WO2023112380A1 - 共振子及び共振装置 - Google Patents

共振子及び共振装置 Download PDF

Info

Publication number
WO2023112380A1
WO2023112380A1 PCT/JP2022/030297 JP2022030297W WO2023112380A1 WO 2023112380 A1 WO2023112380 A1 WO 2023112380A1 JP 2022030297 W JP2022030297 W JP 2022030297W WO 2023112380 A1 WO2023112380 A1 WO 2023112380A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
vibrating
arm
vibration
film
Prior art date
Application number
PCT/JP2022/030297
Other languages
English (en)
French (fr)
Inventor
良太 河合
史也 遠藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023567532A priority Critical patent/JPWO2023112380A1/ja
Priority to CN202280083208.7A priority patent/CN118402181A/zh
Publication of WO2023112380A1 publication Critical patent/WO2023112380A1/ja
Priority to US18/738,424 priority patent/US20240333249A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0595Holders; Supports the holder support and resonator being formed in one body
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive

Definitions

  • the present invention relates to a resonator and a resonator device in which a plurality of vibrating arms vibrate in an out-of-plane bending vibration mode.
  • resonator devices using MEMS Micro Electro Mechanical Systems
  • This resonator device is mounted on a printed circuit board incorporated in an electronic device such as a smart phone.
  • the resonator device includes a lower substrate, an upper substrate forming a cavity therebetween, and a resonator disposed within the cavity between the lower substrate and the upper substrate.
  • Patent Document 1 in a frequency adjustment process for finely adjusting the resonance frequency of a resonator, the resonance frequency is adjusted by overexciting a vibrating arm and causing the adjustment film at the tip of the vibrating arm to collide with the upper substrate or the lower substrate.
  • a resonator is disclosed that varies the .
  • a resonator includes a plurality of vibrating arms of three or more each having a fixed end, at least two of which are out-of-plane bending with different phases, and a plurality of vibrating arms.
  • a vibrating portion including a base portion having one end to which each fixed end of each is connected and the other end facing the one end; a holding portion configured to hold the vibrating portion; and one end connected to the holding portion and a support arm having the other end connected to the other end of the base, the support arm having a reduction membrane configured to reduce the Q factor in vibration of the support arm.
  • a resonance device includes the resonator described above.
  • FIG. 1 is a perspective view schematically showing the appearance of a resonator according to one embodiment.
  • 2 is an exploded perspective view schematically showing the structure of the resonator shown in FIG. 1.
  • FIG. 3 is a plan view schematically showing the structure of the resonator shown in FIG. 2.
  • FIG. 4 is a cross-sectional view along the X-axis schematically showing the lamination structure of the resonator shown in FIG.
  • FIG. 5 is a cross-sectional view along the Y-axis conceptually showing the lamination structure of the resonator shown in FIG. 6 is a plan view for explaining the dimensions of the resonator shown in FIG. 3.
  • FIG. 7 is a graph showing the relationship between the input voltage and frequency change rate in a virtual resonator.
  • FIG. 8 is a graph showing the relationship between input voltage and equivalent series resistance in a virtual resonator.
  • FIG. 9 is a graph showing the relationship between frequency ratio and coupling drive level in a virtual resonator.
  • 10 is an enlarged cross-sectional view of a main part schematically showing the configuration around the supporting rear arm shown in FIG. 3.
  • FIG. The graph of FIG. 11 is a graph showing the relationship between the peripheral configuration of the supporting arm and the coupling drive level.
  • FIG. 1 is a perspective view schematically showing the appearance of a resonance device 1 according to one embodiment.
  • FIG. 2 is an exploded perspective view schematically showing the structure of the resonance device 1 shown in FIG.
  • the resonance device 1 includes a lower lid 20, a resonator 10, and an upper lid 30. That is, the resonance device 1 is configured by stacking a lower lid 20, a resonator 10, a joint portion 40 described later, and an upper lid 30 in this order.
  • the lower lid 20 and the upper lid 30 are arranged so as to face each other with the resonator 10 interposed therebetween.
  • the upper lid 30 corresponds to an example of the "lid body" of the present invention.
  • the side of the resonator 1 on which the upper lid 30 is provided is referred to as the upper side (or front side), and the side of the resonator 1 provided with the lower lid 20 is referred to as the lower side (or rear side).
  • the resonator 10 is a MEMS vibrator manufactured using MEMS technology.
  • This MEMS oscillator is applied to, for example, timing devices, RF filters, duplexers, ultrasonic transducers, angular velocity sensors (gyro sensors), acceleration sensors, and the like. It may also be used in piezoelectric mirrors with actuator functions, piezoelectric gyros, piezoelectric microphones with pressure sensor functions, ultrasonic vibration sensors, and the like. Furthermore, it may be applied to an electrostatic MEMS vibrator, an electromagnetic drive MEMS vibrator, and a piezoresistive MEMS vibrator.
  • the resonator 10, the lower lid 20, and the upper lid 30 are joined so that the resonator 10 is sealed and a vibration space for the resonator 10 is formed.
  • the resonator 10, the lower cover 20, and the upper cover 30 are each formed using a silicon (Si) substrate (hereinafter referred to as "Si substrate"), and the Si substrates are bonded to each other.
  • Si substrate silicon
  • the resonator 10, the lower lid 20, and the upper lid 30 may each be formed using an SOI (Silicon On Insulator) substrate in which a silicon layer and a silicon oxide film are laminated.
  • the lower lid 20 includes a rectangular flat bottom plate 22 provided along the XY plane, side walls 23 extending from the peripheral edge of the bottom plate 22 in the Z-axis direction, that is, in the stacking direction of the lower lid 20 and the resonator 10, Prepare.
  • a recess 21 defined by the surface of the bottom plate 22 and the inner surface of the side wall 23 is formed on the surface of the lower lid 20 facing the resonator 10 .
  • the recess 21 forms at least part of the vibration space of the resonator 10 .
  • the lower lid 20 may not have the concave portion 21 and may have a flat plate-like configuration.
  • a getter layer may be formed on the surface of the concave portion 21 of the lower lid 20 on the resonator 10 side.
  • the lower lid 20 has projections 50 formed on the surface of the bottom plate 22 . A detailed configuration of the protrusion 50 will be described later.
  • the upper lid 30 includes a rectangular flat bottom plate 32 provided along the XY plane, and side walls 33 extending from the peripheral edge of the bottom plate 22 in the Z-axis direction.
  • a concave portion 31 defined by the surface of the bottom plate 32 and the inner surface of the side wall 23 is formed on the surface of the top cover 30 facing the resonator 10 .
  • the concave portion 31 forms at least part of a vibration space in which the resonator 10 vibrates.
  • the upper lid 30 may not have the concave portion 31 and may have a flat plate-like configuration.
  • a getter layer may be formed on the surface of the concave portion 31 of the upper lid 30 on the resonator 10 side.
  • the vibration space of the resonator 10 is hermetically sealed, and a vacuum state is maintained.
  • This vibration space may be filled with a gas such as an inert gas.
  • FIG. 3 is a plan view schematically showing the structure of the resonator 10 shown in FIG. 2.
  • FIG. 3 is a plan view schematically showing the structure of the resonator 10 shown in FIG. 2.
  • the resonator 10 is a MEMS vibrator manufactured using MEMS technology. mode).
  • the resonator 10 includes a vibrating portion 110, a holding portion 140, and support arms 151.
  • the vibrating portion 110 has a rectangular outline extending along the XY plane in the orthogonal coordinate system of FIG. Vibrating portion 110 is arranged inside holding portion 140 , and a space is formed at a predetermined interval between vibrating portion 110 and holding portion 140 .
  • the vibrating section 110 includes an exciting section 120 composed of four vibrating arms 121A to 121D (hereinafter collectively referred to as “vibrating arms 121”) and a base section .
  • the number of vibrating arms is not limited to four, and may be set to any number of three or more, for example.
  • the excitation section 120 and the base section 130 are integrally formed.
  • the vibrating arms 121A, 121B, 121C, and 121D each extend along the Y-axis direction and are arranged in parallel in the X-axis direction in this order at predetermined intervals.
  • One end of the vibrating arm 121A is a fixed end connected to a front end portion 131A of the base portion 130, which will be described later, and the other end of the vibrating arm 121A is an open end provided apart from the front end portion 131A of the base portion 130.
  • the vibrating arm 121A includes a weight portion 122A formed on the open end side, and an arm portion 123A extending from the fixed end and connected to the weight portion 122A.
  • vibrating arms 121B, 121C, and 121D also include weights 122B, 122C, and 122D and arm portions 123B, 123C, and 123D, respectively.
  • Each of the arms 123A to 123D has a width of about 25 ⁇ m in the X-axis direction and a length of about 246 ⁇ m in the Y-axis direction.
  • two vibrating arms 121A and 121D are arranged on the outside and two vibrating arms 121B and 121C are arranged on the inside in the X-axis direction.
  • the width of the gap (hereinafter referred to as “release width”) W1 formed between the arm portions 123B and 123C of the two inner vibrating arms 121B and 121C is, for example, the width of the vibrations adjacent in the X-axis direction.
  • the release width W2 between the arm portions 123A and 123B of the arms 121A and 121B and the release width W2 between the arm portions 123D and 123C of the vibrating arms 121D and 121C adjacent in the X-axis direction are more than is also set large.
  • the release width W1 is, for example, about 38 ⁇ m, and the release width W2 is, for example, about 17 ⁇ m. By setting the release width W1 larger than the release width W2 in this manner, the vibration characteristics and durability of the vibrating portion 110 are improved. Note that the release width W1 may be set smaller than the release width W2, or may be set at equal intervals so that the resonance device 1 can be miniaturized.
  • weights 122A to 122D are provided with mass addition films 125A to 125D (hereinafter also collectively referred to as “mass addition films 125”) on their respective surfaces. Therefore, the weight per unit length of each of the weights 122A-122D (hereinafter also simply referred to as “weight”) is heavier than the weight of each of the arms 123A-123D. As a result, vibration characteristics can be improved while downsizing the vibrating section 110 .
  • the mass addition films 125A to 125D not only have the function of increasing the weight of the tip portions of the vibrating arms 121A to 121D, but also adjust the resonance frequencies of the vibrating arms 121A to 121D by cutting a part of them. It also functions as a so-called frequency adjustment film.
  • the width of each of the weights 122A to 122D along the X-axis direction is, for example, about 46 ⁇ m, which is larger than the width of each of the arms 123A to 123D along the X-axis direction. This makes it possible to further increase the weight of each of the weights 122A to 122D.
  • the width of each of the weights 122A-122D along the X-axis direction is 1.5 times or more the width of each of the arms 123A-123D along the X-axis direction. is preferred.
  • the weight of each of the weights 122A to 122D only needs to be greater than the weight of each of the arms 123A to 123D, and the width of each of the weights 122A to 122D along the X-axis direction is It is not limited.
  • the width of each of the weights 22A-122D along the X-axis direction may be equal to or less than the width of each of the arms 123A-123D along the X-axis direction.
  • each of the plummets 122A to 122D has a substantially rectangular shape with four rounded corners. have a shape.
  • the arm portions 123A to 123D each have a substantially rectangular shape, and have an R shape near the fixed end connected to the base portion 130 and near the connecting portion connected to each of the weight portions 122A to 122D.
  • the respective shapes of the weights 122A to 122D and the arms 123A to 123D are not limited to the example of this embodiment.
  • each shape of weights 122A to 122D may be substantially trapezoidal or substantially L-shaped.
  • each of the arm portions 123A to 123D may be substantially trapezoidal or substantially L-shaped.
  • the weights 122A to 122D and the arms 123A to 123D are each formed with a bottomed groove having an opening on either the front side or the back side, or a hole having an opening on both the front side and the back side. may be The groove portion and the hole portion may be separated from the side surface connecting the front surface and the back surface, or may have an opening on the side surface side.
  • the base 130 has a front end 131A, a rear end 131B, a left end 131C, and a right end 131D in plan view. As described above, the fixed ends of the vibrating arms 121A to 121D are connected to the front end portion 131A. A support arm 151 is connected to the rear end portion 131B.
  • the front end portion 131A, the rear end portion 131B, the left end portion 131C, and the right end portion 131D are each part of the outer edge portion of the base portion .
  • the front end portion 131A and the rear end portion 131B are ends extending in the X-axis direction, and the front end portion 131A and the rear end portion 131B are arranged so as to face each other.
  • the left end portion 131C and the right end portion 131D are ends extending in the Y-axis direction, respectively, and the left end portion 131C and the right end portion 131D are arranged so as to face each other.
  • Both ends of the left end portion 131C are respectively connected to one end of the front end portion 131A and one end of the rear end portion 131B. Both ends of the right end portion 131D are connected to the other end of the front end portion 131A and the other end of the rear end portion 131B, respectively.
  • the base portion 130 has a substantially rectangular shape with long sides of the front end portion 131A and the rear end portion 131B and short sides of the left end portion 131C and the right end portion 131D.
  • the base portion 130 is formed substantially plane-symmetrically with respect to a defined virtual plane along the center line CL1 in the X-axis direction, which is the perpendicular bisector of each of the front end portion 131A and the rear end portion 131B. That is, it can be said that the base 130 is formed substantially symmetrically with respect to the center line CL1.
  • the shape of the base portion 130 is not limited to the rectangular shape shown in FIG. 3, and may be another shape that is substantially symmetrical with respect to the center line CL1.
  • the shape of the base 130 may be a trapezoid in which one of the front end 131A and the rear end 131B is longer than the other. At least one of the front end portion 131A, the rear end portion 131B, the left end portion 131C, and the right end portion 131D may be bent or curved.
  • the virtual plane corresponds to the plane of symmetry of the vibrating portion 110 as a whole
  • the center line CL1 corresponds to the center line of the vibrating portion 110 as a whole in the X-axis direction. Therefore, the center line CL1 is also a line that passes through the centers of the vibrating arms 121A to 121D in the X-axis direction, and is located between the vibrating arms 121B and 121C. Specifically, each of the adjacent vibrating arms 121A and 121B is formed symmetrically with each of the adjacent vibrating arms 121D and 121C across the center line CL1.
  • the base length which is the longest distance in the Y-axis direction between the front end portion 131A and the rear end portion 131B, is, for example, about 25 ⁇ m.
  • the base width which is the longest distance in the X-axis direction between the left end portion 131C and the right end portion 131D, is, for example, about 172 ⁇ m.
  • the base length corresponds to the length of the left end portion 131C or the right end portion 131D
  • the base width corresponds to the length of the front end portion 131A or the rear end portion 131B.
  • the holding part 140 is configured to hold the vibrating part 110 . More specifically, the holding section 140 is configured so that the vibrating arms 121A to 121D can vibrate. Specifically, the holding portion 140 is formed symmetrically with respect to a virtual plane defined along the center line CL1. The holding portion 140 has a rectangular frame shape in plan view, and is arranged to surround the vibrating portion 110 along the XY plane. In this way, holding portion 140 having a frame shape in plan view can easily realize holding portion 140 surrounding vibrating portion 110 .
  • the holding portion 140 is not limited to a frame shape as long as it is arranged at least partly around the vibrating portion 110 .
  • the holding portion 140 may be arranged around the vibrating portion 110 to such an extent that it holds the vibrating portion 110 and can be joined to the upper lid 30 and the lower lid 20 .
  • the holding portion 140 includes integrally formed frames 141A to 141D.
  • the frame body 141A is provided so as to face the open ends of the vibrating arms 121A to 121D with its longitudinal direction parallel to the X-axis.
  • the frame 141B is provided facing the rear end portion 131B of the base portion 130 with its longitudinal direction parallel to the X-axis.
  • the frame 141C faces the left end portion 131C of the base portion 130 and the vibrating arm 121A, and the longitudinal direction thereof is parallel to the Y-axis.
  • the frame 141D faces the right end portion 131D of the base portion 130 and the vibrating arm 121A, and the longitudinal direction thereof is parallel to the Y-axis, and both ends thereof are connected to the other ends of the frames 141A and 141B.
  • the frame 141A and the frame 141B face each other in the Y-axis direction with the vibrating section 110 interposed therebetween.
  • the frame 141C and the frame 141D face each other in the X-axis direction with the vibrating portion 110 interposed therebetween.
  • the support arm 151 is arranged inside the holding portion 140 and connects the base portion 130 and the holding portion 140 .
  • the support arm 151 is not line-symmetrical with respect to the center line CL1 in plan view, that is, is asymmetrically formed.
  • the support arm 151 includes a rear support arm 152 and a support side arm 153 .
  • the supporting arm 153 extends parallel to the vibrating arm 121D between the vibrating arm 121D and the holding portion 140. Specifically, the supporting side arm 153 extends from one end (the right end or the end on the frame 141D side) of the supporting rear arm 152 toward the frame 141A in the Y-axis direction, bends in the X-axis direction, and extends to the frame 141D. It is connected to the. That is, one end of the support arm 151 is connected to the holding portion 140 .
  • the rear support arm 152 extends from the support side arm 153 between the rear end 131B of the base 130 and the holding portion 140 . Specifically, the rear supporting arm 152 extends from one end (the lower end or the end on the frame 141B side) of the supporting arm 153 in the X-axis direction toward the frame 141C.
  • the supporting rear arm 152 is bent in the Y-axis direction near the center of the base portion 130 in the X-axis direction, extends parallel to the center line CL1 from there, and is connected to the rear end portion 131B of the base portion 130 . That is, the other end of the support arm 151 is connected to the rear end portion 131B of the base portion 130 .
  • the protrusion 50 protrudes from the recess 21 of the lower lid 20 into the vibration space.
  • the projecting portion 50 is arranged between the arm portion 123B of the vibrating arm 121B and the arm portion 123C of the vibrating arm 121C in plan view.
  • the projecting portion 50 extends in the Y-axis direction parallel to the arm portions 123B and 123C and is formed in a prism shape.
  • the length of the protrusion 50 in the Y-axis direction is about 200 ⁇ m, and the length in the X-axis direction is about 15 ⁇ m.
  • the number of protrusions 50 is not limited to one, and may be two or more.
  • the protrusion 50 is arranged between the vibrating arm 121B and the vibrating arm 121C and protrudes from the bottom plate 22 of the recess 21, so that the rigidity of the lower lid 20 can be increased. It is possible to suppress the bending of the formed resonator 10 and the warping of the lower lid 20 .
  • FIG. FIG. 4 is a cross-sectional view along the X-axis schematically showing the laminated structure of the resonance device 1 shown in FIG.
  • FIG. 5 is a cross-sectional view along the Y-axis conceptually showing the lamination structure of the resonator device 1 shown in FIG.
  • the cross section of FIG. 5 is a cross section parallel to the frame 141D and passing through the vibrating arm 121D.
  • the holding portion 140 of the resonator 10 is bonded onto the sidewall 23 of the lower lid 20, and the holding portion 140 of the resonator 10 and the sidewall 33 of the upper lid 30 are joined together. spliced.
  • the resonator 10 is held between the lower lid 20 and the upper lid 30, and the lower lid 20, the upper lid 30, and the holding portion 140 of the resonator 10 form a vibration space in which the vibrating portion 110 vibrates. .
  • the vibrating portion 110, the holding portion 140, and the supporting arms 151 of the resonator 10 are integrally formed by the same process.
  • the resonator 10 has a metal film E1 laminated on a Si substrate F2, which is an example of a substrate.
  • a piezoelectric film F3 is laminated on the metal film E1 so as to cover the metal film E1, and a metal film E2 is further laminated on the piezoelectric film F3.
  • a protective film F5 is laminated on the metal film E2 so as to cover the metal film E2.
  • the above-described mass adding films 125A to 125D are laminated on the protective film F5, respectively.
  • the external shapes of the vibrating portion 110, the holding portion 140, and the support arms 151 are obtained by dry etching the laminate composed of the Si substrate F2, the metal film E1, the piezoelectric film F3, the metal film E2, the protective film F5, and the like. It is formed by removal processing and patterning.
  • the resonator 10 includes the metal film E1 in the present embodiment, it is not limited to this.
  • the Si substrate F2 by using a degenerate silicon substrate having a low resistance as the Si substrate F2, the Si substrate F2 itself can also serve as the metal film E1, and the metal film E1 may be omitted.
  • the Si substrate F2 is formed of, for example, a degenerate n-type silicon (Si) semiconductor with a thickness of about 6 ⁇ m, and can contain phosphorus (P), arsenic (As), antimony (Sb), etc. as an n-type dopant. .
  • the resistance value of degenerate silicon (Si) used for the Si substrate F2 is, for example, less than 1.6 m ⁇ cm, and more preferably 1.2 m ⁇ cm or less.
  • a silicon oxide layer F21 such as SiO 2 is formed as an example of a temperature characteristic correction layer on the lower surface of the Si substrate F2. This makes it possible to improve temperature characteristics.
  • the silicon oxide layer F21 has a temperature coefficient of frequency in the vibrating portion 110 when the temperature correction layer is formed on the Si substrate F2, that is, compared to the case where the silicon oxide layer F21 is not formed on the Si substrate F2. , refers to a layer that has the function of reducing the rate of change per temperature at least near room temperature.
  • the silicon oxide layer may be formed on the upper surface of the Si substrate F2, or may be formed on both the upper and lower surfaces of the Si substrate F2.
  • the silicon oxide layers F21 of the weights 122A-122D are preferably formed with a uniform thickness.
  • the uniform thickness means that the variation in thickness of the silicon oxide layer F21 is within ⁇ 20% of the average thickness.
  • the metal films E1 and E2 each include an excitation electrode that excites the vibrating arms 121A to 121D, and an extraction electrode that electrically connects the excitation electrode and an external power supply. Portions of the metal films E1 and E2 that function as excitation electrodes face each other across the piezoelectric film F3 in the arm portions 123A to 123D of the vibrating arms 121A to 121D. Portions of the metal films E1 and E2 that function as extraction electrodes are led out from the base 130 to the holding portion 140 via the support arm 151, for example.
  • the metal film E1 is electrically continuous over the entire resonator 10 .
  • the metal film E2 is electrically separated between the portions formed on the vibrating arms 121A and 121D and the portions formed on the vibrating arms 121B and 121C.
  • each of the metal films E1 and E2 is, for example, about 0.1 ⁇ m or more and 0.2 ⁇ m or less.
  • the metal films E1 and E2 are patterned into excitation electrodes, lead electrodes, and the like by removal processing such as etching.
  • the metal films E1 and E2 are made of, for example, a metal material whose crystal structure is a body-centered cubic structure. Specifically, the metal films E1 and E2 are formed using Mo (molybdenum), tungsten (W), or the like.
  • the metal films E1 and E2 are mainly composed of a metal having a body-centered cubic crystal structure, so that the metal films E1 and E2 suitable for the lower electrode and the upper electrode of the resonator 10 can be easily realized. can do.
  • the piezoelectric film F3 is a thin film formed of a kind of piezoelectric material that mutually converts electrical energy and mechanical energy.
  • the piezoelectric film F3 expands and contracts in the Y-axis direction among the in-plane directions of the XY plane according to the electric field formed in the piezoelectric film F3 by the metal films E1 and E2.
  • the expansion and contraction of the piezoelectric film F3 displaces the open ends of the vibrating arms 121A to 121D toward the bottom plate 22 of the lower lid 20 and the bottom plate 32 of the upper lid 30, respectively.
  • the resonator 10 vibrates in an out-of-plane bending vibration mode.
  • the thickness of the piezoelectric film F3 is, for example, about 1 ⁇ m, but may be about 0.2 ⁇ m to 2 ⁇ m.
  • the piezoelectric film F3 is made of a material having a wurtzite hexagonal crystal structure, such as aluminum nitride (AlN), scandium aluminum nitride (ScAlN), zinc oxide (ZnO), gallium nitride (GaN), Nitrides or oxides, such as indium nitride (InN), can be the main component.
  • the piezoelectric film F3 is mainly composed of a piezoelectric material having a wurtzite hexagonal crystal structure, so that the piezoelectric film F3 suitable for the resonator 10 can be easily realized.
  • the protective film F5 protects the metal film E2 from oxidation.
  • the protective film F5 does not have to be exposed to the bottom plate 32 of the upper lid 30 as long as it is provided on the upper lid 30 side.
  • a parasitic capacitance reducing film or the like that reduces the capacitance of the wiring formed in the resonator 10 may be formed so as to cover the protective film F5.
  • the protective film F5 includes, for example, piezoelectric films such as aluminum nitride (AlN), scandium aluminum nitride (ScAlN), zinc oxide (ZnO), gallium nitride (GaN), indium nitride (InN), silicon nitride (SiN), It is formed of an insulating film such as silicon oxide (SiO 2 ), alumina oxide (Al 2 O 3 ), or tantalum pentoxide (Ta 2 O 5 ).
  • the thickness of the protective film F5 is half or less than the thickness of the piezoelectric film F3, and is, for example, about 0.2 ⁇ m in this embodiment.
  • a more preferable thickness of the protective film F5 is about one quarter of the thickness of the piezoelectric film F3. Furthermore, when the protective film F5 is formed of a piezoelectric material such as aluminum nitride (AlN), it is preferable to use a piezoelectric material having the same orientation as the piezoelectric film F3.
  • AlN aluminum nitride
  • the protective films F5 of the weights 122A to 122D have a uniform thickness.
  • the uniform thickness means that the variation in the thickness of the protective film F5 is within ⁇ 20% from the average value of the thickness.
  • the mass addition films 125A to 125D form the surfaces of the weights 122A to 122D on the upper lid 30 side, and correspond to the frequency adjustment films of the vibrating arms 121A to 121D.
  • the resonance frequency of the resonator 10 is adjusted by trimming a portion of each of the mass addition films 125A-125D.
  • the mass addition films 125A to 125D are preferably made of a material having a faster mass reduction rate due to etching than the protective film F5.
  • Mass reduction rate is represented by the product of etch rate and density. The etch rate is the thickness removed per unit time.
  • the protective film F5 and the mass addition films 125A to 125D may have any etching rate relationship as long as the mass reduction rate relationship is as described above.
  • the mass addition films 125A-125D are preferably made of a material having a large specific gravity.
  • the mass addition films 125A-125D are made of, for example, molybdenum (Mo), tungsten (W), gold (Au), platinum (Pt), nickel (Ni), aluminum (Al), titanium (Ti), etc. made of metal material.
  • a portion of the top surface of each of the mass addition films 125A to 125D is removed by trimming in the process of adjusting the frequency.
  • the trimming process of the mass addition films 125A to 125D can be performed by dry etching using, for example, an argon (Ar) ion beam. Since the ion beam can irradiate a wide area, it is excellent in processing efficiency.
  • the mass addition films 125A to 125D are grounded in order to prevent the vibration trajectory of the vibrating arms 121A to 121D from changing due to the Coulomb interaction due to the charging of the mass addition films 125A to 125D and the vibration characteristics of the resonator 10 from deteriorating. preferably.
  • Lead lines C1, C2, and C3 are formed on the protective film F5 of the holding portion 140.
  • FIG. The lead wire C1 is electrically connected to the metal film E1 through through holes formed in the piezoelectric film F3 and the protective film F5.
  • the lead wire C2 is electrically connected to the portions of the metal film E2 formed on the vibrating arms 121A and 121D through the through holes formed in the protective film F5.
  • the lead wire C3 is electrically connected to the portions of the metal film E2 formed on the vibrating arms 121B and 121C through the through holes formed in the protective film F5.
  • the lead lines C1 to C3 are made of metal materials such as aluminum (Al), germanium (Ge), gold (Au), tin (Sn), and the like.
  • FIG. 4 shows an example in which the arm portions 123A to 123D, the lead lines C2 and C3, the through electrodes V2 and V3, and the like are positioned on the same plane cross section. not located above.
  • the through-electrodes V2 and V3 may be formed at positions separated in the Y-axis direction from a cross-section that is parallel to the ZX plane defined by the Z-axis and the X-axis and cuts through the arm portions 123A to 123D. .
  • FIG. 5 shows an example in which the mass adding portion 122D, the arm portion 123D, the lead wires C1 and C2, the through electrodes V1 and V2, etc. are positioned on the same plane cross section. are not necessarily located on the same plane cross-section.
  • the bottom plate 22 and side walls 23 of the lower lid 20 are integrally formed by the Si substrate P10.
  • the Si substrate P10 is made of non-degenerate silicon and has a resistivity of, for example, 10 ⁇ cm or more. Inside the recess 21 of the lower lid 20, the Si substrate P10 is exposed. A silicon oxide layer F21 is formed on the upper surface of the protrusion 50 . However, from the viewpoint of suppressing electrification of the protrusion 50, the Si substrate P10 having a lower electrical resistivity than the silicon oxide layer F21 may be exposed on the upper surface of the protrusion 50, or a conductive layer may be formed. .
  • the thickness of the lower lid 20 defined in the Z-axis direction is approximately 150 ⁇ m, and the depth of the recess 21 similarly defined is approximately 50 ⁇ m.
  • the bottom plate 32 and side walls 33 of the upper lid 30 are integrally formed by the Si substrate Q10.
  • the front and back surfaces of the upper lid 30 and the inner side surfaces of the through holes are preferably covered with a silicon oxide film Q11.
  • the silicon oxide film Q11 is formed on the surface of the Si substrate Q10 by, for example, oxidation of the Si substrate Q10 or chemical vapor deposition (CVD). Inside the concave portion 31 of the upper lid 30, the Si substrate Q10 is exposed.
  • a getter layer may be formed on the surface of the concave portion 31 of the upper lid 30 facing the resonator 10 .
  • the getter layer is made of titanium (Ti), for example, and absorbs outgas emitted from the joint 40 or the like, which will be described later, to suppress a decrease in the degree of vacuum in the vibration space.
  • the getter layer may be formed on the surface of the concave portion 21 of the lower lid 20 facing the resonator 10 , and the getter layer may be formed on both the concave portion 21 of the lower lid 20 and the concave portion 31 of the upper lid 30 . It may be formed on the surfaces on opposite sides.
  • the thickness of the upper lid 30 defined in the Z-axis direction is approximately 150 ⁇ m, and the depth of the recess 31 defined similarly is approximately 50 ⁇ m.
  • Terminals T1, T2, and T3 are formed on the upper surface of the upper lid 30 (the surface opposite to the surface facing the resonator 10).
  • a terminal T1 is a mounting terminal for grounding the metal film E1.
  • a terminal T2 is a mounting terminal for electrically connecting the metal film E2 of the vibrating arms 121A and 121D to an external power supply.
  • the terminal T3 is a mounting terminal that electrically connects the metal films E2 of the vibrating arms 121B and 121C to an external power supply.
  • the terminals T1 to T3 are formed, for example, on a metallized layer (base layer) such as chromium (Cr), tungsten (W), nickel (Ni), nickel (Ni), gold (Au), silver (Ag), copper (Cu ) and other plating.
  • base layer such as chromium (Cr), tungsten (W), nickel (Ni), nickel (Ni), gold (Au), silver (Ag), copper (Cu ) and other plating.
  • a dummy terminal electrically insulated from the resonator 10 may be formed on the upper surface of the upper lid 30 for the purpose of adjusting parasitic capacitance and mechanical strength balance.
  • the through electrode V1 electrically connects the terminal T1 and the lead wire C1
  • the through electrode V2 electrically connects the terminal T2 and the lead wire C2
  • the through electrode V3 electrically connects the terminal T3 and the lead wire C3. connected to.
  • the through electrodes V1 to V3 are formed by filling a through hole extending through the side wall 33 of the upper lid 30 in the Z-axis direction with a conductive material.
  • the filled conductive material is, for example, polycrystalline silicon (Poly-Si), copper (Cu), gold (Au), or the like.
  • a joint portion 40 is formed between the side wall 33 of the upper lid 30 and the holding portion 140 , and the upper lid 30 and the resonator 10 are joined by this joint portion 40 .
  • the joint portion 40 is formed in a closed ring shape surrounding the vibration portion 110 in the XY plane so as to hermetically seal the vibration space of the resonator 10 in a vacuum state.
  • the bonding portion 40 is formed of a metal film in which, for example, an aluminum (Al) film, a germanium (Ge) film, and an aluminum (Al) film are laminated in this order and eutectic bonded.
  • the bonding portion 40 may be formed by a combination of films appropriately selected from gold (Au), tin (Sn), copper (Cu), titanium (Ti), silicon (Si), and the like.
  • the joint 40 may contain a metal compound such as titanium nitride (TiN) or tantalum nitride (TaN) between the films.
  • the support arm 151 has a reduction membrane LM.
  • the reduction film LM is configured to reduce the Q value of vibration of the support arm 151 . More specifically, the reduction membrane LM is formed on both the rear support arm 152 and the support side arm 153 .
  • the reduction film LM is preferably made of a material with a low vibration Q value.
  • the reduction film LM is made of, for example, tetraethyl orthosilicate (Si(OC 2 H 5 ) 4 ) (also referred to as “TEOS” (tetraethoxysilane)).
  • the reduction film LM may be formed by laminating a plurality of layers, for example, a tetraethyl orthosilicate layer and an aluminum (Al) layer, or a tetraethyl orthosilicate layer, an aluminum (Al) layer, a titanium (Ti) layer, and an aluminum (Al) layer may be stacked in this order.
  • the reduction film LM preferably includes a layer made of the material of the junction 40 .
  • a layer made of the material of the junction 40 Specifically, for example, an aluminum (Al) film is formed on the holding portion 140 of the resonator 10, a germanium (Ge) film is formed on the side wall 33 of the upper lid 30, and an aluminum (Al) film is formed on the resonator 10 side. and the germanium (Ge) film on the upper lid 30 side are eutectic bonded to form the bonding portion 40, the reduction film LM is configured to include an aluminum (Al) layer.
  • the support arm 151 includes the silicon oxide layer F21, the Si substrate F2, the piezoelectric film F3, the metal film E2, and the protective film F5. It has a laminated structure. Therefore, the thickness of the support arm 151 including the reduction film LM is larger than the thickness of the arm portion 123 of the vibrating arm 121 .
  • the terminal T1 is grounded, and alternating voltages having opposite phases are applied to the terminals T2 and T3. Therefore, the phase of the electric field formed on the piezoelectric films F3 of the vibrating arms 121A and 121D and the phase of the electric fields formed on the piezoelectric films F3 of the vibrating arms 121B and 121C are opposite to each other. As a result, the outer vibrating arms 121A and 121D and the inner vibrating arms 121B and 121C are displaced in opposite directions.
  • the vibrating arms 121A and 121B vibrate in upside down directions about the central axis r1 extending in the Y-axis direction.
  • the vibrating arms 121C and 121D vibrate in the upside down direction about the central axis r2 extending in the Y-axis direction.
  • torsional moments in opposite directions are generated between the central axis r1 and the central axis r2, and bending vibration is generated in the vibrating portion 110.
  • the maximum amplitude of the vibrating arms 121A to 121D is about 50 ⁇ m, and the amplitude during normal driving is about 10 ⁇ m.
  • FIG. 6 is a plan view for explaining dimensions of the resonator 10 shown in FIG. Note that FIG. 6 shows part of the resonator 10 for simplification of explanation.
  • the width WG which is the length along the X-axis direction of each of the weights 122A to 122D, is 46 ⁇ m, for example.
  • the vibrating arm width WA which is the length of each of the vibrating arms 121A to 121D along the X-axis direction, is, for example, 25 ⁇ m, and the length of each of the vibrating arms 121A to 121D along the Y-axis direction is A certain vibrating arm length LA is, for example, 410 ⁇ m.
  • a base length LB which is the length in the direction from the front end portion 131A to the rear end portion 131B, is 25 ⁇ m, for example.
  • the base width WB which is the length in the direction from the left end 131C to the right end 131D, is 172 ⁇ m, for example.
  • the width of the support arm 151 is 17 ⁇ m, for example.
  • the length of the support rear arm 152 along the Y-axis direction is also 17 ⁇ m.
  • the length of the support arm 151 specifically, the support arm length LS, which is the length of the support side arm 153 along the Y-axis direction, is 40 ⁇ m, for example.
  • the other end of the support arm 151 is located at the rear end portion 131B of the base portion 130 on the negative side in the X-axis direction with respect to the position through which the center line CL1 passes. It is connected at a position shifted by 10 ⁇ m to the left.
  • the position where the center line CL1 of the rear end portion 131B of the base portion 130 passes is the origin (zero), one side (right side) is "+" (plus), the other side (left side) ) is represented as “-” (minus). That is, in the example shown in FIG. 6, the other end of the support rear arm 152 is connected to a position ⁇ 10 ⁇ m from the position through which the center line CL1 of the rear end portion 131B of the base 130 passes.
  • FIG. 7 is a graph showing the relationship between the input voltage and frequency change rate in a virtual resonator.
  • FIG. 8 is a graph showing the relationship between input voltage and equivalent series resistance in a virtual resonator.
  • the virtual resonator is a virtual resonator for comparison with the resonator 10 of the present embodiment, and has substantially the same configuration as the resonator 10 except that it does not have the reduction film LM.
  • the horizontal axis represents the input voltage (Vin) applied to each vibrating arm of the vibrating section.
  • the vertical axis represents the frequency change rate (df/f) with reference to the resonance frequency (f) when the input voltage is 0.01V.
  • the vertical axis represents the equivalent series resistance (ESR) of the vibrating portion.
  • the frequency change rate As shown in FIG. 7, in the virtual resonator, when the input voltage Vin is changed from 0.01 V to 0.05 V by the impedance analyzer, the frequency change rate is almost zero and hardly changes. On the other hand, when an input voltage of 0.05V to 0.08V is applied by the impedance analyzer, the frequency change rate changes greatly to a negative value. This means that the resonance frequency shifts in the negative direction when the input voltage exceeds 0.05V.
  • the equivalent series resistance is a substantially constant value and does not change much.
  • the equivalent series resistance increases as the input voltage increases.
  • any resonator has vibration different from main mode vibration, that is, spurious mode vibration (also referred to as “parasitic vibration”).
  • spurious mode vibration also referred to as “parasitic vibration”.
  • the vibrating arm 121 mainly vibrates in the main mode, whereas the base 130 and the support arm 151 mainly vibrate in the spurious mode.
  • the frequency of the spurious mode vibration is, for example, a predetermined number of times or 1/predetermined number of the main mode vibration frequency, that is, the resonance frequency, the main mode vibration and the spurious mode vibration are different. It is known that they tend to bond easily.
  • FIG. 9 is a graph showing the relationship between frequency ratio and coupling drive level in a virtual resonator.
  • the horizontal axis represents the frequency ratio (Fs/Fm) of the spurious mode frequency (Fs) to the main mode frequency (Fm).
  • the vertical axis is the coupling drive level at which the coupling of main mode vibration and spurious mode vibration occurs.
  • the drive level is a value (Vin 2 /Rr) obtained by dividing the square of the input voltage (Vin) by the resonance resistance (Rr), and the unit is [ ⁇ W].
  • the graph in FIG. 9 plots the results of measuring the coupling drive level in each of a plurality of virtual resonators with different frequency ratios.
  • the coupling drive level tends to increase as the frequency ratio becomes more than twice.
  • the coupling drive level will be high and the main mode vibration and the spurious mode vibration will be less likely to be coupled.
  • the average frequency ratio is 2.37 times, which is a value greater than 2 times.
  • the coupling between main mode vibration and spurious mode vibration is not only caused by the frequency ratio, but also by other factors. Therefore, in the virtual resonator, the combined drive level averages 0.058 ⁇ W, which is a relatively low value. Further, further miniaturization of the resonator has been conventionally demanded, and it is difficult to greatly increase the frequency ratio by changing the size and the like.
  • the inventors of the present invention paid attention to the Q value of the spurious mode oscillation and found that the coupling drive level can be increased by reducing this Q value. More specifically, we have found that the support arm 151 preferably has a reduction membrane LM configured to reduce the Q factor of vibrations in the support arm 151 . As a result, the Q value is reduced in the spurious mode vibration in which the main vibration is the vibration of the support arm 151 .
  • FIG. 10 is an enlarged cross-sectional view of a main part schematically showing the configuration around the supporting rear arm 152 shown in FIG.
  • the graph of FIG. 11 is a graph showing the relationship between the peripheral configuration of the supporting arm and the coupling drive level.
  • the vertical axis is the coupling drive level at which coupling of main mode vibration and spurious mode vibration occurs.
  • the drive level is a value (Vin 2 /Rr) obtained by dividing the square of the input voltage (Vin) by the resonance resistance (Rr), and the unit is [ ⁇ W].
  • “None” on the horizontal axis represents a virtual resonator in which the support arm does not have a reduction film
  • "Reduction film example 1" and “Reduction film example 2" on the horizontal axis indicate that the support arm 151 has Represents a resonator 10 comprising reduction films LM, each comprising a different configuration.
  • the graph of FIG. 11 plots the results of multiple measurements of the coupling drive level in each configuration of the virtual resonator and resonator 10 .
  • the support arm 151 of this embodiment has a reduction film LM unlike the virtual resonator.
  • FIG. 10 illustrates the reduction film LM of the support rear arm 152 of the support arms 151 .
  • the support rear arm 152 includes, as described above, the Si substrate F2 having the silicon oxide layer F21 formed on the lower surface thereof, the piezoelectric film F3, and the protective film F5 laminated so as to cover the metal film E2. ing.
  • a reduction film LM is formed on the support rear arm 152 .
  • the reduction film LM is preferably formed on at least the rear support arm 152 of the support arms 151 .
  • the inventors of the present invention found that the thickness, material, etc. of the connection portion of the support arm 151 with the base 130 is a dominant factor in the reduction of the Q value in the vibration of the support arm 151. rice field. Therefore, by forming the reduction film LM at least on the rear support arm 152, it is possible to effectively and efficiently reduce the Q value of the spurious mode in which the vibration of the support arm 151 is the main vibration.
  • the thickness of the support rear arm 152 including the reduction film LM is greater than the thickness of the arm portion 123 of the vibrating arm 121 .
  • the reduction film LM includes a first layer 41, a second layer 42, a third layer 43, and a fourth layer 44.
  • the first layer 41 is a layer containing, for example, tetraethyl orthosilicate as a main component, and has a thickness of 1 ⁇ m.
  • the second layer 42 is a layer mainly composed of aluminum (Al), for example, and has a thickness of 0.7 ⁇ m.
  • the third layer 43 is a layer containing titanium (Ti) as a main component, for example, and has a thickness of 0.1 ⁇ m.
  • the fourth layer 44 like the second layer 42, is a layer containing, for example, aluminum (Al) as its main component, and has a thickness of 0.7 ⁇ m.
  • the reduction film LM is preferably made of a material different from the material of the arm portion 123 of the vibrating arm 121 . This makes it possible to reduce the Q value of the spurious mode vibration while increasing the Q value of the main mode vibration.
  • the reduction film LM has the configuration and thickness described with reference to FIG. 10, unless otherwise specified.
  • the virtual resonator represented by “none” has an average frequency ratio of 2.37 times and an average coupling drive level of only 0.058 ⁇ W, as described above. .
  • the average Q value of the spurious mode vibration is 21,835.
  • the resonator 10 having the reduction film LM having the configuration shown in FIG. In comparison, it is reduced to 1/4 or less. Also, the frequency ratio has increased by a factor of 2.70 on average and the combined drive level has increased to an average of 0.125 ⁇ W.
  • the configuration of the reduced film LM represented by "Reduced film example 1" includes only the first layer 41 shown in FIG. Even in this case, the resonator 10 has a reduced Q factor for spurious mode oscillations, an increased average frequency ratio, and a higher average coupled drive level compared to the virtual resonator. .
  • the support arm 151 has a reduction membrane LM configured to reduce the Q factor of vibration in the support arm 151, thereby reducing the Q factor of the spurious mode vibration in which the vibration of the support arm 151 is the dominant vibration.
  • the reduced value allows a higher drive level at which coupling of main mode vibrations and spurious mode vibrations occurs. Therefore, the main mode vibration and the spurious mode vibration are less likely to be coupled, and the occurrence of such coupling can be suppressed.
  • the vibrating portion 110 of the resonator 10 includes four vibrating arms 121A to 121D, but is not limited to this.
  • the vibrating section 110 may include, for example, three or five or more vibrating arms. In this case, at least two vibrating arms bend out of plane with different phases.
  • one end of the support arm 151 of the resonator 10 is connected to the frame body 141D of the holding portion 140
  • the present invention is not limited to this.
  • One end of the support arm 151 may be connected to the frame 141C of the holding section 140, for example.
  • the support arms have reduction membranes configured to reduce the Q factor of vibrations in the support arms.
  • the Q value of the spurious mode vibration in which the supporting arm vibration is the main vibration is reduced, and the drive level at which the main mode vibration and the spurious mode vibration are coupled can be increased. Therefore, the main mode vibration and the spurious mode vibration are less likely to be coupled, and the occurrence of such coupling can be suppressed.
  • the thickness of the support arms including the reduction film is greater than the thickness of the vibrating arms.
  • the reduction film is made of a material different from the material of the vibrating arms. This makes it possible to reduce the Q value of the spurious mode vibration while increasing the Q value of the main mode vibration.
  • the reduction film is formed on the supporting rear arm.
  • a resonator device includes the resonator described above. This makes it possible to easily realize a resonance device that suppresses the occurrence of coupling between main mode vibration and spurious mode vibration.
  • the reduction film includes a layer made of the material of the junction.
  • the reduction film by changing the shape of the mask, for example, when forming the layers constituting the junction. can form a reduced film.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

メインモードの振動とスプリアスモードの振動との結合の発生を抑制することのできる共振子及び共振装置を提供する。 共振子10は、それぞれが固定端を有する3本以上の複数の振動腕121であって、少なくとも2本が異なる位相で面外屈曲する複数の振動腕121と、複数の振動腕121のそれぞれの固定端が接続された一端と当該一端に対向する他端とを有する基部130と、を含む振動部110と、振動部110を保持するように構成された保持部140と、一端が保持部140に接続され、他端が基部130の他端に接続された支持腕151と、を備え、支持腕151は、支持腕151の振動におけるQ値を低減させるように構成された低減膜LMを有する。

Description

共振子及び共振装置
 本発明は、複数の振動腕が面外の屈曲振動モードで振動する共振子及び共振装置に関する。
 従来、MEMS(Micro Electro Mechanical Systems)技術を用いた共振装置は、例えばタイミングデバイスとして用いられている。この共振装置は、スマートフォンなどの電子機器内に組み込まれるプリント基板上に実装される。共振装置は、下側基板と、下側基板との間でキャビティを形成する上側基板と、下側基板及び上側基板の間でキャビティ内に配置された共振子と、を備えている。
 例えば特許文献1には、共振子の共振周波数を微調整する周波数調整工程において、振動腕を過励振させ、振動腕の先端の調整膜が上側基板又は下側基板に衝突することで、共振周波数を変化させる共振子が開示されている。
国際公開第2016/175218号
 一方、振動腕がメインモードで振動するときに、支持腕等の振動腕以外の部分にスプリアスモードの振動が発生する。ある条件が満たされると、メインモードの振動とスプリアスモードの振動とが結合してしまうことがあった。
 メインモードの振動とスプリアスモードの振動との結合が発生すると、例えば、共振周波数が大きく変動してしまったり、等価直列抵抗が増加してしまったりする等のリスクがあった。
 本発明はこのような事情に鑑みてなされたものであり、メインモードの振動とスプリアスモードの振動との結合の発生を抑制することのできる共振子及び共振装置を提供することを目的の1つとする。
 本発明の一側面に係る共振子は、それぞれが固定端を有する3本以上の複数の振動腕であって、少なくとも2本が異なる位相で面外屈曲する複数の振動腕と、複数の振動腕のそれぞれの固定端が接続された一端と当該一端に対向する他端とを有する基部と、を含む振動部と、振動部を保持するように構成された保持部と、一端が保持部に接続され、他端が基部の他端に接続された支持腕と、を備え、支持腕は、支持腕の振動におけるQ値を低減させるように構成された低減膜を有する。
 本発明の一側面に係る共振装置は、前述した共振子を備える。
 本発明によれば、メインモードの振動とスプリアスモードの振動との結合の発生を抑制することができる。
図1は、一実施形態における共振装置の外観を概略的に示す斜視図である。 図2は、図1に示す共振装置の構造を概略的に示す分解斜視図である。 図3は、図2に示す共振子の構造を概略的に示す平面図である。 図4は、図1に示す共振装置の積層構造を概略的に示すX軸に沿う断面図である。 図5は、図1に示す共振装置の積層構造を概念的に示すY軸に沿う断面図である。 図6は、図3に示す共振子の寸法を説明するための平面図である。 図7は、仮想の共振子における入力電圧と周波数変化率との関係を示すグラフである。 図8は、仮想の共振子における入力電圧と等価直列抵抗との関係を示すグラフである。 図9は、仮想の共振子における周波数比と結合ドライブレベルとの関係を示すグラフである。 図10は、図3に示す支持後腕の周辺の構成を概略的に示す要部拡大断面図である。 図11のグラフは、支持腕の周辺の構成と結合ドライブレベルとの関係を示すグラフである。
 以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本発明の技術的範囲を当該実施形態に限定して解するべきではない。
 まず、図1及び図2を参照しつつ、一実施形態に従う共振装置の概略構成について説明する。図1は、一実施形態における共振装置1の外観を概略的に示す斜視図である。図2は、図1に示す共振装置1の構造を概略的に示す分解斜視図である。
 共振装置1は、下蓋20と、共振子10と、上蓋30と、を備えている。すなわち、共振装置1は、下蓋20と、共振子10と、後述の接合部40と、上蓋30とが、この順で積層されて構成されている。下蓋20及び上蓋30は、共振子10を挟んで互いに対向するように配置されている。なお、上蓋30は、本発明の「蓋体」の一例に相当する。
 以下において、共振装置1の各構成について説明する。なお、以下の説明では、共振装置1のうち上蓋30が設けられている側を上(又は表)、下蓋20が設けられている側を下(又は裏)、として説明する。
 共振子10は、MEMS技術を用いて製造されるMEMS振動子である。このMEMS振動子は、例えば、タイミングデバイス、RFフィルタ、デュプレクサ、超音波トランスデューサー、角速度センサ(ジャイロセンサ)、加速度センサ等に応用される。また、アクチュエーター機能を持った圧電ミラー、圧電ジャイロ、圧力センサ機能を持った圧電マイクロフォン、超音波振動センサ等に用いられてもよい。さらに、静電MEMS振動子、電磁駆動MEMS振動子、ピエゾ抵抗MEMS振動子に適用してもよい。
 共振子10と下蓋20及び上蓋30とは、共振子10が封止され、共振子10の振動空間が形成されるように、接合されている。また、共振子10と下蓋20及び上蓋30とは、それぞれ、シリコン(Si)基板(以下、「Si基板」という)を用いて形成されており、Si基板同士が互いに接合されている。なお、共振子10、下蓋20、及び上蓋30は、それぞれ、シリコン層及びシリコン酸化膜が積層されたSOI(Silicon On Insulator)基板を用いて形成されてもよい。
 下蓋20は、XY平面に沿って設けられる矩形平板状の底板22と、底板22の周縁部からZ軸方向、つまり、下蓋20と共振子10との積層方向、に延びる側壁23と、を備える。下蓋20には、共振子10と対向する面において、底板22の表面と側壁23の内面とによって画定される凹部21が形成されている。凹部21は、共振子10の振動空間の少なくとも一部を形成する。なお、下蓋20は凹部21を有さず、平板状の構成でもよい。また、下蓋20の凹部21の共振子10側の面には、ゲッター層が形成されてもよい。
 また、下蓋20は、底板22の表面に形成される突起部50を備える。突起部50の詳細な構成については、後述する。
 上蓋30は、XY平面に沿って設けられる矩形平板状の底板32と、底板22の周縁部からZ軸方向に延びる側壁33と、を備える。上蓋30には、共振子10と対向する面において、底板32の表面と側壁23の内面とによって画定される凹部31が形成されている。凹部31は、共振子10が振動する空間である振動空間の少なくとも一部を形成する。なお、上蓋30は凹部31を有さず、平板状の構成でもよい。また、上蓋30の凹部31の共振子10側の面には、ゲッター層が形成されていてもよい。
 上蓋30と共振子10と下蓋20とを接合することによって、共振子10の振動空間は気密に封止され、真空状態が維持される。この振動空間には、例えば不活性ガス等の気体が充填されてもよい。
 次に、図3を参照しつつ、第1実施形態に従う共振子の概略構成について説明する。図3は、図2に示す共振子10の構造を概略的に示す平面図である。
 図3に示すように、共振子10は、MEMS技術を用いて製造されるMEMS振動子であり、図3の直交座標系におけるXY平面内で面外屈曲振動モードを主振動(以下、「メインモード」ともいう)として振動する。
 共振子10は、振動部110と、保持部140と、支持腕151と、を備える。
 振動部110は、図3の直交座標系におけるXY平面に沿って広がる矩形の輪郭を有している。振動部110は、保持部140の内側に配置されており、振動部110と保持部140との間には、所定の間隔で空間が形成されている。図3の例では、振動部110は、4本の振動腕121A~121D(以下、まとめて「振動腕121」ともいう)から構成される励振部120と、基部130と、を含んでいる。なお、振動腕の数は、4本に限定されず、例えば3本以上の任意の数に設定される。本実施形態において、励振部120と基部130とは、一体に形成されている。
 振動腕121A,121B,121C,121Dは、それぞれ、Y軸方向に沿って延びており、この順でX軸方向に所定の間隔で並列に設けられている。振動腕121Aの一端は後述する基部130の前端部131Aに接続された固定端であり、振動腕121Aの他端は基部130の前端部131Aから離れて設けられた開放端である。振動腕121Aは、開放端側に形成された錘部122Aと、固定端から延びて錘部122Aに接続された腕部123Aと、を含んでいる。同様に、振動腕121B,121C,121Dも、それぞれ、錘部122B,122C,122Dと、腕部123B,123C,123Dと、を含んでいる。なお、腕部123A~123Dは、それぞれ、例えばX軸方向の幅が25μm程度、Y軸方向の長さが246μm程度である。
 本実施形態の励振部120では、X軸方向において、外側に2本の振動腕121A,121Dが配置されており、内側に2本の振動腕121B,121Cが配置されている。内側の2本の振動腕121B,121Cのそれぞれの腕部123B,123C同士の間に形成された間隙の幅(以下、「リリース幅」という。)W1は、例えば、X軸方向において隣接する振動腕121A,121Bのそれぞれの腕部123A,123B同士の間のリリース幅W2、及び、X軸方向において隣接する振動腕121D,121Cのそれぞれの腕部123D,123C同士の間のリリース幅W2、よりも大きく設定されている。リリース幅W1は例えば38μm程度、リリース幅W2は例えば17μm程度である。このように、リリース幅W1をリリース幅W2よりも大きく設定することにより、振動部110の振動特性や耐久性が改善される。なお、共振装置1を小型化できるように、リリース幅W1をリリース幅W2よりも小さく設定してもよいし、等間隔に設定してもよい。
 錘部122A~122D(以下、まとめて「錘部122」ともいう)は、それぞれの表面に質量付加膜125A~125D(以下、まとめて「質量付加膜125」ともいう)を備えている。したがって、錘部122A~122Dのそれぞれの単位長さ当たりの重さ(以下、単に「重さ」ともいう。)は、腕部123A~123Dのそれぞれの重さよりも重い。これにより、振動部110を小型化しつつ、振動特性を改善することができる。また、質量付加膜125A~125Dは、それぞれ、振動腕121A~121Dの先端部分の重さを大きくする機能だけではなく、その一部を削ることによって振動腕121A~121Dの共振周波数を調整する、いわゆる周波数調整膜としての機能も有する。
 本実施形態において、錘部122A~122DのそれぞれのX軸方向に沿う幅は、例えば46μm程度であり、腕部123A~123DのそれぞれのX軸方向に沿う幅よりも大きい。これにより、錘部122A~122Dのそれぞれの重さを、さらに大きくできる。共振子10の小型化のために、錘部122A~122DのそれぞれのX軸方向に沿う幅は、腕部123A~123DのそれぞれのX軸方向に沿う幅に対して1.5倍以上であることが好ましい。但し、錘部122A~122Dのそれぞれの重さは腕部123A~123Dのそれぞれの重さよりも大きければよく、錘部122A~122DのそれぞれのX軸方向に沿う幅は、本実施形態の例に限定されるものではない。錘部22A~122DのそれぞれのX軸方向に沿う幅は、腕部123A~123DのそれぞれのX軸方向に沿う幅と同等、もしくはそれ以下であってもよい。
 共振子10を上方から平面視(以下、単に「平面視」という)したときに、錘部122A~122Dは、それぞれ、略長方形状であって、四隅に丸みを帯びた曲面形状、例えばいわゆるR形状を有する。同様に、腕部123A~123Dは、それぞれ、略長方形状であって、基部130に接続される固定端付近、及び、錘部122A~122Dのそれぞれに接続される接続部分付近にR形状を有する。但し、錘部122A~122D及び腕部123A~123Dのそれぞれの形状は、本実施形態の例に限定されるものではない。例えば、錘部122A~122Dのそれぞれの形状は、略台形状や略L字形状であってもよい。また、腕部123A~123Dのそれぞれの形状は、略台形状や略L字形状であってもよい。錘部122A~122D及び腕部123A~123Dは、それぞれ、表面側及び裏面側のいずれか一方に開口を有する有底の溝部や、表面側及び裏面側の両方に開口を有する穴部が形成されていてもよい。当該溝部及び当該穴部は、表面と裏面とを繋ぐ側面から離れていてもよく、当該側面側に開口を有していてもよい。
 基部130は、平面視において、前端部131Aと、後端部131Bと、左端部131Cと、右端部131Dと、を有している。前述したように、前端部131Aには、振動腕121A~121Dのそれぞれの固定端が接続されている。後端部131Bには、支持腕151が接続されている。
 前端部131A、後端部131B、左端部131C、及び右端部131Dは、それぞれ、基部130の外縁部の一部である。具体的には、前端部131A及び後端部131Bは、それぞれ、X軸方向に延びる端部であり、前端部131Aと後端部131Bとは、互いに対向するように配置されている。左端部131C及び右端部131Dは、それぞれ、Y軸方向に延びる端部であり、左端部131Cと右端部131Dとは、互いに対向するように配置されている。左端部131Cの両端は、それぞれ、前端部131Aの一端と後端部131Bの一端とに繋がっている。右端部131Dの両端は、それぞれ、前端部131Aの他端と後端部131Bの他端とに繋がっている。
 平面視において、基部130は、前端部131A及び後端部131Bを長辺とし、左端部131C及び右端部131Dを短辺とする、略長方形状を有する。基部130は、前端部131A及び後端部131Bそれぞれの垂直二等分線であるX軸方向の中心線CL1に沿って、規定される仮想平面に対して、略面対称に形成されている。すなわち、基部130は、中心線CL1に関して略線対称に形成されている、ともいえる。なお、基部130の形状は、図3に示す長方形状である場合に限定されず、中心線CL1に関して略線対称を構成するその他の形状であってもよい。例えば、基部130の形状は、前端部131A及び後端部131Bの一方が他方よりも長い台形状であってもよい。また、前端部131A、後端部131B、左端部131C、及び右端部131Dの少なくとも1つが屈曲又は湾曲してもよい。
 なお、仮想平面は振動部110全体の対称面に相当し、中心線CL1は振動部110全体のX軸方向の中心線に相当する。したがって、中心線CL1は、振動腕121A~121DのX軸方向における中心を通る線でもあり、振動腕121Bと振動腕121Cとの間に位置する。具体的には、隣接する振動腕121A及び振動腕121Bのそれぞれは、中心線CL1を挟んで、隣接する振動腕121D及び振動腕121Cのそれぞれと対称に形成されている。
 基部130において、前端部131Aと後端部131Bとの間のY軸方向における最長距離である基部長は、例えば25μm程度である。また、左端部131Cと右端部131Dとの間のX軸方向における最長距離である基部幅は、例えば172μm程度である。なお、図3に示す例では、基部長は左端部131C又は右端部131Dの長さに相当し、基部幅は前端部131A又は後端部131Bの長さに相当する。
 保持部140は、振動部110を保持するように構成されている。より詳細には、保持部140は、振動腕121A~121Dが振動可能であるように、構成されている。具体的には、保持部140は、中心線CL1に沿って規定される仮想平面に対して面対称に形成されている。保持部140は、平面視において矩形の枠形状を有し、XY平面に沿って振動部110の外側を囲むように配置されている。このように、保持部140が平面視において枠形状を有することにより、振動部110を囲む保持部140を容易に実現することができる。
 なお、保持部140は、振動部110の周囲の少なくとも一部に配置されていればよく、枠形状に限定されるものではない。例えば、保持部140は、振動部110を保持し、また、上蓋30及び下蓋20と接合できる程度に、振動部110の周囲に配置されていればよい。
 本実施形態においては、保持部140は一体形成される枠体141A~141Dを含んでいる。枠体141Aは、図3に示すように、振動腕121A~121Dの開放端に対向して、長手方向がX軸に平行に設けられる。枠体141Bは、基部130の後端部131Bに対向して、長手方向がX軸に平行に設けられる。枠体141Cは、基部130の左端部131C及び振動腕121Aに対向して、長手方向がY軸に平行に設けられ、その両端で枠体141A、141Dの一端にそれぞれ接続される。枠体141Dは、基部130の右端部131D及び振動腕121Aに対向して、長手方向がY軸に平行に設けられ、その両端で枠体141A、141Bの他端にそれぞれ接続される。枠体141Aと枠体141Bとは、振動部110を挟んでY軸方向において互いに対向している。枠体141Cと枠体141Dとは、振動部110を挟んでX軸方向において互いに対向している。
 支持腕151は、保持部140の内側に配置され、基部130と保持部140とを接続している。支持腕151は、平面視において、中心線CL1に関して線対称ではない、つまり、非対称に形成されている。具体的には、支持腕151は、支持後腕152と支持側腕153とを含んでいる。
 支持側腕153は、振動腕121Dと保持部140との間において、振動腕121Dと並行に延びている。具体的には、支持側腕153は、支持後腕152の一端(右端又は枠体141D側の端)からY軸方向に枠体141Aに向かって延び、X軸方向に屈曲して枠体141Dに接続されている。すなわち、支持腕151の一端は、保持部140に接続されている。
 支持後腕152は、基部130の後端部131Bと保持部140との間において、支持側腕153から延びている。具体的には、支持後腕152は、支持側腕153の一端(下端又は枠体141B側の端)からX軸方向に枠体141Cに向かって延びている。そして、支持後腕152は、基部130におけるX軸方向の中央付近でY軸方向に屈曲し、そこから中心線CL1と平行に延びて基部130の後端部131Bに接続している。すなわち、支持腕151の他端は、基部130の後端部131Bに接続されている。
 突起部50は、下蓋20の凹部21から振動空間内に突起している。突起部50は、平面視において、振動腕121Bの腕部123Bと振動腕121Cの腕部123Cとの間に配置される。突起部50は、腕部123B,123Cに並行にY軸方向に延び、角柱形状に形成されている。突起部50のY軸方向の長さは200μm程度、X軸方向の長さは15μm程度である。なお、突起部50の数は、1つである場合に限定されず、2以上の複数であってもよい。このように、突起部50が振動腕121Bと振動腕121Cとの間に配置され、凹部21の底板22から突起することにより、下蓋20の剛性を高めることができ、下蓋20の上で形成される共振子10の撓みや、下蓋20の反りの発生を抑制することが可能になる。
 次に、図4及び図5を参照しつつ、第1実施形態に従う共振装置の積層構造及び動作について説明する。図4は、図1に示す共振装置1の積層構造を概略的に示すX軸に沿う断面図である。図5は、図1に示す共振装置1の積層構造を概念的に示すY軸に沿う断面図である。図5の断面は、枠体141Dに平行であって、振動腕121Dを通る断面である。
 図4及び図5に示すように、共振装置1は、下蓋20の側壁23上に共振子10の保持部140が接合され、さらに共振子10の保持部140と上蓋30の側壁33とが接合される。このように下蓋20と上蓋30との間に共振子10が保持され、下蓋20と上蓋30と共振子10の保持部140とによって、振動部110が振動する振動空間が形成されている。
 共振子10における、振動部110、保持部140、及び支持腕151は、同一プロセスによって一体的に形成される。共振子10は、基板の一例であるSi基板F2の上に、金属膜E1が積層されている。そして、金属膜E1の上には、金属膜E1を覆うように圧電膜F3が積層されており、さらに、圧電膜F3の上には金属膜E2が積層されている。金属膜E2の上には、金属膜E2を覆うように保護膜F5が積層されている。錘部122A~122Dにおいては、さらに、保護膜F5の上にそれぞれ、前述の質量付加膜125A~125Dが積層されている。振動部110、保持部140、及び支持腕151のそれぞれの外形は、前述したSi基板F2、金属膜E1、圧電膜F3、金属膜E2、保護膜F5等から構成される積層体を、ドライエッチングによって除去加工し、パターニングすることによって形成される。
 本実施形態では、共振子10が金属膜E1を含む例を示したが、これに限定されるものではない。例えば、共振子10は、Si基板F2に低抵抗となる縮退シリコン基板を用いることで、Si基板F2自体が金属膜E1を兼ねることができ、金属膜E1を省略してもよい。
 Si基板F2は、例えば、厚み6μm程度の縮退したn型シリコン(Si)半導体から形成されており、n型ドーパントとしてリン(P)、ヒ素(As)、アンチモン(Sb)等を含むことができる。また、Si基板F2に用いられる縮退シリコン(Si)の抵抗値は、例えば1.6mΩ・cm未満であり、より好ましくは1.2mΩ・cm以下である。さらに、Si基板F2の下面には、温度特性補正層の一例として、例えばSiO等の酸化ケイ素層F21が形成されている。これにより、温度特性を向上させることが可能になる。
 本実施形態において、酸化ケイ素層F21は、当該酸化ケイ素層F21をSi基板F2に形成しない場合と比べて、Si基板F2に温度補正層を形成したときの振動部110における周波数の温度係数、つまり、温度当たりの変化率を、少なくとも常温近傍において低減する機能を有する層をいう。振動部110が酸化ケイ素層F21を有することにより、例えば、Si基板F2と金属膜E1、E2と圧電膜F3及び酸化ケイ素層F21とによる積層構造体の共振周波数において、温度に伴う変化を低減することができる。酸化ケイ素層は、Si基板F2の上面に形成されてもよいし、Si基板F2の上面及び下面の両方に形成されてもよい。
 錘部122A~122Dの酸化ケイ素層F21は、均一の厚みで形成されることが望ましい。なお、均一の厚みとは、酸化ケイ素層F21の厚みのばらつきが厚みの平均値から±20%以内であることをいう。
 金属膜E1,E2は、それぞれ、振動腕121A~121Dを励振する励振電極と、励振電極と外部電源とを電気的に接続させる引出電極と、を含んでいる。金属膜E1,E2の励振電極として機能する部分は、振動腕121A~121Dの腕部123A~123Dにおいて、圧電膜F3を挟んで互いに対向している。金属膜E1,E2の引出電極として機能する部分は、例えば、支持腕151を経由し、基部130から保持部140に導出されている。金属膜E1は、共振子10全体に亘って電気的に連続している。金属膜E2は、振動腕121A,121Dに形成された部分と、振動腕121B,121Cに形成された部分と、において、電気的に離れている。
 金属膜E1,E2の厚みは、それぞれ、例えば0.1μm以上0.2μm以下程度である。金属膜E1,E2は、成膜後に、エッチング等の除去加工によって励振電極、引出電極等にパターニングされる。金属膜E1,E2は、例えば、結晶構造が体心立方構造である金属材料によって形成される。具体的には、金属膜E1,E2は、Mo(モリブデン)、タングステン(W)等を用いて形成される。このように、金属膜E1、E2は、結晶構造が体心立方構造である金属を主成分とすることにより、共振子10の下部電極及び上部電極に適した金属膜E1、E2を容易に実現することができる。
 圧電膜F3は、電気的エネルギーと機械的エネルギーとを相互に変換する圧電体の一種によって形成された薄膜である。圧電膜F3は、金属膜E1,E2によって圧電膜F3に形成される電界に応じて、XY平面の面内方向のうちのY軸方向に伸縮する。この圧電膜F3の伸縮によって、振動腕121A~121Dは、それぞれ、下蓋20の底板22及び上蓋30の底板32に向かってその開放端を変位させる。これにより、共振子10は、面外屈曲の振動モードで振動する。
 圧電膜F3の厚みは、例えば1μm程度であるが、0.2μm~2μm程度であってもよい。圧電膜F3は、ウルツ鉱型六方晶構造の結晶構造を持つ材質によって形成されており、例えば、窒化アルミニウム(AlN)、窒化スカンジウムアルミニウム(ScAlN)、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、窒化インジウム(InN)、などの窒化物又は酸化物を主成分とすることができる。なお、窒化スカンジウムアルミニウムは、窒化アルミニウムにおけるアルミニウムの一部がスカンジウムに置換されたものであり、スカンジウムの代わりに、マグネシウム(Mg)及びニオブ(Nb)、又はマグネシウム(Mg)及びジルコニウム(Zr)、などの2元素で置換されていてもよい。このように、圧電膜F3は、結晶構造がウルツ鉱型六方晶構造を有する圧電体を主成分とすることにより、共振子10に適した圧電膜F3を容易に実現することができる。
 保護膜F5は、金属膜E2を酸化から保護する。なお、保護膜F5は上蓋30側に設けられていれば、上蓋30の底板32に対して露出していなくてもよい。例えば、保護膜F5を覆うように、共振子10に形成された配線の容量を低減する寄生容量低減膜等が形成されてもよい。保護膜F5は、例えば、窒化アルミニウム(AlN)、窒化スカンジウムアルミニウム(ScAlN)、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、窒化インジウム(InN)等の圧電膜の他、窒化シリコン(SiN)、酸化シリコン(SiO)、酸化アルミナ(Al)、五酸化タンタル(Ta)等の絶縁膜で形成される。保護膜F5の厚さは、圧電膜F3の厚さの半分以下の厚さで形成され、本実施形態では、例えば0.2μm程度である。なお、保護膜F5のより好ましい厚さは、圧電膜F3の厚さの4分の1程度である。さらに、保護膜F5が窒化アルミニウム(AlN)等の圧電体によって形成される場合には、圧電膜F3と同じ配向を持った圧電体が用いられることが好ましい。
 錘部122A~122Dの保護膜F5は、均一の厚みで形成されることが望ましい。なお、均一の厚みとは、保護膜F5の厚みのばらつきが厚みの平均値から±20%以内であることをいう。
 質量付加膜125A~125Dは、錘部122A~122Dのそれぞれの上蓋30側の表面を構成し、振動腕121A~121Dのそれぞれの周波数調整膜に相当する。質量付加膜125A~125Dのそれぞれの一部を除去するトリミング処理によって、共振子10の共振周波数が調整される。周波数調整の効率の点から、質量付加膜125A~125Dは、エッチングによる質量低減速度が保護膜F5よりも早い材料によって形成されることが好ましい。質量低減速度は、エッチング速度と密度との積により表される。エッチング速度とは、単位時間あたりに除去される厚みである。保護膜F5と質量付加膜125A~125Dとは、質量低減速度の関係が前述の通りであれば、エッチング速度の大小関係は任意である。また、錘部122A~122Dの重さを効率的に増大させる観点から、質量付加膜125A~125Dは、比重の大きい材料によって形成されるのが好ましい。これらの理由により、質量付加膜125A~125Dは、例えば、モリブデン(Mo)、タングステン(W)、金(Au)、白金(Pt)、ニッケル(Ni)、アルミニウム(Al)、チタン(Ti)等の金属材料によって形成されている。
 質量付加膜125A~125Dのそれぞれの上面の一部が、周波数を調整する工程においてトリミング処理によって除去されている。質量付加膜125A~125Dのトリミング処理は、例えばアルゴン(Ar)イオンビームを照射するドライエッチングによって行うことができる。イオンビームは広範囲に照射できるため加工効率に優れるが、電荷を有するため質量付加膜125A~125Dを帯電させるおそれがある。質量付加膜125A~125Dの帯電によるクーロン相互作用によって、振動腕121A~121Dの振動軌道が変化して共振子10の振動特性が劣化するのを防止するため、質量付加膜125A~125Dは接地されることが好ましい。
 保持部140の保護膜F5の上には、引出線C1,C2,及びC3が形成されている。引出線C1は、圧電膜F3及び保護膜F5に形成された貫通孔を通して、金属膜E1と電気的に接続されている。引出線C2は、保護膜F5に形成された貫通孔を通して、金属膜E2のうち振動腕121A,121Dに形成された部分と電気的に接続されている。引出線C3は、保護膜F5に形成された貫通孔を通して、金属膜E2のうち振動腕121B,121Cに形成された部分と電気的に接続されている。引出線C1~C3は、アルミニウム(Al)、ゲルマニウム(Ge)、金(Au)、錫(Sn)、などの金属材料によって形成されている。
 本実施形態では、図4において、腕部123A~123D、引出線C2及びC3、貫通電極V2及びV3等が同一平面の断面上に位置する例を示しているが、これらは必ずしも同一平面の断面上に位置するものではない。例えば、貫通電極V2及びV3が、Z軸及びX軸によって規定されるZX平面と平行であり且つ腕部123A~123Dを切断する断面から、Y軸方向に離れた位置で形成されていてもよい。
 同様に、本実施形態では、図5において、質量付加部122D、腕部123D、引出線C1,C2、貫通電極V1,V2等が同一平面の断面上に位置する例を示しているが、これらは必ずしも同一平面の断面上に位置するものではない。
 下蓋20の底板22及び側壁23は、Si基板P10により、一体的に形成されている。Si基板P10は、縮退されていないシリコンから形成されており、その抵抗率は例えば10Ω・cm以上である。下蓋20の凹部21の内側では、Si基板P10が露出している。突起部50の上面には、酸化ケイ素層F21が形成されている。但し、突起部50の帯電を抑制する観点から、突起部50の上面には、酸化ケイ素層F21よりも電気抵抗率の低いSi基板P10が露出してもよく、導電層が形成されてもよい。
 Z軸方向に規定される下蓋20の厚みは150μm程度、同様に規定される凹部21の深さは50μm程度である。
 上蓋30の底板32及び側壁33は、Si基板Q10により、一体的に形成されている。上蓋30の表面、裏面、及び貫通孔の内側面は、シリコン酸化膜Q11に覆われていることが好ましい。シリコン酸化膜Q11は、例えばSi基板Q10の酸化や、化学気相蒸着(CVD:Chemical Vapor Deposition)によって、Si基板Q10の表面に形成される。上蓋30の凹部31の内側では、Si基板Q10が露出している。なお、上蓋30の凹部31における、共振子10と対向する側の面にはゲッター層が形成されてもよい。ゲッター層は、例えば、チタン(Ti)などによって形成され、後述する接合部40等から放出されるアウトガスを吸着し、振動空間の真空度の低下を抑制する。なお、ゲッター層は、下蓋20の凹部21における、共振子10と対向する側の面に形成されてもよく、下蓋20の凹部21及び上蓋30の凹部31の両方における、共振子10と対向する側の面に形成されてもよい。
 Z軸方向に規定される上蓋30の厚みは150μm程度、同様に規定される凹部31の深さは50μm程度である。
 上蓋30の上面(共振子10と対向する面とは反対側の面)には端子T1,T2,及びT3が形成されている。端子T1は金属膜E1を接地させる実装端子である。端子T2は振動腕121A,121Dの金属膜E2を外部電源に電気的に接続させる実装端子である。端子T3は、振動腕121B,121Cの金属膜E2を外部電源に電気的に接続させる実装端子である。端子T1~T3は、例えば、クロム(Cr)、タングステン(W)、ニッケル(Ni)などのメタライズ層(下地層)に、ニッケル(Ni)、金(Au)、銀(Ag)、銅(Cu)などのメッキを施して形成されている。なお、上蓋30の上面には、寄生容量や機械的強度バランスを調整する目的で、共振子10とは電気的に絶縁されたダミー端子が形成されてもよい。
 上蓋30の側壁33の内部には貫通電極V1,V2,V3が形成されている。貫通電極V1は端子T1と引出線C1とを電気的に接続し、貫通電極V2は端子T2と引出線C2とを電気的に接続し、貫通電極V3は端子T3と引出線C3とを電気的に接続している。貫通電極V1~V3は、上蓋30の側壁33をZ軸方向に貫通する貫通孔に導電性材料を充填して形成されている。充填される導電性材料は、例えば、多結晶シリコン(Poly-Si)、銅(Cu)、金(Au)等である。
 上蓋30の側壁33と保持部140との間には、接合部40が形成されており、この接合部40によって、上蓋30と共振子10とが接合される。接合部40は、共振子10の振動空間を真空状態で気密封止するように、XY平面において振動部110を囲む閉環状に形成されている。接合部40は、例えばアルミニウム(Al)膜、ゲルマニウム(Ge)膜、及びアルミニウム(Al)膜がこの順に積層されて共晶接合された金属膜によって形成されている。なお、接合部40は、金(Au)、錫(Sn)、銅(Cu)、チタン(Ti)、シリコン(Si)、などから適宜選択された膜の組み合わせによって形成されてもよい。また、密着性を向上させるために、接合部40は、窒化チタン(TiN)や窒化タンタル(TaN)等の金属化合物を膜間に含んでいてもよい。
 図5に示すように、支持腕151は、低減膜LMを有している。低減膜LMは、支持腕151の振動におけるQ値を低減するように構成されている。より詳細には、低減膜LMは、支持後腕152の上、及び、支持側腕153の上の両方に形成されている。
 低減膜LMは、振動のQ値が低い材料で構成されることが好ましい。具体的には、低減膜LMは、例えばオルトケイ酸テトラエチル(Si(OC)(「TEOS」(テトラエトキシシラン)ともいう)によって形成されている。また、低減膜LMは、複数の層が積層されていてもよく、例えば、オルトケイ酸テトラエチル層及びアルミニウム(Al)層、もしくは、オルトケイ酸テトラエチル層、アルミニウム(Al)層、チタン(Ti)層、及びアルミニウム(Al)層が、この順に積層されて形成されてもよい。
 また、低減膜LMは、接合部40の材料で構成される層を含むことが好ましい。具体的には、例えばアルミニウム(Al)膜が共振子10の保持部140上に形成され、ゲルマニウム(Ge)膜が上蓋30の側壁33上に形成され、共振子10側のアルミニウム(Al)膜と上蓋30側のゲルマニウム(Ge)膜とが共晶接合されて接合部40が形成される場合、低減膜LMは、アルミニウム(Al)層を含んで構成される。これにより、接合部40を構成する層を形成する際に、例えばマスクの形状等を変更することで低減膜LMを形成するが可能になるので、共振子10の製造工程を追加、変更することなく、簡易に低減膜LMを形成することができる。
 前述したように、支持腕151は、酸化ケイ素層F21、Si基板F2、圧電膜F3、金属膜E2、及び保護膜F5を含んで構成されており、振動腕121の腕部123と略同一の積層構造を有している。そのため、低減膜LMを含めた支持腕151の厚さは、振動腕121の腕部123の厚さより大きくなっている。
 本実施形態では、端子T1が接地され、端子T2と端子T3には、互いに逆位相の交番電圧が印加される。したがって、振動腕121A,121Dの圧電膜F3に形成される電界の位相と、振動腕121B,121Cの圧電膜F3に形成される電界の位相と、は互いに逆位相になる。これにより、外側の振動腕121A,121Dと、内側の振動腕121B,121Cとが互いに逆方向に変位する。
 例えば、図4に示すように、振動腕121A,121Dのそれぞれの錘部122A,122D及び腕部123A,123Dが上蓋30の内面に向かって変位するとき、振動腕121B,121Cのそれぞれの錘部122B,122C及び腕部123B,123Cが下蓋20の内面に向かって変位する。図示を省略するが、逆に、振動腕121A,121Dのそれぞれの錘部122A,122D及び腕部123A,123Dが下蓋20の内面に向かって変位するとき、振動腕121B,121Cのそれぞれの錘部122B,122C及び腕部123B,123Cが上蓋30の内面に向かって変位する。これにより、4本の振動腕121A~121Dは、少なくとも2本が異なる位相で面外屈曲する。
 このように、隣り合う振動腕121Aと振動腕121Bとの間で、Y軸方向に延びる中心軸r1回りに振動腕121Aと振動腕121Bとが上下逆方向に振動する。また、隣り合う振動腕121Cと振動腕121Dとの間で、Y軸方向に延びる中心軸r2回りに振動腕121Cと振動腕121Dとが上下逆方向に振動する。これにより、中心軸r1と中心軸r2とで互いに逆方向の捩れモーメントが生じ、振動部110での屈曲振動が発生する。振動腕121A~121Dの最大振幅は50μm程度、通常駆動時の振幅は10μm程度である。
 次に、図6を参照しつつ、平面視における振動部の寸法について説明する。図6は、図3に示す共振子10の寸法を説明するための平面図である。なお、図6では、説明の簡略化のため、共振子10の一部を図示している。
 図6に示すように、本実施形態の共振子10において、錘部122A~122DのそれぞれのX軸方向に沿う方向の長さである幅WGは、例えば46μmである。また、振動腕121A~121DのそれぞれのX軸方向に沿う方向の長さである振動腕幅WAは、例えば25μmであり、振動腕121A~121DのそれぞれのY軸方向に沿う方向の長さである振動腕長LAは、例えば410μmである。
 また、基部130において、前端部131Aから後端部131Bに向かう方向の長さである基部長LBは、例えば25μmである。一方、左端部131Cから右端部131Dに向かう方向の長さである基部幅WBは、例えば172μmである。
 また、支持腕151の幅、具体的には支持側腕153のX軸方向に沿う方向の長さである支持腕幅WSは、例えば17μmである。図示を省略するが、支持後腕152のY軸方向に沿う方向の長さも、同様に、17μmである。さらに、支持腕151の長さ、具体的には支持側腕153のY軸方向に沿う方向の長さである支持腕長LSは、例えば40μmである。
 支持腕151の他端、具体的には支持後腕152の他端は、基部130の後端部131Bにおいて、中心線CL1が通る位置を基準としたときに、X軸方向負側、つまり、左側に10μmずれた位置に接続している。以下の説明において、特に明示する場合を除き、基部130の後端部131Bにおける中心線CL1が通る位置を原点(ゼロ)とし、一方側(右側)を「+」(プラス)、他方側(左側)を「-」(マイナス)と表すこととする。すなわち、図6に示す例では、支持後腕152の他端は、基部130の後端部131Bにおける中心線CL1が通る位置に対して-10μmの位置に接続する。
 なお、以下の説明において、特に明示する場合を除き、各部の寸法は、図6を用いて説明した長さであるものとする。
 次に、図7及び図8を参照しつつ、メインモードの振動とスプリアスモードの振動との結合の影響について説明する。図7は、仮想の共振子における入力電圧と周波数変化率との関係を示すグラフである。図8は、仮想の共振子における入力電圧と等価直列抵抗との関係を示すグラフである。なお、仮想の共振子は、本実施形態の共振子10と比較するために仮想したものであり、低減膜LMを有していない点を除き、共振子10と略同一の構成を備えるものである。図7及び図8において、横軸は、振動部の各振動腕に印加する入力電圧(Vin)である。また、図7において、縦軸は、入力電圧が0.01Vのときの共振周波数(f)を基準とする周波数変化率(df/f)である。さらに、図8において、縦軸は、振動部の等価直列抵抗(ESR)である。
 図7に示すように、仮想の共振子において、インピーダンスアナライザによって入力電圧Vinを0.01Vから0.05Vまで変化させたときに、周波数変化率は、略ゼロであり、ほとんど変化しない。一方、インピーダンスアナライザによって0.05Vから0.08Vまでの入力電圧を印加すると、周波数変化率は、負の値に大きく変化している。これは、入力電圧が0.05Vを超えると、共振周波数は、マイナス方向にシフトしてしまうことを意味する。
 また、図8に示すように、仮想の共振子において、インピーダンスアナライザによって入力電圧Vinを0.01Vから0.05Vまで変化させたとき、等価直列抵抗は、ほぼ一定の値であり、あまり変化しない。一方、インピーダンスアナライザによって0.05Vから0.08Vまでの入力電圧を印加すると、等価直列抵抗は、入力電圧が大きくなるにつれて増加している。
 これらの結果から、仮想の共振子では、0.05Vより大きい入力電圧を印加すると、メインモードの振動とスプリアスモードの振動との結合(「カップリング」ともいう)が発生しているものと考えられる。
 ここで、前述したように、本実施形態の共振子10は、メインモードの振動において、振動腕121A及び振動腕121Dと振動腕121B及び振動腕121Cとが、互いに逆位相の面外屈曲振動をする。一般に、どの共振子においても、メインモードの振動とは異なる振動、つまり、スプリアスモードの振動(「寄生振動」ともいう)を有している。本実施形態の共振子10は、メインモードにおいて、主に振動腕121が振動するのに対し、スプリアスモードでは、主に基部130及び支持腕151が振動する。これらのことは、仮想の共振子においても同様である。
 このスプリアスモードの振動の周波数が、メインモードの振動の周波数、つまり、共振周波数に対して、例えば、所定数倍又は1/所定数であるときに、メインモードの振動とスプリアスモードの振動とが結合しやすくなる傾向にあることが知られている。
 次に、図9を参照しつつ、メインモードの振動とスプリアスモードの振動との結合が発生するドライブレベルについて説明する。図9は、仮想の共振子における周波数比と結合ドライブレベルとの関係を示すグラフである。図9において、横軸は、メインモードの周波数(Fm)に対するスプリアスモードの周波数(Fs)の周波数比(Fs/Fm)である。また、縦軸は、メインモードの振動とスプリアスモードの振動との結合が発生する結合ドライブレベルである。ドライブレベルは、入力電圧(Vin)の2乗を共振抵抗(Rr)で除算した値(Vin/Rr)であり、単位は[μW]である。図9のグラフは、周波数比を変更した複数の仮想の共振子のそれぞれにおいて、結合ドライブレベルを計測した結果を描画(プロット)したものである。
 図9に示すように、仮想の共振子において、周波数比が2倍より大きくなればなるほど、結合ドライブレベルは高くなる傾向にある。言い換えれば、スプリアスモードの振動における周波数をメインモードの振動の周波数の2倍よりも十分に高くすることができれば、結合ドライブレベルは高くなり、メインモードの振動とスプリアスモードの振動とが結合しにくくなる、といえる。
 仮想の共振子は、例えば、周波数比は平均が2.37倍であり、2倍より大きな値になっている。しかし、メインモードの振動とスプリアスモードの振動との結合は、周波数比のみによって発生するものではなく、他の要因も存在する。そのため、仮想の共振子では、結合ドライブレベルは、平均が0.058μWであり、相対的に低い値となっている。また、共振子は、従来から一層の小型化が求められており、寸法等を変更して周波数比を大幅に増加させることは困難である。
 ここで、本発明の発明者らは、スプリアスモードの振動のQ値に注目し、このQ値を低減させることで結合ドライブレベルを高くできることを見出した。より詳細には、支持腕151は、支持腕151における振動のQ値を低減させるように構成された低減膜LMを有することが好ましいことを見出した。これにより、支持腕151の振動が主要な振動であるスプリアスモードの振動において、Q値が低減される。
 次に、図10及び図11を参照しつつ、本発明の一実施形態に係る支持腕の周辺の積層構造について説明する。図10は、図3に示す支持後腕152の周辺の構成を概略的に示す要部拡大断面図である。図11のグラフは、支持腕の周辺の構成と結合ドライブレベルとの関係を示すグラフである。図11において、縦軸は、メインモードの振動とスプリアスモードの振動との結合が発生する結合ドライブレベルである。ドライブレベルは、入力電圧(Vin)の2乗を共振抵抗(Rr)で除算した値(Vin/Rr)であり、単位は[μW]である。また、横軸における「なし」は、支持腕が低減膜を有していない仮想の共振子を表し、横軸における「低減膜例1」及び「低減膜例2」は、支持腕151が有する低減膜LMであって、それぞれ、互いに異なる構成を含む低減膜LMを備える共振子10を表している。図11のグラフは、仮想の共振子及び共振子10のそれぞれの構成において、結合ドライブレベルを複数回計測した結果を描画(プロット)したものである。
 図10に示すように、本実施形態の支持腕151は、仮想の共振子とは異なり、低減膜LMを有している。図10では、支持腕151のうちの支持後腕152の低減膜LMを例示している。
 支持後腕152は、前述したように、下面に酸化ケイ素層F21が形成されたSi基板F2と、圧電膜F3と、金属膜E2を覆うように積層された保護膜F5とを含んで構成されている。この支持後腕152の上に、低減膜LMが形成されている。
 低減膜LMは、支持腕151のうちの少なくとも支持後腕152の上に形成されていることが好ましい。ここで、本発明の発明者らは、支持腕151のうちの基部130との接続部分の厚さや材料等が、支持腕151の振動におけるQ値の低減に支配的な要因であることを見出した。よって、低減膜LMが少なくとも支持後腕152の上に形成されることにより、支持腕151の振動が主要な振動であるスプリアスモードのQ値を、効果的かつ効率的に低減することができる。
 また、前述したように、低減膜LMを含めた支持後腕152の厚さは、振動腕121の腕部123の厚さより大きい。これにより、低減膜LMを含めた支持腕151のヤング率を増加させ、メインモードの周波数に対するスプリアスモードの周波数を高くすることができる。
 低減膜LMは、第1層41、第2層42、第3層43、及び第4層44を含んで構成されている。第1層41は、例えばオルトケイ酸テトラエチルを主成分とする層であり、厚さは1μmである。第2層42は、例えばアルミニウム(Al)をを主成分とする層であり、厚さは0.7μmである。第3層43は、例えばチタン(Ti)をを主成分とする層であり、厚さは0.1μmである。第4層44は、第2層42と同じく、例えばアルミニウム(Al)をを主成分とする層であり、厚さは0.7μmである。
 このように、低減膜LMは、振動腕121の腕部123の材料とは異なる材料で構成されていることが好ましい。これにより、メインモードの振動におけるQ値を増加させつつ、スプリアスモードの振動におけるQ値を低減することが可能になる。
 なお、以下の説明において、特に明示する場合を除き、低減膜LMは、図10を用いて説明した構成及び厚さであるものとする。
 図11に示すように、「なし」で表される仮想の共振子では、前述したように、周波数比の平均が2.37倍であり、結合ドライブレベルの平均が0.058μWにとどまっている。このとき、スプリアスモードの振動のQ値は、平均が21835である。
 これに対し、「低減膜例2」で表される図10に示す構成の低減膜LMを有する共振子10では、スプリアスモードの振動のQ値は、平均が4860であり、仮想の共振子と比較して、1/4以下に低減されている。また、周波数比は平均が2.70倍に増加し、結合ドライブレベルは平均が0.125μWまで高くなっている。
 また、「低減膜例1」で表される低減膜LMの構成は、図10に示す第1層41のみを含んでいる。この場合であっても、共振子10は、仮想の共振子と比較して、スプリアスモードの振動のQ値を低減させ、周波数比の平均が増加し、結合ドライブレベルの平均が高くなっている。
 このように、支持腕151は、支持腕151における振動のQ値を低減させるように構成された低減膜LMを有することにより、支持腕151の振動が主要な振動であるスプリアスモードの振動のQ値が低減され、メインモードの振動とスプリアスモードの振動との結合が発生するドライブレベルを高くすることができる。従って、メインモードの振動とスプリアスモードの振動とが結合し難くなり、当該結合の発生を抑制することができる。
 本実施形態では、共振子10の振動部110が4本の振動腕121A~121Dを含む例を用いたが、これに限定されるものではない。振動部110は、例えば、3本又は5本以上の振動腕を含んでいてもよい。この場合、少なくとも2本の振動腕は、異なる位相で面外屈曲する。
 また、本実施形態では、共振子10の支持腕151の一端が保持部140の枠体141Dに接続された例を用いたが、これに限定されるものではない。支持腕151の一端は、例えば、保持部140の枠体141Cに接続されていてもよい。
 以上、本発明の例示的な実施形態について説明した。一実施形態に従う共振子において、支持腕は、支持腕における振動のQ値を低減させるように構成された低減膜を有する。これにより、支持腕の振動が主要な振動であるスプリアスモードの振動のQ値が低減され、メインモードの振動とスプリアスモードの振動との結合が発生するドライブレベルを高くすることができる。従って、メインモードの振動とスプリアスモードの振動とが結合し難くなり、当該結合の発生を抑制することができる。
 また、一実施形態に従う共振子において、低減膜を含めた支持腕の厚さは、振動腕の腕部の厚さより大きい。これにより、低減膜を含めた支持腕のヤング率を増加させ、メインモードの周波数に対するスプリアスモードの周波数を高くすることができる。
 また、一実施形態に従う共振子において、低減膜は、振動腕の腕部の材料とは異なる材料で構成されている。これにより、メインモードの振動におけるQ値を増加させつつ、スプリアスモードの振動におけるQ値を低減することが可能になる。
 また、一実施形態に従う共振子において、低減膜は、支持後腕の上に形成されている。これにより、支持腕の振動が主要な振動であるスプリアスモードのQ値を、効果的かつ効率的に低減することができる。
 また、一実施形態に従う共振装置は、前述した共振子を備える。これにより、メインモードの振動とスプリアスモードの振動との結合の発生を抑制する共振装置を容易に実現することができる。
 また、前述した共振装置において、低減膜は、接合部の材料で構成される層を含む。これにより、接合部を構成する層を形成する際に、例えばマスクの形状等を変更することで低減膜を形成するが可能になるので、共振子の製造工程を追加、変更することなく、簡易に低減膜を形成することができる。
 なお、以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。すなわち、実施形態及び/又は変形例に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、実施形態及び/又は変形例が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、実施形態及び変形例は例示であり、異なる実施形態及び/又は変形例で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。
 1…共振装置、10…共振子、20…下蓋、21…凹部、22…底板、23…側壁、30…上蓋、31…凹部、32…底板、33…側壁、40…接合部、41…第1層、42…第2層、43…第3層、44…第4層、50…突起部、110…振動部、120…励振部、121,121A,12B,121C,121D…振動腕、122,122A,122B,122C,122D…錘部、123,123A,123B,123C,123D…腕部、125,125A,125B,125C,125D…質量付加膜、130…基部、131A…前端部、131B…後端部、131C…左端部、131D…右端部、140…保持部、141A,141B,141C,141D…枠体、151…支持腕、152…支持後腕、153…支持側腕。

Claims (6)

  1.  それぞれが固定端を有する3本以上の複数の振動腕であって、少なくとも2本が異なる位相で面外屈曲する複数の振動腕と、前記複数の振動腕のそれぞれの前記固定端が接続された一端と該一端に対向する他端とを有する基部と、を含む振動部と、
     前記振動部を保持するように構成された保持部と、
     一端が前記保持部に接続され、他端が前記基部の前記他端に接続された支持腕と、を備え、
     前記支持腕は、前記支持腕の振動におけるQ値を低減させるように構成された低減膜を有する、
     共振子。
  2.  前記低減膜を含めた前記支持腕の厚さは、前記複数の振動腕のそれぞれの腕部の厚さより大きい、
     請求項1に記載の共振子。
  3.  前記低減膜は、前記複数の振動腕のそれぞれの腕部の材料とは異なる材料で構成されている、
     請求項1又は2に記載の共振子。
  4.  前記支持腕は、支持側腕と、一端が前記支持側腕に接続され、他端が前記基部の前記他端に接続された支持後腕とを含み、
     前記低減膜は、前記支持後腕の上に形成されている、
     請求項1から3のいずれか一項に記載の共振子。
  5.  請求項1から4のいずれか一項に記載の共振子を備える、
     共振装置。
  6.  蓋体と、
     前記共振子と前記蓋体とを接合する接合部と、をさらに備え、
     前記低減膜は、前記接合部の材料で構成される層を含む、
     請求項5に記載の共振装置。
PCT/JP2022/030297 2021-12-15 2022-08-08 共振子及び共振装置 WO2023112380A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023567532A JPWO2023112380A1 (ja) 2021-12-15 2022-08-08
CN202280083208.7A CN118402181A (zh) 2021-12-15 2022-08-08 谐振子以及谐振装置
US18/738,424 US20240333249A1 (en) 2021-12-15 2024-06-10 Resonator and resonating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-203493 2021-12-15
JP2021203493 2021-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/738,424 Continuation US20240333249A1 (en) 2021-12-15 2024-06-10 Resonator and resonating device

Publications (1)

Publication Number Publication Date
WO2023112380A1 true WO2023112380A1 (ja) 2023-06-22

Family

ID=86774220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030297 WO2023112380A1 (ja) 2021-12-15 2022-08-08 共振子及び共振装置

Country Status (4)

Country Link
US (1) US20240333249A1 (ja)
JP (1) JPWO2023112380A1 (ja)
CN (1) CN118402181A (ja)
WO (1) WO2023112380A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123118A1 (ja) * 2016-12-27 2018-07-05 株式会社村田製作所 共振装置
WO2019155663A1 (ja) * 2018-02-09 2019-08-15 株式会社村田製作所 Memsデバイス
WO2020067484A1 (ja) * 2018-09-28 2020-04-02 株式会社村田製作所 共振子及び共振装置
WO2020261630A1 (ja) * 2019-06-26 2020-12-30 株式会社村田製作所 共振装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123118A1 (ja) * 2016-12-27 2018-07-05 株式会社村田製作所 共振装置
WO2019155663A1 (ja) * 2018-02-09 2019-08-15 株式会社村田製作所 Memsデバイス
WO2020067484A1 (ja) * 2018-09-28 2020-04-02 株式会社村田製作所 共振子及び共振装置
WO2020261630A1 (ja) * 2019-06-26 2020-12-30 株式会社村田製作所 共振装置

Also Published As

Publication number Publication date
US20240333249A1 (en) 2024-10-03
CN118402181A (zh) 2024-07-26
JPWO2023112380A1 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
WO2018008198A1 (ja) 共振子及び共振装置
US10879873B2 (en) Resonator and resonance device
JP7154487B2 (ja) パッケージ構造及びその製造方法
WO2020067484A1 (ja) 共振子及び共振装置
US20220029598A1 (en) Resonance device
CN112534719B (zh) 谐振装置
US11990890B2 (en) Resonator and resonance device including same
WO2019211926A1 (ja) 共振子及び共振装置
JP7133134B2 (ja) 共振装置
CN112703672B (zh) 谐振子以及谐振装置
US20230119602A1 (en) Resonance device, collective substrate, and resonance device manufacturing method
JP7544146B2 (ja) 共振子及び共振装置
JP7482402B2 (ja) 共振子及び共振装置
WO2019207829A1 (ja) 共振子及び共振装置
WO2023112380A1 (ja) 共振子及び共振装置
WO2020049789A1 (ja) 共振子及びそれを備えた共振装置
JP7459937B2 (ja) 共振子及び共振装置
WO2023013169A1 (ja) 共振子及び共振装置
WO2024161730A1 (ja) 共振装置
WO2022163020A1 (ja) 共振装置及びその製造方法
WO2023007787A1 (ja) 共振装置及びその製造方法
WO2024009553A1 (ja) 共振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567532

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE