキンリンパ腫や非ホジキンリンパ腫が挙げられる。頭頚部癌としては、口腔底癌、歯肉癌、舌癌、頬粘膜癌、唾液腺癌、副鼻腔癌が挙げられる。癌としては、特に、前立腺癌、胃癌、腎癌、肺癌が挙げられる。癌としては、さらに特には、前立腺癌や胃癌が挙げられる。癌としては、さらに特には、前立腺癌が挙げられる。すなわち、腫瘍細胞としては、特に、前立腺癌細胞、胃癌細胞、腎癌細胞、肺癌細胞が挙げられる。腫瘍細胞としては、さらに特には、前立腺癌細胞や胃癌細胞が挙げられる。腫瘍細胞としては、さらに特には、前立腺癌細胞が挙げられる。
 関連付け工程は、例えば、医師が実施してもよく、医師以外の者が実施してもよい。関連付け工程は、例えば、医療補助者等の、医師以外の医療関係者が実施してもよい。また、関連付け工程は、コンピュータ(具体的には、例えば、測定装置やプログラム)により自動で実施してもよい。
<2>本発明の検査方法
 TM4SF1の検出結果は、例えば、癌の検査に利用することができる。具体的には、試料が被験体から得られた試料である場合、TM4SF1の検出結果は、例えば、被験体における癌の検査に利用することができる。
 すなわち、本発明の検査方法は、被験体から得られた試料中のTM4SF1を検出する工程を含む、被験体における癌を検査する方法である。本発明の検査方法においては、同工程を、「検出工程」ともいう。
 被験体、癌、試料、TM4SF1、および検出工程については、「<1>本発明の検出方法」において上述した通りである。
 被験体における癌の検査としては、被験体が癌に罹患しているかの検査、被験体が癌に罹患している可能性の有無または程度の検査、被験体が癌に罹患している場合の癌の進行度(例えばステージ)の検査が挙げられる。「癌の検査」は、「癌の診断」と読み替えてもよい。
 癌の検査は、具体的には、例えば、TM4SF1の検出結果と癌の検査結果とを関連付けることにより、実施できる。すなわち、本発明の検査方法は、さらに、TM4SF1の検出結果と癌の検査結果とを関連付ける工程を含んでいてよい。本発明の検査方法においては、同工程を、「関連付け工程」ともいう。
 例えば、TM4SF1が検出された場合に、被験体が癌に罹患している、被験体が癌に罹患している可能性がある、または被験体が癌に罹患している可能性が高いと判断してよい。また、例えば、TM4SF1の検出量が、所定の閾値以上である、または所定の閾値より大きい場合に、被験体が癌に罹患している、被験体が癌に罹患している可能性がある、または被験体が癌に罹患している可能性が高いと判断してよい。また、例えば、TM4SF1の検出量が多い程、被験体が癌に罹患している場合の癌の進行度(例えばステージ)が大きい、または被験体が癌に罹患している可能性が高いと判断してよい。
 例えば、TM4SF1が検出されなかった場合に、被験体が癌に罹患していない、被験体が癌に罹患している可能性がない、または被験体が癌に罹患している可能性が低いと判断してよい。また、例えば、TM4SF1の検出量が、所定の閾値以下である、または所定の閾値より小さい場合に、被験体が癌に罹患していない、被験体が癌に罹患している可能性がない、または被験体が癌に罹患している可能性が低いと判断してよい。また、例えば、TM4SF1の検出量が少ない程、被験体が癌に罹患している場合の癌の進行度(例えばステージ)が小さい、または被験体が癌に罹患している可能性が低いと判断してよい。
 閾値は、所望の精度で癌を検査できる限り、特に制限されない。閾値は、例えば、癌の検査の目的等の諸条件に応じて適宜設定できる。閾値は、例えば、癌についての対照試料におけるTM4SF1の検出量に基づいて設定してよい。癌についての対照試料としては、癌についての陽性対照試料や陰性対照試料が挙げられる。「癌についての陽性対照試料」とは、当該癌に罹患している被験体から得られた試料を意味してよい。「癌についての陽性対照試料」は、当該癌に対応する「腫瘍細胞についての陽性対照試料」と読み替えてもよい。「癌についての陰性対照試料」とは、当該癌に罹患していない被験体(例えば、健常者)から得られた試料を意味してよい。「癌についての陰性対照試料」は、当該癌に対応する「腫瘍細胞についての陰性対照試料」と読み替えてもよい。閾値は、例えば、癌についての陽性対照試料におけるTM4SF1の検出量のみに基づいて設定してもよく、癌についての陰性対照試料におけるTM4SF1の検出量のみに基づいて設定してもよく、癌についての陽性対照試料と陰性対照試料の両方におけるTM4SF1の検出量に基づいて設定してもよい。癌についての陽性対照試料と陰性対照試料を取得する被験体の数は、所望の精度で癌を検出できる限り、特に制限されない。癌についての陽性対照試料と陰性対照試料を取得する被験体の個体数は、それぞれ、1であってもよく、2またはそれ以上であってもよい。癌についての陽性対照試料と陰性対照試料を取得する被験体の個体数は、それぞれ、例えば、5以上、10以上、20以上、または50以上であってもよく、10000以下、1000以下、または100以下であってもよく、それらの組み合わせであってもよい。閾値は、例えば、癌についての陽性対照試料を取得した被験体の70%以上、80%以上、90%以上、95%以上、97%以上、または100%が当該癌に罹患していると判断されるように設定してよい。また、閾値は、例えば、癌についての陰性対照試料を取得した被験体の70%以上、80%以上、90%以上、95%以上、97%以上、または100%が当該癌に罹患していないと判断されるように設定してよい。閾値は、例えば、ソフトウェアを用いて設定してもよい。例えば、統計解析ソフトウェアを用い、癌についての陰性対照と陽性対照とを統計学的に最も適切に判別できるような閾値を設定してもよい。
 具体的には、例えば、TM4SF1の検出量が、癌についての陰性対照試料におけるTM4SF1の検出量の1.05倍以上、1.1倍以上、1.15倍以上、1.2倍以上、1.25倍以上、1.3倍以上、1.35倍以上、1.4倍以上、1.45倍以上、または1.5倍以上である場合に、被験体が癌に罹患している、被験体が癌に罹患している可能性がある、または被験体が癌に罹患している可能性が高いと判断してもよい。
 関連付け工程は、例えば、医師が実施してもよく、医師以外の者が実施してもよい。関連付け工程は、例えば、医療補助者等の、医師以外の医療関係者が実施してもよい。また、関連付け工程は、コンピュータ(具体的には、例えば、測定装置やプログラム)により自動で実施してもよい。本発明の検査方法による検査結果は、例えば、医師等の医療関係者が被験体の癌を診断するための予備的情報として利用することができる。したがって、本発明の検査方法は、被験体の癌を診断するための予備的方法でもあり得る。
<3>本発明のプログラム
 本発明は、本発明の方法に含まれる工程をコンピュータに実行させるプログラムを提供する。同プログラムを、「本発明のプログラム」ともいう。「本発明の方法」とは、本発明の検出方法および本発明の検査方法を総称してよい。
 すなわち、本発明においては、本発明の方法に含まれる工程をコンピュータが実行してもよい。コンピュータは、本発明の方法に含まれる工程の一部または全部を実行してよい。コンピュータは、例えば、検出工程および/または予測工程を実行してよい。
 具体的には、例えば、医療関係者は、被験体から血液由来試料等の試料を取得し、必要により前処理を行ない、測定装置にセットすることができる。コンピュータは、測定装置に試料中のTM4SF1を検出させることができる。コンピュータは、さらに、TM4SF1の検出結果に基づいて腫瘍細胞を検出し、または被験体の癌を検査することができる。コンピュータは、さらに、そのようにして得られた腫瘍細胞の検出結果または癌の検査結果を出力することができ、以て医療関係者は腫瘍細胞の検出結果または癌の検査結果を取得して被験体の癌の診断に利用することができる。
 本発明のプログラムは、コンピュータが読み取り可能な記録媒体に記録され、提供されてよい。「コンピュータが読み取り可能な記録媒体」とは、データやプログラム等の情報が電気的、磁気的、光学的、機械的、または化学的作用等により蓄積され、さらに蓄積された情報をコンピュータから読み取ることのできる記録媒体をいう。そのような記録媒体としては、フロッピー(登録商標)ディスク、光磁気ディスク、CD-ROM、CD-R/W、DVD-ROM、DVD-R/W、DVD-RAM、DAT、8mmテープ、メモリカード、ハードディスク、ROM(リードオンリーメモリ)、SSDが挙げられる。また、本発明のプログラムは、コンピュータにより実行される各ステップが別個のプログラムとして記録されていてもよい。
<4>本発明の別の態様
 本発明の別の態様として、TM4SF1と検出用タンパク質との融合タンパク質を含むポリペプチドをコードするポリヌクレオチドを細胞に導入する工程、前記導入後の細胞を培養し細胞外小胞を放出させる工程、および前記放出された細胞外小胞に含まれるTM4SF1を検出する工程を含む、TM4SF1を検出する方法が挙げられる。本方法は、遺伝子導入の工程が必要であるため、腫瘍細胞の検出等の直接疾患を検査する目的には適用できない方法であるが、疾患検査等に用いる検量線用の標準品としての応用が期待できる。また、本方法によれば、培養細胞から放出された細胞外小胞をより簡便に検出できる。
 検出用タンパク質は、特に制限されない。検出用タンパク質は、実験の簡便性や必要とする感度等の諸条件に応じて、適宜選択できる。検出用タンパク質としては、ルシフェラーゼやβガラクトシダーゼ等の発光を触媒するタンパク質;GFP(緑色蛍光タンパク質)、RFP(赤色蛍光タンパク質)、DsRED(Discosoma赤色蛍光タンパク質)等の蛍光タンパク質;FLAGタグ、MYCタグ、Hisタグ、V5タグ等のエピトープタグペプチドが挙げられる。ルシフェラーゼとしては、トゲオキヒオドシエビ由来ルシフェラーゼ(Nluc)、ホタル由来ルシフェラーゼ、ウミシイタケ由来ルシフェラーゼが挙げられる。ルシフェラーゼとしては、特に、トゲオキヒオドシエビ由来ルシフェラーゼ(Nluc)が挙げられる。トゲオキヒオドシエビ由来ルシフェラーゼ(Nluc)は、例えば、ATP非依存的に基質を発光させることができ、検出のダイナミックレンジが広く、高感度であり、かつホタルやウミシイタケ由来のルシフェラーゼやGFPよりも分子量が小さい点で好ましい検出用タンパク質であり得る。
 前記融合タンパク質を設計する際の融合方法は、特に制限されない。例えば、コドンフレームを合わせた上で、間にリンカー配列を挿入してもよいし、挿入せず直接融合してもよい。リンカー配列としては、GSリンカー(例えば、配列番号3)等のグリシンとセリンから構成されるリンカーをコードするオリゴヌクレオチドが挙げられる。そのようなオリゴヌクレオチドを挿入すると、例えば、発現した融合タンパク質の柔軟性が向上すると期待される。また、TM4SF1と検出用タンパク質との配置も特に限定はなく、TM4SF1をN末端側に、検出用タンパク質をC末端側にそれぞれ配置してもよいし、逆の配置にしてもよい。また、これらタンパク質は、タンデムに複数配置してもよい。これらタンパク質をタンデムに複数配置することにより、例えば、検出感度が向上すると期待される。
 ポリヌクレオチドを細胞に導入する方法は、特に制限されない。例えば、Lipofectamine3000(ThermoFisher社製)やFuGENE(Promega社製)等の市販試薬を用いて一過的に導入遺伝子を発現させてもよいし、エレクトロポレーション法やPiggyBacシステム(System Biosciences社製)等を用いて、導入遺伝子を安定発現可能な細胞株を樹立してもよい。また、導入するポリヌクレオチドの塩基長が、一般的な動物細胞発現用プラスミドへの挿入が困難なサイズ(例えば5kbp以上)の場合、検出用タンパク質をコードするポリヌクレオチドを、細胞が保有するゲノムDNAに、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeat)-CasシステムやTALEN(Transcription Activator-Like Effector Nuclease)等のゲノム編集技術を用いて直接挿入してもよい。
 以下、実施例を用いて本発明をさらに具体的に説明するが、本発明は実施例に限定されるものではない。
 実施例1 腫瘍細胞の培養
 以降の実施例で使用する腫瘍細胞として、ヒト前立腺がん細胞であるPC-3細胞と22Rv1細胞を選択し、下記に示す方法で培養した。
 (1)ヒト前立腺がん細胞を5%CO環境下、下記に示す培地を用いて37℃で培養した。
  PC-3細胞:15%(v/v)FBS(ウシ胎児血清)を含むHam’s F-12K(富士フイルム和光純薬社製)培地
  22Rv1細胞:10%(v/v)FBSを含むRPMI-1640(富士フイルム和光純薬社製)培地
 (2)培養したヒト前立腺がん細胞を2.5×10cells/mLとなるように(1)で用いた培地でそれぞれ懸濁し、6ウェルプレートに2mL/ウェルで播種し懸濁した。
 実施例2 遺伝子導入腫瘍細胞の作製
 (1)EF1αプロモーターを有する動物細胞発現用プラスミド(pBApo-EF1α Pur DNA[製品コード:3244]、タカラバイオ社製)のEF1αプロモーター(配列番号1)下流に、細胞外小胞の表面に局在するタンパク質であるTM4SF1(UniProt No.P30408、配列番号2)、GSリンカーペプチド(配列番号3)、および検出用タンパク質であるナノルシフェラーゼ(Nluc)(GenBank No.AIS23666、配列番号4)をそれぞれコードするポリヌクレオチドを挿入し、TM4SF1-GSリンカー-Nluc融合タンパク質発現用の組換えプラスミドを構築した(図1)。なお、Nluc(配列番号4)をコードするポリヌクレオチドとしては、NanoLuc Vector(Promega社製)に挿入されているNluc reporter geneを利用した。
 (2)実施例1(1)と同様の方法でPC-3細胞を培養し、5×10cells/mLとなるよう懸濁後、6ウェルプレートに2mL/ウェルで播種し懸濁した。
 (3)1日培養後、(1)で構築した組換えプラスミドを0μg、0.5μg、1μg、1.5μgまたは2μgとなるよう、各ウェルに添加し、遺伝子導入試薬(Lipofectamine 3000、ThermoFisher社製)を用いて遺伝子導入することで、TM4SF1-GSリンカー-Nluc融合タンパク質を発現可能なPC-3細胞(以下、単に「遺伝子導入腫瘍細胞」とも表記)を得た。
 実施例3 細胞外小胞の回収
 (1)実施例1で得られたPC-3細胞および22Rv1細胞ならびに実施例2で得られた遺伝子導入腫瘍細胞をさらに3日間培養した後、培養上清を全量(約2mL)回収した。300Gで10分間、室温で遠心分離して浮遊細胞を除去後、上清1.5mLを回収した(培養上清、以下「CM」とも表記)。
 (2)CMをさらに3,000Gで10分間、4℃で遠心分離して細胞デブリを除去後、上清1.2mLを回収した。回収した上清をさらに16000Gで60分間、4℃で遠心分離し、上清1mLを別のチューブに移した(遠心分離操作A)。残った沈殿物をPBS(Phosphate Buffered Saline)1mLで懸濁し、16,000Gで60分間、4℃で遠心分離して洗浄後、上清1mLを除去した。残った沈殿物を含む懸濁液0.2mLをマイクロベシクル画分(以下、「MV画分」とも表記)とした。
 (3)(2)の遠心分離操作Aでチューブに移した上清1mLとPBS1mLとを混合し、259,000Gで70分間、4℃で超遠心分離し、上清1.8mLを除去した。残った沈殿物をPBS1.8mLで懸濁し、259,000Gで70分間、4℃で超遠心分離して洗浄後、上清1.8mLを除去した。残った沈殿物を含む0.2mLをエクソソーム画分(以下、「EX画分」とも表記)とした。
 実施例4 抗体固定化磁性粒子の作製
 (1)表面にカルボキシ基を有した磁性粒子溶液(Magnosphere MS300/Carboxyl、1.0%(w/v)スラリー、JSRライフサイエンス社製)400μLに0.01M MES(2-Morpholinoethanesulfonic acid)緩衝液(pH6.0)(以下、「緩衝液A」とも表記)600μLを添加した。
 (2)緩衝液Aを添加した磁性粒子溶液を磁石に近接後3分放置し、溶液を除去後、緩衝液Aを1mL添加して磁性粒子を再懸濁する洗浄操作を2回行なった。洗浄後の磁性粒子は450μLの緩衝液Aに再懸濁した。
 (3)磁性粒子懸濁液に、10mg/mL EDC(1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩)を含む緩衝液Aを50μL添加し、37℃で1時間振とうすることで磁性粒子表面のカルボキシ基にEDCを結合させた。当該操作により、磁性粒子表面のカルボン酸とタンパク質などが有するアミノ基とがEDCを介して共有結合できる。
 (4)EDCを結合させた磁性粒子を緩衝液A1mLで1回洗浄し、緩衝液A180μLに再懸濁後、以下[a]および[b]に示すいずれかの抗体を含む溶液20μLを添加し、37℃で3時間振とうすることでEDCを介して抗体と磁性粒子とを共有結合させた(すなわち磁性粒子に抗体を固定化させた)。固定化後は、0.4M塩化ナトリウムを含む緩衝液A1mLで1回洗浄した。
 [a]1mg/mL抗CD9抗体(フロンティア研究所社製)を含むPBS
 [b]1mg/mL抗TM4SF1抗体(R&D Systems社製)を含むPBS
 (5)抗体を固定化した磁性粒子を、0.9%(w/v)Blockmaster CE210(タンパク質低吸着ポリマー、JSRライフサイエンス社製)を含む緩衝液A1mLで2回洗浄し、緩衝液A500μLで再懸濁後、37℃で一晩(17時間から24時間)振とうすることでブロッキングを行なった。
 (6)ブロッキング終了後、0.2%(w/v)Blockmaster CE210を含む0.1M Tris-HCl緩衝液(pH8.0)1mLで1回洗浄後、緩衝液A200μLで再懸濁し、抗体固定化磁性粒子を保存した。
 実施例5 腫瘍細胞から放出される細胞外小胞の測定
 (1)CD9陽性細胞外小胞(全細胞外小胞)の検出
 (1-1)3%(w/v)ウシ血清アルブミン(BSA)を含むPBS(以下、「BSAバッファー」とも表記)1mLを2mLチューブに添加後、実施例4で作製した抗CD9抗体固定化磁性粒子10μLを添加し、3分間転倒撹拌した。
 (1-2)磁性粒子溶液を磁石に近接後1分放置し、溶液を除去後、BSAバッファー1mLを添加して10分以上転倒撹拌した。
 (1-3)当該溶液を磁石に近接させ1分放置後、溶液を除去し、BSAバッファー50μLを添加して磁性粒子を再懸濁した。
 (1-4)抗体固定化磁性粒子を含む懸濁液50μLと、実施例3(3)で得た、PC-3細胞の培養上清由来EX画分および22Rv1細胞の培養上清由来EX画分ならびにPBSのいずれか100μLとを、96ウェルプレートのウェル内で混合し、90分間撹拌した。
 (1-5)撹拌後、96ウェルプレート下部に磁石を近接させ、プレート下部に前記磁性粒子を集積させた後、上清を除去し、0.05%(v/v)Tween 20(商品名)を含むPBS(以下、「洗浄バッファー」とも表記)で3回洗浄した。
 (1-6)洗浄液を除去後、BSAバッファー90μLとFcR Blocking Reagent(Miltenyi Biotec社製)10μLとの混合液をブロッキング試薬として加え、10分間撹拌した。
 (1-7)ブロッキング試薬を除去後、0.5μg/mLビオチン修飾マウス由来抗ヒトCD9抗体(フロンティア研究所社製)を含むBSAバッファー100μLを加え、30分間撹拌した。(1-5)と同様に磁石を用いて上清を除去し、洗浄バッファーで3回洗浄した。
 (1-8)洗浄液を除去後、HRP(Horseradish Peroxidase)を多価に結合させたストレプトアビジンを含むBSAバッファー100μLを加え、20分間撹拌した。(1-5)と同様に磁石を用いて上清を除去し、洗浄バッファーで3回洗浄した。
 (1-9)洗浄液を除去後、発光基質であるSuperSignal ELISA Pico Chemiluminescent Substrate(ThermoFisher社製)の基質反応液150μLを加え、1分間撹拌した。磁石を用いて上清100μLを回収し、新たな96ウェルプレートに移した後、5分以内にプレートリーダー(Tecan社製)で発光量を測定することで、CD9陽性細胞外小胞を検出した。
 (2) TM4SF1陽性細胞外小胞の測定
 抗体固定化磁性粒子として、実施例4で作製した抗TM4SF1抗体固定化磁性粒子を、(1-7)で添加する抗体として50倍希釈ビオチン修飾マウス由来抗TM4SF1抗体(Miltenyi Biotec社製)を用いた以外は、(1)と同様の方法でTM4SF1陽性細胞外小胞を検出した。
 結果を表1に示す。なお、表1において発光量とは、バックグラウンドであるPBSの平均発光量に対する比率を意味する。CD9陽性細胞外小胞(全細胞外小胞)検出(実施例5(1))の結果、PC-3細胞および22Rv1細胞の培養上清由来EX画分を添加したウェルでCLEIAの発光を検出しており、実施例3に記載の方法により、細胞の培養上清から細胞外小胞(EX画分)を回収できることを確認した。一方、TM4SF1陽性細胞外小胞検出(実施例5(2))の結果では、TM4SF1陽性のヒト前立腺がん細胞であるPC-3細胞の培養上清由来EX画分を添加したウェルではCLEIAの発光を検出したが、TM4SF1陰性のヒト前立腺がん細胞である22Rv1細胞の培養上清由来EX画分を添加したウェルではCLEIAの発光をほとんど検出しなかった。以上のことから、腫瘍細胞から放出された細胞外小胞(EX画分)におけるTM4SF1検出の有無が、当該腫瘍細胞におけるTM4SF1の発現の有無と関連していることがわかる。
Figure JPOXMLDOC01-appb-T000001
 実施例6 遺伝子導入がん細胞から放出される細胞外小胞の測定
 抗体固定化磁性粒子として、実施例4で作製した抗TM4SF1抗体固定化磁性粒子を、実施例5(1-4)で添加する細胞外小胞懸濁液として、実施例3(3)で得た遺伝子導入腫瘍細胞の培養上清由来EX画分または実施例3(2)で得た遺伝子導入腫瘍細胞の培養上清由来MV画分を、実施例5(1-7)で添加する抗体として50倍希釈したビオチン修飾マウス由来抗TM4SF1抗体溶液(Miltenyi Biotec社製)を、それぞれ用いた以外は、実施例5(1)と同様の方法でTM4SF1陽性細胞外小胞(EX画分およびMV画分)を検出した。
 実施例6の結果を表2および図2に示す。なお、表2に記載の発光量は、バックグラウンドであるPBSの平均発光量に対する比率を意味し、図2の縦軸に記載の発光量は、バックグラウンドであるPBSの平均発光量に対する比率の平均値およびエラーバー(±SD)を意味する。
 遺伝子導入腫瘍細胞の培養上清由来EX画分およびMV画分の両方で、TM4SF1陽性細胞外小胞を検出した。また前記細胞へのTM4SF1遺伝子導入量(すなわち遺伝子導入腫瘍細胞におけるTM4SF1発現量)に応じた発光量の増加も確認できた。以上の結果から、本CLEIA系で細胞外小胞上のTM4SF1を定量的に検出できることが確認できた。さらに、細胞外小胞のTM4SF1発現量と当該小胞を放出した細胞におけるTM4SF1発現量とが相関する可能性も示された。
 なお、TM4SF1遺伝子を導入していない(プラスミドDNA導入量0μgの)PC-3細胞での培養上清由来EX画分とMV画分との発光量の比較より、遺伝子導入していないPC-3細胞では、主にEX画分にTM4SF1が存在することが確認された。
Figure JPOXMLDOC01-appb-T000002
 実施例7 健常者血清および前立腺がん患者血清中のTM4SF1陽性細胞外小胞の検出
 (1)健常者血清の回収
 (1-1)インフォームドコンセントを取得した健常者3名から、血清分離剤入採血管(テルモ社製VP-AS054K50)に4mL採血した。採血後、前記採血管を室温で60分間静置した。
 (1-2)静置した採血管を1,500Gで20分間、4℃で遠心分離して血球を分離後、上清を15mLチューブに回収した(以下、「上清1」とも表記)。
 (1-3)回収した上清1をさらに2,000Gで20分間、4℃で遠心分離することで混入した細胞デブリを除去後、上清を回収することで健常者血清を得た。
 (2)TM4SF1陽性細胞外小胞の測定
 (2-1)(1-3)で得た健常者血清(3名分)およびビジコムジャパン社より入手した前立腺がん患者血清(10名分)をそれぞれPBSで5倍希釈することで血清試料を調製した。
 (2-2)抗体固定化磁性粒子として、実施例4で作製した抗TM4SF1抗体固定化磁性粒子を、実施例5(1-4)で添加する細胞外小胞懸濁液として、(2-1)で調製した血清試料を用いた以外は、実施例5(1)と同様の方法で血清中のTM4SF1陽性細胞外小胞を検出した。
 実施例7の結果を表3および図3に示す。なお、表3および図3に記載の発光量は、バックグラウンドであるPBSの平均発光量に対する比率を意味する。健常者の血清試料と比較して、ステージ(stage)IVの前立腺がん患者の血清試料でCLEIAの発光量が有意に増加(p<0.01)しており、前立腺がん患者では血清中のTM4SF1陽性細胞外小胞が増加することが確認された。また、前立腺がんのマーカーとして従来から用いられているPSA(前立腺特異抗原)の値が低いステージIVの前立腺がん患者検体(前立腺がん患者7、PSA値:0.06ng/mL)からもTM4SF1陽性細胞外小胞を検出していることから、本発明のTM4SF1陽性細胞外小胞の検出方法が、PSAがマーカーとして機能しない前立腺がん患者の診断に適用可能であることが示された。以上の結果から、本発明の検出方法はPSA検査を補完できる方法であり、PSA検査と組み合わせることで、より高精度な前立腺がん検査が行なえることが示唆される。
Figure JPOXMLDOC01-appb-T000003
実施例8 血液中からの腫瘍細胞由来TM4SF1の検出
 次に、血液中に存在する腫瘍細胞由来のTM4SF1が検出できるか検討するため、PC-3細胞を血液中に添加した。
 (1)血液中のPC-3細胞の回収
 (1-1)インフォームドコンセントを得た健常人から血液をEDTA-2K採血管(VP-DK050K、テルモ社製)に5mL採血後、前記採血管に実施例1で調製したPC-3細胞(0、5×10、1×10個)を添加し、血液試料を調製した。
 (1-2)2%(w/v)BSAを含むPBS800μLに白血球が有する表面抗原であるCD15に対する抗体が修飾された磁性粒子(Dynabeads CD15、ThermoFisher社製)100μLおよび白血球が有する表面抗原であるCD45に対する抗体が修飾された磁性粒子(Dynabeads CD45、ThermoFisher社製)100μLを添加し、室温で10分間回転撹拌することで磁性粒子のブロッキングを行った。ブロッキング終了後、磁性粒子溶液を磁石に近接後3分間放置し、溶液を除去後、2%(w/v)BSAを含むPBS100μLを添加して磁性粒子を再懸濁した。
 (1-3)(1-1)で調製した血液試料3mLに、0.9%(w/v)塩化アンモニウムと0.1%(w/v)炭酸水素カリウムとを含む水溶液を、総量90mLとなるまで添加後、室温で5分間静置することで赤血球を破砕(溶血)した。溶血処理後、900Gで5分間、25℃で遠心分離した。
 (1-4)遠心分離後の上清を88mL除去後、ピペッティングによりPC-3細胞と夾雑細胞(白血球や血小板など)を含むペレットを上清残液に懸濁させた。
 (1-5)(1-4)の細胞懸濁液に、2%(w/v)BSAを含むPBSを総量30mLとなるまで添加後、600Gで5分間、25℃で遠心分離した。得られた上清を29mL除去し、ピペッティングによりペレットを上清残液に再懸濁させた。
 (1-6)(1-2)で調整した磁性粒子溶液と(1-5)で得られた細胞懸濁液全量とを混合させた後、室温で5分間回転撹拌することにより磁性粒子に白血球を結合させた。白血球が結合した磁性粒子を磁石に1分間近接させ、PC-3細胞と除去しきれず残存した一部の白血球を含む上清を回収した。
 (1-7)(1-6)で回収した細胞懸濁液にPBSを総量30mLとなるまで添加後、600Gで5分間、25℃で遠心分離した。得られた上清を29mL除去し、ピペッティングによりペレットを上清残液に再懸濁させることで、PC-3細胞を含む細胞懸濁液を得た。
 (2)タンパク質抽出液の回収
 (2-1)(1-7)で得たPC-3細胞を含む細胞懸濁液を600Gで5分間、25℃で遠心分離した後、上清を完全に除去し、RIPA buffer(ナカライテスク社製、08714-04)を300μL添加した。十分にピペッティング後、4℃で30分静置することで細胞破砕液を得た。
 (2-2)(2-1)で得た細胞破砕液を10,000Gで20分、4℃で遠心分離し、細胞破砕液に含まれる不溶画分を沈殿させた後、上清270μLを回収してこれをタンパク質抽出液とした。
 (3)CLEIAによるTM4SF1検出
 (3-1)実施例4(4)でEDCを結合させた磁性粒子を再懸濁する緩衝液Aの量を160μL、実施例4(4)[b]に示す抗体を含む溶液の添加量を40μLとした以外は、実施例4と同様の方法で抗TM4SF1抗体固定化磁性粒子を作製した。
 (3-2)BSAバッファー1mLを2mLチューブに添加後、(3-1)で作製した抗TM4SF1抗体固定化磁性粒子10μLを添加し、3分間転倒撹拌した。
 (3-3)磁性粒子溶液を磁石に近接後1分放置し、溶液を除去後、BSAバッファー1mLを添加して10分以上転倒撹拌した。
 (3-4)当該溶液を磁石に近接させ1分放置後、溶液を除去し、BSAバッファー50μLを添加して磁性粒子を再懸濁した。
 (3-5)抗体固定化磁性粒子を含む懸濁液50μLと、実施例8(2―2)で得た、タンパク質抽出液90μLと、PBS10μLとを、96ウェルプレートのウェル内で混合し、90分間撹拌した。
 (3-6)撹拌後、96ウェルプレート下部に磁石を近接させ、プレート下部に前記磁性粒子を集積させた後、上清を除去し、洗浄バッファーで3回洗浄した。
 (3-7)洗浄液を除去後、BSAバッファー90μLとFcR Blocking Reagent10μLとの混合液をブロッキング試薬として加え、10分間撹拌した。
 (3-8)ブロッキング試薬を除去後、50倍希釈したビオチン修飾抗ヒトTM4SF1抗体を含むBSAバッファー100μLを加え、30分間撹拌した。(3-6)と同様に磁石を用いて上清を除去し、洗浄バッファーで3回洗浄した。
 (3-9)洗浄液を除去後、HRPを多価に結合させたストレプトアビジンを含むBSAバッファー100μLを加え、20分間撹拌した。(3-6)と同様に磁石を用いて上清を除去し、洗浄バッファーで3回洗浄した。
 (3-10)洗浄液を除去後、発光基質であるSuperSignal ELISA Pico Chemiluminescent Substrateの基質反応液150μLを加え、5分間撹拌した。磁性粒子懸濁液50μLを回収し、新たな96ウェルプレートに移した後、5分以内にプレートリーダーで発光量を測定することで、TM4SF1を検出した。
 実施例8の結果を表4および図4に示す。PC-3細胞のスパイク数に応じて、発光量(すなわち、TM4SF1の検出量)が増大した。以上の結果より、血液中に含まれる腫瘍細胞由来のタンパク質であるTM4SF1を検出できることが確認できた。
Figure JPOXMLDOC01-appb-T000004
実施例9 健常者血漿およびがん患者血漿中のTM4SF1陽性細胞外小胞の検出
 (1)健常者血漿の回収
 (1-1)インフォームドコンセントを取得した健常者7名から、EDTA-2K採血管(テルモ社製VP-DK050K)に5mL採血した。
 (1-2)採血管を1,500Gで10分間、4℃で遠心分離して血球を分離後、上清を15mLチューブに回収した(以下、「上清1」とも表記)。
 (1-3)回収した上清1をさらに1,500Gで10分間、4℃で遠心分離することで混入した細胞デブリを除去後、上清を回収することで健常者血漿を得た。
 (2)ビオチン修飾抗ヒトCD9抗体の作製
 (2-1)1mg/mL抗CD9抗体(フロンティア研究所社製)200μLをフィルトレーションチューブ(同人化学研究所社製)に添加し、8,000Gで10分間、室温で遠心分離し、フィルター上に抗体を固定化した。
 (2-2)Reaction Buffer(同人化学研究所社製)100μLをフィルターチューブに添加した。
 (2-3)ジメチルスルホキシド10μLに懸濁したNH2-Reactive Biotin(同人化学研究所社製)をフィルターチューブに添加し、懸濁後、37℃で10分間インキュベーションすることにより抗ヒトCD9抗体のビオチン修飾を行った。
 (2-4)WS Buffer(同人化学研究所社製)100μLをフィルターチューブに添加し、8,000Gで10分間、室温で遠心分離した後、フロースルーを除去した。
 (2-5)WS Buffer(同人化学研究所社製)200μLをフィルターチューブに添加し、8,000Gで10分間、室温で遠心分離した後、フロースルーを除去した。
 (2-6)(2-5)を繰り返し行った。
 (2-7)WS Buffer(同人化学研究所社製)200μLをフィルターチューブに添加し、懸濁することによりビオチン修飾抗ヒトCD9抗体溶液を得た。
 (3)TM4SF1陽性細胞外小胞の測定
 (3-1)(1-3)で得た健常者血漿(7名分)ならびにビジコムジャパン社より入手したステージIVの胃がん患者血漿(7名分)、ステージIVの腎がん患者血漿(10名分)、およびステージIVの肺がん患者血漿(7名分)をそれぞれPBSで5倍希釈することで血漿試料を調製した。
 (3-2)抗体固定化磁性粒子として、実施例4で作製した抗TM4SF1抗体固定化磁性粒子を、実施例5(1-4)で添加する細胞外小胞懸濁液として、(3-1)で調製した血漿試料を、実施例5(1-7)で添加する抗体として(2-7)で得たビオチン修飾抗ヒトCD9抗体溶液を用いた以外は、実施例5(1)と同様の方法で血漿中のTM4SF1陽性細胞外小胞を検出した。
 実施例9の結果を表5および図5に示す。健常者の血漿試料と比較して、ステージIVの胃がん患者の血漿試料でCLEIAの発光量が有意に増加(p<0.05)しており、胃がん患者では血漿中のTM4SF1陽性細胞外小胞が増加することが確認された。また、健常者の血漿試料と比較して、ステージIVの腎がん患者および肺がん患者の血漿試料でCLEIAの発光量が増加しており、腎がん患者および肺がん患者では血漿中のTM4SF1陽性細胞外小胞が増加する傾向が確認された。以上の結果から、本発明の検出方法は胃がん患者、腎がん患者、および肺がん患者(特に胃がん患者)の診断に適用可能であることが示された。
Figure JPOXMLDOC01-appb-T000005
 実施例7および実施例9において示されたように、本発明の検出方法は前立腺がん患者および胃がん患者等の複数のがん種のがん患者の診断に適用可能であることから、本発明の検出方法はTM4SF1が高発現するその他の多くのがん種にも適用可能であることが示唆される。
 本発明により、腫瘍細胞(特に前立腺がん細胞や胃がん細胞)を簡便かつ高精度に検出できる。また、本発明により、被験体における癌(特に前立腺癌や胃癌)を簡便かつ高精度に検査できる。
 従来、前立腺がんの検査は、血中の前立腺特異抗原(PSA=Prostate Specific Antigen)の濃度(PSA値)に基づいて行なわれている。しかし、PSA値は前立腺肥大や炎症等に起因して異常値を示すこともあり、PSA値が異常値である全ての被検者が前立腺がんであるとは判定できず、確定診断として前記被検者に対し侵襲性の高い前立腺針生検を行なう必要があった。本発明の方法により、PSA値とは異なる指標で前立腺がんを検査できるため、前立腺がんを検出する精度がPSA値のみで判定する場合と比較し、向上することが期待できる。また本発明の方法は、PSA値の検査と同様、血液試料を利用した検査のため、前立腺針生検と比較し、被検者に対する負担も軽減できる。

Claims (8)

  1.  腫瘍細胞を検出する方法であって、
     試料中のTM4SF1を検出する工程
     を含み、
     前記TM4SF1が、細胞外小胞または血液に含まれるTM4SF1である、方法。
  2.  前記TM4SF1が、前記細胞外小胞に含まれるTM4SF1であり、
     前記工程が、前記細胞外小胞を前記試料から回収する工程と、当該回収した細胞外小胞に含まれる前記TM4SF1を検出する工程を含む、請求項1に記載の方法。
  3.  前記試料が、血液由来試料である、請求項1または2に記載の方法。
  4.  前記腫瘍細胞が、前立腺癌細胞、胃癌細胞、腎癌細胞、または肺癌細胞である、請求項1または2に記載の方法。
  5.  被験体における癌を検査する方法であって、
     被験体から得られた試料中のTM4SF1を検出する工程
     を含み、
     前記TM4SF1が、細胞外小胞または血液に含まれるTM4SF1である、方法。
  6.  前記TM4SF1が、前記細胞外小胞に含まれるTM4SF1であり、
     前記工程が、前記細胞外小胞を前記試料から回収する工程と、当該回収した細胞外小胞に含まれる前記TM4SF1を検出する工程を含む、請求項5に記載の方法。
  7.  前記試料が、血液由来試料である、請求項5または6に記載の方法。
  8.  前記癌が、前立腺癌、胃癌、腎癌、または肺癌である、請求項5または6に記載の方法。
PCT/JP2022/046166 2021-12-16 2022-12-15 腫瘍細胞の検出方法および癌の検査方法 WO2023112980A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023567824A JPWO2023112980A1 (ja) 2021-12-16 2022-12-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-204084 2021-12-16
JP2021204084 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023112980A1 true WO2023112980A1 (ja) 2023-06-22

Family

ID=86774368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046166 WO2023112980A1 (ja) 2021-12-16 2022-12-15 腫瘍細胞の検出方法および癌の検査方法

Country Status (2)

Country Link
JP (1) JPWO2023112980A1 (ja)
WO (1) WO2023112980A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172030A1 (ja) * 2018-03-09 2019-09-12 東ソー株式会社 腫瘍マーカーならびに腫瘍細胞を夾雑細胞と区別して回収および検出する方法
JP2021183958A (ja) * 2020-01-14 2021-12-02 学校法人杏林学園 上皮系マーカー陰性の腫瘍細胞を検出する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172030A1 (ja) * 2018-03-09 2019-09-12 東ソー株式会社 腫瘍マーカーならびに腫瘍細胞を夾雑細胞と区別して回収および検出する方法
JP2021183958A (ja) * 2020-01-14 2021-12-02 学校法人杏林学園 上皮系マーカー陰性の腫瘍細胞を検出する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FU FANGMEI, YANG XUDONG, ZHENG MINYING, ZHAO QI, ZHANG KEXIN, LI ZUGUI, ZHANG HAO, ZHANG SHIWU: "Role of Transmembrane 4 L Six Family 1 in the Development and Progression of Cancer", FRONTIERS IN MOLECULAR BIOSCIENCES, vol. 7, pages 20200818, XP093071044, DOI: 10.3389/fmolb.2020.00202 *

Also Published As

Publication number Publication date
JPWO2023112980A1 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
US10345310B2 (en) Diagnostic test for early stage cancer
JP4798801B2 (ja) 循環する癌細胞におけるHer−2/neuタンパク質のレベルの上昇の検出および処置
JP5671475B2 (ja) 方法
US20090136946A1 (en) Automated Enumeration and Characterization of Circulating Melanoma Cells in Blood
US20120178094A1 (en) Method for Categorizing Circulating Tumor Cells
US11397180B2 (en) Methods and compositions for rapid functional analysis of gene variants
US20090291920A1 (en) Detection of steroid receptors on circulating carcinoma cells and treatment
JPWO2016186215A1 (ja) 分離方法、検出方法、シグナル測定方法、疾患の判定方法、薬効評価方法、キット、液状組成物及び検体希釈液
JP5916991B2 (ja) 遺伝子異常細胞の解析方法
JP2010281595A (ja) リガンド分子の検出方法
WO2023112980A1 (ja) 腫瘍細胞の検出方法および癌の検査方法
AU2018243850B2 (en) Methods of using giant cell nucleic acid characterization in cancer screening, diagnostics, treatment and recurrence
EP2391890A1 (en) Monitoring serial changs in circulating breast cancer cells in mice
JP7432578B2 (ja) がんマーカーおよびその用途
JP7521750B2 (ja) 上皮系マーカー陰性の腫瘍細胞を検出する方法
US20090117532A1 (en) Pre-clinical method for monitoring serial changes in circulating breast cancer cells in mice
JP5358808B2 (ja) 腫瘍マーカー、腫瘍診断キット、腫瘍マーカーの測定方法および腫瘍診断方法
WO2003098212B1 (en) Method of isolating an endotehelial cell and method of donor specific crossmatching
LU500787B1 (en) Isolation and detection of cdcp1 positive circulating tumor cells
US20230128478A1 (en) Isolation and detection of cdcp1 positive circulating tumor cells
JP2024066398A (ja) がんの検査方法、試薬、キット及び装置
WO2022000065A1 (pt) Aptâmero modificado, sistema aptaimunológico, painel aptaimunológico, kit, método e uso no diagnóstico de câncer de próstata
KR102180623B1 (ko) 암의 골전이 진단용 조성물 및 이를 이용한 암의 골전이 진단방법
JP7267527B2 (ja) 新規肝癌マーカー
JP2023004699A (ja) Abo血液型不適合腎移植を行う被験動物における抗体関連型拒絶反応の可能性を試験する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023567824

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE