WO2023109126A1 - 一种太阳电池及其制作方法 - Google Patents

一种太阳电池及其制作方法 Download PDF

Info

Publication number
WO2023109126A1
WO2023109126A1 PCT/CN2022/107233 CN2022107233W WO2023109126A1 WO 2023109126 A1 WO2023109126 A1 WO 2023109126A1 CN 2022107233 W CN2022107233 W CN 2022107233W WO 2023109126 A1 WO2023109126 A1 WO 2023109126A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
amorphous silicon
transparent conductive
layer
doped
Prior art date
Application number
PCT/CN2022/107233
Other languages
English (en)
French (fr)
Inventor
袁强
石建华
张海川
孟凡英
刘正新
程琼
周华
Original Assignee
中威新能源(成都)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中威新能源(成都)有限公司 filed Critical 中威新能源(成都)有限公司
Publication of WO2023109126A1 publication Critical patent/WO2023109126A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of solar cells, in particular, to a solar cell and a manufacturing method thereof.
  • one of the characteristics of silicon heterojunction (SHJ) solar cells is that the conductivity of the emitter is low. Then, for a solar cell, it is not enough to collect current from the emitter through the metal grid. Therefore, solar cells require other electrical contact schemes. Since the transparent conductive oxide (TCO) film has both transparency and conductivity, the transparent conductive oxide film is a very good solution.
  • TCO transparent conductive oxide
  • the TCO film used mainly plays the following roles:
  • ITO Indium Tin Oxide
  • the present application proposes a solar battery and a manufacturing method thereof, which can reduce the manufacturing cost of the battery to a certain extent and help to improve the electrical performance of the battery.
  • a solar cell that may include:
  • a doped crystalline silicon substrate having opposing first and second surfaces
  • the first amorphous silicon layer formed on the first surface has a first intrinsic amorphous silicon layer and a first doped amorphous silicon layer stacked sequentially from the first surface;
  • the first electrode is formed on the first transparent conductive film layer;
  • the second amorphous silicon layer formed on the second surface has a second intrinsic amorphous silicon layer and a second doped amorphous silicon layer stacked sequentially from the second surface, wherein the first doped amorphous silicon layer
  • the doping type is opposite to that of the second doped amorphous silicon layer
  • the doping concentration of the first transparent conductive film layer is different from that of the second transparent conductive film layer.
  • the doped crystalline silicon substrate may be N-type
  • the first doped amorphous silicon layer may be P-type
  • the doping concentration of the first transparent conductive film layer may be higher than that of the first transparent conductive film layer.
  • the doping concentration of the second transparent conductive film layer may be higher than that of the first transparent conductive film layer.
  • the first transparent conductive film layer and the second transparent conductive film layer may respectively be indium tin oxide thin films
  • the doping concentration of the first transparent conductive film layer is different from the doping concentration of the second transparent conductive film layer:
  • the doping concentration of tin in the first transparent conductive film layer is greater than the doping concentration of tin in the second transparent conductive film layer, and the concentration of indium in the first transparent conductive film layer is smaller than that of indium in the second transparent conductive film layer concentration.
  • the doping concentration of tin in the first transparent conductive film layer may be 5wt% to 15wt%, and the concentration of indium may be 85wt% to 95wt%;
  • the doping concentration of tin in the first transparent conductive film layer can be 10wt%, the doping concentration of tin is 90wt%, the doping concentration of tin in the second transparent conductive film layer is 3wt%, the concentration of indium is 97wt%.
  • the first transparent conductive film layer may include at least two films stacked in sequence, and the oxygen content of each film is different.
  • the first transparent conductive film layer may include two films stacked in sequence, and the two films are respectively a high oxygen concentration film and a low oxygen concentration film.
  • the oxygen content of each thin film may decrease sequentially.
  • a solar cell which may include:
  • a doped crystalline silicon substrate having a front side and a back side;
  • the passivation films formed on the front and back sides respectively have an intrinsic amorphous silicon film and a doped amorphous silicon film stacked sequentially from the substrate, and the doping type of the substrate is the same as the doping type of the front passivation film.
  • the doping type of the heterogeneous amorphous silicon film is the same, and the doping type of the substrate is different from that of the doped amorphous silicon film in the passivation film on the back;
  • the front ITO thin film formed on the surface of the passivation film on the front side has a metal grid line on the surface of the front ITO thin film;
  • the tin doping concentration in the front ITO film is smaller than that in the back ITO film, and the indium concentration in the front ITO film is greater than that in the back ITO film.
  • the ITO thin film on the back side includes a stacked first film layer and a second film layer, the first film layer is in contact with the passivation film layer on the back side, and the oxygen content of the first film layer is higher than that of the second film layer. Oxygen content of the film.
  • Still other examples of the present application provide a method for fabricating a solar cell.
  • the production method may include:
  • doped single crystal silicon with a light-trapping structure as a substrate
  • an intrinsic amorphous silicon layer and a doped amorphous silicon layer are sequentially deposited to passivate the surface of the substrate, and the doping type of the doped amorphous silicon layer on the front is different from that of The doping type of the doped amorphous silicon layer on the back;
  • Sputtering is carried out with a target to make ITO thin films respectively on the doped amorphous silicon layers distributed on the front and back of the substrate, and the tin doping amount in the front ITO thin film is different from that in the back ITO thin film.
  • Metal grid lines are made on the ITO film on the front side and the ITO film on the back side respectively.
  • the production method may include:
  • each film layer When the target is used to sputter the ITO film on the back, multiple film layers stacked in sequence are produced by adjusting the process parameters.
  • the tin doping concentration of each film layer is the same, but the oxygen content is different.
  • An example of the present application provides a method for manufacturing a solar cell, characterized in that the method may include:
  • TCO thin films are deposited on the front and back sides respectively.
  • the front TCO thin film coating target is a low-doped indium tin target
  • the back TCO thin film coating target is a high Doped indium tin target
  • the tin doping concentration of the low-doped TCO film on the front side is prepared from a low-concentration target
  • the tin doping concentration of the highly doped TCO film on the back is coated with any one or multiple doping concentration targets of high concentration;
  • Metallic silver grid electrodes were fabricated on the front and back TCO films.
  • the solar cell provided by the embodiment of the present application can control the cost of the cell by adjusting the composition of the transparent conductive electrodes on both sides and using two kinds of transparent conductive oxides with different doping concentrations.
  • the performance of the battery can be adjusted or optimized.
  • Fig. 1 is the structural representation of a kind of solar cell in the example of the present application
  • Fig. 2 is a schematic structural diagram of another solar cell in the example of the present application.
  • Icons 100-solar cell; 101-substrate; 102-first amorphous silicon layer; 1021-first intrinsic amorphous silicon layer; 1022-first doped amorphous silicon layer; 103-second amorphous silicon layer layer; 1031-the second intrinsic amorphous silicon layer; 1032-the second doped amorphous silicon layer; 104-the first transparent conductive film layer; 105-the second transparent conductive film layer; 106-the first electrode; 107- The second electrode; 200-solar cell; 201-low oxygen concentration film; 202-high oxygen concentration film.
  • the solar cell 100 of the embodiment of the present application and its manufacturing method will be described in detail below.
  • ITO indium tin oxide/tin-doped indium oxide
  • 973 targets are generally used to prepare by sputtering to form TCO thin films made of ITO. Wherein “973" indicates that the indium content in the ITO is 97%, and the tin doping amount is 3%. Due to the high price of indium, when TCO made of ITO material such as 973 target is used as the carrier collection film layer of the positive and negative electrodes in the battery, the production cost of the battery will be very high.
  • the example scheme of this application can use a high-cost TCO on one side and a relatively low-cost TCO on the other side, which can be used to reduce the cost of the high-priced TCO. use, thereby reducing costs. Moreover, such an improvement can also play a positive role in the electrical performance of the battery.
  • a solar cell 100 which includes a substrate 101 layer and passivation films distributed on the surface of both sides in the thickness direction thereof, and has a TCO and a metal gate on the surface of the passivation film.
  • the carrier collection film layer composed of wires.
  • a solar cell 100 may include a substrate 101 .
  • the substrate 101 is made of doped crystalline silicon material.
  • the doping type of the substrate 101 can be N-type or P-type; therefore, the substrate 101 can be expressed as: N-c-Si, or P-c-Si.
  • the doping type of the substrate 101 can be adaptively adjusted; correspondingly, according to the different doping types of the substrate, the doping types of other functional layers in the battery can also be adjusted Make adaptive adjustments.
  • the substrate 101 has opposite first and second surfaces; that is, the substrate 101 has a top surface/front surface, and a bottom surface/back surface.
  • other functional and structural layers of the battery are laid out based on the aforementioned surface.
  • the solar cell 100 also has a passivation structure, and both the above-mentioned first surface and the second surface are provided with a passivation structure.
  • the passivation structure is provided in the form of the aforementioned passivation film layer.
  • the passivation thin film is an amorphous silicon layer, which includes two substructure layers - an intrinsic amorphous silicon layer and a doped amorphous silicon layer.
  • the passivation structure formed on the first surface is the first amorphous silicon layer 102, and includes the first intrinsic amorphous silicon layer 1021, the first doped amorphous silicon layer, and the first doped amorphous silicon layer stacked sequentially from the first surface.
  • the passivation structure formed on the second surface is the second amorphous silicon layer 103, which has a second intrinsic amorphous silicon layer 1031 and a second doped amorphous silicon layer 1032 stacked sequentially from the second surface.
  • intrinsic amorphous silicon can be expressed as: i- ⁇ -Si:H
  • doped amorphous silicon can be expressed as: P- ⁇ -Si:H, or N- ⁇ -Si:H.
  • the solar cell 100 may further include a transparent conductive film and a metal electrode as an electrode for collecting carriers.
  • the first transparent conductive film layer 104 is formed on the first doped amorphous silicon layer 1022 in the first amorphous silicon layer 102, and at the same time, the first transparent A first electrode 106 is formed on the conductive film layer 104 .
  • a second transparent conductive film layer 105 is formed on the second doped amorphous silicon layer 1032 in the second amorphous silicon layer 103, and a second electrode is formed on the second transparent conductive film layer 105 107.
  • the doping type of the first doped amorphous silicon layer 1022 is opposite to that of the second doped amorphous silicon layer 1032 .
  • the doping type refers to P-type doping and N-type doping. Therefore, when the first doped amorphous silicon is P-type doped, the second doped amorphous silicon is N-type doped; and vice versa. Therefore, one of the first doped amorphous silicon layer 1022 and the second doped amorphous silicon layer 1032 has the same doping type as the substrate 101 , while the other has an opposite doping type to the substrate 101 .
  • the solar cell 100 in the example of the present application does not adopt the first transparent conductive film layer 104 and the second transparent conductive film layer 105 composed of the same composition; on the contrary, the two are film layers with different doping concentrations .
  • the tin doping concentration of one is greater than that of the other. Since ITO is indium oxide doped with tin, it is called indium tin oxide for short. Therefore, for the case of using ITO as the transparent conductive film layer, "doping concentration" refers to the concentration of tin. And, in percentage terms, if the tin doping concentration of ITO is A, the concentration of indium is 100-A.
  • the concentration of indium in the second transparent conductive film layer 105 made of ITO is 3wt%
  • the concentration of indium is 93wt%
  • the doping concentration of tin in the first transparent conductive film layer 104 made of ITO When the concentration is 5wt% to 15wt% (for example, the doping concentration can also be 6wt%, 8wt%, 9wt%, 10wt%, 12wt%, etc.), then the concentration of indium is 85wt% to 95wt%.
  • the structure of the solar cell 100 includes the following structures stacked in sequence: metal grid lines, the first transparent conductive film layer 104, the first amorphous silicon layer 102 (including the first intrinsic amorphous silicon layer 1021, P-type first doped amorphous silicon layer 1022), N-type substrate 101, second amorphous silicon layer 103 (including second intrinsic amorphous silicon layer 1031, N-type second doped amorphous silicon layer 1032), the second transparent conductive film layer 105 and the metal grid lines.
  • the first transparent conductive film layer 104 is an ITO film with a high tin doping concentration (correspondingly having a low indium concentration), and the second transparent conductive film layer 105 has a low tin doping concentration (correspondingly having a high Indium concentration) ITO film.
  • this application exemplarily proposes another solar cell 200 .
  • the difference between the solar cell 200 and the aforementioned cells mainly lies in:
  • the first transparent conductive film layer 104 includes at least two films stacked in sequence, and the oxygen content of each film is different.
  • the first electrode 106 is in electrical contact with one of the at least two thin films that is far away from the doped crystalline silicon substrate 101 . That is, the first electrode 106 is combined on the bottom surface of the first transparent conductive film layer 104 .
  • the oxygen content of each thin film changes sequentially, for example, it may increase or decrease gradually—it depends on the choice of the direction of change.
  • the oxygen content of each thin film decreases successively.
  • the first transparent conductive film layer 104 may include two layers of films stacked in sequence, and the two layers of films are respectively denoted as a high oxygen concentration film 202 and a low oxygen concentration film 201 .
  • the battery of the present application may also have the following structure.
  • the solar cell may include: a doped crystalline silicon substrate (which has a front side and a back side), a passivation film formed on the front side and a back side of the substrate respectively, a front ITO thin film formed on the surface of the passivation film on the front side, and a front side ITO film formed on the back side The backside ITO thin film on the surface of the passivation film.
  • the surface of the front TCO film has metal grid lines; the surface of the back TCO film has metal grid lines.
  • the aforementioned passivation film/passivation structure is a thin film that plays a passivation role. Because there will be a large number of dangling chemical bonds on the surface of crystalline silicon, there will be a large number of defect energy levels located in the band gap on the surface. Also, defect levels are also introduced due to structural defects (dislocations, etc.) of the crystal. These defects all lead to the recombination of photogenerated carriers.
  • the passivation film can play a passivation effect, thereby inhibiting the recombination of carriers.
  • the passivation film adopts a composite structure, by disposing an intrinsic amorphous silicon film and a doped amorphous silicon film in contact with each other.
  • the doped amorphous silicon film can coordinate and assist, thereby improving the surface passivation effect of the intrinsic amorphous silicon film on the crystalline silicon substrate.
  • the doping type of the substrate is the same as that of the doped amorphous silicon film in the passivation film on the front side (for example, both are N-type doping), and the doping type of the substrate (N-type)
  • the doping type (P type) is different from that of the doped amorphous silicon film in the passivation film on the rear surface.
  • the tin doping concentration in the front ITO film is lower than that in the back ITO film, and the indium concentration in the front ITO film is greater than that in the back ITO film.
  • the back ITO thin film in the solar cell 200 may include a stacked first film layer and a second film layer.
  • the first film layer is in contact with the passivation film layer on the back, and the oxygen content of the first film layer is higher than that of the second film layer.
  • the difference in oxygen content can be adjusted through the process selection in the film making process. For example, when the magnetron sputtering method is selected to make the ITO film, it is realized by controlling the process parameters - adjusting the power, the gas ratio of argon (carrier gas)/oxygen (working gas), time - and so on.
  • Preparation methods can include:
  • TCO films are deposited on the front (n side) and back (p side) respectively.
  • the front (n side) TCO thin film coating target is a low-doped indium tin target
  • the back (p side) TCO thin film coating target is a highly doped indium tin target.
  • the tin doping concentration of the low-doped TCO film on the front side (n side) is prepared from a target material with a low concentration (such as 3wt%); the thickness of the deposited TCO film can be 80nm.
  • the back (p side) highly doped TCO film is high concentration (such as 5wt% to 15wt%) any one or more doping concentration target coating; the total thickness can be controlled as 80nm.
  • metallic silver grid electrodes were prepared on the front (n-side) and back (p-side) TCO films.
  • making methods can include:
  • Step 1 providing doped single crystal silicon with a light-trapping structure as a substrate;
  • Step 2 sequentially depositing an intrinsic amorphous silicon layer and a doped amorphous silicon layer on the front surface of the substrate, and sequentially depositing an intrinsic amorphous silicon layer and a doped amorphous silicon layer on the back surface of the substrate.
  • the passivation of the surface of the substrate is realized by making the above structure layer.
  • the doping type of the doped amorphous silicon layer on the front side is different from that of the doped amorphous silicon layer on the back side.
  • Step 3 using the target material to perform magnetron sputtering (PVD) to make ITO films respectively on the doped amorphous silicon layers distributed on the front and back of the substrate, and the tin doping in the front ITO films The amount is different from the tin doping amount in the ITO film on the back.
  • PVD magnetron sputtering
  • the steps of making the ITO thin film can also be refined as required, so as to realize the preparation of the ITO thin film in a composite state with a multilayer structure. That is, when using the target to sputter the ITO thin film on the back, a plurality of film layers stacked one after another are produced by adjusting the process parameters. The tin doping concentration of each film layer is the same, but the oxygen content is different.
  • Step 4 making metal grid lines on the front ITO film and the back ITO film respectively.
  • n-type single crystal silicon as the substrate and wash and texture it to form a pyramid-shaped light-trapping structure
  • the i/n and i/p layers are respectively deposited on both sides of the single crystal silicon by PECVD and other chemical vapor deposition methods.
  • the coating target is a 973 target material, adjust the power and the argon/oxygen flow rate to deposit 80nm thick tin-doped indium oxide-based TCO films of 3wt%;
  • the coating target is 9010 target (indium accounts for 90%, tin doping concentration is 10%), and the power and argon/oxygen flow rate are adjusted to deposit 80nm thick tin doped with 10wt% indium oxide base TCO film;
  • metal silver grid lines are printed on the TCO film by silk printing.
  • the performance comparison data of the solar cell (the first cell) made in Example 1 and the solar cell (the second cell) made with the existing 973 target are as follows.
  • the difference between the solar cell made of the existing 973 target and the battery of Example 1 of the present application is that the TCO films on both sides of the solar cell made of the existing 973 target are made of the 973 target.
  • n-type single crystal silicon as the substrate and wash and texture it to form a pyramid-shaped light-trapping structure
  • the i/n and i/p layers are respectively deposited on both sides of the single crystal silicon by PECVD and other chemical vapor deposition methods.
  • the coating target is 973 target material (indium accounts for 97%, tin doping concentration is 3%), adjust the power and argon/oxygen flow rate to deposit 80nm thick tin doping with 3wt.% oxidation Indium-based TCO thin film.
  • the coating target is 9010 target (indium accounts for 90%, tin doping concentration is 10%), adjust the power and argon/oxygen flow rate to deposit two layers of 40nm TCO film, followed by high oxygen flow rate Indium oxide-based thin film doped with 10wt.% tin with low oxygen flux;
  • orientation or positional relationship indicated by the terms “upper”, “lower” and so on is based on the orientation or positional relationship shown in the attached drawings, or the usual placement of the application product when it is used. Orientation or positional relationship is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and thus should not be construed as limiting the present application.
  • first”, “second”, etc. are only used for distinguishing descriptions, and should not be construed as indicating or implying relative importance.
  • the application provides a solar cell and a manufacturing method thereof, belonging to the field of solar cells.
  • the solar cell has a silicon substrate and a passivation film, and also has a transparent conductive film on both sides of the passivation film, and the doping concentrations of the two transparent conductive film layers are different.
  • the solar cell can be manufactured at relatively lower cost without sacrificing cell performance.
  • a solar cell of the present application and its fabrication method are reproducible and can be used in various industrial applications.
  • a solar cell and its manufacturing method of the present application can be used in the field of solar cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳电池及其制作方法,属于太阳电池领域。太阳电池具有硅衬底和钝化膜,并且还具有位于两侧的钝化膜之上的透明导电膜,并且,该两个透明导电膜层的掺杂浓度不同。该太阳电池可以在不牺牲电池性能的情况下通过相对更低的成本被制造。

Description

一种太阳电池及其制作方法
相关申请的交叉引用
本申请要求于2021年12月16日提交中国国家知识产权局的申请号为202111544409.6、名称为“一种太阳电池及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳电池领域,具体而言,涉及一种太阳电池及其制作方法。
背景技术
与传统的晶硅太阳电池相比,硅异质结(Silicon Heterojunction,简称SHJ)太阳电池的一个特点是:发射极的导电性低。那么,对于太阳电池而言,只通过金属栅线从发射极收集电流是不够的。因此,太阳电池需要其他的电接触方案。由于透明导电氧化物(Transparent Conductive Oxide,简称TCO)薄膜,同时具有透明性和导电性,因此,透明导电氧化物薄膜就是一种非常好的解决方案。
在太阳电池中,被使用的TCO薄膜,主要起到以下几个方面的作用:
(1)尽可能多的光透过TCO,进入发射极和基区;
(2)因TCO的折射率与SiNx薄膜接近,可以同时用作减反射层;
(3)电学方面满足导电的要求。
但是目前采用较多的TCO薄膜—氧化铟锡(Indium Tin Oxide,简称ITO)—使用价格较贵的金属铟,因此,有必要进一步控制太阳电池的成本教导。
发明内容
本申请提出了一种太阳电池及其制作方法,其能够在一定程度上降低电池的制作成本,且有助于用以改善电池的电性能。
本申请是这样实现的:
本申请的的一些示例提供了一种太阳电池,其可以包括:
掺杂的晶硅衬底,具有对置的第一表面和第二表面;
形成于第一表面的第一非晶硅层,具有依次从第一表面层叠的第一本征非晶硅层、第一掺杂非晶硅层;
形成于第一非晶硅层中的第一掺杂非晶硅层的第一透明导电膜层,第一透明导电膜层 之上形成第一电极;
形成于第二表面的第二非晶硅层,具有依次从第二表面层叠的第二本征非晶硅层、第二掺杂非晶硅层,其中,第一掺杂非晶硅层的掺杂类型与第二掺杂非晶硅层的掺杂类型相反;
形成于第二非晶硅层中的第二掺杂非晶硅层的第二透明导电膜层,第二透明导电膜层之上形成第二电极;
第一透明导电膜层的掺杂浓度不同于第二透明导电膜层的掺杂浓度。
根据本申请的一些示例,掺杂的晶体硅衬底可以是N型的,第一掺杂非晶硅层可以是P型的,并且,第一透明导电膜层的掺杂浓度可以高于第二透明导电膜层的掺杂浓度。
根据本申请的一些示例,第一透明导电膜层和第二透明导电膜层可以分别为氧化铟锡薄膜;
第一透明导电膜层的掺杂浓度不同于第二透明导电膜层的掺杂浓度表示的是:
第一透明导电膜层中的锡的掺杂浓度大于第二透明导电膜层中的锡的掺杂浓度,且第一透明导电膜层中的铟的浓度小于第二透明导电膜层中的铟的浓度。
根据本申请的一些示例,第一透明导电膜层中的锡的掺杂浓度可以为5wt%至15wt%、铟的浓度为85wt%至95wt%;
或者,第一透明导电膜层中的锡的掺杂浓度可以为10wt%、锡的掺杂浓度为90wt%,第二透明导电膜层中的锡的掺杂浓度为3wt%、铟的浓度为97wt%。
根据本申请的一些示例,第一透明导电膜层可以包括依次叠置的至少两层薄膜,且每层薄膜的氧含量不同,第一电极与前述的至少两层薄膜中的远离掺杂的晶硅衬底的一层薄膜电接触。
根据本申请的一些示例,第一透明导电膜层可以包括依次叠置的两层薄膜,两层薄膜分别为高氧浓度薄膜和低氧浓度薄膜。
根据本申请的一些示例,从第一本征非晶硅层至第一掺杂非晶硅层的方向,每层薄膜的氧含量可以依次递减。
本申请的的另一些示例提供了一种太阳电池,其可以包括:
掺杂的晶硅衬底,具有正面和背面;
分别形成于正面和背面的钝化膜,具有从衬底依次叠层的本征非晶硅膜和掺杂非晶硅膜,并且,衬底的掺杂类型与正面的钝化膜中的掺杂非晶硅膜的掺杂类型相同,衬底的掺杂类型与背面的钝化膜中的掺杂非晶硅膜的掺杂类型不同;
形成于正面的钝化膜表面的正面ITO薄膜,正面ITO薄膜表面具有金属栅线;
形成于背面的钝化膜表面的背面ITO薄膜,背面ITO薄膜表面具有金属栅线;
正面ITO薄膜中的锡掺杂浓度小于背面ITO薄膜中的锡掺杂浓度,正面ITO薄膜中的铟浓度大于背面ITO薄膜中的铟浓度。
根据本申请的一些示例,背面ITO薄膜包括叠置的第一膜层和第二膜层,第一膜层与背面的钝化膜层叠接触,且第一膜层的含氧量高于第二膜层的含氧量。
本申请的又一些示例提供了一种太阳电池的制作方法。该制作方法可以包括:
提供具有陷光结构的掺杂单晶硅作为衬底;
在衬底的正面和背面,分别依次沉积本征非晶硅层、掺杂非晶硅层,以对衬底的表面进行钝化,且正面的掺杂非晶硅层的掺杂类型不同于背面的掺杂非晶硅层的掺杂类型;
利用靶材进行溅射,以在分布于衬底正面和背面的掺杂非晶硅层之上,分别制作ITO薄膜,并且,正面的ITO薄膜中的锡掺杂量不同于背面的ITO薄膜中的锡掺杂量;
分别在正面的ITO薄膜、背面的ITO薄膜之上制作金属栅线。
根据本申请的一些示例,制作方法可以包括:
在利用靶材溅射背面的ITO薄膜时,通过调整工艺参数制作依次叠置的多个膜层,各个膜层的锡掺杂浓度相同,而含氧量不同。
本申请的示例提供了一种太阳电池的制作方法,其特征在于,所述制作方法可以包括:
在硅异质结电池完成非晶硅薄膜钝化镀膜后,正面和背面分别沉积TCO薄膜,其中,正面TCO薄膜镀膜靶材为低掺杂铟锡靶材,而背面TCO薄膜镀膜靶材为高掺杂铟锡靶材;
其中,正面低掺杂TCO薄膜的锡掺杂浓度为低浓度的靶材制备而成;
其中,背面高掺杂TCO薄膜的锡掺杂浓度为高浓度的任意一种或者多种掺杂浓度的靶材镀膜而成;以及
在正面和背面的TCO膜上制备金属银栅线电极。
在以上实现过程中,本申请实施例提供的太阳电池通过对其中的两侧的透明导电电极进行组分调整,使用掺杂浓度不同的两种透明导电氧化物,从而可以控制电池的成本,还可以调整或优化电池的性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请示例中的一种太阳电池的结构示意图;
图2为本申请示例中的另一种太阳电池的结构示意图。
图标:100-太阳电池;101-衬底;102-第一非晶硅层;1021-第一本征非晶硅层;1022-第一掺杂非晶硅层;103-第二非晶硅层;1031-第二本征非晶硅层;1032-第二掺杂非晶硅层;104-第一透明导电膜层;105-第二透明导电膜层;106-第一电极;107-第二电极;200-太阳电池;201-低氧浓度薄膜;202-高氧浓度薄膜。
具体实施方式
下面将结合实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限制本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
以下针对本申请实施例的太阳电池100及其制作方法进行具体说明。
作为在太阳电池中,用于辅助收集电流的材料,TCO薄膜多采用ITO(氧化铟锡/掺杂锡的氧化铟)。并且,一般使用973靶材通过溅射制备,以形成ITO材质的TCO薄膜。其中“973”表示的ITO中的铟含量为97%,锡的掺杂量为3%。由于铟的价格较高,因此,当使用诸如973靶材制作ITO材质的TCO作为电池中正负极的载流子收集膜层时,会使电池的制作成本很高。
一些尝试中,选择使用各种其他低成本的类型的TCO,或者通过对电池的结构进行改进或优化。然而,有别于目前的这些方案,在本申请示例中,发明人选择对电池中的TCO的成分进行调整,并且主要使电池两侧表面的TCO具有不同的成分,从而避免同时相同成分的TCO。如此,在电池中,一侧使用一种成分的TCO,而另一侧使用另一成分的TCO。那么,相比于在电池两侧使用相同价格更高的TCO,本申请的示例方案一侧可以使用高成本的TCO,另一侧使用相对低成本的TCO,从而可以用于降低对高价的TCO的使用,从而降低成本。并且,这样的改进还能够对电池的电性能起到积极的意义。
大体上而言,本申请示例中提出了太阳电池100,其包括衬底101层和在其厚度方向的两侧的表面上分布的钝化膜,并且在钝化膜表面上具有TCO和金属栅线构成的载流子收集膜层。
为了更清楚地说明,结合附图对电池结构进行阐述。
请参阅图1,太阳电池100可以包括衬底101。该衬底101是掺杂的晶体硅材料制作而成。衬底101的掺杂类型可以是N型,也可以是P型;因此,衬底101可以表示为:N-c-Si,或者P-c-Si。对此,针对不同的形式的太阳电池100,衬底101的掺杂类型可以进行适应性的调整;相应地,根据衬底掺杂类型的不同,电池中的其他功能层的掺杂类型也可以进行适应性的调整。沿着衬底101的厚度方向,其具有对置的第一表面和第二表面;即衬底101 具有顶表面/正面,和底表面/背面。相应地,电池的其他功能和结构层,是基于前述的表面进行布局。
除衬底之外,太阳电池100还具有钝化结构,并且,上述的第一表面和第二表面上均配置有钝化结构。示例中,该钝化结构是以如前述的钝化膜层的形式提供。示例中,该钝化作用的薄膜是非晶硅层,包括两个子结构层——分别为本征非晶硅层和掺杂非晶硅层。为了进行区别和便于描述,形成于第一表面的钝化结构是第一非晶硅层102,并且包括依次从第一表面层叠的第一本征非晶硅层1021、第一掺杂非晶硅层1022。形成于第二表面的钝化结构是第二非晶硅层103,具有依次从第二表面层叠的第二本征非晶硅层1031、第二掺杂非晶硅层1032。其中,本征非晶硅可以表示为:i-α-Si:H;掺杂非晶硅可以表示为:P-α-Si:H,或N-α-Si:H。
除此之外,作为收集载流子的电极,太阳电池100还可以包括透明导电膜和金属电极。示例中,形成于在衬底101的第一表面侧,在第一非晶硅层102中的第一掺杂非晶硅层1022上制作有第一透明导电膜层104,同时,第一透明导电膜层104之上形成第一电极106。与之相似地,于第二非晶硅层103中的第二掺杂非晶硅层1032之上形成有第二透明导电膜层105,并且第二透明导电膜层105之上形成第二电极107。
在本申请的示例中,第一掺杂非晶硅层1022的掺杂类型与第二掺杂非晶硅层1032的掺杂类型相反。其中的掺杂类型是指P型掺杂、N型掺杂。因此,当第一掺杂非晶硅是P型掺杂时,则第二掺杂非晶硅是N型掺杂;反之亦然。因此,第一掺杂非晶硅层1022和第二掺杂非晶硅层1032中一者与衬底101的掺杂类型相同,而另一者与衬底101的掺杂类型相反。
特别地,本申请示例中的太阳电池100,并未采取相同的成分构成的第一透明导电膜层104和第二透明导电膜层105;相反,二者是具有不同的掺杂浓度的膜层。例如,当两个透明导电膜层都采用的是ITO时,其中,一者的锡掺杂浓度大于另一者的掺杂浓度。由于ITO为掺杂锡的氧化铟,简称氧化铟锡。因此对于使用ITO作为透明导电膜层的情况,“掺杂浓度”是指的锡的浓度。并且,以百分比计,如果ITO的锡掺杂浓度为A,则铟的浓度为100-A。
例如,当ITO材质的第二透明导电膜层105中的锡的掺杂浓度为3wt%时,则铟的浓度为93wt%;而ITO材质的第一透明导电膜层104中的锡的掺杂浓度为5wt%至15wt%(示例性地,掺杂浓度还可以是6wt%、8wt%、9wt%、10wt%、12wt%等等)时,则铟的浓度为85wt%至95wt%。
作为一种可选的具体示例,太阳电池100的结构包括依次层叠的下述结构:金属栅线、第一透明导电膜层104、第一非晶硅层102(包括第一本征非晶硅层1021、P型第一掺杂非晶硅层1022)、N型衬底101、第二非晶硅层103(包括第二本征非晶硅层1031、N型第二 掺杂非晶硅层1032)、第二透明导电膜层105以及金属栅线。
其中,第一透明导电膜层104是具有高的锡掺杂浓度(相应具有低的铟浓度)的ITO膜,而第二透明导电膜层105是具有低的锡掺杂浓度(相应具有高的铟浓度)的ITO膜。
作为另一种可选的示例,本申请示例性地提出了另一种太阳电池200。
参阅图2,太阳电池200与前述的电池的区别主要在于:
在太阳电池200中,第一透明导电膜层104包括依次叠置的至少两层薄膜,且每层薄膜的氧含量不同。同时,第一电极106与至少两层薄膜中的远离掺杂的晶硅衬底101的一层薄膜电接触。即第一电极106结合在第一透明导电膜层104的底表面。其中,在第一透明导电膜层104中,各个薄膜的氧含量以依次变化的,例如可以是递增或递减——这却决于从变化方向的选择。
本申请示例中,从第一本征非晶硅层1021至第一掺杂非晶硅层1022的方向(即由电池的顶面至地面的方向),每层薄膜的氧含量依次递减。图2中,第一透明导电膜层104可以包括依次叠置的两层薄膜,两层薄膜分别记为高氧浓度薄膜202和低氧浓度薄膜201。
在其他的示例中,本申请的电池也可以具有如下的结构。太阳电池可以包括:掺杂的晶硅衬底(其具有正面和背面)、分别形成于衬底的正面和背面的钝化膜、形成于正面的钝化膜表面的正面ITO薄膜以及形成于背面的钝化膜表面的背面ITO薄膜。
此外,正面TCO薄膜表面具有金属栅线;背面TCO薄膜表面具有金属栅线。
顾名思义,前述的钝化膜/钝化结构是起到钝化作用的薄膜。由于晶体硅表面会存在大量的悬挂化学键,使其表面存在大量位于带隙中的缺陷能级。并且,由于晶体的结构缺陷(位错等)也会引入缺陷能级。这些缺陷都会导致光生载流子的复合。钝化膜则可以起到钝化效果,从而抑制载流子的复合。
并且,本申请示例中,钝化膜采取复合的结构,通过配置相互接触的本征非晶硅膜和掺杂非晶硅膜。其中的掺杂非晶硅膜可以协调和辅助,从而改善本征非晶硅膜对晶体硅衬底的表面钝化效果。
此外,如前述,衬底的掺杂类型与正面的钝化膜中的掺杂非晶硅膜的掺杂类型相同(例如都是N型掺杂),衬底的掺杂类型(N型)与背面的钝化膜中的掺杂非晶硅膜的掺杂类型(P型)不同。并且,正面ITO薄膜中的锡掺杂浓度小于背面ITO薄膜中的锡掺杂浓度,正面ITO薄膜中的铟浓度大于背面ITO薄膜中的铟浓度。
作为与前述的相似改进,太阳电池200中的背面ITO薄膜可以包括叠置的第一膜层和第二膜层。其中,第一膜层与背面的钝化膜层叠接触,并且第一膜层的含氧量高于第二膜层的含氧量。含氧量的不同,可以通过对制膜过程中的工艺选择进行调整。例如当选择磁控溅射法制作ITO膜时,通过控制工艺参数—调节功率、氩气(载气)/氧气(工作气)的 气体比例、时间—等实现。
为了便于本领域技术人员实施本申请方案,以下给出了一种制作太阳电池的制作方法。
制作方法可以包括:
首先,在SHJ电池完成非晶硅薄膜钝化镀膜后,正面(n侧)和背面(p侧)分别沉积TCO薄膜。其中,正面(n侧)TCO薄膜镀膜靶材为低掺杂铟锡靶材,而背面(p侧)TCO薄膜镀膜靶材为高掺杂铟锡靶材。
其次,正面(n侧)低掺杂TCO薄膜的锡掺杂浓度为低浓度(如3wt%)的靶材制备而成;沉积TCO薄膜厚度可以为80nm。
再次,背面(p侧)高掺杂TCO薄膜;锡掺杂浓度为高浓度(如5wt%至15wt%)的任意一种或者多种掺杂浓度的靶材镀膜而成;总厚度可以控制为80nm。
复次,在正面(n侧)和背面(p侧)的TCO膜上制备金属银栅线电极。
或者,制作方法可以包括:
步骤1、提供具有陷光结构的掺杂单晶硅作为衬底;
步骤2、在衬底的正面依次沉积本征非晶硅层、掺杂非晶硅层、并且在衬底的背面依次沉积本征非晶硅层、掺杂非晶硅层。通过制作上述结构层实现对衬底的表面进行钝化。并且在沉积制膜的过程中,使正面的掺杂非晶硅层的掺杂类型不同于背面的掺杂非晶硅层的掺杂类型。
步骤3、利用靶材进行磁控溅射(PVD),以在分布于衬底正面和背面的掺杂非晶硅层之上,分别制作ITO薄膜,并且,正面的ITO薄膜中的锡掺杂量不同于背面的ITO薄膜中的锡掺杂量。
进一步,还可以根据需要,将制作ITO薄膜的步骤进行细化,从而实现制作具有多层结构的复合状态的ITO薄膜。即,在利用靶材溅射背面的ITO薄膜时,通过调整工艺参数制作依次叠置的多个膜层。其中的各个膜层的锡掺杂浓度相同,而含氧量不同。
步骤4、分别在正面的ITO薄膜、背面的ITO薄膜之上制作金属栅线。
以下结合实施例对本申请的方案作进一步的详细描述。
实施例1
提升SHJ太阳能电池电性能及降低SHJ太阳能电池TCO薄膜生产成本的方法。
以n型单晶硅为衬底并对其进行清洗制绒,形成金字塔形陷光结构;
然后利用PECVD等化学气相沉积法分别在单晶硅两侧沉积i/n和i/p层。
再利用磁控溅射法,在正面(n侧):镀膜靶材为973靶材,调节功率和氩气/氧气流量沉积80nm厚度的锡掺杂为3wt%的氧化铟基TCO薄膜;于背面(p侧):镀膜靶材为9010靶材(铟占比90%,锡掺杂浓度为10%),调节功率和氩气/氧气流量沉积80nm厚度的锡 掺杂为10wt%的氧化铟基TCO薄膜;
最后通过丝印法在TCO薄膜上印刷金属银栅线。
本实施例1制作太阳能电池(第一电池)与现有973靶材制作太阳能电池电(第二电池)性能对比数据如下。现有973靶材制作的太阳能电池与本申请实施例1的电池的区别在于:现有973靶材制作的太阳能电池的两侧TCO薄膜都是使用973靶材制作。
电池组别 第一电池 第二电池
背面靶材 9010靶材 973靶材
Eta 24.29 24.32
Uoc 0.7461 0.746
Isc 9.34 9.338
FF 85.19 85.3
Rs 0.001 0.001
Rsh 1574 2189
IRev2 0.0068 0.0056
失效比例 0.37% 0.26%
实施例2
一种提升SHJ太阳能电池电性能及降低SHJ太阳能电池TCO薄膜生产成本的方法。
以n型单晶硅为衬底并对其进行清洗制绒,形成金字塔形陷光结构;
然后利用PECVD等化学气相沉积法分别在单晶硅两侧沉积i/n和i/p层。
再利用磁控溅射法,分别在正面和背面实施下述工艺:
正面(n侧):镀膜靶材为973靶材(铟占比97%,锡掺杂浓度为3%),调节功率和氩气/氧气流量沉积80nm厚度的锡掺杂为3wt.%的氧化铟基TCO薄膜。
背面(p侧):镀膜靶材为9010靶材(铟占比90%,锡掺杂浓度为10%),调节功率和氩气/氧气流量沉积两层40nm的TCO薄膜,依次为高氧流量和低氧流量的锡掺杂为10wt.%的氧化铟基薄膜;
最后通过丝印法在TCO薄膜上印刷20μm厚的金属银栅线。
在本申请的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请中,在不矛盾或冲突的情况下,本申请的所有实施例、实施方式以及特征可 以相互组合。在本申请中,常规的设备、装置、部件等,既可以商购,也可以根据本申请公开的内容自制。在本申请中,为了突出本申请的重点,对一些常规的操作和设备、装置、部件进行的省略,或仅作简单描述。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请提供了一种太阳电池及其制作方法,属于太阳电池领域。太阳电池具有硅衬底和钝化膜,并且还具有位于两侧的钝化膜之上的透明导电膜,并且,该两个透明导电膜层的掺杂浓度不同。该太阳电池可以在不牺牲电池性能的情况下通过相对更低的成本被制造。
此外,可以理解的是,本申请的一种太阳电池及其制作方法是可以重现的,并且可以用在多种工业应用中。例如,本申请的一种太阳电池及其制作方法可以用于太阳电池领域。

Claims (12)

  1. 一种太阳电池,其特征在于,包括:
    掺杂的晶硅衬底,具有对置的第一表面和第二表面;
    形成于所述第一表面的第一非晶硅层,具有依次从所述第一表面层叠的第一本征非晶硅层、第一掺杂非晶硅层;
    形成于所述第一非晶硅层中的所述第一掺杂非晶硅层之上的第一透明导电膜层,所述第一透明导电膜层之上形成第一电极;
    形成于所述第二表面的第二非晶硅层,具有依次从所述第二表面层叠的第二本征非晶硅层、第二掺杂非晶硅层,其中,所述第一掺杂非晶硅层的掺杂类型与所述第二掺杂非晶硅层的掺杂类型相反;
    形成于所述第二非晶硅层中的所述第二掺杂非晶硅层之上的第二透明导电膜层,所述第二透明导电膜层之上形成第二电极;
    所述第一透明导电膜层的掺杂浓度不同于所述第二透明导电膜层的掺杂浓度。
  2. 根据权利要求1所述的太阳电池,其特征在于,所述掺杂的晶体硅衬底是N型的,第一掺杂非晶硅层是P型的,并且,所述第一透明导电膜层的掺杂浓度高于所述第二透明导电膜层的掺杂浓度。
  3. 根据权利要求2所述的太阳电池,其特征在于,所述第一透明导电膜层和所述第二透明导电膜层分别为氧化铟锡薄膜;
    所述第一透明导电膜层的掺杂浓度不同于所述第二透明导电膜层的掺杂浓度表示的是:
    所述第一透明导电膜层中的锡的掺杂浓度大于所述第二透明导电膜层中的锡的掺杂浓度,且所述第一透明导电膜层中的铟的浓度小于所述第二透明导电膜层中的铟的浓度。
  4. 根据权利要求3所述的太阳电池,其特征在于,所述第一透明导电膜层中的锡的掺杂浓度为5wt%至15wt%、铟的浓度为85wt%至95wt%;
    或者,所述第一透明导电膜层中的锡的掺杂浓度为10wt%、锡的掺杂浓度为90wt%,所述第二透明导电膜层中的锡的掺杂浓度为3wt%、铟的浓度为97wt%。
  5. 根据权利要求1至4中任意一项所述的太阳电池,其特征在于,所述第一透明导电膜层包括依次叠置的至少两层薄膜,且每层薄膜的氧含量不同,所述第一电极与所述至少两层薄膜中的远离所述掺杂的晶硅衬底的一层薄膜电接触。
  6. 根据权利要求5所述的太阳电池,其特征在于,所述第一透明导电膜层包括依次叠置的两层薄膜,所述两层薄膜分别为高氧浓度薄膜和低氧浓度薄膜。
  7. 根据权利要求5或6所述的太阳电池,其特征在于,从所述第一本征非晶硅层至所 述第一掺杂非晶硅层的方向,每层薄膜的氧含量依次递减。
  8. 一种太阳电池,其特征在于,包括:
    掺杂的晶硅衬底,具有正面和背面;
    分别形成于正面和背面的钝化膜,具有从所述衬底依次叠层的本征非晶硅膜和掺杂非晶硅膜,并且,所述衬底的掺杂类型与正面的钝化膜中的掺杂非晶硅膜的掺杂类型相同,所述衬底的掺杂类型与背面的钝化膜中的掺杂非晶硅膜的掺杂类型不同;
    形成于正面的钝化膜表面的正面ITO薄膜,所述正面ITO薄膜表面具有金属栅线;
    形成于背面的钝化膜表面的背面ITO薄膜,所述背面ITO薄膜表面具有金属栅线;
    所述正面ITO薄膜中的锡掺杂浓度小于所述背面ITO薄膜中的锡掺杂浓度,所述正面ITO薄膜中的铟浓度大于所述背面ITO薄膜中的铟浓度。
  9. 根据权利要求8所述的太阳电池,其特征在于,所述背面ITO薄膜包括叠置的第一膜层和第二膜层,所述第一膜层与背面的钝化膜层叠接触,且所述第一膜层的含氧量高于所述第二膜层的含氧量。
  10. 一种太阳电池的制作方法,其特征在于,所述制作方法包括:
    提供具有陷光结构的掺杂单晶硅作为衬底;
    在所述衬底的正面和背面,分别依次沉积本征非晶硅层、掺杂非晶硅层,以对所述衬底的表面进行钝化,且正面的掺杂非晶硅层的掺杂类型不同于背面的掺杂非晶硅层的掺杂类型;
    利用靶材进行溅射,以在分布于衬底正面和背面的掺杂非晶硅层之上,分别制作ITO薄膜,并且,正面的ITO薄膜中的锡掺杂量不同于背面的ITO薄膜中的锡掺杂量;
    分别在正面的ITO薄膜、背面的ITO薄膜之上制作金属栅线。
  11. 根据权利要求10所述的太阳电池的制作方法,其特征在于,所述制作方法包括:
    在利用靶材溅射背面的ITO薄膜时,通过调整工艺参数制作依次叠置的多个膜层,各个膜层的锡掺杂浓度相同,而含氧量不同。
  12. 一种太阳电池的制作方法,其特征在于,所述制作方法包括:
    在硅异质结电池完成非晶硅薄膜钝化镀膜后,正面和背面分别沉积TCO薄膜,其中,正面TCO薄膜镀膜靶材为低掺杂铟锡靶材,而背面TCO薄膜镀膜靶材为高掺杂铟锡靶材;
    其中,正面低掺杂TCO薄膜的锡掺杂浓度为低浓度的靶材制备而成,;
    其中,背面高掺杂TCO薄膜的锡掺杂浓度为高浓度的任意一种或者多种掺杂浓度的靶材镀膜而成;以及
    在正面和背面的TCO膜上制备金属银栅线电极。
PCT/CN2022/107233 2021-12-16 2022-07-22 一种太阳电池及其制作方法 WO2023109126A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111544409.6 2021-12-16
CN202111544409.6A CN114242809A (zh) 2021-12-16 2021-12-16 一种太阳电池及其制作方法

Publications (1)

Publication Number Publication Date
WO2023109126A1 true WO2023109126A1 (zh) 2023-06-22

Family

ID=80757275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107233 WO2023109126A1 (zh) 2021-12-16 2022-07-22 一种太阳电池及其制作方法

Country Status (2)

Country Link
CN (1) CN114242809A (zh)
WO (1) WO2023109126A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242809A (zh) * 2021-12-16 2022-03-25 中威新能源(成都)有限公司 一种太阳电池及其制作方法
CN114709277B (zh) * 2022-05-31 2022-09-23 浙江晶科能源有限公司 太阳能电池及其制备方法、光伏组件
DE102022116340A1 (de) 2022-06-30 2024-01-04 VON ARDENNE Asset GmbH & Co. KG Verfahren und Solarzelle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221368A (ja) * 2003-01-16 2004-08-05 Sanyo Electric Co Ltd 光起電力装置
US20080047602A1 (en) * 2006-08-22 2008-02-28 Guardian Industries Corp. Front contact with high-function TCO for use in photovoltaic device and method of making same
EP2669952A1 (en) * 2012-06-01 2013-12-04 Roth & Rau AG Photovoltaic device and method of manufacturing same
JP2014175441A (ja) * 2013-03-08 2014-09-22 Kaneka Corp 結晶シリコン系太陽電池およびその製造方法
CN108231928A (zh) * 2017-12-21 2018-06-29 君泰创新(北京)科技有限公司 一种hjt异质结电池及其多层透明导电薄膜
CN114242809A (zh) * 2021-12-16 2022-03-25 中威新能源(成都)有限公司 一种太阳电池及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221368A (ja) * 2003-01-16 2004-08-05 Sanyo Electric Co Ltd 光起電力装置
US20080047602A1 (en) * 2006-08-22 2008-02-28 Guardian Industries Corp. Front contact with high-function TCO for use in photovoltaic device and method of making same
EP2669952A1 (en) * 2012-06-01 2013-12-04 Roth & Rau AG Photovoltaic device and method of manufacturing same
JP2014175441A (ja) * 2013-03-08 2014-09-22 Kaneka Corp 結晶シリコン系太陽電池およびその製造方法
CN108231928A (zh) * 2017-12-21 2018-06-29 君泰创新(北京)科技有限公司 一种hjt异质结电池及其多层透明导电薄膜
CN114242809A (zh) * 2021-12-16 2022-03-25 中威新能源(成都)有限公司 一种太阳电池及其制作方法

Also Published As

Publication number Publication date
CN114242809A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2023109126A1 (zh) 一种太阳电池及其制作方法
US9130074B2 (en) High-efficiency solar cell structures and methods of manufacture
US20080223430A1 (en) Buffer layer for front electrode structure in photovoltaic device or the like
US20080047602A1 (en) Front contact with high-function TCO for use in photovoltaic device and method of making same
CN102625953B (zh) 太阳能电池前接触件掺杂
TWI463682B (zh) 異質接面太陽能電池
CN108735828A (zh) 一种异质结背接触太阳能电池及其制备方法
CN106784113A (zh) 一种硅基异质结太阳能电池及其制备方法
WO2022247570A1 (zh) 一种异质结太阳电池及其制备方法
JP5602251B2 (ja) 透明電極基板およびその製造方法、光電変換装置およびその製造方法、光電変換モジュール
CN208655672U (zh) 异质结太阳能电池
US20130146133A1 (en) Thin film photovoltaic solar cell device
CN106887483A (zh) 硅基异质接面太阳能电池及其制备方法
JP2012244065A (ja) 薄膜光電変換装置およびその製造方法、薄膜光電変換モジュール
CN114361281A (zh) 双面异质结太阳能电池及光伏组件
KR102218417B1 (ko) 전하선택 박막을 포함하는 실리콘 태양전지 및 이의 제조방법
CN207009459U (zh) 一种正反两面均可发电的硅基异质结太阳能电池
WO2023040120A1 (zh) 透明导电氧化物薄膜及异质结太阳能电池
CN208521944U (zh) 一种异质结背接触太阳能电池
CN114171632A (zh) 异质结太阳能电池及光伏组件
CN208000925U (zh) 一种太阳能电池
CN110797428A (zh) 异质结太阳能电池
WO2019200788A1 (zh) 一种太阳能电池制备的方法及太阳能电池
JP2014168012A (ja) 光電変換装置およびその製造方法
KR102218629B1 (ko) 전하선택 박막을 포함하는 실리콘 태양전지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE