WO2023108788A1 - 用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂、其制备方法与应用 - Google Patents

用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂、其制备方法与应用 Download PDF

Info

Publication number
WO2023108788A1
WO2023108788A1 PCT/CN2021/141027 CN2021141027W WO2023108788A1 WO 2023108788 A1 WO2023108788 A1 WO 2023108788A1 CN 2021141027 W CN2021141027 W CN 2021141027W WO 2023108788 A1 WO2023108788 A1 WO 2023108788A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
tetrachloropropane
gas
solid phase
continuous production
Prior art date
Application number
PCT/CN2021/141027
Other languages
English (en)
French (fr)
Inventor
张业新
周强
张建
钟骏良
王秀秀
穆成均
陈慧
夏林兵
杨杰
吴刚
杨勇
杜继立
Original Assignee
中国科学院宁波材料技术与工程研究所
宁波巨化化工科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所, 宁波巨化化工科技有限公司 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to US18/258,332 priority Critical patent/US11918980B2/en
Publication of WO2023108788A1 publication Critical patent/WO2023108788A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/275Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of hydrocarbons and halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/354Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron

Definitions

  • the main purpose of this application is to provide a catalyst for the continuous production of 1,1,1,3-tetrachloropropane by gas-solid phase reaction and its preparation method, so as to overcome the deficiencies in the prior art.
  • the embodiment of the present application also provides the preparation method of the catalyst for the continuous production of 1,1,1,3-tetrachloropropane by gas-solid phase reaction, which includes: co-modifying the carbon material with iron salt and organic phosphorus , to obtain a catalyst for the continuous production of 1,1,1,3-tetrachloropropane by gas-solid phase reaction.
  • the preparation method specifically includes:
  • the preparation method specifically includes:
  • the embodiment of the present application also provides a method for continuously producing 1,1,1,3-tetrachloropropane by gas-solid phase reaction, which includes:
  • Feed carbon tetrachloride and ethylene reaction raw material gas continuously into the catalyst bed increase the inlet pressure of the reaction raw material gas to 0.8-1.2MPa, heat the temperature of the catalyst bed to 80-120°C, and undergo a catalytic oligomerization reaction 1,1,1,3-Tetrachloropropane is obtained.
  • the catalyst provided by this application uses carbon material as a carrier, on which the active component zero-valent iron is loaded to replace the main catalyst iron powder in the existing kettle reaction; the auxiliary component phosphate functional group is formed on the surface of the carbon material through phosphorus modification , to replace the cocatalyst alkyl phosphate in the existing tank reaction, and get rid of the dependence of the traditional batch reaction on the liquid catalyst.
  • the application integrates the main catalyst (zero-valent iron) and the co-catalyst (phosphate functional group) on the carbon material, which can be directly used for the synthesis of 1,1,1,3-tetrachloropropane as a single solid catalyst, because no longer Using a liquid co-catalyst, the catalyst can be directly packaged into a gas-solid phase fixed-bed reactor, and carbon tetrachloride and ethylene raw materials can be fed continuously, and the 1,1,1,3-tetrachloro Continuous synthesis of propane.
  • the main catalyst zero-valent iron
  • the co-catalyst phosphate functional group
  • Figure 1 is a microscopic morphology diagram of the zero-valent iron and phosphorus co-modified activated carbon catalyst prepared in Example 1 of the present application.
  • One aspect of the embodiments of the present application provides a catalyst for the continuous production of 1,1,1,3-tetrachloropropane by gas-solid phase reaction is zero-valent iron and phosphorus co-modified carbon materials, the zero-valent iron and phosphorus
  • the phosphorus co-modified carbon material includes a carbon material as a carrier, zero-valent iron as an active component loaded on the carrier, and a phosphate functional group formed on the surface of the carbon material.
  • the mass content of iron in the catalyst is 1-10 wt%, and the mass content of phosphorus is 1-10 wt%.
  • the particle size of the zero-valent iron in the catalyst is 2-100 nm.
  • the carbon material includes at least one of activated carbon, carbon nanotubes, graphene, etc., but is not limited thereto.
  • Another aspect of the embodiment of the present application also provides a method for preparing a catalyst for the continuous production of 1,1,1,3-tetrachloropropane by gas-solid phase reaction, which includes: treating carbon materials with iron salt and organic phosphorus Co-modification is carried out to obtain a catalyst for continuous production of 1,1,1,3-tetrachloropropane by gas-solid phase reaction.
  • the synthesis method of the catalyst is specifically as follows:
  • a synthesis step of the catalyst is as follows:
  • step (2) Mix the zero-valent iron-modified carbon material obtained in step (1) with organic phosphorus, heat up to 600-1000°C in an inert atmosphere, calcinate for 1-4 hours, and cool down to room temperature to obtain the catalyst.
  • another synthesis method of the catalyst is as follows:
  • the reducing agent includes sodium borohydride (NaBH 4 ), potassium borohydride (KBH 4 ), etc., but is not limited thereto.
  • step (2) The phosphorus-modified carbon material obtained in step (1) is immersed in an iron salt solution, and sodium borohydride or potassium borohydride is added in an inert atmosphere to reduce iron ions to zero-valent iron.
  • the concentration of reducing agents such as sodium borohydride or potassium borohydride in the reaction system of step (2) is 0.2 mol/L-0.4 mol/L.
  • the carbon material includes at least one of activated carbon, carbon nanotubes, graphene, etc., but is not limited thereto.
  • the iron salt includes at least one of ferrous chloride, ferrous nitrate, ferrous sulfate, ferric nitrate nonahydrate, ferric chloride, etc., but is not limited thereto.
  • the molar ratio of the carbon element in the carbon material or the zero-valent iron-modified carbon material to the phosphorus element in the organic phosphorus is 3:1 ⁇ 7:1.
  • the concentration of the iron salt in the solution containing the iron salt is 0.1 mol/L ⁇ 1.8 mol/L.
  • the organic phosphorus includes at least one of phenylphosphine dichloride, diphenylphosphine, triphenylphosphine, diphenyl-p-tolylphosphine and diphenylcyclohexylphosphine species, but not limited to this.
  • Another aspect of the embodiments of the present application also provides a catalyst for the continuous production of 1,1,1,3-tetrachloropropane prepared by the aforementioned method for gas-solid phase reaction.
  • Another aspect of the embodiment of the present application also provides the aforementioned catalyst for the continuous production of 1,1,1,3-tetrachloropropane in the gas-solid phase reaction for the continuous production of 1,1,1,3-tetrachloropropane Application of chloropropane.
  • another aspect of the embodiment of the present application also provides a method for continuous production of 1,1,1,3-tetrachloropropane by gas-solid phase reaction, which mainly includes: encapsulating the catalyst in a gas-solid phase fixed-bed reaction In the container, carbon tetrachloride and ethylene raw material gas are continuously fed under a certain pressure and a certain temperature, and 1,1,1,3-tetrachloropropane product is obtained through catalytic oligomerization.
  • the method specifically includes:
  • Feed carbon tetrachloride and ethylene reaction raw material gas continuously into the catalyst bed increase the inlet pressure of the reaction raw material gas to 0.8-1.2MPa, heat the temperature of the catalyst bed to 80-120°C, and undergo a catalytic oligomerization reaction 1,1,1,3-tetrachloropropane is obtained and the 1,1,1,3-tetrachloropropane product is collected at the end of the fixed bed.
  • volume ratio of carbon tetrachloride to ethylene is 1:2 ⁇ 2:1.
  • the catalyst of the present application integrates the active component zero-valent iron and co-component phosphate functional groups on the carbon material carrier, which gets rid of the dependence of the traditional batch reaction on the liquid catalytic co-catalyst and realizes 1,1 , Continuous production of 1,3-tetrachloropropane in a gas-solid phase fixed-bed reactor.
  • the gas-solid phase fixed-bed reactor adopts an electrically heated tubular reactor with a pipe diameter of 10 mm and a length of 0.5 m.
  • the reaction process is as follows:
  • the gas-solid phase fixed-bed reactor adopts an electrically heated tubular reactor with a pipe diameter of 10 mm and a length of 0.5 m.
  • the reaction process is as follows:
  • the gas-solid phase fixed-bed reactor adopts an electrically heated tubular reactor with a pipe diameter of 10 mm and a length of 0.5 m.
  • the reaction process is as follows:
  • the product obtained in this example was analyzed by gas chromatography, the conversion rate of carbon tetrachloride was 71%, and the selectivity of 1,1,1,3-tetrachloropropane was 98.8%.
  • the product obtained in this example was analyzed by gas chromatography, the conversion rate of carbon tetrachloride was 45%, and the selectivity of 1,1,1,3-tetrachloropropane was 97%.
  • the product obtained in this example was analyzed by gas chromatography, the conversion rate of carbon tetrachloride was 52%, and the selectivity of 1,1,1,3-tetrachloropropane was 98%.
  • This embodiment utilizes the fixed-bed reactor of embodiment 8, and the reaction process is:
  • the product obtained in this example was analyzed by gas chromatography, the conversion rate of carbon tetrachloride was 52%, and the selectivity of 1,1,1,3-tetrachloropropane was 98%.
  • this comparative example is different in that: no ferric nitrate nonahydrate was added, and only phosphorus-modified activated carbon catalyst was obtained.
  • the phosphorus-modified activated carbon catalyst prepared in this comparative example was used in Example 8, the conversion rate of carbon tetrachloride was 27%, and the selectivity of 1,1,1,3-tetrachloropropane was 41%.
  • this comparative example is different in that: no triphenylphosphine is added, and only zero-valent iron modified activated carbon catalyst is prepared.
  • the zero-valent iron modified activated carbon catalyst prepared in this comparative example was used in Example 8, the conversion rate of carbon tetrachloride was 54%, and the selectivity of 1,1,1,3-tetrachloropropane was 67%.
  • this comparative example is different in that: only phosphorus-modified carbon nanotube catalyst is prepared without adding ferrous chloride.
  • the phosphorus-modified carbon nanotube catalyst prepared in this comparative example was used in Example 13, the conversion rate of carbon tetrachloride was 25%, and the selectivity of 1,1,1,3-tetrachloropropane was 56%.
  • this comparative example is different in that: no phenylphosphine dichloride is added, and only a zero-valent iron-modified carbon nanotube catalyst is prepared.
  • the zero-valent iron modified carbon nanotube catalyst prepared in this comparative example was used in Example 13, the conversion rate of carbon tetrachloride was 37%, and the selectivity of 1,1,1,3-tetrachloropropane was 60%. %.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)

Abstract

一种用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂、其制备方法与应用。所述催化剂包括零价铁和磷共改性碳材料,其包括作为载体的碳材料、负载于载体上的作为活性组分的零价铁,以及形成于碳材料表面的磷酸酯官能团。所述制备方法包括:以亚铁盐和有机磷对碳材料进行共同改性,获得用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂。还提供了一种气固相反应连续生产1,1,1,3-四氯丙烷的方法。该催化剂在碳材料载体上集成了活性组分零价铁和助组分磷酸酯官能团,摆脱了传统间歇釜式反应对液态催化助剂的依赖,实现了1,1,1,3-四氯丙烷在气固相固定床反应器上的连续生产。

Description

用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂、其制备方法与应用
本申请基于并要求于2021年12月17日递交的申请号为202111550988.5、发明名称为“用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂、其制备方法与应用”的中国专利申请的优先权。
技术领域
本申请涉及一种用于生产1,1,1,3-四氯丙烷的催化剂,具体涉及一种用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂及其制备方法与应用,属于化工技术领域。
背景技术
1,1,1,3-四氯丙烷是一种重要的精细化学品,是合成去漆剂、脱脂剂和各类氟硅产品的重要原料,市场潜力巨大。该化学品以四氯化碳和乙烯为原料,通过催化低聚反应得到。常用的催化体系包括:铁粉-氯化(亚)铁-烷基(亚)磷酸酯、铁粉-烷基(亚)磷酸酯、烷基(亚)磷酸酯-氯化(亚)铁-烷基腈、铜粉-烷基腈等。在这些体系中,助催化剂烷基(亚)磷酸酯或烷基腈均为液态物质,在反应中不可或缺。所以,目前的1,1,1,3-四氯丙烷的合成只能采取间歇釜式反应。但间歇釜式反应存在催化剂分离困难、生产时间长,单釜产量有限以及升温降温过程中能耗浪费等问题,生产效率低,不适合产品的工业化大批量生产。因此,本技术领域尚缺乏一种气固相反应连续生产1,1,1,3-四氯丙烷的固体催化剂及方法。
发明内容
本申请的主要目的在于提供一种用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂及其制备方法,从而克服现有技术中的不足。
本申请的另一目的还在于提供一种气固相反应连续生产1,1,1,3-四氯丙烷的方法。
为实现前述发明目的,本申请采用的技术方案包括:
本申请实施例提供了一种用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂,所述催化剂包括零价铁和磷共改性碳材料,所述零价铁和磷共改性碳材料包括作为载体的碳材料、负载于所述载体上的作为活性组分的零价铁,以及形成于所述碳材料表面的磷酸酯官能团。
本申请实施例还提供了所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂的制备方法,其包括:以铁盐和有机磷对碳材料进行共同改性,获得用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂。
在一些实施例中,所述制备方法具体包括:
在惰性气氛中,对包含碳材料与铁盐的第一混合物加热,并以5℃/min~10℃/min的升温速率升温至600~1000℃进行焙烧1~4h,得到零价铁改性碳材料;
以及,在惰性气氛中,对包含所述零价铁改性碳材料与有机磷的第二混合物加热,升温至600~1000℃进行焙烧1~4h,获得所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂。
在另一些实施例中,所述制备方法具体包括:
在惰性气氛中,对包含碳材料与有机磷的第三混合物加热,并以5℃/min~10℃/min的升温速率升温至600~1000℃进行焙烧1~4h,得到磷改性碳材料;
以及,将所述磷改性碳材料与含有铁盐的溶液充分接触4~6h,并在惰性气氛中加入还原剂,至少将铁离子还原成零价铁,获得所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂。
本申请实施例还提供了所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂于气固相反应连续生产1,1,1,3-四氯丙烷中的应用。
相应的,本申请实施例还提供了一种气固相反应连续生产1,1,1,3-四氯丙烷的方法,其包括:
将所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂封装于气固相固定床反应装置中,形成催化剂床层;
将四氯化碳和乙烯反应原料气连续通入所述催化剂床层,将反应原料气进气压力提升至0.8~1.2MPa,加热催化剂床层的温度至80~120℃,经催化低聚反应获得1,1,1,3-四氯丙烷。
与现有技术相比,本申请的有益效果至少在于:
本申请提供的催化剂以碳材料为载体,在其上负载活性组分零价铁,替代现有釜式反应中的主催化剂铁粉;通过磷改性在碳材料表面形成助组分磷酸酯官能团,替代现有釜式反应中的助催化剂烷基磷酸酯,摆脱了传统间歇釜式反应对液态催化助剂的依赖。因此,本申请在碳材料上集成了主催化剂(零价铁)和助催化剂(磷酸酯官能团),可作为单一固体催化剂直接用于1,1,1,3-四氯丙烷合成,由于不再使用液态助催化剂,可以将该催化剂直接封装到气固相固定床反应器内,连续通入四氯化碳和乙烯原料,在加压加热条件下可以实现1,1,1,3-四氯丙烷的连续合成。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1中制得的零价铁和磷共改性活性炭催化剂的微观形貌图。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本申请实施例的一个方面提供的一种用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂为零价铁和磷共改性碳材料,所述零价铁和磷共改性碳材料包括作为载体的碳材料、负载于所述载体上的作为活性组分的零价铁,以及形成于所述碳材料表面的磷酸酯官能团。
在一些实施方案中,所述催化剂中铁的质量含量为1~10wt%,磷的质量含量为1~10wt%。
在一些实施方案中,所述催化剂中零价铁的颗粒尺寸为2~100nm。
在一些实施方案中,所述碳材料包括活性炭、碳纳米管、石墨烯等中的至少一种,但不限于此。
本申请实施例的另一个方面还提供了一种用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂的制备方法,其包括:以铁盐和有机磷对碳材料进行共同改性,获得用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂。
在一些实施方式中,所述催化剂的合成方法具体如下:
在惰性气氛中,对包含碳材料与铁盐的第一混合物加热,并以5℃/min~10℃/min的升温速率升温至600~1000℃进行焙烧1~4h,得到零价铁改性碳材料;
以及,在惰性气氛中,对包含所述零价铁改性碳材料与有机磷的第二混合物加热,升温至600~1000℃进行焙烧1~4h,获得所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂。
在一些具体实施方式中,所述催化剂的一种合成步骤如下:
(1)将碳材料与铁盐混合,在惰性气氛下加热,以5℃/min~10℃/min的升温速率升至600~1000℃,焙烧1~4小时,降至室温得到零价铁改性碳材料;
(2)将步骤(1)所得零价铁改性碳材料与有机磷混合,在惰性气氛下加热升至 600~1000℃,焙烧1~4小时,降至室温得到所述催化剂。
在一些实施方式中,所述催化剂的另一种合成方法具体如下:
在惰性气氛中,对包含碳材料与有机磷的第三混合物加热,并以5℃/min~10℃/min的升温速率升温至600~1000℃进行焙烧1~4h,得到磷改性碳材料;
以及,将所述磷改性碳材料与含有铁盐的溶液充分接触,并在惰性气氛中加入还原剂,至少将铁离子还原成零价铁,获得所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂。
进一步地,所述还原剂包括硼氢化钠(NaBH 4)、硼氢化钾(KBH 4)等,但不限于此。
在另一些具体实施方式中,所述催化剂的另一种合成步骤如下:
(1)将碳材料与有机磷混合,在惰性气氛下加热,以5℃/min~10℃/min的升温速率升至600~1000℃,焙烧1~4小时,降至室温得到磷改性碳材料;
(2)将步骤(1)所得磷改性碳材料浸入铁盐溶液,在惰性气氛中加入硼氢酸钠或硼氢化钾将铁离子还原成零价铁。
(3)过滤、洗涤、干燥得到所述催化剂。
进一步地,步骤(2)的反应体系中硼氢酸钠或硼氢化钾等还原剂的浓度为0.2mol/L~0.4mol/L。
在一些实施方案中,所述碳材料包括活性炭、碳纳米管、石墨烯等中的至少一种,但不限于此。
在一些较为具体的实施例中,所述铁盐包括氯化亚铁、硝酸亚铁、硫酸亚铁、九水合硝酸铁、氯化铁等中的至少一种,但不限于此。
进一步地,所述碳材料与铁盐的摩尔比为11:1~112:1。
进一步地,所述碳材料或零价铁改性碳材料中碳元素与有机磷中磷元素的摩尔比为3:1~7:1。
进一步地,所述含有铁盐的溶液中铁盐的浓度为0.1mol/L~1.8mol/L。
在一些较为具体的实施例中,所述有机磷包括苯基二氯化膦、二苯基膦、三苯基膦、二苯基对甲苯基膦和二苯基环己基膦等中的至少一种,但不限于此。
本申请实施例的另一个方面还提供了由前述方法制备的用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂。
本申请实施例的另一个方面还提供了前述的用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂于气固相反应连续生产1,1,1,3-四氯丙烷中的应用。
相应的,本申请实施例的另一个方面还提供了一种气固相反应连续生产1,1,1,3-四氯丙烷 的方法,其主要包括:将催化剂封装在气固相固定床反应器中,在一定压力和一定温度下持续通入四氯化碳和乙烯原料气,经催化低聚反应获得1,1,1,3-四氯丙烷产品。
在一些具体实施方式中,所述方法具体包括:
将所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂封装于气固相固定床反应装置中,形成催化剂床层;
将四氯化碳和乙烯反应原料气连续通入所述催化剂床层,将反应原料气进气压力提升至0.8~1.2MPa,加热催化剂床层的温度至80~120℃,经催化低聚反应获得1,1,1,3-四氯丙烷,并在固定床末端收集1,1,1,3-四氯丙烷产品。
进一步地,所述四氯化碳与乙烯的体积比为1:2~2:1。
综上所述,本申请的催化剂在碳材料载体上集成了活性组分零价铁和助组分磷酸酯官能团,摆脱了传统间歇釜式反应对液态催化助剂的依赖,实现了1,1,1,3-四氯丙烷在气固相固定床反应器上的连续生产。
为更好的说明本申请的目的、技术方案和优点,下面将结合若干较佳实施例对本申请的技术方案作更为详细的解释说明。以下所述的具体实施例仅用于进一步说明和解释本申请,并非是对本申请的限制;从本申请公开的内容联想到或导出的所有变形,均认为是本申请的保护范围。
实施例1
取50g活性炭与50g九水合硝酸铁混合,在氮气气氛下以8℃/min的升温速率升温至800℃焙烧3小时,降至室温得到零价铁改性活性炭,然后与100g三苯基膦混合,在氮气气氛下900℃焙烧3小时,得到零价铁和磷共改性活性炭催化剂,元素分析得出,该催化剂中铁的质量含量为3wt%,磷的质量含量为8wt%,零价铁的颗粒尺寸为2~100nm。利用高分辨电子透射显微技术观察催化剂的微观形貌图,可以看到嵌在石墨碳层中零价铁颗粒,尺寸为13nm(如图1所示)。
实施例2
取50g石墨烯与20g氯化铁混合,在氮气气氛下以10℃/min的升温速率升温至1000℃焙烧2小时,降至室温得到零价铁改性石墨烯,然后与110g二苯基对甲苯基膦混合,在氮气气氛下900℃焙烧3小时,得到零价铁和磷共改性石墨烯催化剂,元素分析得出,该催化剂中铁的质量含量为2wt%,磷的质量含量为4wt%。
实施例3
取50g碳纳米管与200g苯基二氯化膦混合,在氮气气氛下以6℃/min的升温速率升温至 1000℃焙烧1小时,得到磷改性碳纳米管,然后浸入含50g氯化亚铁的1升水溶液,盐酸调节pH<3,通入氮气,边搅拌边滴加含50g硼氢化钠的1升水溶液,然后搅拌4小时,过滤、洗涤、干燥,得到零价铁和磷共改性碳纳米管催化剂,元素分析得出,该催化剂中铁的质量含量为8wt%,磷的质量含量为5wt%。
实施例4
取50g活性炭与50g硝酸亚铁混合,在氮气气氛下以5℃/min的升温速率升温至600℃焙烧1小时,降至室温得到零价铁改性活性炭,然后与100g二苯基膦混合,在氮气气氛下900℃焙烧3小时,得到零价铁和磷共改性活性炭催化剂,元素分析得出,该催化剂中铁的质量含量为3wt%,磷的质量含量为7wt%。
实施例5
取50g石墨烯与20g氯化亚铁混合,在氮气气氛下以8℃/min的升温速率升温至1000℃焙烧2小时,降至室温得到零价铁改性石墨烯,然后与110g二苯基环己基膦混合,在氮气气氛下1000℃焙烧1小时,得到零价铁和磷共改性石墨烯催化剂,元素分析得出,该催化剂中铁的质量含量为2wt%,磷的质量含量为3wt%。
实施例6
取50g碳纳米管与200g苯基二氯化膦混合,在氮气气氛下以5℃/min的升温速率升温至600℃焙烧4小时,得到磷改性碳纳米管,然后浸入含50g硝酸亚铁的1升水溶液,盐酸调节pH<3,通入氮气,边搅拌边滴加含50g硼氢化钾的1升水溶液,然后搅拌6小时,过滤、洗涤、干燥,得到零价铁和磷共改性碳纳米管催化剂,元素分析得出,该催化剂中铁的质量含量为8wt%,磷的质量含量为6wt%。
实施例7
取50g石墨烯与20g硫酸亚铁混合,在氮气气氛下以10℃/min的升温速率升温至1000℃焙烧2小时,降至室温得到零价铁改性石墨烯,然后与110g二苯基对甲苯基膦混合,在氮气气氛下600℃焙烧4小时,得到零价铁和磷共改性石墨烯催化剂,元素分析得出,该催化剂中铁的质量含量为2wt%,磷的质量含量为5wt%。
实施例8
本实施例中气固相固定床反应器采用管径为10毫米、长度0.5米的电加热管式反应器,反应过程为:
(1)将20g实施例1所制备的零价铁和磷共改性活性炭催化剂装入反应管;
(2)将四氯化碳85℃预热后与乙烯同时连续通入反应管,四氯化碳与乙烯体积比为1:1, 总流量为20mL/min;
(3)进气压力调节至0.9MPa;
(4)加热催化剂床层温度至100℃;
(5)在固定床末端收集1,1,1,3-四氯丙烷粗品;
对本实施例所获产品进行气相色谱分析,四氯化碳的转化率为70%,1,1,1,3-四氯丙烷的选择性为99%。
实施例9
本实施例中气固相固定床反应器采用管径为10毫米、长度0.5米的电加热管式反应器,反应过程为:
(1)将20g实施例1所制备的零价铁和磷共改性活性炭催化剂装入反应管;
(2)将四氯化碳85℃预热后与乙烯同时连续通入反应管,四氯化碳与乙烯体积比为1:2,总流量为20mL/min;
(3)进气压力调节至0.8MPa;
(4)加热催化剂床层温度至100℃;
(5)在固定床末端收集1,1,1,3-四氯丙烷粗品;
对本实施例所获产品进行气相色谱分析,四氯化碳的转化率为68%,1,1,1,3-四氯丙烷的选择性为98.9%。
实施例10
本实施例中气固相固定床反应器采用管径为10毫米、长度0.5米的电加热管式反应器,反应过程为:
(1)将20g实施例1所制备的零价铁和磷共改性活性炭催化剂装入反应管;
(2)将四氯化碳85℃预热后与乙烯同时连续通入反应管,四氯化碳与乙烯体积比为2:1,总流量为20mL/min;
(3)进气压力调节至1.2MPa;
(4)加热催化剂床层温度至100℃;
(5)在固定床末端收集1,1,1,3-四氯丙烷粗品;
对本实施例所获产品进行气相色谱分析,四氯化碳的转化率为72%,1,1,1,3-四氯丙烷的选择性为99.3%。
实施例11
本实施例中气固相固定床反应器采用管径为10毫米、长度0.5米的电加热管式反应器, 反应过程为:
(1)将20g实施例1所制备的零价铁和磷共改性活性炭催化剂装入反应管;
(2)将四氯化碳85℃预热后与乙烯同时连续通入反应管,四氯化碳与乙烯体积比为1:1,总流量为20mL/min;
(3)进气压力调节至0.9MPa;
(4)加热催化剂床层温度至80℃;
(5)在固定床末端收集1,1,1,3-四氯丙烷粗品;
对本实施例所获产品进行气相色谱分析,四氯化碳的转化率为67%,1,1,1,3-四氯丙烷的选择性为98.4%。
实施例12
本实施例中气固相固定床反应器采用管径为10毫米、长度0.5米的电加热管式反应器,反应过程为:
(1)将20g实施例1所制备的零价铁和磷共改性活性炭催化剂装入反应管;
(2)将四氯化碳85℃预热后与乙烯同时连续通入反应管,四氯化碳与乙烯体积比为1:1,总流量为20mL/min;
(3)进气压力调节至0.9MPa;
(4)加热催化剂床层温度至120℃;
(5)在固定床末端收集1,1,1,3-四氯丙烷粗品;
对本实施例所获产品进行气相色谱分析,四氯化碳的转化率为71%,1,1,1,3-四氯丙烷的选择性为98.8%。
实施例13
利用实施例8的固定床反应器,反应过程为:
(1)将20g实施例3所制备的零价铁和磷共改性碳纳米管催化剂装入反应管;
(2)将四氯化碳85℃预热后与乙烯同时连续通入反应管,四氯化碳与乙烯体积比为1:1,总流量为20mL/min;
(3)进气压力调节至1MPa;
(4)加热催化剂床层温度至110℃;
(5)在固定床末端收集1,1,1,3-四氯丙烷粗品;
对本实施例所获产品进行气相色谱分析,四氯化碳的转化率为45%,1,1,1,3-四氯丙烷的选择性为97%。
实施例14
本实施例利用实施例8的固定床反应器,反应过程为:
(1)将20g实施例4所制备的零价铁和磷共改性活性炭催化剂装入反应管;
(2)将四氯化碳85℃预热后与乙烯同时连续通入反应管,四氯化碳与乙烯体积比为1:2,总流量为20mL/min;
(3)进气压力调节至0.8MPa;
(4)加热催化剂床层温度至90℃;
(5)在固定床末端收集1,1,1,3-四氯丙烷粗品;
对本实施例所获产品进行气相色谱分析,四氯化碳的转化率为65%,1,1,1,3-四氯丙烷的选择性为96%。
实施例15
本实施例利用实施例8的固定床反应器,反应过程为:
(1)将20g实施例6所制备的零价铁和磷共改性碳纳米管催化剂装入反应管;
(2)将四氯化碳85℃预热后与乙烯同时连续通入反应管,四氯化碳与乙烯体积比为1:1,总流量为20mL/min;
(3)进气压力调节至1.2MPa;
(4)加热催化剂床层温度至120℃;
(5)在固定床末端收集1,1,1,3-四氯丙烷粗品;
对本实施例所获产品进行气相色谱分析,四氯化碳的转化率为52%,1,1,1,3-四氯丙烷的选择性为98%。
实施例16
本实施例利用实施例8的固定床反应器,反应过程为:
(1)将20g实施例6所制备的零价铁和磷共改性碳纳米管催化剂装入反应管;
(2)将四氯化碳85℃预热后与乙烯同时连续通入反应管,四氯化碳与乙烯体积比为2:1,总流量为20mL/min;
(3)进气压力调节至1.2MPa;
(4)加热催化剂床层温度至120℃;
(5)在固定床末端收集1,1,1,3-四氯丙烷粗品;
对本实施例所获产品进行气相色谱分析,四氯化碳的转化率为52%,1,1,1,3-四氯丙烷的选择性为98%。
此外,本案发明人还参照前述实施例,以本说明书述及的其它原料、工艺操作、工艺条件进行了试验,并均获得了较为理想的结果。
对照例1
本对照例与实施例1相比,不同之处在于:未加入九水合硝酸铁,仅制得磷改性活性炭催化剂。
将本对照例制得的磷改性活性炭催化剂用于实施例8中,四氯化碳的转化率为27%,1,1,1,3-四氯丙烷的选择性为41%。
对照例2
本对照例与实施例1相比,不同之处在于:未加入三苯基膦,仅制得零价铁改性活性炭催化剂。
将本对照例制得的零价铁改性活性炭催化剂用于实施例8中,四氯化碳的转化率为54%,1,1,1,3-四氯丙烷的选择性为67%。
对照例3
本对照例与实施例3相比,不同之处在于:未加入氯化亚铁,仅制得磷改性碳纳米管催化剂。
将本对照例制得的磷改性碳纳米管催化剂用于实施例13中,四氯化碳的转化率为25%,1,1,1,3-四氯丙烷的选择性为56%。
对照例4
本对照例与实施例3相比,不同之处在于:未加入苯基二氯化膦,仅制得零价铁改性碳纳米管催化剂。
将本对照例制得的零价铁改性碳纳米管催化剂用于实施例13中,四氯化碳的转化率为37%,1,1,1,3-四氯丙烷的选择性为60%。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

  1. 一种用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂,其特征在于,包括零价铁和磷共改性碳材料,所述零价铁和磷共改性碳材料包括作为载体的碳材料、负载于所述载体上的作为活性组分的零价铁,以及形成于所述碳材料表面的磷酸酯官能团。
  2. 根据权利要求1所述的用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂,其特征在于:所述催化剂中铁的含量为1~10wt%,磷的含量为1~10wt%。
  3. 根据权利要求1所述的用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂,其特征在于:所述催化剂中零价铁的颗粒尺寸为2~100nm。
  4. 根据权利要求1所述的用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂,其特征在于:所述碳材料包括活性炭、碳纳米管、石墨烯中的至少一种。
  5. 如权利要求1-4中任一项所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂的制备方法,其特征在于,包括:
    以铁盐和有机磷对碳材料进行共同改性,获得用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂。
  6. 根据权利要求5所述的制备方法,其特征在于,具体包括:
    在惰性气氛中,对包含碳材料与铁盐的第一混合物加热,并以5℃/min~10℃/min的升温速率升温至600~1000℃进行焙烧1~4h,得到零价铁改性碳材料;
    以及,在惰性气氛中,对包含所述零价铁改性碳材料与有机磷的第二混合物加热,升温至600~1000℃进行焙烧1~4h,获得所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂。
  7. 根据权利要求5所述的制备方法,其特征在于,具体包括:
    在惰性气氛中,对包含碳材料与有机磷的第三混合物加热,并以5℃/min~10℃/min的升温速率升温至600~1000℃进行焙烧1~4h,得到磷改性碳材料;
    以及,将所述磷改性碳材料与含有铁盐的溶液充分接触4~6h,并在惰性气氛中加入还原剂,至少将铁离子还原成零价铁,获得所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂;优选的,所述还原剂包括硼氢化钠和/或硼氢化钾。
  8. 根据权利要求6或7所述的制备方法,其特征在于:所述碳材料与铁盐的摩尔比为11:1~112:1;
    和/或,所述碳材料或零价铁改性碳材料中碳元素与有机磷中磷元素的摩尔比为3:1~7:1;
    和/或,所述碳材料包括活性炭、碳纳米管、石墨烯中的至少一种;
    和/或,所述铁盐包括氯化亚铁、硝酸亚铁、硫酸亚铁、硝酸铁、氯化铁中的至少一种;
    和/或,所述含有铁盐的溶液中铁盐的浓度为0.1mol/L~1.8mol/L;
    和/或,所述有机磷包括苯基二氯化膦、二苯基膦、三苯基膦、二苯基对甲苯基膦和二苯基环己基膦中的至少一种。
  9. 权利要求1-4中任一项所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂于气固相反应连续生产1,1,1,3-四氯丙烷中的应用。
  10. 一种气固相反应连续生产1,1,1,3-四氯丙烷的方法,其特征在于包括:
    将权利要求1-4中任一项所述用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂封装于气固相固定床反应装置中,形成催化剂床层;
    将四氯化碳和乙烯反应原料气连续通入所述催化剂床层,将反应原料气进气压力提升至0.8~1.2MPa,加热催化剂床层的温度至80~120℃,经催化低聚反应获得1,1,1,3-四氯丙烷;
    优选的,所述四氯化碳与乙烯的体积比为1:2~2:1。
PCT/CN2021/141027 2021-12-17 2021-12-24 用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂、其制备方法与应用 WO2023108788A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/258,332 US11918980B2 (en) 2021-12-17 2021-12-24 Catalyst for continuous production of 1,1,1,3-tetrachloropropane through gas-solid reaction as well as preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111550988.5A CN116265097A (zh) 2021-12-17 2021-12-17 用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂、其制备方法与应用
CN202111550988.5 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023108788A1 true WO2023108788A1 (zh) 2023-06-22

Family

ID=86743614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141027 WO2023108788A1 (zh) 2021-12-17 2021-12-24 用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂、其制备方法与应用

Country Status (3)

Country Link
US (1) US11918980B2 (zh)
CN (1) CN116265097A (zh)
WO (1) WO2023108788A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986507A (zh) * 2005-12-19 2007-06-27 浙江蓝天环保高科技股份有限公司 1,1,1,3,3-五氯丙烷的改进制备方法
WO2016128763A1 (en) * 2015-02-13 2016-08-18 Mexichem Fluor S.A. De C.V. Production of 1,1,1 -trifluoro-2,3-dichloropropane (243bd) by catalytic chlorination of 3,3,3-trifluoropropene (1243zf)
WO2018022500A1 (en) * 2016-07-27 2018-02-01 The Chemours Company Fc, Llc Process for producing halogenated olefins
CN110813337A (zh) * 2019-12-02 2020-02-21 中国科学院兰州化学物理研究所 一种金属-磷-碳多级孔催化剂及其制备方法与应用
CN111056913A (zh) * 2019-12-09 2020-04-24 宁波巨化化工科技有限公司 一种1,1,1,3-四氯丙烷的连续生产方法
WO2020133554A1 (zh) * 2018-12-29 2020-07-02 吕杨 一种2,3,3,3-四氟丙烯的连续制备方法
US20210009490A1 (en) * 2018-04-03 2021-01-14 Blue Cube Ip Llc Method for recycling catalyst in the production of chlorinated alkanes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0131561B1 (en) * 1983-07-06 1986-10-15 Monsanto Company Process for producing monoadducts of olefins and telogens reactive therewith
US4535194A (en) * 1983-07-06 1985-08-13 Monsanto Co. Process for producing 1,1,2,3-tetrachloropropene
US4650914A (en) * 1983-07-06 1987-03-17 Monsanto Company Process for producing 1,1,2,3-tetrachloropropene
US5462651A (en) * 1994-08-09 1995-10-31 Texaco Inc. Hydrodearomatization of hydrocarbon oils using novel "phosphorus treated carbon" supported metal sulfide catalysts
CA2964090C (en) * 2007-12-19 2020-05-05 Occidental Chemical Corporation Methods of making chlorinated hydrocarbons
US8426655B2 (en) * 2010-03-26 2013-04-23 Honeywell International Inc. Process for the manufacture of hexafluoro-2-butene
CN114605226A (zh) * 2020-12-04 2022-06-10 中国科学院上海有机化学研究所 一种连续合成1,1,1,3-四氯丙烷的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986507A (zh) * 2005-12-19 2007-06-27 浙江蓝天环保高科技股份有限公司 1,1,1,3,3-五氯丙烷的改进制备方法
WO2016128763A1 (en) * 2015-02-13 2016-08-18 Mexichem Fluor S.A. De C.V. Production of 1,1,1 -trifluoro-2,3-dichloropropane (243bd) by catalytic chlorination of 3,3,3-trifluoropropene (1243zf)
WO2018022500A1 (en) * 2016-07-27 2018-02-01 The Chemours Company Fc, Llc Process for producing halogenated olefins
US20210009490A1 (en) * 2018-04-03 2021-01-14 Blue Cube Ip Llc Method for recycling catalyst in the production of chlorinated alkanes
WO2020133554A1 (zh) * 2018-12-29 2020-07-02 吕杨 一种2,3,3,3-四氟丙烯的连续制备方法
CN110813337A (zh) * 2019-12-02 2020-02-21 中国科学院兰州化学物理研究所 一种金属-磷-碳多级孔催化剂及其制备方法与应用
CN111056913A (zh) * 2019-12-09 2020-04-24 宁波巨化化工科技有限公司 一种1,1,1,3-四氯丙烷的连续生产方法

Also Published As

Publication number Publication date
US11918980B2 (en) 2024-03-05
US20240001346A1 (en) 2024-01-04
CN116265097A (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
CN101903289B (zh) 生产氮掺杂的碳纳米管的方法
CN103381369A (zh) 一种氮掺杂碳材料负载的催化剂
JP2015525179A (ja) 炭素酸化物を還元することによる固体炭素材料の生成からの熱エネルギー回収のための方法およびシステム
CN110947428B (zh) 一种UiO@Pd@UiO催化剂及其制备方法和用途
CN102211205A (zh) 一种制备系列高纯度银纳米材料的方法
CN106391001B (zh) 活性炭负载的钌-铂双金属复合催化剂及制备方法与应用
WO2021164099A1 (zh) 一种选择性加氢催化剂及其制备方法和应用
CN104107716B (zh) 用于c6~c8正构烷烃芳构化的催化剂及其制备和应用
CN111036249A (zh) 一种FexP/Mn0.3Cd0.7S复合光催化剂及其制备方法与应用
CN110694690A (zh) 一种制备金属单原子催化剂的方法
CN102145884A (zh) 一种高比表面积复合炭材料的制备方法
WO2024077949A1 (zh) 一种用于生产1,1,1,2,3-五氯丙烷的催化剂及其制备方法和应用
CN104843721B (zh) 一种有机硅废触体的回收方法
Zhang et al. Research progress of Metal–Organic Frameworks (MOFs) for CO2 Conversion in CCUS
WO2023108788A1 (zh) 用于气固相反应连续生产1,1,1,3-四氯丙烷的催化剂、其制备方法与应用
Wang et al. ZIF-8-based vs. ZIF-8-derived Au and Pd nanoparticles as efficient catalysts for the Ullmann homocoupling reaction
US20090181846A1 (en) Process for preparing catalyst for synthesis of carbon nanotubes using spray pyrolysis
Jiang et al. Review of different series of MOF/gC 3 N 4 composites for photocatalytic hydrogen production and CO 2 reduction
CN103521273A (zh) 一种微纳米金属镍包覆二氧化硅催化剂的制备方法
CN110327959B (zh) 一种BiVO4@CdIn2S4/g-C3N4可见光响应光催化剂及其制备方法
CN110354882B (zh) 一种BiVO4@ZnIn2S4/g-C3N4可见光响应光催化剂及其制备方法
CN109847779B (zh) 一种g-C3N4-MP-MoS2复合材料及其制备方法与应用
CN109731573A (zh) 一种苯甲醇氧化制苯甲醛高活性Au/纳米碳催化剂的制备方法及应用
CN115999629A (zh) 一种用于α-烯烃氢甲酰化制备醛的多相催化剂及其制备方法和用途
CN110354883B (zh) 一种BiVO4@CuIn2S4/g-C3N4可见光响应光催化剂及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18258332

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967919

Country of ref document: EP

Kind code of ref document: A1