WO2022000065A1 - Aptâmero modificado, sistema aptaimunológico, painel aptaimunológico, kit, método e uso no diagnóstico de câncer de próstata - Google Patents

Aptâmero modificado, sistema aptaimunológico, painel aptaimunológico, kit, método e uso no diagnóstico de câncer de próstata Download PDF

Info

Publication number
WO2022000065A1
WO2022000065A1 PCT/BR2021/050290 BR2021050290W WO2022000065A1 WO 2022000065 A1 WO2022000065 A1 WO 2022000065A1 BR 2021050290 W BR2021050290 W BR 2021050290W WO 2022000065 A1 WO2022000065 A1 WO 2022000065A1
Authority
WO
WIPO (PCT)
Prior art keywords
aptaimmunological
cells
panel
prostate cancer
aptamer
Prior art date
Application number
PCT/BR2021/050290
Other languages
English (en)
French (fr)
Other versions
WO2022000065A4 (pt
Inventor
Vivian Alonso GOULART
Aline Gomes De SOUZA
Karina MARANGONI
Esther Campos FERNÁNDEZ
Emília Rezende VAZ
Luiz Ricardo Goulart Filho
Original Assignee
Universidade Federal de Uberlândia
Imunoscan Engenharia Molecular Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal de Uberlândia, Imunoscan Engenharia Molecular Ltda filed Critical Universidade Federal de Uberlândia
Publication of WO2022000065A1 publication Critical patent/WO2022000065A1/pt
Publication of WO2022000065A4 publication Critical patent/WO2022000065A4/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7125Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention refers to a tool that assists in the clinical procedures of patients with prostate cancer through new modified aptamers and a system based on the combination of these new aptamers with specific antibodies that have the ability to identify prostate tumor cells using the flow cytometry technique for analysis of biological samples.
  • the tool serves to assist in the diagnosis of prostate cancer, but also in the screening, prognosis and monitoring of responses to treatments.
  • Prostate cancer is quite common, accounting for 10% of new cancer cases in the United States in 2019 (HOWLADER et al., 2019). In Brazil, the estimated incidence for 2020 is 66,000 new cases, being the second most common type of cancer in men (INSTITUTO NACIONAL DE CANCER JOSÉ ALENCAR GOMES DA SILVA, 2019).
  • PSA prostate-specific antigen
  • Prostate-Specific Antigen in blood serum, supplemented by digital rectal examination.
  • a positive PSA result needs to be confirmed by histopathological examination from an ultrasound-guided invasive biopsy of the prostate tissue. After a negative biopsy result, a multiparametric MRI may additionally be performed.
  • the PSA test is now the gold standard technique in the clinical practice of prostate cancer. However, it is not a conclusive test, as it needs complementary techniques to validate its result (VELONAS et al., 2013).
  • liquid biopsies analyze tumor components released into body fluids such as blood, urine, semen, saliva and other secretions.
  • Liquid biopsies are able to represent the current state of cancer in an individual (KREBS et al., 2014) and their sampling is less invasive than tissue biopsies, which are surgical.
  • tumors release cells that can be detected, for example, in the blood of the affected individual (ALLARD et al., 2005). These cells are known as circulating tumor cells (CTCs).
  • CTCs circulating tumor cells
  • the expression of surface markers (also called antigens) on CTCs and their quantification have already been studied as factors for the clinical monitoring of several types of cancer, mainly from immunological labeling, using antibodies.
  • CTCs The presence of CTCs in blood samples is very rare, on the order of several CTCs in tens of billions of blood cells.
  • many approaches first enrich the samples with the population of CTCs and then analyze them.
  • the enrichment of CTCs is currently done based on the difference in physical characteristics (size, morphology, density, charge, etc.) or on the expression of surface antigens present in the plasma membrane.
  • one of the problems that enrichment technologies face is the high heterogeneity of these technologies. cells, as they can present variability both in the physical characteristics and in the expression of these antigens.
  • patent CN110004062A presents an interesting strategy of negative enrichment of CTCs in blood by eliminating other cell types.
  • the red blood cells are lysed and a rotating magnetic ring with anti-CD45 antibodies captures the leukocytes for disposal, thus concentrating all types of CTCs with a high yield.
  • CTCs express in their plasma membrane different antigens of cell differentiation or dedifferentiation and in different degrees, according to the epithelial-mesenchymal transition (EMT) stage in which they are found. These antigens provide cells with a hybrid phenotype between epithelial (with differentiated features) and mesenchymal (with undifferentiated features).
  • EMT epithelial-mesenchymal transition
  • TMS allows CTCs from the primary tumor to leak into the bloodstream and invade other tissues, forming cell niches that will give rise to secondary tumors after a reverse transition process.
  • MET mesenchymal-epithelial transition
  • the present invention encompasses the use of both epithelial antigen-binding antibodies, such as EpCAM, and mesenchymal antigen-binding antibodies, such as CD44 and CD133, which are indicative of tumor stem cells.
  • EpCAM is a transmembrane glycoprotein expressed in normal epithelial cells and exacerbated in carcinomas, with a relevant role in the formation of adhesive structures and cell polarity, being correlated with worse overall survival, poor prognosis and higher risk of recurrence (HUANG et al. ., 2018).
  • CD133 is also known as proeminin-1, a transmembrane glycoprotein present on tumor and non-tumor stem cells.
  • CD44 is an adhesion receptor that is found on the surface of cells and is highly expressed in several types of tumors, where it regulates cell migration and invasion during the metastasis process (SENBANJO; CHELLAIAH, 2017). Besides these antigens, CD45 also forms part of this invention by excluding cells of leukocyte origin from the analysis through the absence of their expression. In the present invention, such antigens are identified by antibodies.
  • the present invention covers D4 and R4 aptamers that were modified from the original A4 aptamer (SOUZA et al., 2016) and specifically bind to antigens not yet identified in the plasma membrane of prostate tumor cells .
  • Aptamers are single-stranded oligonucleotides or peptides biomolecules, formed by the binding of several nucleotides or amino acids, respectively, and with the ability to specifically bind to target molecules in a similar way to monoclonal antibodies.
  • ligands by exponential enrichment (SELEX) is used to select aptamers from a set of random sequences of oligonucleotides or amino acids.
  • oligonucleotide aptamers Compared to antibodies, oligonucleotide aptamers present better tissue penetration due to their smaller size, greater specificity, greater reproducibility, versatility and durability due to their chemical synthesis, which also facilitates their production, modification, manipulation and storage, in addition to the low immunogenicity that increases success in therapies, among other advantages (ZHAO; TAN; FANG, 2015).
  • the present invention proposes the joint use of aptamers of oligonucleotide nature D4 and/or R4 with anti-EpCAM and anti-CD45 or anti-CD44 and anti-CD133 antibodies, as markers for screening, diagnosis, prognosis and therapeutic monitoring of prostate cancer from the identification of these biomarkers by conventional flow cytometry in biological samples, such as body fluids or tissue biopsies.
  • patent application US2008206757A1 refers, among others, to a method of enrichment of CTCs from blood samples from individuals with any type of cancer for their subsequent clinical analysis.
  • This enrichment method similar to that used in the present invention, comprises steps of centrifugation, washing in buffers, lysis or depletion of erythrocytes and incubation with antibodies or other binding molecules to separate cells of interest or discard undesirable ones.
  • said patent application does not mention aptamers, nor anti-CD133 or anti-EpCAM antibodies, as in the present invention. On the other hand, it proposes the use of anti-
  • CD44 and anti-CD45 and adhesion molecule binding antibodies different to EpCAM in combination with many other antibodies.
  • this proposal uses antibodies coupled to magnetic beads to facilitate the separation of cells in the enriched sample, includes a filtration step with a French press and uses a blood sample stored at room temperature, which can be analyzed within 4 days.
  • Another method and device for the enrichment and analysis of CTCs in blood samples from cancer patients is the one proposed in patent CN107449713A, which is also limited to the use of antibodies: anti-CD45 for the removal of leukocytes, anti -EpCAM for concentration of CTCs with epithelial profile, anti-vimentin for CTCs with mesenchymal profile and anti-pancytokeratin for confirmation of CTC enrichment.
  • the CTC detection system presented by patent CN106645726A comprises the lysis of erythrocytes from blood samples, the use of a CTC adsorbent support from the binding of these to the anti-
  • EpCAM or anti-EGFR EpCAM or anti-EGFR, filtration of the resulting solution, fixation of cells, nuclear fluorescent labeling of cells with DAPI or Hoechst 33258 dye, labeling of tumor cells with anti-CK8/CK18/CK19, anti-PanCK, quantum dot-coupled anti-vimentin or anti-plastin-3, labeling of leukocytes with quantum dot-coupled anti-CD45, anti-CD15 or anti-CD33 antibodies, and evaluation of the labeling by an operator using a fluorescence microscope.
  • This system claims a lower loss rate of CTCs due to the combination of adsorbent support and filtration and a higher quality of labeling by the use of quantum dots, whose fluorescence is brighter and more stable than that of commonly used fluorochromes.
  • quantum dots whose fluorescence is brighter and more stable than that of commonly used fluorochromes.
  • the use of physical separation systems compromises the integrity of the cells, and the evaluation of the labels by a technician can lead to variable results due to the subjectivity of the analysis.
  • the patent US8329422B2 refers to methods and reagents for the analysis of CTCs, clusters or cell fragments by flow cytometry or fluorescence microscopy, for the screening, monitoring and diagnosis of tumors. This patent has already yielded the commercial platform
  • Cell surface aptamers have already been proposed for the detection of tumor cells: individually, as the CD133-binding aptamer for undifferentiated thyroid carcinoma described in patent CN109536503A, or jointly, as in patent US2011124015A1 and in systems multiplex of WO2013185078A1 or JP2017079634A patents.
  • the latter proposes an interesting strategy for detecting CTCs from the amplification of luminescent signals based on the hybridization of complexed aptamers in which an EpCAM-binding CTC capture aptamer participates.
  • the present invention combines well-established antibodies with modified cell surface aptamers, to develop a reliable, fast, low-cost, easy-to-popularize prostate CTC labeling system. patients and simple operation and equipment.
  • Figure 1 presents the most likely two- and three-dimensional sequences and conformations of the modified R4 and D4 aptamers, with their corresponding potential binding domains.
  • Figure 2 illustrates the flow diagram of the sample processing, up to the fluorescence reading step in a flow cytometer.
  • Figure 3 shows the data analysis strategy by flow cytometry.
  • Figure 4 presents the groups of healthy individuals and patients with prostate cancer according to the variables analyzed in panel 1 with the aptamer R4, the cutoff that best differentiates them and its corresponding ROC curve.
  • Figure 5 presents the groups of healthy individuals and patients with prostate cancer according to the variables analyzed in panel 1 with aptamer D4, the cutoff that best differentiates them and its corresponding ROC curve.
  • Figure 6 presents the groups of healthy individuals and patients with prostate cancer according to the variables analyzed in panel 2 with the aptamer R4, the cutoff that best differentiates them and its corresponding ROC curve.
  • Figure 7 shows the groups of healthy individuals and patients with prostate cancer according to the variables analyzed in panel 2 with aptamer D4, the cutoff that best differentiates them and its corresponding ROC curve.
  • Figure 8 presents a preliminary comparison of a group of healthy control subjects and another of patients treated with prostate cancer according to the variable percentage of CD45 EpCAM + cells that represents the labeling of antibodies used to enrich CTCs in the CellSearch platform and also panel 1 without the aptamers
  • Figure 9 presents a preliminary comparison of a group of healthy control subjects and two groups of patients with prostate cancer (one treated and the other untreated) according to the variable percentage of CD45 EpCAM + R4 + cells representing panel 1 with the aptamer R4, proposed by the present invention.
  • the present invention proposes new modified aptamers and an aptaimmunological system that comprises the combination of at least one of the modified aptamers and at least one specific antibody, in which the aptamers are of oligonucleotide nature in their RNA and/or DNA form .
  • the present patent application describes new aptamers modified in their RNA or DNA form that, when combined with specific antibodies, identify circulating prostate cancer tumor cells in biological samples.
  • Aptamers R4 and D4 are modified aptamers containing 28 nitrogenous bases (SEQ ID NO. 1 and SEQ ID NO. 2, respectively) that are related to a part of the DNA aptamer A4 sequence disclosed by SOUZA et al. (SOUZA et al., 2016).
  • the modified aptamers R4 and D4 described in the present application have the nitrogenous bases linked to a phosphate and a pentose moiety, ribose in the case of the RNA aptamer and 2' deoxyribose in the case of the DNA aptamer.
  • the aptamers used in the present invention have a total of 29 nucleotides and are called R4 and D4 (SEQ ID No. 3 and SEQ ID No. 4, respectively), where R4 is the RNA aptamer comprising SEQ ID NO. . 1 and modified comprises SEQ ID No.
  • D4 is the DNA aptamer and comprises SEQ ID NO. 2 and modified comprises SEQ ID No. 4, with the addition of an inverted 2'deoxythymidine monophosphate at the 3' end.
  • Said aptamers have the secondary and three-dimensional structures as illustrated in Figure 1. These modifications are particularly preferable, but may also be susceptible to others, such as for example direct fluorescence labeling from the addition at the 5' end of a fluorochrome.
  • the modified aptamer sequences are formed by ribonucleotides (r) (R4) and deoxyribonucleotides (d) (D4), modified at the 5' end by a biotin and at the 3' end by an inverted thymine.
  • the modified aptamer R4 comprises 28 ribonucleotides (nitrogenous bases linked to a ribose molecule and a phosphate moiety) (SEQ ID NO:
  • an inverted deoxyribonucleotide at the 3' end, position 29 (SEQ ID NO 3). More particularly the inverted deoxyribonucleotide comprises a Thymine as a nitrogenous base.
  • DNA aptamer sequence D4 (5' ® 3') Biotin5'dAdGdCdCdGdAdGdAdGdGdGdUdAdAdGdCdAdAdAdCdCdAd CdGdCdCdGdT5 .
  • the modified aptamer D4 comprises 28 deoxyribonucleotides (nitrogenous bases attached to a deoxyribose molecule and a phosphate moiety) (SEQ ID No.
  • an inverted deoxyribonucleotide at the 3' end, position 29 (SEQ ID NO 4).
  • the inverted deoxyribonucleotide comprises a Thymine as a nitrogenous base.
  • said sequence comprises a substitution at the nucleotide position 11, where the nitrogenous base Thymine (specific to a DNA sequence) has been replaced by Uracil (specific to an RNA sequence), i.e., replacing a deoxythymidine monophosphate with a deoxyuridine monophosphate.
  • FIG 1 the potential target protein binding domain of aptamers is highlighted in yellow R4 and D4 (PBD, protein binding domain). These PDBs share a hairpin loop structure in the most likely secondary conformation of both aptamers R4 and D4 ( Figure 1, B and E). In this way, aptamers present a three-dimensional conformation ( Figure 1, C and F) that allows the recognition of their target.
  • PDB protein binding domain
  • Aptamers D4 and R4 are combined with two panels of antibodies to analyze the labels and thus identify tumor cells from samples of individuals by flow cytometry.
  • the aptaimmunological panel 1 is formed by one of the aptamers combined with the anti-EpCAM and anti-CD45 antibodies and the aptaimmunological panel 2 by one of the aptamers combined with the anti-CD44 and anti-CD133 antibodies.
  • positive anti-EpCAM antibody that binds to epithelial cell adhesion molecules and negative labeling of pan-leukocyte CD45 antibody to analyze the positive labeling of D4 or R4 in a population of non-leukocyte epithelial cells.
  • positive labeling of anti-CD44 and anti-CD133 antibodies binding to tumor stem cells is used to analyze positive labeling of D4 or R4 in this cell population.
  • the present invention describes an aptaimmunological system comprising the modified aptamer
  • RNA modified aptamer comprising SEQ ID NO. 1, and/or modified aptamer D4, DNA modified aptamer comprising SEQ ID NO. two; and wherein it further comprises specific antibodies, preferably anti-EpCAM and anti-CD45 or anti-CD44 and anti-CD133 antibodies.
  • the aptaimmunological system may be in the form of a pharmaceutical composition or composition, or it may comprise its elements separated into more than one pharmaceutical composition or compositions, which will be combined according to the desired use.
  • composition(s) comprises aptaimmunological panels 1 and 2 which in turn include a combination of R4 or D4 aptamers and anti-EpCAM, anti-CD45, anti-CD44 and /or anti-CD133 with their respective controls.
  • the invention additionally describes the use of this aptaimmunological system, based on the quantification of prostate CTCs identified in a biological sample by at least one of the aptaimmunological panels 1 and 2 and on the degree of expression of the aptamer targets, from the mean fluorescence intensity in the same cells, to indicate the presence of circulating prostate tumor cells in the individual.
  • the use of the system aptaimmunological is useful to aid in diagnosis, screening, analysis of disposition to disease, prognosis, prediction of the best treatment, pharmacogenomics and monitoring of treatment.
  • the present invention further provides a kit for the detection of circulating prostate cancer cells comprising the elements and instructions for use necessary for the detection of said prostate cancer cells in a tissue or liquid sample from a patient, preferably blood peripheral.
  • the elements include the aforementioned aptaimmunological system or at least one of the two aptaimmunological panels 1 and 2 with their respective controls and custom markings for each user's flow cytometer.
  • the Kit further comprises a biotin-binding complex, more particularly streptavidin labeled with a fluorochrome or the aptamer(s) can be further labeled directly with the addition of a fluorochrome at the 5' end.
  • the antibody(s) may also be labeled with a different fluorochrome.
  • the Kit may additionally comprise at least one collection tube, but not limited to red cell lysis, blocking and washing buffers. More particularly, at least one vacuum collection tube with EDTA, red blood cell lysis buffer with ammonium chloride with or without cell fixative, blocking buffer with inactivated human blood plasma type AB, phosphate buffer with albumin bovine serum and basic azide as a wash solution and/or viability dye with different fluorescence than those used in the panels.
  • the present invention further describes a method of diagnosing, prognosticating, predicting the best treatment and/or monitoring the treatment of prostate cancer.
  • the following steps (1, 2, 3, 4, 5, 6, 7 and 8) explain the processing of biological samples from patients in such a way that they allow a person skilled in the art to develop the present invention by providing a method for detecting and quantifying Prostate cancer CTCs, assigning them a clinical value that allows a better medical management of this disease.
  • Said method comprises the steps of:
  • the first step is the collection of the sample, which can be a tissue or liquid biopsy (from a body fluid), but preferably the sample is peripheral blood because it is a non-invasive sample, easily accessible and operation, and widely accepted among patients.
  • the sample is peripheral blood because it is a non-invasive sample, easily accessible and operation, and widely accepted among patients.
  • venipuncture should be performed in the cubital fossa of the arm, using tubes for vacuum collection with 4 mL EDTA, of preference.
  • the first volume collected approximately 1 mL, should be discarded in a tube, as it may contain skin epithelial cells that interfere with the analysis of the sample.
  • a second collection tube must be used, keeping the needle in the arm and changing tubes. This second tube must contain 4 mL of blood and must be kept at room temperature for a maximum of two hours, until it continues its processing in the next step.
  • the second step is the isolation of the peripheral blood mononuclear cell layer.
  • Blood from the second tube should be homogenized by gently inverting the tube several times, then placed in an ultracentrifuge at room temperature for 15 minutes at a speed of 200 g. After centrifugation, the peripheral blood mononuclear cell layer, also called the buffy coat, must be transferred to a cytometry tube.
  • the leukocyte ring separation method is not limited to this and other techniques can be used which combine for example density gradient centrifugation or filtration.
  • the third step involves lysis of the red blood cells.
  • This lysis can be performed with in-house or commercially available buffers, with ammonium chloride as the main component and without fixatives to keep the cells alive at the time of analysis, or with fixatives such as formaldehyde to increase cell stability and facilitate logistics, depending on the conditions of each laboratory.
  • the resulting cell suspension should be washed twice and these washes should be done with a washing solution (composed of 1% bovine serum albumin (BSA) and 0.1% basic azide (m/v). ) in phosphate buffer (PBS) with pH 7.4 and membrane filtered at 0.22 pm) after 5 minutes of centrifugation at 200g at room temperature.
  • BSA bovine serum albumin
  • PBS phosphate buffer
  • the fourth step is the blocking of nonspecific binding of the Fc portion of the antibodies used in the panels with the surface receptors of the sample cells.
  • the cell suspension should be incubated for 15 minutes with a 10% (v/v) inactivated human blood plasma type AB blocking solution in the wash solution or an equivalent commercial blocking solution.
  • the fifth step comprises separately incubating the cell suspension in the blocking buffer with the aptaimmunological panel 1 or 2 and the viability dye and then washing with wash solution.
  • this step is the first incubation for 30 minutes at 4°C of the cell suspension in the blocking solution with the aptamer and antibody panels that must be added in different tubes, according to the following combinations: [0055] Tube without marking: do not add anything.
  • Panel 1 tube aptamer (R4 or D4), anti-
  • EpCAM and anti-CD45 EpCAM and anti-CD45.
  • Control tube panel 1 streptavidin, anti-EpCAM isotype and anti-CD45 isotype.
  • Tube panel 2 aptamer (R4 or D4), anti-CD44 and anti-CD133.
  • Control tube panel 2 streptavidin, anti-CD44 isotype and anti-CD133 isotype.
  • Antibodies their corresponding isotypes and streptavidin are labeled with different fluorochromes according to the flow cytometer filters. Except in the unlabeled tube, a viability dye with a different peak emission must be added to the fluorochromes already used. Therefore, the flow cytometer used must be able to read at least four different fluorochromes. After incubation, the cell suspension should be washed twice with the wash solution after 5 minutes centrifuging at 200g and 4°C.
  • the sixth step comprises indirectly labeling the aptamers with their streptavidin ligand and then washing with washing solution. This step therefore requires the addition of labeled streptavidin to the tubes with aptamers (Aptamer Tube + Panel 1 and Aptamer Tube + Panel 1
  • the seventh step corresponds to the fluorescence reading in the flow cytometer. Once the cells are resuspended, the samples are read in the flow cytometer from the determination of a window that must consider a population of up to 500,000 leukocytes identified according to their size and granularity, disregarding the cell debris.
  • the eighth step is the analysis of data obtained in flow cytometry.
  • single cells are selected, with an area and height ratio of their size close to 1, excluding doublets.
  • the live cells are selected by the fluorescence of the viability dye.
  • the specific markers of each panel are selected individually by histogram, according to the corresponding controls (streptavidin and isotypes).
  • cells with negative staining for CD45 are selected, within this population cells with positive staining for EpCAM are selected and within this subpopulation cells with positive labeling for aptamers (R4 or D4).
  • cells with positive staining for CD133 are selected, within this population cells with positive staining for CD44 are selected and within this subpopulation cells with positive staining for aptamers (R4 or D4) are selected.
  • the result is the percentage of cells selected in each panel.
  • the result can also be the degree of target expression of the aptamers in the same cells, calculated from the average fluorescence intensity. Therefore, the present invention also includes as a result an index calculated from mathematical expressions that use these two parameters.
  • the result indicates the presence of CTCs of prostatic origin, serving as a diagnosis for prostate cancer.
  • CTCs may be subjected to other means of detection, such as fluorescence microscopic examination.
  • CTCs can be separated, for example, by flow cytometers with cell sorting or by applying streptavidin-coupled magnetic beads, and obtained as samples for basic research for the analysis of additional markers or other clinical applications, such as screening. , analysis of disease disposition, prognosis, prediction of the best treatment (personalized treatment), pharmacogenomics, treatment monitoring, and even the development of targeted treatments with drugs or other therapeutic agents.
  • Example 1 PREPARATION OF PERIPHERAL BLOOD SAMPLES FOR ANALYSIS OF PANELS 1 AND 2 BY FLOW CYTOMETRY
  • the inclusion criterion for patients with prostate cancer was the diagnosis of prostate cancer and for controls, the absence of the diagnosis of prostate cancer, which included healthy individuals or with other prostate diseases such as benign hyperplasia or prostatitis . Previous diagnosis of any type of cancer was the exclusion criterion for all research participants.
  • Peripheral blood samples from 34 subjects were collected in 4 mL EDTA vacuum tubes (Vacuette Greiner Bio-One, Americana, SP, Brazil) at Hospital de Cl ⁇ nicas da UFU, according to the research protocol with Certificate of Presentation for Ethical Consideration (CAAE) 71108817.2.0000.5152, approved by the Ethics Committee in Research with Human Beings of the UFU. Of these samples, 20 were controls and 14 were prostate cancer patients.
  • CAAE Certificate of Presentation for Ethical Consideration
  • the pellet was then resuspended in each test tube with 90 ⁇ l of the wash solution and 10 ⁇ l of inactivated human plasma from type AB blood, as blocking solution, and incubated for 15 minutes at room temperature. After blocking, the markers were added: the viability dye (Fixable Viability Stain 620 (FVS620), BD, Franklin Lakes, NJ, USA), the aptamers and the antibodies in the corresponding tubes. Aptamers R4 and D4 were synthesized (IDT, Coralville, IA, USA) with their respective sequences and modifications ( Figure 1 A and D) and lyophilized. For their use, the aptamers were resuspended in injection water to a stock solution with a concentration of 100 pM. For the labeling of aptamers, streptavidin linked to the fluorochrome FITC was used (SAv-FITC, 405201,
  • the markers were incubated at 4 °C for 30 minutes in the dark as follows.
  • the first tube (Tube 1) was incubated without markers, serving as a control.
  • the second tube (Tube 2) was incubated with 0.1 ⁇ l FVS620, 0.2 ⁇ l R4, 0.25 ⁇ l EpCAM-APC (324208) and 0.25 ⁇ l CD45-PE (368510).
  • the third tube (Tube 3) was incubated with 0.1 ⁇ l FVS620, 0.2 ⁇ l D4, 0.25 ⁇ l EpCAM-APC (324208) and 0.25 ⁇ l CD45-PE (368510).
  • the fourth tube (Tube 4) was incubated with 0.1 ⁇ l of FVS620; 0.2 pL of SAv-FITC, 0.25 pL of EpCAM IgG2bK-APC isotype (400322) and 0.25 pL of CD45 IgG1K-PE isotype (400114).
  • the fifth tube (Tube 5) was incubated with 0.1 ⁇ l FVS620, 0.2 ⁇ l R4, 0.25 ⁇ l CD44-APC (338806) and 0.25 ⁇ l CD133-PE (372804).
  • the sixth tube (Tube 6) was incubated with 0.1 ⁇ l FVS620, 0.2 ⁇ l D4, 0.25 ⁇ l CD44-APC (338806) and 0.25 ⁇ l CD133-PE (372804).
  • the seventh tube (Tube 7) was incubated with 0.1 ⁇ l of FVS620; 0.2 pL of SAv-FITC, 0.25 pL of CD44 IgG1K-APC isotype, (400120) and 0.25 pL of CD133 IgG1K-PE isotype (400114). After incubation, the tubes were centrifuged at 200 g for 5 minutes at 4 °C and the supernatant discarded by inversion. The pellet from each tube was resuspended twice with 2 mL of the wash solution, homogenized and centrifuged at 200 g for 5 minutes at 4 °C.
  • the Accuri C6 cytometer (BD, Franklin Lakes, NJ, USA) was used with a 488 nm blue laser and 533/30, 585/40 and 670 LP filters for read fluorescence from FITC (FL-1), PE (FL-2) and FVS620 (FL-3) respectively, and with the 640 nm red laser and 670 LP filter to read the fluorescence from APC (FL-4).
  • Figure 3 illustrates in general how this analysis was performed in the FlowJo program, version X 10.0.7r2 for Windows.
  • a population of 500 thousand leukocytes was selected from the cytometric data of the first tube, identified according to its size and granularity, disregarding cellular debris. From this population, singlets were selected, as those leukocytes with a ratio between area and height of their size close to 1, excluding doublets. Within the singlets, live cells were selected by the fluorescence of the FVS620, based on the absence of labeling in the data of the first tube. These populations were applied to the cytometric data of the other tubes, from the second to the seventh ( Figure 3A).
  • CD133 and CD44 and aptamer targets were established in the fifth and sixth tubes (Panel 2): CD133-positive cells, within these cells CD44-positive cells were identified and within this subpopulation, cells with positive staining for aptamers (in the fifth tube for R4 and in the sixth for D4) were identified ( Figure 3C).
  • Table 1 Percentage of positive cells for the R4 or D4 aptamer target and their degree of expression in the CD45 EpCAM* cell population.
  • Table 2 Diagnostic performance of R4 and D4 aptamers in CD45 EpCAM* cells for prostate cancer.
  • Table 3 Percentage of R4 or D4 positive cells and the degree of target expression of each aptamer in the CD133 + CD44 + cell population.
  • Figures 6 and 7 represent the difference in variables between control subjects and patients in panel 2, for aptamer R4 and D4, respectively.
  • the bars represent the mean and standard deviation in each group, the red line being the cutoff value (plotted to the right of the Y axis) of the ROC curve represented on the right ( Figures 6 and 7, B, D and F).
  • the difference between groups was statistically significant for the percentage of R4+ cells (0.03), R4 MFI (0.047) and D4 MFI (0.0026).
  • the values of the percentage of R4+ cells and the MFI of R4 were statistically significant in the two panels presented.
  • Table 4 Diagnostic performance of R4 and D4 aptamers on CD133 + CD44 + cells for prostate cancer.
  • the MFI variable of D4 in panel 2 proved to be the best diagnostic parameter for prostate cancer, including the highest likelihood and accuracy ratio. This variable could be used both for screening for prostate cancer and for differentiating indolent tumors, with low potential for dissemination, and tumors with more aggressive behavior.
  • Example 5 RESULT USING ONLY ANTIBODIES FROM
  • Figure 8 shows the result of a test performed using the antibodies for CTC enrichment of the CellSearch commercial platform, approved by the FDA (Food and Drug Administration - regulatory agency in the USA), showing the percentage of CD45- and EpCAM+ cells that would be detected using a method similar to that proposed by the present invention.
  • the present aptaimmunological system showed superior diagnostic potential to PSA, the reference biomarker for prostate cancer.
  • the variables analyzed in this system could be applied to reduce overdiagnosis in prostate cancer screening, which reaches up to 67% of false positives in cases of patients with benign prostatic hyperplasia or prostatitis and PSA greater than 4.0 ng/mL (LOEB et al. al., 2014) and up to about 30% false negatives in patients with prostate cancer who are not diagnosed by PSA (TRICOLI;
  • CD133 + CD44 + D4 + which presented only 21.43% of false positives and 15% of false negatives, this variable proved to be a more effective biomarker for the detection of prostate cancer.
  • the clinical use of the present aptaimmunological system would optimize the financial resources destined to prostate cancer in health systems, both public and private, would reduce the mortality of this disease and improve the quality of life of patients.
  • the present patent application describes modified aptamers and an aptaimmunological system that comprises said modified aptamers R4 and/or D4 combined with at least one specific antibody, for use in a method of diagnosis, prognosis, prediction of the best treatment and/or monitoring of prostate cancer treatment.
  • the modified aptamer, R4 is an RNA modified aptamer comprising SEQ ID NO. 1
  • the modified aptamer D4 is a DNA modified aptamer and comprises SEQ ID NO.
  • aptamers were modified with a biotin molecule coupled at the 5' end and an inverted 2'deoxythymidine monophosphate nucleotide at the 3' end (SEQ ID NO: 3 and SEQ ID NO: 4, respectively).
  • At least one specific antibody is selected from the group consisting of: anti-EpCAM antibodies; anti-CD45; anti-CD44; and anti-CD133.
  • anti-EpCAM and anti-CD45 antibody or anti-CD44 and anti-CD133 antibody are selected from the group consisting of: anti-EpCAM antibodies; anti-CD45; anti-CD44; and anti-CD133.
  • anti-EpCAM and anti-CD45 antibody or anti-CD44 and anti-CD133 antibody is selected from the group consisting of: anti-EpCAM antibodies; anti-CD45; anti-CD44; and anti-CD133.
  • anti-EpCAM and anti-CD45 antibody or anti-CD44 and anti-CD133 antibody Preferably, anti-EpCAM and anti-CD45 antibody or anti-CD44 and anti-CD133 antibody.
  • the system further comprises the addition of a biotin-binding complex, more particularly the streptavidin labeled with a fluorochrome or the aptamers can further be labeled directly with the addition of
  • Said aptaimmunological system may be in the form of a pharmaceutical composition or composition, or may comprise its elements separated into more than one pharmaceutical composition or compositions, which will be combined according to the desired use.
  • the present patent application describes the aptaimmunological Panel that comprises the aforementioned aptaimmunological system and its respective controls for use in a method of diagnosis, prognosis, prediction of the best treatment and/or monitoring of the treatment of prostate cancer.
  • Said aptaimmunological panel consisting of panel 1 and/or panel 2, wherein panel 1 comprises the modified aptamer R4 or D4 combined with anti-EpCAM and anti-CD45 antibodies, labeled with different fluorochromes and panel 2 comprises the modified aptamer R4 or D4 combined with anti-CD44 and anti-CD133 antibodies labeled with different fluorochromes.
  • the respective controls comprise: in panel 1 streptavidin, anti-EpCAM isotype and anti-CD45 isotype labeled with the same fluorochromes as their counterparts and in panel 2 streptavidin, anti-CD44 isotype and anti-CD133 isotype labeled with the same fluorochromes from their counterparts.
  • the present application describes the Kit for the detection of circulating cells of prostate cancer in tissue or liquid sample from a patient in which it comprises the aforementioned aptaimmunological system and instructions for use.
  • Said Kit may comprise at least one of the aforementioned aptaimmunological panels, panel 1 and/or panel 2 and instructions for use.
  • Said Kit may further comprise a biotin-binding complex, more particularly streptavidin labeled with a fluorochrome or the aptamers may further be labeled directly with the addition of a fluorochrome at the 5' end.
  • Antibodies can also be labeled with different fluorochromes.
  • the elements that make up said Kit can be in the form of a pharmaceutical composition or composition, or separated into more than one pharmaceutical composition or compositions, which will be combined according to the desired use.
  • said Kit may also comprise at least one vacuum collection tube with EDTA, red blood cell lysis buffer with ammonium chloride and with or without cell fixative, blocking buffer with inactivated human plasma of blood type AB, phosphate buffer with bovine serum albumin and basic azide as wash solution and viability dye with different fluorescence than those used in the panels.
  • the method of diagnosis, prognosis, prediction of the best treatment and/or monitoring of prostate cancer treatment comprising steps of processing and analysis of samples from human subjects using the aforementioned aptaimmunological system; or use of at least one of said aptaimmunological panels; or use of said kit, the sample being able to be a tissue or liquid biopsy of a body fluid, but preferably where the sample is peripheral blood.
  • the Method preferably comprises the sequential steps of: isolating the layer of mononuclear cells from the peripheral blood sample after its centrifugation or after another suitable method of separating the leukocyte ring; transferring the mononuclear cell layer to a cytometry tube; lysing the red cells and then washing the resulting cell suspension using, respectively, a lysis buffer or without fixative and a wash solution; blocking the nonspecific binding of the Fc portion of the antibodies used in the panels, by incubating the cell suspension with a blocking solution; separately incubating the cell suspension in the blocking buffer with the aptaimmunological panels and the viability dye and then washing with wash solution; indirectly labeling the aptamers with their streptavidin ligand and then washing with a wash solution; read the leukocyte fluorescence of the processed samples, based on their identification by their size and granularity in a flow cytometer.
  • the method additionally comprises, after reading in a flow cytometer, analyzing the cytometry data obtained for identification of circulating tumor cells (CTCs) of the prostate, in which it comprises: selecting singlets, among the singlets, selecting live cells , and among the live cells, select individually by histogram the specific markings of each panel, according to their corresponding controls; in aptaimmunological panel 1, select the cells with negative staining for CD45 and among them, select the cells with positive staining for EpCAM and among these select the cells with positive staining for aptamers (R4 or D4); in aptaimmunological panel 2, select the cells with positive staining for CD133 and among them, select the cells with positive staining for CD44 and from among these select the cells with positive staining for aptamers (R4 or D4).
  • CTCs circulating tumor cells
  • CTCs can be subjected to other means of detection, such as fluorescence microscopic examination.
  • a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A presente invenção descreve novos aptâmeros modificados e um sistema aptaimunológico compreendendo ao menos um dos referidos aptâmeros modificados R4 e/ou D4 combinado com ao menos um anticorpo específico, painéis aptaimunológicos compreendendo o referido sistema, kit; método de diagnóstico ou prognóstico e seus usos para identificar biomarcadores do câncer de próstata em células tumorais circulantes de amostras biológicas. A partir da análise destes biomarcadores por citometria de fluxo, é possível discriminar pacientes com câncer de próstata de uma maneira superior ao antígeno prostático específico, que atualmente é o biomarcador padrão-ouro no câncer de próstata. Assim, o sistema aptaimunológico da presente invenção apresenta um menor índice de falsos positivos e falsos negativos, o que é útil na triagem, diagnóstico, prognóstico e monitoramento terapêutico do câncer de próstata para aprimorar seu manejo clínico.

Description

Relatório Descritivo da Patente de Invenção para: "APTÂMERO MODIFICADO, SISTEMA APTAIMUNOLÓGICO, PAINEL APTAIMUNOLÓGICO, KIT, MÉTODO E USO NO DIAGNÓSTICO DE CÂNCER DE PRÓSTATA" Campo da Invenção
[001] A presente invenção refere-se a uma ferramenta que auxilia nos procedimentos clínicos de pacientes com câncer de próstata através de novos aptâmeros modificados e sistema baseado na combinação desses novos aptâmeros com anticorpos específicos que apresentam capacidade de identificar células tumorais da próstata utilizando a técnica de citometria de fluxo para análise de amostras biológicas. Em particular, a ferramenta serve para auxiliar no diagnóstico de câncer de próstata, mas também na triagem, prognóstico e monitoramento de respostas a tratamentos .
Fundamentos da Invenção
[002] O câncer de próstata é bastante frequente, tendo representado 10% dos novos casos de câncer nos Estados Unidos no ano de 2019 (HOWLADER et al., 2019). No Brasil, a incidência prevista para 2020 é de 66.000 novos casos, sendo o segundo tipo de câncer mais comum nos homens (INSTITUTO NACIONAL DE CÂNCER JOSÉ ALENCAR GOMES DA SILVA, 2019).
[003] Atualmente, o câncer de próstata é rastreado pelo exame do antígeno prostático específico (PSA, do inglês
Prostate-Specific Antigen) no soro sanguíneo, complementado pelo exame de toque retal. O resultado positivo no PSA, precisa ser confirmado pelo exame histopatológico a partir de uma biópsia invasiva do tecido prostático, guiada por ultrassom. Após um resultado negativo na biópsia, pode ser feita adicionalmente uma ressonância magnética multiparamétrica (TRUONG; FRYE, 2017). Assim, o exame de PSA é hoje a técnica padrão ouro na prática clinica do câncer de próstata. Entretanto, não é um teste conclusivo, pois precisa de técnicas complementares que validem seu resultado (VELONAS et al., 2013).
[004] Além disso, valores de PSA elevados, ou seja, maiores que 4,0 ng/mL, podem levar a resultados falsos positivos que indicam presença de câncer quando não há. Ao mesmo tempo, resultados abaixo do valor de referência podem apresentar falsos negativos, não detectando casos reais de câncer (ILIC et al., 2013). Ainda, no período entre 2009 e 2015 nos Estados Unidos, todos os pacientes diagnosticados com câncer de próstata em estadiamento local ou loco-regional mostraram sobrevivência relativa de cinco anos, enquanto que apenas cerca de 30% dos pacientes diagnosticados em estadiamento avançado apresentaram uma supervivência relativa a cinco anos (HOWLADER et al., 2019). Com isso, é necessária a detecção precoce de câncer de próstata, com testes mais específicos e sensíveis do que o PSA. [005] Novas abordagens chamadas de biópsias liquidas analisam os componentes do tumor liberados nos fluidos corporais, como sangue, urina, sêmen, saliva e outras secreções. As biópsias liquidas são capazes de representar o estado atual do câncer em um indivíduo (KREBS et ai., 2014) e sua amostragem é menos invasiva que as biópsias teciduais, que são cirúrgicas. Entre outros constituintes, os tumores liberam células que podem ser detectadas, por exemplo, no sangue do indivíduo acometido (ALLARD et ai., 2005). Essas células são conhecidas como células tumorais circulantes (CTCs). A expressão de marcadores (também chamados de antígenos) de superfície em CTCs e sua quantificação já foram estudadas como fatores para o monitoramento clínico de vários tipos de câncer, principalmente a partir da marcação imunológica, usando anticorpos.
[006] A presença de CTCs em amostras de sangue é muito rara, na ordem de várias CTCs em dezenas de bilhões de células sanguíneas. Para detectar as CTCs, muitas abordagens enriquecem primeiramente as amostras com a população de CTCs para depois analisá-las. O enriquecimento de CTCs é feito atualmente com base na diferença nas características físicas (tamanho, morfologia, densidade, carga, etc.) ou na expressão de antígenos de superfície presentes na membrana plasmática. Assim, um dos problemas que as tecnologias de enriquecimento enfrentam é a alta heterogeneidade destas células, pois podem apresentar variabilidade tanto nas caracteristicas físicas, quanto na expressão destes antígenos.
[007] Por exemplo, a patente CN110004062A apresenta uma interessante estratégia de enriquecimento negativo de CTCs em sangue por eliminação de outros tipos celulares. Diante disso, as hemácias são lisadas e um anel magnético giratório com anticorpos anti-CD45 captura os leucócitos para seu descarte, desta forma, concentrando com um alto rendimento todos os tipos de CTCs.
[008] As CTCs expressam na sua membrana plasmática diversos antígenos de diferenciação ou desdiferenciação celular e em diferentes graus, segundo a etapa de transição epitélio-mesenquimal (EMT, do inglês epithelial-mesenchymal transítíon) na qual se encontram. Estes antígenos proporcionam às células um fenótipo híbrido entre as epiteliais (com caracteristicas diferenciadas) e as mesenquimais (com caracteristicas desdiferenciadas).
[009] Durante a metástase, que acontece nas fases mais avançadas do câncer, a EMT permite que as CTCs do tumor primário extravasem para a corrente sanguínea e invadam outros tecidos, formando nichos celulares que darão lugar a tumores secundários após um processo de transição inverso (MET, de inglês mesenchymal-epithelial transítíon). À medida que a doença progride e os nichos metastáticos proliferam, são liberadas cada vez mais e mais CTCs, tanto do tumor primário quanto dos secundários. Estas CTCs podem ser capturadas na corrente sanguínea e fornecer informações relevantes acerca do quadro clínico atual dos pacientes.
[0010] A presente invenção abrange a utilização tanto de anticorpos ligantes de antígenos epiteliais, como EpCAM, quanto de anticorpos ligantes de antígenos mesenquimais, como CD44 e CD133, que são indicativos de células tronco tumorais. EpCAM é uma glicoproteína de transmembrana expressa em células epiteliais normais e de forma exacerbada em carcinomas, com um papel relevante na formação de estruturas adesivas e na polaridade celular, sendo correlacionada com pior sobrevida global, mau prognóstico e maior risco de recorrência (HUANG et ai., 2018). CD133 é também conhecido como proeminina-1, uma glicoproteína de transmembrana presente em células tronco tumorais e não tumorais. Sua alta expressão em tumores é considerada como fator de prognóstico ruim e é responsável pela inibição de apoptose, a angiogênese e a proliferação celular nos processos de tumorigênese, metástase e quimioresistência (BARZEGAR BEHROOZ; SYAHIR; AHMAD, 2019). CD44 é um receptor de adesão que se encontra na superfície das células e é altamente expresso em vários tipos de tumores, onde regula a migração e invasão celular durante o processo de metástase (SENBANJO; CHELLAIAH, 2017). Além destes antigenos, CD45 também faz parte desta invenção excluindo da análise as células de origem leucocitária através da ausência da sua expressão. Na presente invenção, esses antigenos são identificados por anticorpos.
[0011] Por outra parte, a presente invenção abrange os aptâmeros D4 e R4 que foram modificados a partir do aptâmero original A4 (SOUZA et ai., 2016) e se ligam especificamente a antigenos ainda não identificados na membrana plasmática de células tumorais da próstata. Os aptâmeros são biomoléculas de tipo oligonucleotideos de fita simples ou peptideos, formadas pela ligação de vários nucleotideos ou aminoácidos, respectivamente, e com a capacidade de se ligar de maneira especifica a moléculas alvo de maneira similar aos anticorpos monoclonais.A técnica de evolução sistemática de ligantes por enriquecimento exponencial (SELEX, do inglês systematíc evolution of ligands by exponentíal enrichment) é usada para selecionar aptâmeros a partir de um conjunto de sequências aleatórias de oligonucleotideos ou aminoácidos.
[0012] Comparado aos anticorpos, os aptâmeros de oligonucleotideos apresentam melhor penetração tecidual por seu menor tamanho, maior especificidade, maior reprodutibilidade, versatilidade e durabilidade devido a sua síntese química, que ainda facilita sua produção, modificação, manipulação e estocagem, além da baixa imunogenicidade que aumenta o sucesso em terapias, entre outras vantagens (ZHAO; TAN; FANG, 2015).
[0013] Diante da problemática do câncer de próstata, a presente invenção propõe o uso conjunto dos aptâmeros de natureza oligonucleotidica D4 e/ou R4 com os anticorpos anti- EpCAM e anti-CD45 ou anti-CD44 e anti-CD133, como marcadores para triagem, diagnóstico, prognóstico e monitoramento terapêutico do câncer de próstata a partir da identificação desses biomarcadores por citometria de fluxo convencional em amostras biológicas, como fluidos corporais ou biópsias teciduais.
[0014] Em um contexto mais amplo, o pedido de patente US2008206757A1 refere-se, entre outros, a um método de enriquecimento de CTCs a partir de amostras de sangue de indivíduos com qualquer tipo de câncer para sua posterior análise clínica. Este método de enriquecimento, similar ao utilizado na presente invenção, compreende etapas de centrifugação, lavagem em tampões, lise ou depleção de eritrócitos e incubação com anticorpos ou outras moléculas ligantes para separar as células de interesse ou descartar aquelas indesejáveis. Entre essas moléculas ligantes, o referido pedido de patente não menciona os aptâmeros, nem os anticorpos anti-CD133 ou anti-EpCAM, como na presente invenção. Por outro lado, propõe o uso dos anticorpos anti-
CD44 e anti-CD45 e anticorpos ligantes de moléculas de adesão diferentes a EpCAM de forma combinada com muitos outros anticorpos. Entretanto, diferentemente da presente invenção, esta proposta usa anticorpos acoplados a beads magnéticas para facilitar a separação das células na amostra enriquecida, inclui uma etapa de filtração com uma prensa de tipo francesa e utiliza uma amostra de sangue armazenada a temperatura ambiente, a qual pode ser analisada em até 4 dias.
[0015] A principal desvantagem desse modelo, frente ao apresentado neste pedido, é o comprometimento da integridade das células devido ao tempo de armazenamento das amostras e às etapas de enriquecimento por métodos físicos.
O custo elevado das beads magnéticas acopladas a anticorpos e da prensa francesa são outras das desvantagens do modelo apresentado na patente US2008206757A1.
[0016] Outro método e dispositivo para o enriquecimento e análise de CTCs em amostras de sangue de pacientes com câncer é o proposto na patente CN107449713A, que também limita-se apenas ao uso de anticorpos: anti-CD45 para a remoção de leucócitos, anti-EpCAM para a concentração de CTCs com perfil epitelial, anti-vimentina para as CTCs com perfil mesenquimal e anti-pancitoqueratina para a confirmação do enriquecimento de CTCs.
[0017] O sistema de detecção de CTCs apresentado pela patente CN106645726A compreende a lise dos eritrócitos de amostras de sangue, o uso de um suporte adsorvente de CTCs a partir da ligação destas ao anticorpo monoclonal anti-
EpCAM ou anti-EGFR, a filtração da solução resultante, a fixação das células, a marcação fluorescente nuclear das células com o corante DAPI ou Hoechst 33258, a marcação das células tumorais com anticorpos anti-CK8/CK18/CK19, anti- PanCK, anti-vimentina ou anti-plastina-3 acoplados a quantum dots, a marcação de leucócitos com anticorpos anti-CD45, anti-CD15 ou anti-CD33 acoplados a quantum dots e a avaliação da marcação por um operador através de um microscópio de fluorescência .
[0018] Este sistema alega uma menor taxa de perda de CTCs devido à combinação do suporte adsorvente e a filtração e uma maior qualidade da marcação pelo uso de quantum dots, cuja fluorescência é mais brilhante e estável que a dos fluorocromos comumente usados. Entretanto, o uso de sistemas físicos de separação compromete a integridade das células, e a avaliação das marcações por um técnico pode induzir a resultados variáveis devido à subjetividade da análise.
[0019] A patente US8329422B2 refere-se a métodos e reagentes para a análise de CTCs, aglomerados ou fragmentos de células por citometria de fluxo ou microscopia de fluorescência, para a triagem, monitoramento e diagnóstico de tumores. Esta patente já rendeu a plataforma comercial
CellSearch, que quantifica as CTCs provenientes de sangue periférico para o prognóstico de câncer de próstata metastático resistente a castração, dentre outros tumores metastáticos, e é o único sistema aprovado pela Food and Drug Administration para esta finalidade (DE WIT; VAN DALUM; TERSTAPPEN, 2014).
[0020] No CellSearch é necessário dispor de vários dispositivos e softwares para o processamento das amostras e sua posterior análise. Estes dispositivos usam anticorpos anti-EpCAM e anti-CD45 de maneira similar à presente invenção, mas adicionam os anticorpos citoplasmáticos (marcadores internos, não de membrana plasmática) anti-citoquinas 8, 18 e 19 e o corante nuclear DAPI para a identificação das CTCs prostáticas por microscópio de fluorescência. A partir da identificação de cinco CTCs nas amostras destes pacientes, considera-se um prognóstico desfavorável, com baixa sobrevida global. Mas um ponto importante a considerar é que o CellSearch não detecta CTCs em pacientes com câncer de próstata localizado; seu uso apenas foi aprovado para pacientes com metástase (MEYER et ai., 2016).
[0021] Entretanto, o maior erro do sistema é a identificação de fragmentos de CTCs como células inteiras, resultando em uma grande variabilidade na contagem de CTCs (KRAAN et al., 2011). Ainda, o CellSearch precisa de caros dispositivos exclusivos do fabricante para o processamento e análise das amostras. Isso cria uma total dependência do fabricante e faz com que nem todos os laboratórios clínicos possam instalar este sistema, sendo necessário o transporte de amostras até laboratórios de referência para o seu processamento. Assim, este transporte pode agravar o dano celular e interferir na análise e resultado da amostra.
[0022] Aptâmeros de superfície celular já têm sido propostos para a detecção de células tumorais: de forma individual, como o aptâmero ligante de CD133 para carcinoma indiferenciado da tireoide descrito na patente CN109536503A, ou de forma conjunta, como na patente US2011124015A1 e nos sistemas multiplex das patentes WO2013185078A1 ou JP2017079634A. Esta última propõe uma interessante estratégia de detecção de CTCs a partir da amplificação de sinais luminescentes baseada na hibridação de aptâmeros complexados nos quais participa um aptâmero de captura de CTCs ligante de EpCAM.
[0023] No entanto, nenhum dos documentos do estado da técnica descreve o aptâmeros modificados tal como descritos no presente pedido de patente, bem como não descreve nem sugere o uso combinado dos aptâmeros específicos aqui descritos com anticorpos em um método de diagnóstico de câncer de próstata. Adicionalmente, o método de diagnóstico aqui proposto necessita apenas de etapas que envolvam uma ultracentrífuga refrigerada e um citômetro de fluxo com no mínimo quatro filtros ópticos para o processamento e análise das amostras. Esta caracteristica evita a dependência de centros de referência, o que reduz o tempo desde a coleta até a análise e, assim, a degradação e variabilidade das amostras. Além disso, comparado com a baixa especificidade do teste do PSA e sua moderada sensibilidade (HARVEY et ai., 2009), o presente teste de biopsia liquida tem uma maior acurácia, apresentando um melhor desempenho diagnóstico.
[0024] Diante disso, atendendo às deficiências da tecnologia atual, a presente invenção combina anticorpos bem estabelecidos com aptâmeros de superfície celular modificados, para desenvolver um sistema de marcação de CTCs da próstata confiável, rápido, de baixo custo, fácil de popularizar entre os pacientes e de operação e equipamentos simples.
Breve descrição dos desenhos
[0025] A Figura 1 apresenta as sequências e as conformações bi- e tridimensionais mais prováveis dos aptâmeros R4 e D4 modificados, com seus potenciais domínios de ligação correspondentes.
[0026] A Figura 2 ilustra o diagrama de fluxo do processamento da amostra, até a etapa de leitura da fluorescência em citômetro de fluxo.
[0027] A Figura 3 mostra a estratégia de análise dos dados por citometria de fluxo.
[0028] A Figura 4 apresenta os grupos de indivíduos saudáveis e de pacientes com câncer de próstata segundo as variáveis analisadas no painel 1 com o aptâmero R4, o cutoff que melhor os diferencia e sua correspondente curva ROC.
[0029] A Figura 5 apresenta os grupos de indivíduos saudáveis e de pacientes com câncer de próstata segundo as variáveis analisadas no painel 1 com o aptâmero D4, o cutoff que melhor os diferencia e sua correspondente curva ROC.
[0030] A Figura 6 apresenta os grupos de indivíduos saudáveis e de pacientes com câncer de próstata segundo as variáveis analisadas no painel 2 com o aptâmero R4, o cutoff que melhor os diferencia e sua correspondente curva ROC.
[0031] A Figura 7 apresenta os grupos de indivíduos saudáveis e de pacientes com câncer de próstata segundo as variáveis analisadas no painel 2 com o aptâmero D4, o cutoff que melhor os diferencia e sua correspondente curva ROC.
[0032] A Figura 8 apresenta uma comparação preliminar de um grupo de indivíduos saudáveis controle e outro de pacientes tratados com câncer de próstata segundo a variável percentagem de células CD45 EpCAM+ que representa a marcação dos anticorpos usados para enriquecimento de CTCs na plataforma CellSearch e também o painel 1 sem os aptâmeros
[0033] A Figura 9 apresenta uma comparação preliminar de um grupo de indivíduos saudáveis controle e dois grupos de pacientes com câncer de próstata (um tratado e outro não tratado) segundo a variável percentagem de células CD45 EpCAM+ R4+ que representa o painel 1 com o aptâmero R4, proposto pela presente invenção.
Descrição da Invenção
[0034] A presente invenção propõe novos aptâmeros modificados e um sistema aptaimunológico que compreende a combinação de ao menos um dos aptâmeros modificados e ao menos um anticorpo especifico, em que os aptâmeros são de natureza oligonucleotidica em sua forma de RNA e/ou de DNA.
[0035] O presente pedido de patente descreve novos aptâmeros modificado em sua forma de RNA ou de DNA que, ao ser combinado com anticorpos específicos, identifica células tumorais circulantes de câncer de próstata em amostras biológicas .
[0036] Os aptâmeros R4 e D4 são aptâmeros modificados contendo 28 bases nitrogenadas (SEQ ID NO. 1 e SEQ ID NO. 2, respectivamente) que tem relação com uma parte da sequência do aptâmero de DNA A4 divulgado por SOUZA et al. (SOUZA et al., 2016). Os aptâmeros modificados R4 e D4 descritos no presente pedido apresentam as bases nitrogenadas ligadas a um radical fosfato e a uma pentose, ribose no caso do aptâmero de RNA e 2’ desoxirribose no caso do aptâmero de DNA. Adicionalmente, foram modificados com uma molécula de biotina acoplada na extremidade 5' para permitir sua ligação a moléculas de estreptavidina acopladas a um fluorocromo e um nucleotídeo monofosfato 2'desoxitimidina invertido, unido por uma ligação 3'-3', na extremidade 3', para evitar a degradação pelas exonucleases 3' e a extensão pelas polimerases de DNA. Assim, os aptâmeros usados na presente invenção apresentam um total de 29 nucleotideos e são denominados de R4 e D4 (SEQ ID No. 3 e SEQ ID No 4, respectivamente), em que R4 é o aptâmero de RNA que compreende a SEQ ID NO. 1 e modificado compreende a SEQ ID No. 3, com adição de um monofosfato 2’desoxitimidina invertido na extremidade 3’, e D4 é o aptâmero de DNA e compreende a SEQ ID NO. 2 e modificado compreende a SEQ ID No. 4, com adição de um monofosfato 2'desoxitimidina invertido na extremidade 3'. Os referidos aptâmeros apresentam as estruturas secundárias e tridimensionais tal como ilustradas na Figura 1. Estas modificações são particularmente preferíveis, mas também podem ser suscetíveis de outras, como por exemplo a marcação direta com fluorescência a partir da adição na extremidade 5' de um fluorocromo .
[0037] Portanto, as sequências de aptâmero modificadas são formadas por ribonucleotideos (r) (R4) e desoxirribonucleotideos (d) (D4), modificadas no extremo 5' por uma biotina e no extremo 3' por uma timina invertida.
[0038] Sequência do aptâmero de RNA R4 (5f 3')
Biotinaõ'rArGrCrCrGrArGrArGrGrUrArArGrCrArArArArCrCrAr
CrGrCrCrCrGdT5' . [0039] Nesse caso, o aptâmero modificado R4 compreende 28 ribonucleotídeos (bases nitrogenadas ligadas a uma molécula de ribose e a um radical fosfato) (SEQ ID NO
1) e a adição de um desoxirribonucleotídeo invertido na extremidade 3', posição 29 (SEQ ID No 3). Mais particularmente o desoxirribonucleotídeo invertido compreende uma Timina como base nitrogenada.
[0040] Sequência do aptâmero de DNA D4 (5' ® 3') Biotina5'dAdGdCdCdGdAdGdAdGdGdUdAdAdGdCdAdAdAdAdCdCdAd CdGdCdCdCdGdT5 .
Nesse caso, o aptâmero modificado D4 compreende 28 desoxirribonucleotídeos (bases nitrogenadas ligadas a uma molécula de desoxirribose e a um radical fosfato) (SEQ ID No
2) e a adição de um desoxirribonucleotídeo invertido na extremidade 3', posição 29 (SEQ ID No 4). Mais particularmente o desoxirribonucleotídeo invertido compreende uma Timina como base nitrogenada. Além disso, a referida sequência compreende uma substituição no nucleotídeo da posição 11, onde a base nitrogenada Timina (especifica de uma sequência de DNA) foi substituída pela Uracila (específica de uma sequência de RNA), isto é, substituindo uma desoxitimidina monofosfato por uma desoxiuridina monofosfato.
[0041] Na figura 1, aparece destacado em amarelo o potencial domínio de ligação à proteína alvo dos aptâmeros R4 e D4 (PBD, do inglês protein binding domain). Estes PDBs compartilham uma estrutura de alça em forma de grampo na conformação secundária mais provável de ambos aptâmeros R4 e D4 (Figura 1, B e E). Desta maneira, os aptâmeros apresentam uma conformação tridimensional (Figura 1, C e F) que permite o reconhecimento do seu alvo.
[0042] Os aptâmeros D4 e R4 são combinados com dois painéis de anticorpos para analisar as marcações e assim identificar células tumorais de amostras de indivíduos por citometria de fluxo. O painel aptaimunológico 1 está formado por um dos aptâmeros combinado com os anticorpos anti-EpCAM e anti-CD45 e o painel aptaimunológico 2, por um dos aptâmeros combinado com os anticorpos anti-CD44 e anti-CD133 No painel 1, é usada a marcação positiva do anticorpo anti- EpCAM que se liga em moléculas de adesão de células epiteliais e a marcação negativa do anticorpo pan- leucocitário CD45 para analisar a marcação positiva de D4 ou R4 em uma população de células epiteliais não leucocitárias. No painel 2, é usada a marcação positiva dos anticorpos anti- CD44 e anti-CD133 que ligam a células tronco tumorais para analisar a marcação positiva de D4 ou R4 nesta população celular.
[0043] Dessa forma, a presente invenção descreve um sistema aptaimunológico compreendendo o aptâmero modificado
R4, aptâmero modificado de RNA que compreende a SEQ ID NO. 1, e/ou o aptâmero modificado D4, aptâmero modificado de DNA que compreende a SEQ ID NO. 2; e em que ainda compreende anticorpos específicos, preferencialmente, anticorpos anti- EpCAM e anti-CD45 ou anti-CD44 e anti-CD133. O sistema aptaimunológico pode estar na forma de uma composição ou composição farmacêutica, ou pode compreender os seus elementos separados em mais de uma composição ou composições farmacêuticas, as quais serão combinadas de acordo com o uso desejado.
[0044] Assim, a(s) composição (ões) descrita compreende os painéis aptaimunológicos 1 e 2 que incluem, por sua vez, uma combinação dos aptâmeros R4 ou D4 e dos anticorpos anti-EpCAM, anti-CD45, anti-CD44 e/ou anti-CD133 com seus respectivos controles.
[0045] A invenção descreve, adicionalmente, o uso desse sistema aptaimunológico, baseado na quantificação de CTCs da próstata identificadas em uma amostra biológica por ao menos um dos painéis aptaimunológicos 1 e 2 e no grau de expressão dos alvos dos aptâmeros, a partir da intensidade média de fluorescência nas mesmas células, para indicar a presença de células tumorais circulantes da próstata no indivíduo.
[0046] Ao indicar a presença de células tumorais circulantes da próstata no indivíduo com maior vantagem técnica em relação ao exame PSA, o uso do sistema aptaimunológico é útil para auxilio no diagnóstico, triagem, análise de disposição à doença, prognóstico, predição do melhor tratamento, farmacogenômica e monitoramento do tratamento .
[0047] A presente invenção proporciona ainda um kit para a detecção de células circulantes de câncer de próstata compreendendo os elementos e instruções de uso necessárias para a detecção das referidas células de câncer de próstata em amostra tecidual ou liquida de um paciente, preferencialmente de sangue periférico. Os elementos incluem o referido sistema aptaimunológico ou ao menos um dos dois painéis aptaimunológicos 1 e 2 com seus respectivos controles e as marcações personalizadas para o citômetro de fluxo de cada usuário. O Kit compreende ainda um complexo ligante de biotina, mais particularmente a estreptavidina marcada com um fluorocromo ou o(s) aptâmero(s) pode ainda ser marcado diretamente com a adição de um fluorocromo na extremidade 5'. 0(s) anticorpo (s) também pode estar marcado com fluorocromo diferente. O Kit pode adicionalmente compreender ao menos um tubo de coleta, os tampões de lise de hemácias, bloqueio e lavagem, sem estarem limitados aos mesmos. Mais particularmente, ao menos um tubo de coleta a vácuo com EDTA, tampão de lise de hemácias com cloreto de amónia com ou sem fixador celular, tampão de bloqueio com plasma humano inativado de sangue tipo AB, tampão fosfato com albumina sérica bovina e azida básica como solução de lavagem e/ou corante de viabilidade com fluorescência diferente dos usados nos painéis.
[0048] Estes elementos serão caracterizados nos próximos parágrafos, sem estarem limitados aos mesmos, podendo ser substituídos por um técnico no assunto por elementos equivalentes.
[0049] Ainda a presente invenção descreve um método de diagnóstico, prognóstico, predição do melhor tratamento e/ou monitoramento do tratamento do câncer de próstata. As seguintes etapas (1, 2, 3, 4, 5, 6, 7 e 8) explicam o processamento das amostras biológicas dos pacientes, de tal maneira que permitem a um técnico no assunto desenvolver a presente invenção proporcionando um método para detectar e quantificar CTCs de câncer de próstata, atribuindo-lhes um valor clinico que permite um melhor gerenciamento médico desta doença. O referido método compreende as etapas de:
[0050] (1) A primeira etapa é a coleta da amostra, podendo ser esta uma biópsia tecidual ou liquida (de um fluido corporal), mas preferivelmente a amostra trata-se de sangue periférico por ser uma amostra pouco invasiva, de fácil acesso e operação, e amplamente aceita entre os pacientes. Para a coleta da amostra de sangue periférico, a punção venosa deve ser realizada na fossa cubital do braço, usando tubos para coleta a vácuo com EDTA de 4 mL, de preferência. O primeiro volume coletado, aproximadamente 1 mL, deve ser descartado em um tubo, pois pode conter células epiteliais da pele que interferem na análise da amostra. Assim, um segundo tubo de coleta deve ser usado, mantendo a agulha no braço e trocando os tubos. Este segundo tubo deve conter 4 mL de sangue e deve ser mantido a temperatura ambiente por duas horas, no máximo, até continuar seu processamento na seguinte etapa.
[0051] (2) A segunda etapa consiste no isolamento da camada de células mononucleares do sangue periférico. O sangue do segundo tubo deve ser homogeneizado, invertendo várias vezes o tubo suavemente, e em seguida colocado em uma ultracentrifuga a temperatura ambiente durante 15 minutos a uma velocidade de 200 g. Após a centrifugação, a camada de células mononucleares do sangue periférico, também chamada de anel leucocitário, deve ser transferida a um tubo de citometria. O método de separação do anel leucocitário não é limitado a este e podem ser usadas outras técnicas que combinam por exemplo a centrifugação por gradiente de densidade ou a filtragem.
[0052] (3) A terceira etapa envolve a lise das hemácias. Esta lise pode ser realizada com tampões desenvolvidos ín-house ou disponíveis comercialmente, com cloreto de amónia como componente principal e sem fixadores para manter as células vivas na hora da análise, ou com fixadores como o formaldeido para aumentar a estabilidade das células e facilitar a logística, dependendo das condições de cada laboratório. De preferência, a suspensão celular resultante deve ser lavada duas vezes e estas lavagens devem ser feitas com solução de lavagem (composta por albumina sérica bovina (BSA, do inglês bovine serum albumín) 1% e azida básica 0,1% (m/v) em tampão fosfato (PBS, do inglês phosphate buffer solutíon) com pH 7,4 e filtrada por membrana de 0,22 pm) após centrifugação de 5 minutos a 200g e temperatura ambiente.
[0053] (4) A quarta etapa é o bloqueio de ligações inespecíficas da porção Fc dos anticorpos usados nos painéis com os receptores de superfície das células da amostra. Neste passo, a suspensão celular deve ser incubada por 15 minutos com uma solução de bloqueio com plasma humano inativado de sangue tipo AB 10% (v/v) na solução de lavagem ou uma solução de bloqueio comercial equivalente.
[0054] (5) A quinta etapa compreende incubar separadamente a suspensão celular no tampão de bloqueio com o painel aptaimunológico 1 ou 2 e o corante de viabilidade e em seguida lavar com solução de lavagem. Assim, essa etapa é a primeira incubação por 30 minutos a 4°C da suspensão celular na solução de bloqueio com os painéis de aptâmeros e anticorpos que devem ser adicionados em diferentes tubos, segundo as seguintes combinações: [0055] Tubo sem marcação: não adicionar nada.
[0056] Tubo painel 1: aptâmero (R4 ou D4), anti-
EpCAM e anti-CD45.
[0057] Tubo controle painel 1: estreptavidina, isotipo de anti-EpCAM e isotipo de anti-CD45.
[0058] Tubo painel 2: aptâmero (R4 ou D4), anti-CD44 e anti-CD133.
[0059] Tubo controle painel 2: estreptavidina, isotipo de anti-CD44 e isotipo de anti-CD133.
[0060] Os anticorpos, seus correspondentes isotipos e a estreptavidina estão marcados com diferentes fluorocromos, de acordo com os filtros do citômetro de fluxo. Exceto no tubo sem marcação, deve ser adicionado um corante de viabilidade com pico de emissão diferente aos fluorocromos já utilizados. Desta maneira, o citômetro de fluxo usado deve ser capaz de ler pelo menos quatro fluorocromos diferentes. Depois da incubação, a suspensão celular deve ser lavada duas vezes com a solução de lavagem após centrifugação de 5 minutos a 200g e 4 °C.
[0061] (6) A sexta etapa compreende marcar indiretamente os aptâmeros com seu ligante estreptavidina e em seguida lavar com solução de lavagem. Essa etapa, portanto, requer a adição de estreptavidina marcada aos tubos com aptâmeros (Tubo aptâmero + painel 1 e Tubo aptâmero + painel
2) e sua incubação por 30 minutos a 4 °C. A marcação indireta dos aptâmeros é preferida na presente invenção, mas no caso de marcação direta dos aptâmeros com fluorocromos, esta etapa deve ser omitida. Após a incubação, a suspensão celular deve ser lavada duas vezes com a solução de lavagem após centrifugação de 5 minutos a 200g, à 4 °C.
[0062] (7) A sétima etapa corresponde à leitura da fluorescência no citômetro de fluxo. Uma vez ressuspendidas as células, as amostras são lidas no citômetro de fluxo a partir da determinação de uma janela que deve considerar uma população de até 500.000 leucócitos identificados segundo seu tamanho e granulosidade, desprezando os debrís celulares
[0063] (8) A oitava etapa é a análise dos dados obtidos na citometria de fluxo. Dentro desses 500.000 leucócitos, são selecionadas as células únicas {singlets), com relação de área e altura do seu tamanho próxima a 1, excluindo os doublets. Dentro dos singlets, são selecionadas as células vivas pela fluorescência do corante de viabilidade Dentro das células vivas, são selecionadas individualmente por histograma as marcações especificas de cada painel, segundo os correspondentes controles (estreptavidina e isotipos).
[0064] No painel 1, são selecionadas as células com marcação negativa para CD45, dentro desta população são selecionadas as células com marcação positiva para EpCAM e dentro desta subpopulação são selecionadas as células com marcação positiva para os aptâmeros (R4 ou D4). No painel 2, são selecionadas as células com marcação positiva para CD133, dentro desta população são selecionadas as células com marcação positiva para CD44 e dentro desta subpopulação são selecionadas as células com marcação positiva para os aptâmeros (R4 ou D4).
[0065] De preferência, o resultado é a percentagem de células selecionadas em cada painel. O resultado também pode ser o grau de expressão do alvo dos aptâmeros nas mesmas células, calculado a partir da intensidade média de fluorescência. Portanto, a presente invenção também inclui como resultado um índice calculado a partir de expressões matemáticas que usam esses dois parâmetros. O resultado indica a presença de CTCs de origem prostática, servindo como diagnóstico para o câncer de próstata.
[0066] Durante o processamento das amostras na presente invenção, as CTCs podem ser submetidas a outros meios de detecção, tais como exame microscópico de fluorescência. Além disso, as CTCs podem ser separadas, por exemplo, por citômetros de fluxo com sortíng celular ou por aplicação de beads magnéticas acopladas a estreptavidina, e obtidas como amostras para pesquisa básica para a análise de marcadores adicionais ou outras aplicações clínicas, tais como triagem, análise de disposição à doença, prognóstico, predição do melhor tratamento (tratamento personalizado), farmacogenômica, monitoramento do tratamento, e inclusive desenvolvimento de tratamentos com direcionamento de drogas ou outros agentes terapêuticos.
[0067] Dado que a presente invenção é apresentada com certo grau de detalhamento, esta é suscetível de quaisquer modificações, adaptações e aplicações adicionais por um técnico no assunto de acordo com os princípios dos métodos, materiais e usos expostos neste documento. Assim, as reivindicações anexas e o próprio relatório cobrem quaisquer modificações, adaptações e aplicações adicionais abrangidas no escopo da presente invenção.
[0068] Daqui em diante, são ressaltados, apenas a título de exemplo, os resultados com os procedimentos que permitem uma melhor compreensão dos materiais, métodos e usos apresentados. Contudo, a presente invenção não é limitada aos seguintes exemplos de concretizações.
Exemplos de Concretizações da Invenção
Exemplo 1: PREPARAÇÃO DE AMOSTRAS DE SANGUE PERIFÉRICO PARA A ANÁLISE DOS PAINÉIS 1 E 2 POR CITOMETRIA DE FLUXO
[0069] O protocolo de pesquisa com Certificado de Apresentação para Apreciação Ética (CAAE) 71108817.2.0000.5152 foi aprovado pelo Comité de Ética em Pesquisas com Seres Humanos da Universidade Federal de
Uberlândia (UFU). Todos os pacientes convidados a participar do estudo assinaram o correspondente termo de consentimento livre e esclarecido (TCLE) antes de doar as amostras de sangue no Serviço de Urologia do Hospital de Clinicas da UFU para serem encaminhadas ao Laboratório de Nanobiotecnologia do Instituto de Biotecnologia da UFU, onde foram processadas e analisadas.
[0070] O critério de inclusão para os pacientes com câncer de próstata foi o diagnóstico de câncer de próstata e para os controles, ausência do diagnóstico de câncer de próstata, o que incluiu indivíduos saudáveis ou com outras doenças da próstata como hiperplasia benigna ou prostatites. Diagnóstico anterior de qualquer tipo de câncer foi o critério de exclusão para todos os participantes da pesquisa.
[0071] Amostras de sangue periférico de 34 indivíduos foram coletadas em tubos a vácuo com EDTA para 4 mL (Vacuette Greiner Bio-One, Americana, SP, Brasil) no Hospital de Clínicas da UFU, segundo o protocolo de pesquisa com Certificado de Apresentação para Apreciação Ética (CAAE) 71108817.2.0000.5152, aprovado pelo Comité de Ética em Pesquisas com Seres Humanos da UFU. Dessas amostras, 20 eram de controles e 14 de pacientes com câncer de próstata.
[0072] Após homogeneizar e centrifugar os tubos com as amostras a 200 g por 15 minutos a temperatura ambiente, o anel leucocitário de cada amostra foi coletado e dividido em sete tubos para citometria de 5 mL (Sarstedt, Niimbrecht,
Alemanha), colocando 90 pL em cada um. A solução de lise de hemácias BD Pharm Lyse (Franklin Lakes, NJ, EUA) foi adicionada (2 mL por tubo) e vortexada para sua incubação por 15 minutos no escuro a temperatura ambiente. Após a incubação, os tubos foram centrifugados a 200 g por 5 minutos a temperatura ambiente e o sobrenadante foi descartado por inversão. O pellet de cada tubo foi ressuspendido duas vezes com 2 mL de solução de lavagem ín-house (tampão PBS lx, pH 7,4, 1% BSA e 0,1% azida básica), homogeneizado e centrifugado a 200 g por 5 minutos a temperatura ambiente.
[0073] O pellet foi então ressuspendido em cada tubo teste com 90 pL da solução de lavagem e 10 pL de plasma humano inativado de sangue tipo AB, como solução de bloqueio, e incubado por 15 minutos a temperatura ambiente. Após o bloqueio, foram adicionados os marcadores: o corante de viabilidade (Fixable Viability Stain 620 (FVS620), BD, Franklin Lakes, NJ, EUA), os aptâmeros e os anticorpos nos tubos correspondentes. Os aptâmeros R4 e D4 foram sintetizados (IDT, Coralville, IA, EUA) com suas respectivas sequências e modificações (Figura 1 A e D) e liofilizados. Para seu uso, os aptâmeros foram ressuspendidos em água de injeção até uma solução estoque com uma concentração de 100 pM. Para a marcação dos aptâmeros, foi utilizada estreptavidina ligada ao fluorocromo FITC (SAv-FITC, 405201,
BioLegend, San Diego, CA, EUA). Os anticorpos também foram todos adquiridos da empresa BioLegend. [0074] Após homogeneizar os tubos, os marcadores foram incubados a 4 °C por 30 minutos no escuro da seguinte maneira. O primeiro tubo (Tubo 1) foi incubado sem marcadores, servindo como controle. O segundo tubo (Tubo 2) foi incubado com 0,1 pL de FVS620, 0,2 pL de R4, 0,25 pL de EpCAM-APC (324208) e 0,25 pL de CD45-PE (368510). O terceiro tubo (Tubo 3) foi incubado com 0,1 pL de FVS620, 0,2 pL de D4, 0,25 pL de EpCAM-APC (324208) e 0,25 pL de CD45-PE (368510). O quarto tubo (Tubo 4) foi incubado com 0,1 pL de FVS620; 0,2 pL de SAv-FITC, 0,25 pL do isotipo de EpCAM IgG2bK-APC (400322) e 0,25 pL do isotipo de CD45 IgGlK-PE (400114). O quinto tubo (Tubo 5) foi incubado com 0,1 pL de FVS620, 0,2 pL de R4, 0,25 pL de CD44-APC (338806) e 0,25 pL de CD133-PE (372804). O sexto tubo (Tubo 6) foi incubado com 0,1 pL de FVS620, 0,2 pL de D4, 0,25 pL de CD44-APC (338806) e 0,25 pL de CD133-PE (372804). O sétimo tubo (Tubo 7) foi incubado com 0,1 pL de FVS620; 0,2 pL de SAv-FITC, 0,25 pL do isotipo de CD44 IgGlK-APC, (400120) e 0,25 pL do isotipo de CD133 IgGlK-PE (400114). Após a incubação, os tubos foram centrifugados a 200 g por 5 minutos a 4 °C e o sobrenadante descartado por inversão. O pellet de cada tubo foi ressuspendido duas vezes com 2 mL da solução de lavagem, homogeneizado e centrifugado a 200 g por 5 minutos a 4 °C.
Todos os tubos foram ressuspendidos em 100 pL de solução de lavagem. [0075] O primeiro, quarto e sétimo tubo foram mantidos no escuro. O segundo, terceiro, quinto e sexto tubo foram homogeneizados e incubados a 4 °C por 30 minutos no escuro com 0,2 pL de SAv-FITC. Após a incubação, estes tubos foram centrifugados a 200 g por 5 minutos a 4 °C e o sobrenadante descartado por inversão. O pellet de cada tubo foi ressuspendido duas vezes com 2 mL da solução de lavagem, homogeneizado e centrifugado a 200 g por 5 minutos a 4 °C. Estes tubos foram ressuspendidos em 100 pL da solução de lavagem e mantidos no escuro. Assim, as amostras estão prontas para sua análise. A figura 2 representa o diagrama de fluxo para o processamento destas amostras.
Exemplo 2: ANÁLISE DOS DADOS CITOMÉTRICOS DOS PAINÉIS
1 E 2
[0076] Para a análise da marcação por citometria de fluxo, foi usado o citômetro Accuri C6 (BD, Franklin Lakes, NJ, EUA) com o laser azul de 488 nm e os filtros 533/30, 585/40 e 670 LP para ler fluorescência de FITC (FL-1), PE (FL-2) e FVS620 (FL-3) respectivamente, e com o laser vermelho de 640 nm e o filtro 670 LP para ler a fluorescência de APC (FL-4).
[0077] A figura 3 ilustra de maneira geral como foi feita esta análise no programa FlowJo, versão X 10.0.7r2 para Windows. Primeiramente, foi selecionada uma população de 500 mil leucócitos a partir dos dados citométricos do primeiro tubo, identificada segundo seu tamanho e granulosidade, desprezando os debris celulares. Desta população, foram selecionados os singlets, como aqueles leucócitos com relação entre a área e altura do seu tamanho próxima a 1, excluindo os doublets. Dentro dos singlets, foram selecionadas as células vivas pela fluorescência do FVS620, a partir da ausência de marcação nos dados do primeiro tubo. Estas populações foram aplicadas nos dados citométricos dos outros tubos, do segundo ao sétimo (Figura 3A).
[0078] Dentro das células vivas do segundo ao sétimo tubo, foram determinadas individualmente por histograma as marcações especificas de cada painel. A partir das marcações dos isotipos dos anticorpos e da SAv-FITC do quarto tubo, foram estabelecidas as marcações de CD45 e EpCAM e dos alvos dos aptâmeros no segundo e no terceiro tubo (Painel 1): foram identificadas as células negativas para CD45, dentro destas células foram identificadas as células positivas para EpCAM e dentro desta subpopulação, foram identificadas as células com marcação positiva para os aptâmeros (no segundo tubo para R4 e no terceiro para D4) (Figura 3B).
[0079] A partir das marcações dos isotipos dos anticorpos e da SAv-FITC do sétimo tubo, foram estabelecidas as marcações de CD133 e CD44 e dos alvos dos aptâmeros no quinto e no sexto tubo (Painel 2): foram identificadas as células positivas para CD133, dentro destas células foram identificadas as células positivas para CD44 e dentro desta subpopulação, foram identificadas as células com marcação positiva para os aptâmeros (no quinto tubo para R4 e no sexto para D4) (Figura 3C).
[0080] A partir desta análise foram obtidos os dados da percentagem de células marcadas com cada um dos aptâmeros em cada painel (do painel 1, células CD45 EpCAM+ R4/D4+ e do painel 2, células CD133+ CD44+ R4/D4+) e dessas células, os dados da intensidade média da florescência (MFI, do inglês Mean Fluorescence Intensíty) e da intensidade mediana da fluorescência (MDFI, do inglês Median Fluorescence Intensíty) de cada aptâmero.
[0081] A comparação entre os tipos de amostra foi feita pelo teste de Mann-Whitney para variáveis não paramétricas e pelo teste t não pareado para variáveis paramétricas. O melhor ponto de corte (cutoff) das variáveis foi calculado em base à análise da curva ROC (do inglês Receiver Operating Characterístíc). O desempenho diagnóstico das variáveis foi determinado pelo teste exato de Fisher com o método de Wilson-Brown para calcular os intervalos de confiança de 95% (IC de 95%). Todas as análises estatísticas foram desenvolvidas no programa Graph Pad Prism, versão 7.0 para Windows, considerando o valor de p menor que 0,05 como significante . Exemplo 3: RESULTADOS DA MARCAÇÃO DO PAINEL 1
[0082] A informação obtida das células marcadas com o painel 1 foi a percentagem das células negativas para CD45 e positivas para EpCAM marcadas com a fluorescência dos aptâmeros R4 e D4, separadamente, e suas respectivas intensidades em termos de média (MFI) e mediana (MDFI) expressas em unidades arbitrárias (u. a.) (Tabela 1).
[0083] A diferença das variáveis entre os grupos de indivíduos analisados, controles e pacientes, está representada na figura 4 A, C e E para o aptâmero R4 e na figura 5 A, C e E para o aptâmero D4 no painel 1. As barras representam a média e o desvio padrão em cada grupo, sendo a linha vermelha o valor do cutoff (plotado à direita do eixo Y), usado para a curva ROC representada à direita (Figura 4 B, D e F e Figura 5 B, D e F). As variáveis que apresentaram diferença estatística entre os grupos foram aquelas relacionadas ao aptâmero R4: % de células R4+ (0,0033), MFI de R4 (0,0249) e MFDI de R4 (0,0164).
[0084] Tabela 1: Percentagem de células positivas para o alvo do aptâmero R4 ou D4 e seu grau de expressão na população de células CD45 EpCAM*.
Figure imgf000036_0001
Figure imgf000037_0001
[0085] As melhores curvas ROC dos cutoffs definidos para as variáveis analisadas no painel 1, com área sob a curva ROC (AUC, do inglês area under the curve ROC) maior que 0,7, foram na seguinte ordem as de % R4+, MDFI de R4 e MFI de R4 (Figura 4 B, F e D). Portanto, o teste diagnóstico para câncer de próstata resultante da análise da variável % R4+ no painel 1 seria o mais preciso.
[0086] O teste exato de Fisher mostrou que os parâmetros diagnósticos para o câncer de próstata % R4+, MFI e MDFI de R4 em células CD45 EpCAM+ foram estatisticamente significantes (destacados em negrito na Tabela 2). Estes parâmetros apresentaram a mesma sensibilidade, sendo a percentagem de células R4+ o parâmetro mais especifico.
[0087] Tabela 2: Desempenho diagnóstico dos aptâmeros R4 e D4 em células CD45 EpCAM* para o câncer de próstata.
Figure imgf000038_0001
Figure imgf000039_0001
[0088] A performance das variáveis relacionadas ao aptâmero R4 no painel 1 em testes diagnósticos em um contexto de rastreamento (ou screeníng) de câncer de próstata seria a mesma para os cutoffs avaliados se apenas considerarmos a sensibilidade. Entretanto, para a variável % R4+ a razão de verossimilhança é maior e consequentemente a acurácia do teste diagnóstico também. Já para o contexto onde é preciso um teste confirmatório para decidir a realização de um procedimento invasivo, por exemplo uma prostatectomia radical, o resultado da variável % R4+ seria o mais indicado para tomar a decisão. Assim, a chance de falsos positivos seria menor evitando sobretratamentos lesivos ou biópsias desnecessárias .
Exemplo 4: RESULTADOS DA MARCAÇÃO DO PAINEL 2
[0089] Os dados extraídos das células incubadas com o painel 2 consistiram na percentagem da população de células positivas simultaneamente para CD133 e CD44 e que foram marcadas com a fluorescência de cada aptâmero e suas respectivas intensidades média e mediana em u. a. (Tabela 3).
[0090] Tabela 3: Percentagem de células positivas para R4 ou D4 e o grau de expressão do alvo de cada aptâmeros na população de células CD133+ CD44+.
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
[0091] As figuras 6 e 7 (A, C e E) representam a diferença das variáveis entre os indivíduos controles e pacientes do painel 2, para o aptâmero R4 e D4, respectivamente . As barras representam a média e o desvio padrão em cada grupo, sendo a linha vermelha o valor do cutoff (plotado à direita do eixo Y) da curva ROC representada à direita (Figuras 6 e 7, B, D e F). A diferença entre os grupos foi estatisticamente significante para a percentagem de células R4+ (0,03), MFI de R4 (0,047) e MFI de D4 (0,0026). Assim, os valores da percentagem de células R4+ e da MFI de R4 foram estatisticamente significantes nos dois painéis apresentados.
[0092] A melhor curva ROC do painel 2 foi a da variável MFI de D4, com AUC 0,8 (Figura 7 D), superando às variáveis do painel 1. Também mostraram uma boa curva ROC as variáveis % R4+, e MFI de R4 para o painel 2 (Figura 6 B e
D), as quais também mostram um bom desempenho no painel 1. [0093] Os parâmetros diagnósticos para o câncer de próstata MFI de R4, % D4+, MFI e MDFI de D4 em células CD133+ CD44+ foram estatisticamente significantes segundo o teste exato de Fisher (destacados em negrito na Tabela 4). A sensibilidade da variável MFI de D4 em células CD133+ CD44+ foi a maior dos dois painéis seguida pela MFI de R4 em células CD133+ CD44+. A especificidade da MFI de D4 em células CD133+ CD44+ também foi superior à das outras variáveis do mesmo painel e igual à da % de células R4+ em células CD45 EpCAM+.
[0094] Tabela 4: Desempenho diagnóstico dos aptâmeros R4 e D4 em células CD133+ CD44+ para o câncer de próstata.
Figure imgf000043_0001
Figure imgf000044_0001
[0095] Nas amostras analisadas, a variável MFI de D4 no painel 2 revelou-se como o melhor parâmetro diagnóstico para o câncer de próstata, inclusive com a maior razão de verossimilhança e acurácia. Esta variável poderia ser usada tanto para o rastreamento de câncer de próstata, quanto para a diferenciação de tumores indolentes, com baixo potencial de disseminação, e tumores com comportamentos mais agressivos. Exemplo 5: RESULTADO SOMENTE USANDO ANTICORPOS DA
PLATAFORMA COMERCIAL CELLSEARCH COMPARADO COM RESULTADO USANDO PLATAFORMA PROPOSTA NO PRESENTE PEDIDO.
[0096] A Figura 8 mostra o resultado de um teste realizado usando os anticorpos para enriquecimento de CTCs da plataforma comercial CellSearch, aprovada pelo FDA (Food and Drug Administration - agência regulatória nos EUA), mostrando a porcentagem de células CD45- e EpCAM+ que seriam detectadas usando um método semelhante ao proposto pela presente invenção.
[0097] Fica claro na análise dos dados apresentados na FIGURA 8 que usando os anticorpos para enriquecimento do CellSearch na metodologia desenvolvida, não fomos capazes de diferenciar os pacientes controle sem câncer de próstata dos pacientes com câncer de próstata. Além da necessidade de usar equipamentos exclusivos da plataforma CellSearch que envolvem o uso de técnicas mais complexas e uma combinação maior de anticorpos, o CellSearch não detecta CTCs em pacientes com câncer de próstata localizado; nem muito menos detecta quando usado em um método de diagnóstico simplificado e de baixo-custo como o proposto pelo presente pedido de patente.
[0098] Por outro lado, quando usamos o sistema aptaimunológico proposto com um dos painéis aqui descritos, como no exemplo demonstrado na Figura 9 onde usamos o aptâmero modificado D4 com anticorpos anti-EpCAM e anti-CD45
(painel 1), conseguimos identificar os pacientes tratados livres de doença residual mínima, dos paciente tratados com metástase, bem como fazer o diagnóstico de pacientes não tratados mas com câncer de próstata. O cutoff das variáveis foi calculado em base à análise da curva ROC (OR= 28.6 (IC95%=1.3-600); P<0.03).
[0099] Isso demonstra a capacidade do sistema aptaimunológico proposto de ser usado não somente no diagnóstico de câncer de próstata, mas também para o prognóstico, predição do melhor tratamento e/ou monitoramento do tratamento, ajudando assim na tomada de decisão para escolha da melhor terapia a ser usada.
[00100] Portanto, o presente sistema aptaimunológico mostrou potencial diagnóstico superior ao PSA, o biomarcador de referência para o câncer de próstata. As variáveis analisadas neste sistema poderiam ser aplicadas para diminuir o sobrediagnóstico no rastreamento do câncer de próstata que chega até 67% de falsos positivos em casos de pacientes com hiperplasia benigna da próstata ou prostatites e PSA maiores que 4,0 ng/mL (LOEB et al., 2014) e até cerca de 30% de falsos negativos em pacientes com câncer de próstata que não são diagnosticados pelo PSA (TRICOLI;
SCHOENFELDT; CONLEY, 2004). [00101] Comparando o PSA com a MFI de D4 em células
CD133+ CD44+ D4+ que apresentou apenas 21,43% de falsos positivos e 15% de falsos negativos, esta variável demonstrou ser um biomarcador mais efetivo para a detecção de câncer de próstata. Deste modo, o uso clinico do presente sistema aptaimunológico otimizaria os recursos financeiros destinados ao câncer de próstata nos sistemas de saúde, tanto públicos quanto privados, diminuiria a mortalidade desta doença e melhoraria a qualidade de vida dos pacientes.
[00102] Desta forma o presente pedido de patente descreve aptâmeros modificados e um sistema aptaimunológico que compreende os referidos aptâmeros modificados R4 e/ou D4 combinado com ao menos um anticorpo especifico, para uso em um método de diagnóstico, prognóstico, predição do melhor tratamento e/ou monitoramento do tratamento do câncer de próstata. O aptâmero modificado, R4 é um aptâmero modificado de RNA que compreende a SEQ ID NO. 1 e o aptâmero modificado D4 é um aptâmero modificado de DNA e compreende a SEQ ID NO. 2, em que os aptâmeros foram modificados com uma molécula de biotina acoplada na extremidade 5' e um nucleotideo monofosfato 2'desoxitimidina invertido na extremidade 3' (SEQ ID No 3 e SEQ ID No 4, respectivamente).
[00103] Em uma modalidade ao menos um anticorpo especifico é selecionado do grupo que consiste de: anticorpos anti-EpCAM; anti-CD45; anti-CD44 ; e anti-CD133. Preferencialmente, anticorpo anti-EpCAM e anti-CD45 ou anticorpo anti-CD44 e anti-CD133. O sistema ainda compreende a adição de um complexo ligante de biotina, mais particularmente a estreptavidina marcada com um fluorocromo ou os aptâmeros podem ainda ser marcado diretamente com a adição de um fluorocromo na extremidade 5'. Os anticorpos também estão marcados com fluorocromos diferentes, de acordo com os filtros do citômetro de fluxo.
[00104] O referido sistema aptaimunológico pode estar na forma de uma composição ou composição farmacêutica, ou pode compreender os seus elementos separados em mais de uma composição ou composições farmacêuticas, as quais serão combinadas de acordo com o uso desejado.
[00105] Em outra modalidade o presente pedido de patente descreve o Painel aptaimunológico que compreende o sistema aptaimunológico supramencionado e seus respectivos controles para uso em um método de diagnóstico, prognóstico, predição do melhor tratamento e/ou monitoramento do tratamento do câncer de próstata. O referido painel aptaimunológico consistindo do painel 1 e/ou painel 2, em que o painel 1 compreende o aptâmero modificado R4 ou D4 combinado com os anticorpos anti-EpCAM e anti-CD45, marcados com diferentes fluorocromos e o painel 2 compreende o aptâmero modificado R4 ou D4 combinado com os anticorpos anti-CD44 e anti-CD133 marcados com diferentes fluorocromos. Os respectivos controles compreendem: no painel 1 estreptavidina, isotipo de anti-EpCAM e isotipo de anti-CD45 marcados com os mesmos fluorocromos dos seus correspondentes e no painel 2 estreptavidina, isotipo de anti-CD44 e isotipo de anti-CD133 marcados com os mesmos fluorocromos dos seus correspondentes .
[00106] Em outra modalidade o presente pedido descreve o Kit para a detecção de células circulantes de câncer de próstata em amostra tecidual ou liquida de um paciente em que compreende o referido sistema aptaimunológico supramencionado e instruções de uso. O referido Kit pode compreender ao menos um dos painéis aptaimunológicos supramencionados, painel 1 e/ou painel 2 e instruções de uso. O referido Kit pode compreender ainda um complexo ligante de biotina, mais particularmente a estreptavidina marcada com um fluorocromo ou os aptâmeros podem ainda ser marcado diretamente com a adição de um fluorocromo na extremidade 5'. Os anticorpos também podem estar marcados com fluorocromos diferentes. Adicionalmente os elementos que compõem o referido Kit podem estar na forma de uma composição ou composição farmacêutica, ou separados em mais de uma composição ou composições farmacêuticas, as quais serão combinadas de acordo com o uso desejado.
Adicionalmente o referido Kit ainda pode compreender ao menos um tubo de coleta a vácuo com EDTA, tampão de lise de hemácias com cloreto de amónia e com ou sem fixador celular, tampão de bloqueio com plasma humano inativado de sangue tipo AB, tampão fosfato com albumina sérica bovina e azida básica como solução de lavagem e corante de viabilidade com fluorescência diferente dos usados nos painéis.
[00107] Em ainda outra modalidade se descreve o método de diagnóstico, prognóstico, predição do melhor tratamento e/ou monitoramento do tratamento do câncer de próstata que compreende etapas de processamento e análise de amostras de indivíduos humanos com o uso do referido sistema aptaimunológico; ou uso de ao menos um dos referidos painéis aptaimunológicos; ou uso do referido kit, podendo a amostra ser uma biópsia tecidual ou liquida de um fluido corporal, mas preferivelmente em que a amostra se trata de sangue periférico .
[00108] O Método, preferencialmente compreende as etapas sequenciais de: isolar a camada de células mononucleares da amostra de sangue periférico após sua centrifugação ou após outro método adequado de separação do anel leucocitário; transferir a camada de células mononucleares para um tubo de citometria; lisar as hemácias e em seguida lavar a suspensão celular resultante usando, respectivamente, um tampão de lise cou ou sem fixador e uma solução de lavagem; bloquear as ligações inespecificas da porção Fc dos anticorpos usados nos painéis, pela incubação da suspensão celular com uma solução de bloqueio; incubar separadamente a suspensão celular no tampão de bloqueio com os painéis aptaimunológicos e o corante de viabilidade e em seguida lavar com solução de lavagem; marcar indiretamente os aptâmeros com seu ligante estreptavidina e em seguida lavar com uma solução de lavagem; ler a fluorescência de leucócitos das amostras processadas, a partir da identificação dos mesmos por seu tamanho e granulosidade em um citômetro de fluxo.
[00109] O método compreende, adicionalmente, após a leitura em citômetro de fluxo, analisar os dados da citometria obtidos para identificação de células tumorais circulantes (CTCs) da próstata, em que compreende: selecionar os singlets, dentre os sínglets selecionar as células vivas, e dentre as células vivas selecionar individualmente por histograma as marcações especificas de cada painel, segundo seus controles correspondentes; no painel aptaimunológico 1, selecionar as células com marcação negativa para CD45 e dentre elas, selecionar as células com marcação positiva para EpCAM e dentre estas selecionar as células com marcação positiva para os aptâmeros (R4 ou D4); no painel aptaimunológico 2, selecionar as células com marcação positiva para CD133 e dentre elas, selecionar as células com marcação positiva para CD44 e de entre estas selecionar as células com marcação positiva para os aptâmeros (R4 ou D4).
[00110] O método, durante o processamento das amostras, as CTCs podem ser submetidas a outros meios de detecção, tais como exame microscópico de fluorescência.
[00111] Em ainda outra modalidade do presente pedido de patente se descreve o uso do referido sistema aptaimunológico, do referido painel aptaimunológico, ou do referido Kit em um método de diagnóstico, prognóstico, predição do melhor tratamento e/ou monitoramento do tratamento do câncer de próstata.
[00112] Embora o presente pedido de patente tenha descrito a matéria objeto da presente invenção com um certo grau de detalhamento a titulo de ilustração e exemplificação para fins de clareza e compreensão, será evidente que certas alterações e modificações podem ser praticadas no escopo das reivindicações em anexo.
[00113] Os exemplos descritos neste relatório não são limitativos, permitindo que um técnico no assunto altere alguns aspectos ou componentes da presente invenção, equivalentes aos aqui descritos, sem se distanciar do escopo da presente invenção.
Referências
ALLARD, W Jeffrey et al. Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but not in Healthy Subjects or Patients With Nonmalignant Diseases Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but not in Healthy Subjects or Patients With Non. Clinicai Câncer Research, v. 10, p. 6897-6904, 2005.
BARZEGAR BEHROOZ, Amir; SYAHIR, Amir; AHMAD, Syahida. CD133: beyond a câncer stem cell biomarker. Journal of Drug Targeting, v. 27, n. 3, p. 257-269, 2019.
DE WIT, Sanne; VAN DALUM, Guus; TERSTAPPEN, Leon W. M. M. Detection of Circulating Tumor Cells. Scientifica, v. 2014, p. 1-11, 2014.
HARVEY, Philip et al. A systematic review of the diagnostic accuracy of prostate specific antigen. BMC urology, v. 9, p. 14, 10 set. 2009.
HOWLADER, N; et al. SEER Câncer Statistics Review, 1975-
2016. Disponível em: <https://seer.cancer.gov/csr/1975_2016/>. Acesso em: 22 dez. 2019.
HUANG, Li et al. Functions of EpCAM in physiological processes and diseases (Review). International Journal of Molecular Medicine, v. 42, n. 4, p. 1771-1785, 2018.
ILIC, D et al. Screening for Prostate Câncer. Cochrane Database of Systematic Reviews, n. 1, p. CD004720, 2013.
INSTITUTO NACIONAL DE CÂNCER JOSÉ ALENCAR GOMES DA SILVA. Estimativa 2020: incidência de câncer no Brasil. . Rio de Janeiro: [s.n.], 2019. Disponível em:
<https://www .inca.gov.br/sites/ufu.sti.inca.local/files//me dia/document//estimativa-2 020-incidência-de-cancer-no- brasil.pdf>. Acesso em: 21 fev. 2020.
KRAAN, Jaco et al. Externai quality assurance of circulating tumor cell enumeration using the CellSearch® system: A feasibility study. Cytometry Part B - Clinicai Cytometry, v. 80, n. 2, p. 112-118, 2011.
KREBS, Matthew G. et al. Molecular analysis of circulating tumour cells - Biology and biomarkers. Nature Reviews Clinicai Oncology, v. 11, n. 3, p. 129-144, 2014.
LOEB, Stacy et al. Overdiagnosis and overtreatment of prostate câncer. European Urology, v. 65, n. 6, p. 1046-1055, 2014.
SENBANJO, Linda T.; CHELLAIAH, Meenakshi A. CD44: A multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells.
Frontiers in Cell and Developmental Biology, v. 5, n. 18, 2017.
SOUZA, Aline G. et al. 3D Cell-SELEX: Development of RNA aptamers as molecular probes for PC-3 tumor cell line. Experimental Cell Research, v. 341, n. 2, p. 147-156, 2016.
TRICOLI, James V.; SCHOENFELDT, Mason; CONLEY, Barbara A. Detection of prostate cancer and predicting progression: Current and future diagnostic markers. Clinicai Cancer Research, v. 10, n. 12 I, p. 3943-3953, 2004.
TRUONG, Matthew; FRYE, Thomas P. Magnetic resonance imaging detection of prostate cancer in men with previous negative prostate biopsy. Translational Andrology and Urology, v. 6, n. 3, p. 424-431, 2017.
VELONAS, Vicki M. et al. Current status of biomarkers for prostate cancer. International Journal of Molecular Sciences, v. 14, n. 6, p. 11034-11060, 2013.
ZHAO, Libo; TAN, Weihong; FANG, Xiaohong. Introduction to Aptamer and Cell-SELEX. Aptamers Selected by Cell-SELEX for Theranostics. lst. ed. Heidelberg (Germany): Springer,
2015. p. 1-11.

Claims

REIVINDICAÇÕES
1. Aptâmero modificado caracterizado pelo fato de que é o aptâmero de RNA modificado R4 que compreende a SEQ ID NO. 1 ou é o aptâmero de DNA modificado D4 que compreende a SEQ ID NO. 2.
2. Aptâmero modificado de acordo com a reivindicação 1, caracterizado pelo fato de o referido aptâmero ser modificado com uma molécula de biotina acoplada na extremidade 5' e um nucleotideo monofosfato 2'desoxitimidina invertido na extremidade 3'.
3. Sistema aptaimunológico caracterizado pelo fato de que compreende o aptâmero modificado R4 e/ou D4 tal como descrito em qualquer uma das reivindicações 1 ou 2, combinado com ao menos um anticorpo especifico, para uso em um método de diagnóstico, prognóstico, predição do melhor tratamento e/ou monitoramento do tratamento do câncer de próstata.
4. Sistema aptaimunológico, de acordo com a reivindicação 3, caracterizado pelo fato de que o ao menos um anticorpo especifico é selecionado do grupo que consiste de: anticorpos anti-EpCAM; anti-CD45; anti-CD44; e anti- CD133.
5. Sistema aptaimunológico, de acordo com a reivindicação 3, caracterizado pelo fato de que o ao menos um anticorpo são, preferencialmente, anticorpo anti-EpCAM e anti-CD45 ou anticorpo anti-CD44 e anti-CD133.
6. Sistema aptaimunológico, de acordo com qualquer uma das reivindicação 3 a 5, caracterizado pelo fato de que o sistema ainda compreende a adição de um complexo ligante de biotina, mais particularmente a estreptavidina marcada com um fluorocromo ou os aptâmeros podem ainda ser marcado diretamente com a adição de um fluorocromo na extremidade 5'.
7. Sistema aptaimunológico, de acordo com qualquer uma das reivindicação 3 a 5, caracterizado pelo fato de que os anticorpos também estão marcados com fluorocromos diferentes, de acordo com os filtros do citômetro de fluxo.
8. Sistema aptaimunológico, de acordo com qualquer uma das reivindicação 3 a 6, caracterizado pelo fato de que o sistema aptaimunológico pode estar na forma de uma composição ou composição farmacêutica, ou pode compreender os seus elementos separados em mais de uma composição ou composições farmacêuticas, as quais serão combinadas de acordo com o uso desejado.
9. Painel aptaimunológico caracterizado pelo fato de que compreende o sistema aptaimunológico conforme definido em qualquer uma das reivindicações 3 a 8 e seus respectivos controles para uso em um método de diagnóstico, prognóstico, predição do melhor tratamento e/ou monitoramento do tratamento do câncer de próstata.
10. Painel aptaimunológico de acordo com a reivindicação 9 caracterizado pelo fato de que consiste do painel 1 e/ou painel 2, em que o painel 1 compreende o aptâmero modificado R4 ou D4 combinado com os anticorpos anti-EpCAM e anti-CD45, marcados com diferentes fluorocromos e o painel 2 compreende o aptâmero modificado R4 ou D4 combinado com os anticorpos anti-CD44 e anti-CD133 marcados com diferentes fluorocromos.
11. Painel aptaimunológico de acordo com qualquer uma das a reivindicação 9 ou 10 caracterizado pelo fato de que os respectivos controles compreendem: no painel 1 estreptavidina, isotipo de anti-EpCAM e isotipo de anti-CD45 marcados com os mesmos fluorocromos dos seus correspondentes e no painel 2 estreptavidina, isotipo de anti-CD44 e isotipo de anti-CD133 marcados com os mesmos fluorocromos dos seus correspondentes .
12. Kit para a detecção de células circulantes de câncer de próstata em amostra tecidual ou liquida de um paciente caracterizado pelo fato de que compreende o sistema aptaimunológico tal como definido em qualquer uma das reivindicações 3 a 8 e instruções de uso.
13. Kit para a detecção de células circulantes de câncer de próstata em amostra tecidual ou liquida de um paciente caracterizado pelo fato de que compreende ao menos um dos painéis aptaimunológicos tal como definidos em qualquer uma das reivindicações 9 a 11 e instruções de uso.
14. Kit de acordo com qualquer uma das reivindicações 12 ou 13, caracterizado pelo fato de que compreende ainda um complexo ligante de biotina, mais particularmente a estreptavidina marcada com um fluorocromo ou o(s) aptâmero(s) pode ainda ser marcado diretamente com a adição de um fluorocromo na extremidade 5', o(s) anticorpo (s) também pode estar marcado com fluorocromo diferente.
15. Kit de acordo com qualquer uma das reivindicações 12 a 14, caracterizado pelo fato de que os elementos do kit podem estar na forma de uma composição ou composição farmacêutica, ou separados em mais de uma composição ou composições farmacêuticas, as quais serão combinadas de acordo com o uso desejado.
16. Kit de acordo com qualquer uma das reivindicações 12 a 15, caracterizado pelo fato de que pode compreender ainda ao menos um tubo de coleta a vácuo com EDTA, tampão de lise de hemácias com cloreto de amónia com ou sem fixador celular, tampão de bloqueio com plasma humano inativado de sangue tipo AB, tampão fosfato com albumina sérica bovina e azida básica como solução de lavagem e/ou corante de viabilidade com fluorescência diferente dos usados nos painéis.
17. Método de diagnóstico, prognóstico, predição do melhor tratamento e/ou monitoramento do tratamento do câncer de próstata caracterizado pelo fato de que compreende etapas de processamento e análise de amostras de indivíduos humanos com o uso do sistema aptaimunológico tal como definido em qualquer uma das reivindicações 3 a 8; ou uso de ao menos um dos painéis aptaimunológicos tal como definidos em qualquer uma das reivindicações 9 a 11; ou uso do kit conforme definido em qualquer uma das reivindicações 12 a 16, podendo a amostra ser uma biópsia tecidual ou líquida de um fluido corporal, mas preferivelmente em que a amostra se trata de sangue periférico.
18. Método, de acordo com a reivindicação 17, caracterizado pelo fato de que compreende as etapas sequenciais de: isolar a camada de células mononucleares da amostra de sangue periférico após sua centrifugação ou após outro método adequado de separação do anel leucocitário; transferir a camada de células mononucleares para um tubo de citometria; lisar as hemácias e em seguida lavar a suspensão celular resultante usando, respectivamente, um tampão de lise com ou sem fixador e uma solução de lavagem; bloquear as ligações inespecificas da porção Fc dos anticorpos usados nos painéis, pela incubação da suspensão celular com uma solução de bloqueio; incubar separadamente a suspensão celular no tampão de bloqueio com os painéis aptaimunológicos e o corante de viabilidade e em seguida lavar com solução de lavagem; marcar indiretamente os aptâmeros com seu ligante estreptavidina e em seguida lavar com uma solução de lavagem; ler a fluorescência de leucócitos das amostras processadas, a partir da identificação dos mesmos por seu tamanho e granulosidade em um citômetro de fluxo.
19. Método, de acordo com qualquer uma das reivindicações 17 ou 18, caracterizado pelo fato de que compreende, adicionalmente, após a leitura em citômetro de fluxo, analisar os dados da citometria obtidos para identificação de células tumorais circulantes (CTCs) da próstata.
20. Método, de acordo com a reivindicação 19, caracterizado pelo fato de que a identificação de células tumorais circulantes (CTCs) da próstata compreende: selecionar os singlets, dentre os sínglets selecionar as células vivas, e dentre as células vivas selecionar individualmente por histograma as marcações especificas de cada painel, segundo seus controles correspondentes; no painel aptaimunológico 1, selecionar as células com marcação negativa para CD45 e dentre elas, selecionar as células com marcação positiva para EpCAM e dentre estas selecionar as células com marcação positiva para os aptâmeros (R4 ou D4); no painel aptaimunológico 2, selecionar as células com marcação positiva para CD133 e dentre elas, selecionar as células com marcação positiva para CD44 e de entre estas selecionar as células com marcação positiva para os aptâmeros (R4 ou D4).
21. Método, de acordo com qualquer uma das reivindicações 17 a 20, caracterizado pelo fato de que, durante o processamento das amostras, as CTCs podem ser submetidas a outros meios de detecção, tais como exame microscópico de fluorescência.
22. Uso do aptâmero modificado conforme descrito em qualquer uma das reivindicações 1 ou 2, do sistema aptaimunológico conforme definido em qualquer uma das reivindicações de 3 a 8, do painel aptaimunológico tal como definido em qualquer uma das reivindicações 9 a 11 ou do kit conforme descrito em qualquer uma das reivindicações 12 a 16 caracterizado pelo fato de que é em um método de diagnóstico, prognóstico, predição do melhor tratamento e/ou monitoramento do tratamento do câncer de próstata.
PCT/BR2021/050290 2020-07-02 2021-07-02 Aptâmero modificado, sistema aptaimunológico, painel aptaimunológico, kit, método e uso no diagnóstico de câncer de próstata WO2022000065A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020200136259 2020-07-02
BR102020013625-9A BR102020013625A2 (pt) 2020-07-02 2020-07-02 Aptâmero modificado, sistema aptaimunológico, painel aptaimunológico, kit, método e uso no diagnóstico de câncer de próstata

Publications (2)

Publication Number Publication Date
WO2022000065A1 true WO2022000065A1 (pt) 2022-01-06
WO2022000065A4 WO2022000065A4 (pt) 2022-03-17

Family

ID=79317576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050290 WO2022000065A1 (pt) 2020-07-02 2021-07-02 Aptâmero modificado, sistema aptaimunológico, painel aptaimunológico, kit, método e uso no diagnóstico de câncer de próstata

Country Status (2)

Country Link
BR (1) BR102020013625A2 (pt)
WO (1) WO2022000065A1 (pt)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130143237A1 (en) * 2011-11-29 2013-06-06 Genentech, Inc. Compositions and methods for prostate cancer analysis
US20180209982A1 (en) * 2015-04-21 2018-07-26 Genentech, Inc. Compositions and methods for prostate cancer analysis
US20190242900A1 (en) * 2016-10-10 2019-08-08 Kun-Chih Tsai A novel invadopodia-specific marker of invasive cancer stem cells and the use thereof
BR102017001563A2 (pt) * 2017-01-24 2020-02-18 Universidade Federal de Uberlândia Aptâmeros de rna e suas aplicações diagnósticas e terapêuticas no câncer de próstata

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130143237A1 (en) * 2011-11-29 2013-06-06 Genentech, Inc. Compositions and methods for prostate cancer analysis
US20180209982A1 (en) * 2015-04-21 2018-07-26 Genentech, Inc. Compositions and methods for prostate cancer analysis
US20190242900A1 (en) * 2016-10-10 2019-08-08 Kun-Chih Tsai A novel invadopodia-specific marker of invasive cancer stem cells and the use thereof
BR102017001563A2 (pt) * 2017-01-24 2020-02-18 Universidade Federal de Uberlândia Aptâmeros de rna e suas aplicações diagnósticas e terapêuticas no câncer de próstata

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CAMPOS-FERNÁNDEZ, E. ET AL.: "Post-SELEX Optimization and Characterization of a Prostate Câncer Cell -Specific Aptamer for Diagnosis", ACS OMEGA, vol. 5, no. 7, February 2020 (2020-02-01), pages 3533 - 3541, XP055896278, DOI: 10.1021/acsomega.9b03855 *
MARANGONI, K. ET AL.: "Prostate-specific RNA aptamer: promising nucleic acid antibody-like cancer detection", SEI REP., vol. 5, 2015, pages 12090, XP055896287, DOI: 10.1038/srepI2090 *
NI, S. ET AL.: "Chemical Modifications of Nucleic Acid Aptamers for Therapeutic Purpose s", INT. J. MOL. SEI., vol. 18, no. 8, 2017, pages 1683, XP055518137, DOI: 10.3390/ijmsl8081683 *
ODEH, F. ET AL.: "Aptamers Chemistry: Chemical Modifications and Conjugation Strategies", MOLECULES, vol. 25, no. 1, January 2020 (2020-01-01), pages 3, XP055718990, DOI: 10.3390/molecules25010003 *
REIS MATHEUS N.: "Monitoramento do Câncer de Próstata Através da co-marcação de Granulócitos e Leucócitos com o A ptâmero A4 e os Anticorpos A nti-EpC A M e Anti-CD45", MESTRADO EM CIÊNCIAS DA SAUDE, 1 January 2019 (2019-01-01), pages 1 - 56, XP055896274 *
SOUZA ALINE G.: "3D cell -selex: seleção e caracterização in vitro de aptâmeros de RNA ligantes especfficos as celulas tumorais prostaticas", MESTRADO EM CIÊNCIAS BIOLÓGICAS, 1 January 2015 (2015-01-01), pages 1 - 67, XP055896284, DOI: 10.14393/ufu.di.2015.372 *
SOUZA, A. G. ET AL.: "3D Cell -SELEX: Development of RNA aptamers as molecular probes for PC-3 tumor cell line", EXP CELL RES, vol. 341, no. 2, 2016, pages 147 - 56, XP029439366, DOI: 10.1016/j. yexcr. 2016.01.01 5 *

Also Published As

Publication number Publication date
BR102020013625A2 (pt) 2022-01-11
WO2022000065A4 (pt) 2022-03-17

Similar Documents

Publication Publication Date Title
Catenacci et al. Acquisition of portal venous circulating tumor cells from patients with pancreaticobiliary cancers by endoscopic ultrasound
US6960449B2 (en) Class characterization of circulating cancer cells isolated from body fluids and methods of use
CN101460630B (zh) He4与其它生化标记物在卵巢癌评估中的应用
KR101604649B1 (ko) 혈액 내 순환 흑색종 세포의 자동화된 계산 및 특징화
US20120309018A1 (en) Cancer detection markers
US20110195413A1 (en) Integrated Method for Enriching and Detecting Rare Cells from Biological Body Fluid Sample
Lowes et al. Epithelial-to-mesenchymal transition leads to disease-stage differences in circulating tumor cell detection and metastasis in pre-clinical models of prostate cancer
JP2016527907A (ja) 細胞への物質の選択的送達
BR112014029181B1 (pt) Processos para identificar, diagnosticar ou fornecer um prognóstico
JP2014521958A (ja) 胸腔内液若しくは漿液と関連する腫瘍細胞の特徴づけによる癌の診断方法
AU2010289448A1 (en) Method for categorizing circulating tumor cells
US11371982B2 (en) Method of predicting patient prognosis using rare cells
Chiang et al. Bone Marrow Stromal Antigen 2 Is a Novel Plasma Biomarker and Prognosticator for Colorectal Carcinoma: A Secretome‐Based Verification Study
Zhang et al. Identification of faecal extracellular vesicles as novel biomarkers for the non‐invasive diagnosis and prognosis of colorectal cancer
CN111996260A (zh) 一种用于肝癌早期诊断的胞外囊泡microRNA生物标志物及其用途
CN111748629A (zh) 一种用于胰腺癌早期诊断的生物标志物的检测试剂
Halawa et al. The role of liquid biopsy in the diagnosis and prognosis of WHO grade 4 astrocytoma
JP2024023284A (ja) がんのスクリーニング、診断、治療、及び再発における巨細胞の核酸の特徴付けの使用方法
Tamminga et al. Investigating CTCs in NSCLC—a reaction to the study of Jia-Wei Wan: a preliminary study on the relationship between circulating tumor cells count and clinical features in patients with non-small cell lung cancer
JP2018534595A (ja) 疾患の不均一性を特徴づけるための転移性疾患における、循環腫瘍細胞(ctc)の単一細胞ゲノムプロファイリング
WO2022000065A1 (pt) Aptâmero modificado, sistema aptaimunológico, painel aptaimunológico, kit, método e uso no diagnóstico de câncer de próstata
Oklu et al. Relationship between hepatocellular carcinoma circulating tumor cells and tumor volume
Morosin et al. Circulating tumour cells in regionally metastatic cutaneous squamous cell carcinoma: A pilot study
JP2012506048A (ja) マウスにおける循環乳癌細胞の連続的変化を監視するための前臨床方法
Gao et al. Comprehensive optimization of urinary exfoliated tumor cells tests in bladder cancer with a promising microfluidic platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833729

Country of ref document: EP

Kind code of ref document: A1