WO2023109076A1 - 可重构肖特基二极管 - Google Patents

可重构肖特基二极管 Download PDF

Info

Publication number
WO2023109076A1
WO2023109076A1 PCT/CN2022/101205 CN2022101205W WO2023109076A1 WO 2023109076 A1 WO2023109076 A1 WO 2023109076A1 CN 2022101205 W CN2022101205 W CN 2022101205W WO 2023109076 A1 WO2023109076 A1 WO 2023109076A1
Authority
WO
WIPO (PCT)
Prior art keywords
schottky diode
reconfigurable
layer
channel layer
gate
Prior art date
Application number
PCT/CN2022/101205
Other languages
English (en)
French (fr)
Inventor
张增星
Original Assignee
上海集成电路制造创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海集成电路制造创新中心有限公司 filed Critical 上海集成电路制造创新中心有限公司
Publication of WO2023109076A1 publication Critical patent/WO2023109076A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Definitions

  • the invention relates to the technical field of semiconductors, in particular to a reconfigurable Schottky diode.
  • Machine vision in simple terms, is to use machines to simulate the human eye system to acquire, process and judge optical signals.
  • the target object is acquired by the image sensor and converted into a digital signal, which is transmitted to the processor through the network, and the signal is judged by the machine learning algorithm, and then the decision is transmitted to the terminal system.
  • the development of new intelligent image sensors with edge computing capabilities and the preprocessing of optical signals at the image sensor terminal can greatly reduce the pressure of information transmission, enhance information processing speed and reduce energy consumption, which is of great importance to the further development of this field. significance.
  • the Schottky diode is composed of metal and semiconductor contacts, and a Schottky barrier can be formed between the two, with a built-in potential.
  • the inner Schottky diode can separate the photo-generated carriers generated in the semiconductor, and has a photovoltaic effect, so it can be used as a low-power photodetector.
  • traditional Schottky diodes are not reconfigurable, and their photodetection capabilities, such as photodetection responsivity, cannot be modulated, which limits their application in machine vision systems, such as neural network image sensors.
  • the purpose of the present invention is to provide a reconfigurable Schottky diode, which realizes the reconfigurability of the Schottky diode.
  • the reconfigurable Schottky diode of the present invention includes:
  • a gate dielectric layer disposed on one side of the gate electrode layer
  • a channel layer which is a bipolar semiconductor, disposed on the side of the gate dielectric layer facing away from the gate electrode layer;
  • the source electrode is arranged on the side of the channel layer facing away from the gate dielectric layer, and is in Schottky contact with the channel layer;
  • the drain electrode is arranged on the side of the channel layer facing away from the gate dielectric layer, and is in ohmic contact with the channel layer.
  • the beneficial effect of the reconfigurable Schottky diode is that the channel layer is a bipolar semiconductor, the gate voltage can control the continuous change of the channel layer between P-type and N-type, and the source electrode and the channel layer There is a Schottky contact between them, and an ohmic contact between the drain electrode and the channel layer, so that the gate voltage can control the channel layer to exhibit the rectification characteristics of a metal P-type semiconductor Schottky diode and a metal N-type semiconductor
  • the rectification characteristic of the Schottky diode realizes the reconfigurability of the reconfigurable Schottky diode.
  • the material of the gate electrode layer is a doped conductive material.
  • the material of the gate electrode layer is doped P-type silicon.
  • the material of the gate dielectric layer is any one of silicon oxide, hafnium oxide, and aluminum oxide.
  • the silicon oxide is silicon dioxide
  • the hafnium oxide is hafnium dioxide
  • the aluminum oxide is aluminum oxide.
  • the material of the source electrode is a conductive material.
  • the material of the source electrode is graphene.
  • the material of the drain electrode is metal conductive material.
  • the material of the drain electrode is chromium.
  • the material of the channel layer is two-dimensional crystal black phosphorus or tungsten diselenide.
  • FIG. 1 is a schematic structural diagram of a reconfigurable Schottky diode of the present invention
  • Fig. 2 is a graph of source-drain voltage and leakage current when the present invention applies a negative gate voltage
  • FIG. 3 is a graph of source-drain voltage and leakage current when a positive gate voltage is applied in the present invention.
  • the embodiment of the present invention provides a reconfigurable Schottky diode.
  • the reconfigurable Schottky diode 100 includes a gate electrode layer 101, a gate dielectric layer 102, a channel layer 103, a source electrode 104 and a drain electrode 105, and the gate dielectric layer 102 is arranged on the gate electrode layer 101, the channel layer 103 is arranged on the side of the gate dielectric layer 102 facing away from the gate electrode layer 101, and is a bipolar semiconductor, and the source electrode 104 is arranged on the channel layer 103
  • the side facing away from the gate dielectric layer 102 is in Schottky contact with the channel layer 103, and the drain electrode 105 is arranged on the side of the channel layer 103 facing away from the gate dielectric layer 102 , and is in ohmic contact with the channel layer 103 .
  • the channel layer is a bipolar semiconductor
  • the gate voltage can control the continuous change of the channel layer between P-type and N-type
  • the source electrode and the channel layer are Schottky contacts
  • the drain electrode It is in ohmic contact with the channel layer, so that the gate voltage can control the channel layer to exhibit the rectification characteristics of metal P-type semiconductor Schottky diodes and the rectification characteristics of metal N-type semiconductor Schottky diodes, realizing Reconfigurability of the reconfigurable Schottky diode.
  • the channel layer is a Schottky diode.
  • the photoelectric response rate can be continuously modulated from negative to positive, and has the function of integrating sensing and computing.
  • gate control weight that is, the photoelectric response rate.
  • the material of the gate electrode layer is a conductive material. In some specific embodiments, the material of the gate electrode layer is doped P-type silicon.
  • the material of the gate dielectric layer is any one of silicon oxide, hafnium oxide, and aluminum oxide, and the thickness of the gate dielectric layer is 275-325 nm.
  • the silicon oxide is silicon dioxide
  • the hafnium oxide is hafnium dioxide
  • the aluminum oxide is aluminum oxide.
  • the material of the gate dielectric layer is silicon dioxide
  • the thickness of the gate dielectric layer is 300 nm.
  • the material of the source electrode is a conductive material. In some specific embodiments, the material of the source electrode is graphene.
  • the material of the drain electrode is metal conductive material. In some specific embodiments, the material of the drain electrode is chromium.
  • the material of the channel layer is two-dimensional crystal black phosphorus or tungsten diselenide.
  • FIG. 2 is a graph of source-drain voltage and leakage current when a negative gate voltage is applied in the present invention
  • FIG. 3 is a graph of source-drain voltage and leakage current when a positive gate voltage is applied in the present invention.
  • the channel layer in the reconstructed Schottky diode As an example, referring to Fig. 2, when the gate voltage is -30V, the channel layer exhibits a metal P-type semiconductor Schottky The rectification characteristics of the base diode.
  • the gate voltage is +30V, the channel layer exhibits rectification characteristics of a metal N-type semiconductor Schottky diode. Therefore, by controlling the gate voltage, the channel layer can be controlled to change between metal P-type and metal N-type semiconductor Schottky diodes, and the reconfigurable Schottky diode of the present invention realizes reconfigurability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供了一种可重构肖特基二极管,包括栅电极层、栅介质层、沟道层、源电极和漏电极,所述栅介质层设置于所述栅电极层的一面,所述沟道层设置于所述栅介质层背向所述栅电极层的一面,且为双极性半导体,栅极电压能够控制沟道层在P型和N型之间连续变化,所述源电极设置于所述沟道层背向所述栅介质层的一面,且与所述沟道层之间为肖特基接触,所述漏电极设置于所述沟道层背向所述栅介质层的一面,且与所述沟道层之间为欧姆接触,进而使得栅极电压能够控制沟道层表现出金属P型半导体肖特基二极管的整流特性和金属N型半导体肖特基二极管的整流特性,实现了所述可重构肖特基二极管的可重构性。

Description

可重构肖特基二极管
交叉引用
本申请要求2021年12月14日提交的申请号为2021115256720的中国申请的优先权。上述申请的内容以引用方式被包含于此。
技术领域
本发明涉及半导体技术领域,尤其涉及一种可重构肖特基二极管。
背景技术
机器视觉,简单来说,就是用机器模拟人眼系统,进行光信号的获取、处理和判断。在传统的机器视觉系统中,目标对象由图像传感器获取转变成数字信号,经由网络传递给处理器,通过机器学习算法对信号进行判断,再把决定传递给终端系统。物联网时代,随着数据获取和处理的日益增多,正在对信息传输能力、信息处理速度和能耗造成巨大压力。基于这个原因,发展具有边缘计算能力的新型智能图像传感器,在图像传感器终端进行光学信号的预处理,可以大大减少信息传输压力,增强信息处理速度和降低能耗,对该领域的进一步发展具有重要意义。
发展新型智能图像传感器的核心任务之一是发展具有感/算功能一体的新型低功耗光电探测器件。作为一种重要的半导体器件,肖特基二极管由金属和半导体接触组成,二者之间能够形成肖特基势垒,具有内建电势,当光信号作用在肖特基二极管上的时候,内建电势可以把半导体中产生的光生载流子分离,具有光伏效应,从而可以作为低功耗光电探测器使用。但传统的肖特基二极管不具有可重构性,其光电探测能力,如光电探测响应率无法调制,这限制了它们在机器视觉系统,如神经网络图像传感器中的应用。
因此,有必要提供一种新型的可重构肖特基二极管以解决现有技术中存在 的上述问题。
发明内容
本发明的目的在于提供一种可重构肖特基二极管,实现了肖特基二极管的可重构性。
为实现上述目的,本发明的所述可重构肖特基二极管,包括:
栅电极层;
栅介质层,设置于所述栅电极层的一面;
沟道层,为双极性半导体,设置于所述栅介质层背向所述栅电极层的一面;
源电极,设置于所述沟道层背向所述栅介质层的一面,且与所述沟道层之间为肖特基接触;以及
漏电极,设置于所述沟道层背向所述栅介质层的一面,且与所述沟道层之间为欧姆接触。
所述可重构肖特基二极管的有益效果在于:沟道层为双极性半导体,栅极电压能够控制沟道层在P型和N型之间连续变化,源电极与所述沟道层之间为肖特基接触,漏电极与所述沟道层之间为欧姆接触,进而使得栅极电压能够控制沟道层表现出金属P型半导体肖特基二极管的整流特性和金属N型半导体肖特基二极管的整流特性,实现了所述可重构肖特基二极管的可重构性。
可选地,所述栅电极层的材料为掺杂导电材料。
可选地,所述栅电极层的材料为掺杂P型硅。
可选地,所述栅介质层的材料为硅氧化物、铪氧化物、铝氧化物中的任意一种。
可选地,所述硅氧化物为二氧化硅,所述铪氧化物为二氧化铪,所述铝氧化物为氧化铝。
可选地,所述源电极的材料为导电材料。
可选地,所述源电极的材料为石墨烯。
可选地,所述漏电极的材料为金属导电材料。
可选地,所述漏电极的材料为铬。
可选地,所述沟道层的材料为二维晶体黑磷或二硒化钨。
附图说明
图1为本发明可重构肖特基二极管的结构示意图;
图2为本发明施加负栅极电压时源漏极电压与漏电流的曲线图;
图3为本发明施加正栅极电压时源漏极电压与漏电流的曲线图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另外定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本文中使用的“包括”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
针对现有技术存在的问题,本发明的实施例提供了一种可重构肖特基二极管。参照图1,所述可重构肖特基二极管100包括栅电极层101、栅介质层102、沟道层103、源电极104和漏电极105,所述栅介质层102设置于所述栅电极层101的一面,所述沟道层103设置于所述栅介质层102背向所述栅电极层101的一面,且为双极性半导体,所述源电极104设置于所述沟道层103背向所述栅 介质层102的一面,且与所述沟道层103之间为肖特基接触,所述漏电极105设置于所述沟道层103背向所述栅介质层102的一面,且与所述沟道层103之间为欧姆接触。
其中,所述沟道层为双极性半导体,栅极电压能够控制沟道层在P型和N型之间连续变化,源电极与所述沟道层之间为肖特基接触,漏电极与所述沟道层之间为欧姆接触,进而使得栅极电压能够控制沟道层表现出金属P型半导体肖特基二极管的整流特性和金属N型半导体肖特基二极管的整流特性,实现了所述可重构肖特基二极管的可重构性。所述沟道层为肖特基二极管,在作为光电探测器时,相比PN结二极管具有更快的光响应速度,由于所述沟道层可以在金属P型二极管和金属N型二极管之间连续调制,在作为光电探测器时,光电响应率可以从负到正连续调制,且具有感算一体的功能,在作为光电神经突触时,能够有利于栅极控制权重,即光电响应率。
一些实施例中,所述栅电极层的材料为导电材料。一些具体实施例中,所述栅电极层的材料为掺杂P型硅。
一些实施例中,所述栅介质层的材料为硅氧化物、铪氧化物、铝氧化物中的任意一种,所述栅介质层的厚度为275~325nm。例如,所述硅氧化物为二氧化硅,所述铪氧化物为二氧化铪,所述铝氧化物为氧化铝中。一些具体实施例中,所述栅介质层的材料为二氧化硅,所述栅介质层的厚度为300nm。
一些实施例中,所述源电极的材料为导电材料。一些具体实施例中,所述源电极的材料为石墨烯。
一些实施例中,所述漏电极的材料为金属导电材料。一些具体实施例中,所述漏电极的材料为铬。
一些具体实施例中,所述沟道层的材料为二维晶体黑磷或二硒化钨。
图2为本发明施加负栅极电压时源漏极电压与漏电流的曲线图,图3为本发明施加正栅极电压时源漏极电压与漏电流的曲线图。以所述重构肖特基二极 管中的沟道层的材料为二硒化钨为例,参照图2,当栅极电压为-30V时,所述沟道层表现出金属P型半导体肖特基二极管的整流特性。参照图3,当栅极电压为+30V时,所述沟道层表现出金属N型半导体肖特基二极管的整流特性。因此,通过控制栅极电压,可以控制沟道层在金属P型和金属N型半导体肖特基二极管之间变化,本发明的可重构肖特基二极管实现了可重构性。
虽然在上文中详细说明了本发明的实施方式,但是对于本领域的技术人员来说显而易见的是,能够对这些实施方式进行各种修改和变化。但是,应理解,这种修改和变化都属于权利要求书中所述的本发明的范围和精神之内。而且,在此说明的本发明可有其它的实施方式,并且可通过多种方式实施或实现。

Claims (10)

  1. 一种可重构肖特基二极管,其特征在于,包括:
    栅电极层;
    栅介质层,设置于所述栅电极层的一面;
    沟道层,为双极性半导体,设置于所述栅介质层背向所述栅电极层的一面;
    源电极,设置于所述沟道层背向所述栅介质层的一面,且与所述沟道层之间为肖特基接触;以及
    漏电极,设置于所述沟道层背向所述栅介质层的一面,且与所述沟道层之间为欧姆接触。
  2. 根据权利要求1所述的可重构肖特基二极管,其特征在于,所述栅电极层的材料为掺杂导电材料。
  3. 根据权利要求2所述的可重构肖特基二极管,其特征在于,所述栅电极层的材料为掺杂P型硅。
  4. 根据权利要求1所述的可重构肖特基二极管,其特征在于,所述栅介质层的材料为硅氧化物、铪氧化物、铝氧化物中的任意一种。
  5. 根据权利要求4所述的可重构肖特基二极管,其特征在于,所述硅氧化物为二氧化硅,所述铪氧化物为二氧化铪,所述铝氧化物为氧化铝。
  6. 根据权利要求1所述的可重构肖特基二极管,其特征在于,所述源电极的材料为导电材料。
  7. 根据权利要求6所述的可重构肖特基二极管,其特征在于,所述源电极的材料为石墨烯。
  8. 根据权利要求1所述的可重构肖特基二极管,其特征在于,所述漏电极的材料为金属导电材料。
  9. 根据权利要求8所述的可重构肖特基二极管,其特征在于,所述漏电极的材料为铬。
  10. 根据权利要求1所述的可重构肖特基二极管,其特征在于,所述沟道层的材料为二维晶体黑磷或二硒化钨。
PCT/CN2022/101205 2021-12-14 2022-06-24 可重构肖特基二极管 WO2023109076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111525672.0 2021-12-14
CN202111525672.0A CN114141884A (zh) 2021-12-14 2021-12-14 可重构肖特基二极管

Publications (1)

Publication Number Publication Date
WO2023109076A1 true WO2023109076A1 (zh) 2023-06-22

Family

ID=80382174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101205 WO2023109076A1 (zh) 2021-12-14 2022-06-24 可重构肖特基二极管

Country Status (2)

Country Link
CN (1) CN114141884A (zh)
WO (1) WO2023109076A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114141884A (zh) * 2021-12-14 2022-03-04 上海集成电路制造创新中心有限公司 可重构肖特基二极管

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182329A (ja) * 2011-03-01 2012-09-20 Tokyo Institute Of Technology 同時両極性電界効果型トランジスタ及びその製造方法
CN106409886A (zh) * 2016-11-10 2017-02-15 同济大学 双极性半导体光电子器件的逻辑应用方法
US20170322094A1 (en) * 2016-05-09 2017-11-09 Research & Business Foundation Sungkyunkwan University Graphene-based touch sensor device using triboelectricity and method for fabricating the device
CN111370526A (zh) * 2020-03-17 2020-07-03 南京大学 一种视网膜形态光电传感阵列及其图片卷积处理方法
CN113224144A (zh) * 2020-01-21 2021-08-06 三星电子株式会社 包括二维半导体材料的半导体器件
CN114141884A (zh) * 2021-12-14 2022-03-04 上海集成电路制造创新中心有限公司 可重构肖特基二极管

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728135A1 (de) * 1987-08-22 1989-03-02 Fraunhofer Ges Forschung Schottky-diode
US7541640B2 (en) * 2006-06-21 2009-06-02 Flextronics International Usa, Inc. Vertical field-effect transistor and method of forming the same
US8076699B2 (en) * 2008-04-02 2011-12-13 The Hong Kong Univ. Of Science And Technology Integrated HEMT and lateral field-effect rectifier combinations, methods, and systems
CN103346083B (zh) * 2013-07-09 2016-10-05 苏州捷芯威半导体有限公司 氮化镓肖特基二极管及其制造方法
CN106449918B (zh) * 2016-11-10 2019-02-01 同济大学 半导体异质结构光电子器件的逻辑应用方法
KR101896332B1 (ko) * 2016-12-13 2018-09-07 현대자동차 주식회사 반도체 소자 및 그 제조 방법
CN107393969A (zh) * 2017-03-27 2017-11-24 香港商莫斯飞特半导体有限公司 一种氮化镓基肖特基二极管半导体器件及制造方法
US10411108B2 (en) * 2017-03-29 2019-09-10 QROMIS, Inc. Vertical gallium nitride Schottky diode
CN107910380A (zh) * 2017-12-07 2018-04-13 中芯集成电路(宁波)有限公司 肖特基二极管及其形成方法、半导体器件
US11049963B2 (en) * 2017-12-19 2021-06-29 Mitsubishi Electric Corporation Silicon carbide semiconductor device and power converter
CN109449214B (zh) * 2018-12-05 2023-05-30 山东大学 一种氧化镓半导体肖特基二极管及其制作方法
CN109801921A (zh) * 2019-01-16 2019-05-24 复旦大学 一种双栅非易失电荷陷阱存储器及其制备方法
KR102371319B1 (ko) * 2019-04-16 2022-03-07 한국전자통신연구원 쇼트키 장벽 다이오드 및 그의 제조 방법
CN111403474A (zh) * 2020-03-23 2020-07-10 电子科技大学 一种集成肖特基二极管的双沟道碳化硅mosfet器件
CN113035955B (zh) * 2021-02-25 2023-03-28 湖南三安半导体有限责任公司 集成肖特基二极管的碳化硅mosfet器件及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182329A (ja) * 2011-03-01 2012-09-20 Tokyo Institute Of Technology 同時両極性電界効果型トランジスタ及びその製造方法
US20170322094A1 (en) * 2016-05-09 2017-11-09 Research & Business Foundation Sungkyunkwan University Graphene-based touch sensor device using triboelectricity and method for fabricating the device
CN106409886A (zh) * 2016-11-10 2017-02-15 同济大学 双极性半导体光电子器件的逻辑应用方法
CN113224144A (zh) * 2020-01-21 2021-08-06 三星电子株式会社 包括二维半导体材料的半导体器件
CN111370526A (zh) * 2020-03-17 2020-07-03 南京大学 一种视网膜形态光电传感阵列及其图片卷积处理方法
CN114141884A (zh) * 2021-12-14 2022-03-04 上海集成电路制造创新中心有限公司 可重构肖特基二极管

Also Published As

Publication number Publication date
CN114141884A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
US11101304B2 (en) Diode and fabrication method thereof, array substrate and display panel
CN107316884B (zh) 一种显示面板及显示装置
US20210210964A1 (en) Photoelectric conversion circuit, driving method thereof, photosensitive device and display device
US11232750B2 (en) Display substrate, display panel, and manufacturing method and driving method of display substrate
US11288484B2 (en) Display device for integrating a solar battery module with a function of recognizing fingerprints
US11475833B2 (en) Semiconductor apparatus, pixel circuit and control method thereof
US20170084668A1 (en) OLED Display Substrate, Touch Display Panel and Display Device
WO2023109076A1 (zh) 可重构肖特基二极管
KR102561102B1 (ko) 2차원 절연체를 포함하는 근적외선 센서
WO2014153864A1 (zh) 阵列基板及其制造方法和显示装置
CN105679857A (zh) 一种基于硅量子点/石墨烯/硅异质结构的光电传感器
TWI755525B (zh) 光偵測薄膜、光偵測器件、光偵測顯示裝置及光偵測薄膜的製備方法
CN108376250A (zh) 一种指纹识别器件及其制备方法、触控面板
TW201913196A (zh) 紅外光偵測薄膜、紅外光偵測器件、紅外光偵測顯示裝置及紅外光偵測薄膜的製備方法
JP7429070B2 (ja) 画素ユニット及び画素ユニットの信号処理方法
US8686527B2 (en) Porous Si as CMOS image sensor ARC layer
CN107749410A (zh) 环境光传感器、显示面板及显示装置
Yu et al. Fully-Depleted Silicon-on-Insulator (FDSOI) Based Complementary Phototransistors for In-Sensor Vector-Matrix Multiplication
WO2021128595A1 (zh) 一种可随机读取的有源像素电路及其驱动方法
WO2023005563A1 (zh) 非易失性可编程异质结存储器
Sha et al. Near-infrared photonic artificial synapses based on organic heterojunction phototransistors
CN211378129U (zh) 一种可随机读取的有源像素电路
WO2020062415A1 (zh) 显示面板及其制造方法
KR20080047923A (ko) 광 감지 센서 및 그의 제조 방법
Khosropour et al. Microcrystalline silicon photodiode for large area NIR light detection applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905841

Country of ref document: EP

Kind code of ref document: A1