WO2023106405A1 - 化合物、有機半導体材料、および有機電子デバイス - Google Patents

化合物、有機半導体材料、および有機電子デバイス Download PDF

Info

Publication number
WO2023106405A1
WO2023106405A1 PCT/JP2022/045473 JP2022045473W WO2023106405A1 WO 2023106405 A1 WO2023106405 A1 WO 2023106405A1 JP 2022045473 W JP2022045473 W JP 2022045473W WO 2023106405 A1 WO2023106405 A1 WO 2023106405A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
unit
acceptor
donor
Prior art date
Application number
PCT/JP2022/045473
Other languages
English (en)
French (fr)
Inventor
裕隆 家
青萌 陣内
真理奈 三枝
一剛 萩谷
Original Assignee
国立大学法人大阪大学
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 東洋紡株式会社 filed Critical 国立大学法人大阪大学
Priority to JP2023541123A priority Critical patent/JPWO2023106405A1/ja
Publication of WO2023106405A1 publication Critical patent/WO2023106405A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains three hetero rings
    • C07D513/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound having a donor unit containing a specific unit and an acceptor unit, an organic semiconductor material containing the compound, and an organic electronic device containing the organic semiconductor material.
  • Organic semiconductor materials are important materials in the field of organic electronics, and monomer compounds and polymer compounds are used as organic semiconductor materials.
  • Organic semiconductor materials can be classified into electron-donating p-type organic semiconductor materials and electron-accepting n-type organic semiconductor materials.
  • Devices can be manufactured.
  • Organic electronic devices include, for example, organic electroluminescence elements that emit light by the action of excitons formed by recombination of electrons and holes, organic thin-film transistor elements that control the amount of current or voltage, and organic photoelectric conversion elements. , organic thin-film solar cell modules that convert light into electric power, and the like.
  • Patent Document 1 proposes a polymer used as an n-type organic semiconductor material.
  • the polymer proposed in Patent Document 1 is a nitrogen-containing condensation polymer having at least one repeating unit represented by the following general formula (II) and at least one repeating unit represented by the following general formula (III). It is a ring polymer.
  • Z 1 and Z 2 are exemplified by S (sulfur atom)
  • Ar 1 is exemplified by a divalent aromatic hydrocarbon group or a divalent heterocyclic group. ing.
  • An organic electronic device is manufactured, for example, by forming an organic thin film from an organic semiconductor material by a vacuum deposition method, or by forming an organic thin film by dissolving an organic semiconductor material in a solvent or the like by a predetermined film forming method. If the organic semiconductor material is soluble in a solvent (particularly an organic solvent), it will be possible to form a film by a printing process, for example, so that the area of the organic thin film can be increased and the production cost can be reduced. Therefore, organic semiconductor materials are desired to have good solubility in solvents.
  • a nitrogen-containing condensed ring compound is used as an organic semiconductor material, and an organic semiconductor element is produced by a vacuum deposition method.
  • Patent Document 1 examines the solubility of nitrogen-containing condensed ring compounds in solvents. not The present inventors investigated the solubility of organic semiconductor materials and found that there is room for improvement.
  • the present invention includes the following inventions.
  • a compound having at least one donor unit containing a unit represented by the following formula (Do-A) and at least one acceptor unit, wherein the donor unit and the acceptor unit are linked to each other.
  • R a represents an alkylene group having 2 to 10 carbon atoms
  • * represents a bond.
  • the heteroaromatic condensed ring wherein the acceptor unit (1) has a condensed ring structure, at least one of the rings is an aromatic ring, and the elements constituting the ring are a carbon atom and a hetero atom.
  • the compound according to [1] which contains at least one selected from the group consisting of a monocyclic unit having a condensed ring structure.
  • the polymer compound according to [1] or [2] which has the donor unit and the acceptor unit as repeating units.
  • a compound that can be preferably used as an organic semiconductor material and has good solubility in a solvent can be provided.
  • an organic semiconductor material containing such a compound and an organic electronic device containing such an organic semiconductor material can be provided.
  • FIG. 1 shows the UV-visible absorption spectrum of polymer type compound 1.
  • FIG. FIG. 2 shows the UV-visible absorption spectrum of the polymer type compound 2.
  • FIG. 3 shows the UV-visible absorption spectrum of polymer type compound 3.
  • FIG. 4 shows the UV-visible absorption spectrum of polymer type compound 4.
  • FIG. 5 shows the UV-visible absorption spectrum of polymer type compound 5.
  • FIG. 6 shows the UV-visible absorption spectrum of the polymer type compound 6.
  • FIG. FIG. 7 shows the UV-visible absorption spectrum of polymer type compound 7.
  • FIG. 8 shows the UV-visible absorption spectrum of polymer type compound 8.
  • FIG. 9 shows the UV-visible absorption spectrum of polymer type compound 9.
  • FIG. 10 shows the UV-visible absorption spectrum of the polymer type compound 10.
  • FIG. FIG. 11 shows an ultraviolet-visible absorption spectrum of the polymer type compound 11.
  • FIG. FIG. 12 shows the UV-visible absorption spectrum of the polymer type compound 12.
  • FIG. FIG. 13 shows the UV-visible absorption spectrum of the polymer type compound 13.
  • FIG. 14 is a schematic diagram for explaining a method for calculating a bandgap, and is a schematic diagram in which an auxiliary line is drawn for an ultraviolet-visible absorption spectrum obtained by UV measurement of a thin film containing polymer type compound 9. is.
  • FIG. 15 shows the UV-visible absorption spectrum of low-molecular-weight compound 1.
  • FIG. FIG. 16 shows the UV-visible absorption spectrum of low-molecular-weight compound 3.
  • FIG. 17 shows the UV-visible absorption spectrum of low-molecular-weight compound 4.
  • FIG. 18 shows the UV-visible absorption spectrum of low-molecular-weight compound 5.
  • FIG. 19 shows the UV-visible absorption spectrum of low-molecular-weight compound 6.
  • FIG. 20 shows the UV-visible absorption spectrum of low-molecular-weight compound 7.
  • the compound of the present invention has one or more donor units each containing a unit represented by the following formula (Do-A) and one or more acceptor units, and the donor unit and the acceptor unit are linked to each other.
  • R a represents an alkylene group having 2 to 10 carbon atoms
  • * represents a bond. * may be a hydrogen atom when the donor unit including the unit represented by the following formula (Do-A) is the terminal of the compound.
  • a donor unit that constitutes a compound means an electron-donating structural unit.
  • An acceptor unit constituting a compound means an electron-accepting structural unit.
  • the unit represented by the formula (Do-A) is excellent in electron donating properties. Since the unit represented by the formula (Do-A) also has a spiro skeleton containing an acetal structure, it has good solubility in solvents. Therefore, by using a compound in which a donor unit containing a unit represented by formula (Do-A) and an acceptor unit are combined, the compound has good solubility in a solvent. Therefore, the film quality of the film obtained by coating the compound on the substrate is improved, and the electron mobility of the film is improved.
  • the ionization energy value (HOMO value) and the LUMO value bandgap are small. becomes easier for electrons to move. Furthermore, the electrostatic interaction works between molecules, so that the orientation becomes good, and an improvement in electron mobility can be expected. Also, the value of LUMO becomes, for example, ⁇ 3.5 eV or less, and it has atmospheric stability. Therefore, a compound having one or more donor units and one or more acceptor units each containing a unit represented by the formula (Do-A), and in which the donor unit and the acceptor unit are linked to each other, for example , can be suitably used as an organic semiconductor material.
  • the compound of the present invention has one or more donor units each containing a unit represented by the above formula (Do-A) and one or more acceptor units, and the donor unit and the acceptor unit are linked to each other.
  • a compound having a total of two or three donor units and acceptor units may be hereinafter referred to as a low-molecular-weight compound.
  • a compound having a repeating unit of a donor unit containing a unit represented by the above formula (Do-A) and an acceptor unit is hereinafter sometimes referred to as a polymer compound.
  • the polymer-type compound has two or more donor units each including the unit represented by the above formula (Do-A) and two or more acceptor units, and the donor unit and the acceptor unit are mutually It is a conjugated compound.
  • a compound having a total of two donor units and two acceptor units that is, a compound in which one donor unit and one acceptor unit are linked to each other
  • a dimer compound a compound having a total of three donor units and three acceptor units, in which the donor unit and the acceptor unit are linked to each other.
  • the trimeric compound may be a compound in which two donor units are linked to one acceptor unit, but it is a compound in which two acceptor units are linked to one donor unit. is preferred.
  • Low-molecular-weight compounds have better solubility in solvents than high-molecular-weight compounds. As a result, by using a low-molecular-weight compound, a uniform thin film can be produced by, for example, spin coating, resulting in good electron mobility.
  • the number of carbon atoms in R a is preferably 2 to 8, more preferably 2 to 6, even more preferably 2 to 4.
  • the alkylene group may be a linear alkylene group or a branched alkylene group, but is preferably a linear alkylene group.
  • R a include ethylene group, n-propylene group, 1-methyl-ethan-1,2-yl group, 1,2-dimethyl-ethan-1,2-yl group, 1-methyl-propane-1 , 3-yl group and the like, and among these, an ethylene group and an n-propylene group are preferred.
  • the donor unit constituting the compound of the present invention may contain a unit represented by the above formula (Do-A), and may be a known donor unit or a unit represented by the below-described formula (Do-K). may contain other donor units such as When the total donor unit is 100 mol%, the ratio of the unit represented by the above formula (Do-A) is, for example, preferably 40 mol% or more, more preferably 50 mol% or more, and still more preferably 80 mol % or more. All of the donor units (100 mol %) may be units represented by the above formula (Do-A).
  • a known acceptor unit can be used as the acceptor unit to be combined with the donor unit constituting the compound.
  • the acceptor unit preferably contains, for example, at least one selected from the group consisting of (1) to (3) below.
  • a monocyclic unit having an aromatic ring and no condensed ring structure.
  • Heteroaromatic condensed ring type unit has a condensed ring structure, at least one of the rings is an aromatic ring, and the elements constituting the ring are carbon atoms and hetero atoms is a structural unit.
  • a heteroatom is an atom other than a carbon atom.
  • a heteroaromatic condensed ring unit is a condensed ring unit containing an aromatic ring, wherein at least one of the rings constituting the condensed ring of the condensed ring unit is composed of a carbon atom and a heteroatom. It is a unit that is a heterocycle. That is, a condensed ring unit having a condensed ring structure has at least one heterocyclic ring.
  • Each heteroatom is, for example, a nitrogen atom, a sulfur atom, or an oxygen atom.
  • the number of rings constituting the condensed ring structure is not particularly limited, it is preferably 2 or more and 10 or less, for example.
  • the number of rings may be 3 or more, or 8 or less.
  • the aromatic ring may be an aromatic hydrocarbon ring or a heteroaromatic ring (sometimes called heteroaromatic ring).
  • the elements constituting the ring are carbon atoms and heteroatoms, and the ring contains at least one heteroatom and the rest are carbon atoms.
  • the number of heteroatoms may be two or more, or three or more. Although the upper limit of the number of heteroatoms depends on the number of atoms constituting the condensed ring structure, it is preferably 10 or less, more preferably 8 or less, still more preferably 6 or less.
  • a substituent may be attached to the ring.
  • substituents include halogen atoms, hydrocarbon groups, alkoxy groups, acyl groups, ester groups, halogenated alkyl groups, and cyano groups.
  • halogen atoms include fluorine, chlorine, bromine, and iodine, with fluorine being preferred.
  • the hydrocarbon group (hereinafter sometimes referred to as the hydrocarbon group R) is preferably an aliphatic hydrocarbon group, an aralkyl group, or the like, and the aliphatic hydrocarbon group is a linear aliphatic hydrocarbon Although it may be a group, it is more preferably a branched aliphatic hydrocarbon group.
  • the number of carbon atoms in the hydrocarbon group R is not particularly limited, and is preferably 1 to 30, for example.
  • the number of carbon atoms in the hydrocarbon group R is preferably 3 or more, still more preferably 6 or more, and more preferably 28 or less, still more preferably 26 or less.
  • the hydrocarbon group R is an aralkyl group
  • the lower limit of the number of carbon atoms is preferably 7 or more.
  • the hydrocarbon group R preferably has a large number of carbon atoms, and the larger the number of carbon atoms, the better the solubility in a solvent.
  • the number of carbon atoms in the hydrocarbon group R in the polymer type compound is preferably 8 or more, more preferably 10 or more, and still more preferably 12 or more.
  • the number of carbon atoms in the hydrocarbon group R is preferably as small as possible. improves.
  • the number of carbon atoms in the hydrocarbon group R in the case of a low-molecular-weight compound is preferably 24 or less, more preferably 20 or less, and even more preferably 14 or less.
  • the hydrocarbon group R includes, for example, an alkyl group having 1 carbon atoms such as a methyl group; an alkyl group having 2 carbon atoms such as an ethyl group; an alkyl group having 3 carbon atoms such as an n-propyl group and an isopropyl group; n-butyl Alkyl groups having 4 carbon atoms such as groups; alkyl groups having 5 carbon atoms such as n-pentyl groups; alkyl groups having 6 carbon atoms such as n-hexyl groups; alkyl groups having 7 carbon atoms such as n-heptyl groups; -octyl group, 1-n-butylbutyl group, 1-n-propylpentyl group, 1-ethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group, 4-ethylhexyl group, 1-methylheptyl group, 2-methylheptyl group
  • An alkoxy group is represented by -OR 5 , where R 5 is a hydrocarbon group.
  • R 5 is a hydrocarbon group.
  • Examples of the hydrocarbon group represented by R 5 include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 5 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • Acyl groups include, for example, acetyl group, propionyl group, isopropionyl group, butyryl group, isobutyryl group, pentanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group, decanoyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, oleoyl group, linoleoyl group, linolenoyl group and the like.
  • the ester group includes, for example, an acetoxy group, an acyloxy group, an alkoxycarbonyl group, a phosphate ester group, and the like.
  • a halogenated alkyl group means a substituent in which part of the hydrogen atoms of the hydrocarbon group R described above is substituted with a halogen atom.
  • heteroaromatic condensed ring units examples include units represented by the following formulas (Ac-1) to (Ac-17).
  • R 1 is a hydrogen atom, a hydrocarbon group, or —(CH 2 ) p —OR 3 and R 3 is a hydrocarbon group.
  • R 1 is a hydrocarbon group.
  • the multiple R2 's may have the same R2 's or different R2 's .
  • a 1 and A 2 are each independently —(CH 2 ) q —OR 4 , or a thiophene ring optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group or a thiazole ring optionally substituted with a hydrocarbon group or an organosilyl group, or substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, an organosilyl group, a halogen atom, or a halogenated alkyl group is a phenyl group, and R 4 is a hydrocarbon group.
  • D 1 is CH or a nitrogen atom.
  • the plurality of D1 's may include the same D1 's or different D1 's .
  • D2 is a carbon atom, a silicon atom, or a nitrogen atom.
  • n is 0 or 1; * represents a bond.
  • * may be a hydrogen atom.
  • each of T 1 , T 2 , R 1 , R 2 , A 1 , A 2 , D 1 and D 2 may be the same between units or different from each other. good.
  • the ring may be bonded with the substituents described above. ]
  • examples of the hydrocarbon group that the thiophene ring may have as a substitute include the same hydrocarbon groups R as described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • examples of the hydrocarbon group that the thiazole ring may have as a substitute include the same hydrocarbon groups R as described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • examples of the hydrocarbon group which the pyridine ring may have as a substitution include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • examples of the hydrocarbon group that the pyrazine ring may have as a substitute include the same hydrocarbon groups R as described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • T 1 and T 2 are each independently a single bond, a thiophene ring optionally substituted with a hydrocarbon group, or a hydrocarbon It is preferably a thiazole ring optionally substituted with a group or a pyridine ring optionally substituted with a hydrocarbon group.
  • T 1 and T 2 are each independently a single bond or substituted with a hydrocarbon group. It is preferably a thiophene ring, a thiazole ring optionally substituted with a hydrocarbon group, or a pyridine ring optionally substituted with a hydrocarbon group.
  • T 1 and T 2 are each independently preferably a single bond.
  • R 1 is a hydrocarbon group
  • examples of the hydrocarbon group include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 1 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group. In the case of a polymer type compound, a branched aliphatic hydrocarbon group is preferred. This can ensure the solubility in the solvent. In the case of low-molecular-weight compounds, linear aliphatic hydrocarbon groups are preferred. Since this is expected to improve the orientation, it is considered that the electron mobility is improved.
  • examples of the hydrocarbon group represented by R 3 include the same hydrocarbon groups R as described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 3 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • p is an integer from 1 to 5, for example.
  • R 1 is preferably a hydrocarbon group.
  • the plurality of R 1 's may have the same R 1 's or different R 1's .
  • Examples of the hydrocarbon group represented by R 2 include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 2 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • examples of the hydrocarbon group represented by R 4 include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 4 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • q is an integer from 1 to 5, for example.
  • R 51 is a hydrocarbon group.
  • R 51 is a hydrocarbon group.
  • examples of the hydrocarbon group represented by R 51 include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 51 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • a thioalkoxy group that the thiophene ring may have as a substitute is represented by —SR 6 , where R 6 is a hydrocarbon group.
  • R 6 is a hydrocarbon group.
  • Examples of the hydrocarbon group represented by R 6 include those similar to the hydrocarbon group R described above.
  • the hydrocarbon group represented by R 6 preferably has 1 to 30 carbon atoms, more preferably 3 or more, still more preferably 6 or more, and more preferably 28 or less, still more preferably 26 or less.
  • hydrocarbon group that the thiophene ring may have by being substituted examples include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • the organosilyl group that the thiophene ring may be substituted with is a monovalent group in which one or more hydrocarbon groups are substituted on the Si atom.
  • the hydrocarbon group substituting the Si atom is preferably an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • the number of carbon atoms in the aliphatic hydrocarbon group substituted for the Si atom is preferably 1-18, more preferably 1-8.
  • Examples of aliphatic hydrocarbon groups include methyl group, ethyl group, isopropyl group, tert-butyl group, isobutyl group, octyl group and octadecyl group.
  • the number of carbon atoms in the aromatic hydrocarbon group substituting the Si atom is preferably 6-8, more preferably 6-7, and particularly preferably 6.
  • Aromatic hydrocarbon groups include, for example, a phenyl group.
  • the hydrocarbon group substituting the Si atom is preferably an aliphatic hydrocarbon group, more preferably a branched aliphatic hydrocarbon group, and particularly preferably an isopropyl group.
  • the number of hydrocarbon groups substituting the Si atom is preferably 2 or more, more preferably 3.
  • the hydrocarbon groups substituting the Si atom may be different, but are preferably the same.
  • the number of hydrocarbon groups substituted on the Si atom is 3 include a trimethylsilyl group, an ethyldimethylsilyl group, an isopropyldimethylsilyl group, a triisopropylsilyl group, a tert-butyldimethylsilyl group, a triethylsilyl group, Alkylsilyl groups such as triisobutylsilyl group, tripropylsilyl group, tributylsilyl group, dimethylphenylsilyl group and methyldiphenylsilyl group; Arylsilyl groups such as triphenylsilyl group and tert-butylchlorodiphenylsilyl group; be done. Among them, an alkylsilyl group is preferred, and a trimethylsilyl group and a triisopropylsilyl group are particularly preferred.
  • examples of the hydrocarbon group that the thiazole ring may have as a substitute include the same hydrocarbon groups R as described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • organosilyl group that the thiazole ring may have as a substitution examples include those similar to the organosilyl groups described above.
  • a 1 and A 2 are phenyl groups
  • alkoxy groups that the phenyl groups may have by substitution include the same alkoxy groups as described above.
  • Examples of the thioalkoxy group that the phenyl group may have as a substituent include the same thioalkoxy groups as described above.
  • hydrocarbon group that the phenyl group may have by being substituted examples include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • halogen atoms examples include the same halogen atoms as those described above.
  • halogen atoms include fluorine, chlorine, bromine, and iodine, with fluorine being preferred.
  • Halogenated alkyl groups include, for example, a trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group and the like.
  • D2 is a carbon atom, a silicon atom, or a nitrogen atom
  • n is 1 when D2 is a carbon atom or a silicon atom
  • n is 0 when D2 is a nitrogen atom.
  • the above formula (Ac-1) is preferably any one of the following formulas (Ac-1-1) to (Ac-1-4).
  • the above formula (Ac-2) is preferably the following formula (Ac-2-1) or (Ac-2-2).
  • the above formula (Ac-3) is preferably the following formula (Ac-3-1) or (Ac-3-2).
  • the above formula (Ac-4) is preferably any one of the following formulas (Ac-4-1) to (Ac-4-6).
  • the above formula (Ac-5) is preferably the following formula (Ac-5-1) or (Ac-5-2).
  • the above formula (Ac-7) is preferably any one of the following formulas (Ac-7-1) to (Ac-7-7).
  • the above formula (Ac-8) is preferably any one of the following formulas (Ac-8-1) to (Ac-8-3).
  • the above formula (Ac-9) is preferably the following formula (Ac-9-1) or (Ac-9-2).
  • the above formula (Ac-14) is preferably the following formula (Ac-14-1) or (Ac-14-2).
  • the above formula (Ac-15) is preferably any one of the following formulas (Ac-15-1) to (Ac-15-3).
  • the heteroaromatic condensed ring unit is represented by the above formula (Ac-1), formula (Ac-7), formula (Ac-10), formula (Ac-13), formula (Ac-15), or formula (Ac- 17) is preferably a unit represented by any one of the above formulas (Ac-1-1) to (Ac-1-4), formulas (Ac-7-1) to (Ac-7- 7), formula (Ac-10-1), formula (Ac-13-1), formula (Ac-15-1), formula (Ac-15-2), or formula (Ac-17-1) is a unit represented by, more preferably the above formula (Ac-1-1), formula (Ac-7-2), formula (Ac-7-5), formula (Ac-10-1), formula (Ac-13-1), a unit represented by formula (Ac-15-1), formula (Ac-15-2), or formula (Ac-17-1).
  • the heteroaromatic condensed ring unit is preferably a unit represented by the above formula (Ac-15), more preferably the above formula (Ac-15-1) or (Ac -15-2), more preferably a unit represented by the above formula (Ac-15-1).
  • Aromatic condensed ring type unit is a structural unit having a condensed ring structure, at least one ring being an aromatic ring, and an element constituting the ring being a carbon atom. be.
  • the number of rings constituting the condensed ring structure is not particularly limited, it is preferably 2 or more and 10 or less, for example.
  • the number of rings may be 3 or more, or 8 or less.
  • the elements that constitute the ring are carbon atoms and do not contain heteroatoms.
  • a heteroatom is an atom other than a carbon atom.
  • the ring-constituting elements refer to all the elements constituting each ring structure contained in the condensed ring structure, and when at least one of the rings in the condensed ring structure is an aromatic ring, the aromatic ring is It substantially means an aromatic hydrocarbon ring.
  • a substituent may be attached to the ring.
  • substituents include halogen atoms, hydrocarbon groups, acyl groups, ester groups, halogenated alkyl groups, and cyano groups.
  • halogen atoms include fluorine, chlorine, bromine, and iodine, with fluorine being preferred.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group, and may be a linear aliphatic hydrocarbon group, but is more preferably a branched aliphatic hydrocarbon group.
  • hydrocarbon group examples include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited.
  • Acyl groups include, for example, acetyl group, propionyl group, isopropionyl group, butyryl group, isobutyryl group, pentanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group, decanoyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, oleoyl group, linoleoyl group, linolenoyl group and the like.
  • the ester group includes, for example, an acetoxy group, an acyloxy group, an alkoxycarbonyl group, a phosphate ester group, and the like.
  • a halogenated alkyl group means a substituent in which part of the hydrogen atoms of the hydrocarbon group R described above is substituted with a halogen atom.
  • aromatic condensed-ring units examples include units represented by the following formula (Ac-21).
  • R 2 is a hydrocarbon group, and R 2 may be the same or different.
  • * represents a bond. When the unit represented by formula (Ac-21) is the terminal of the compound, * may be a hydrogen atom. When a compound has multiple acceptor units, each of T 1 , T 2 and R 2 may be the same or different between units. The ring may be bonded with the substituents described above. ]
  • T 1 and T 2 may be different from each other, but are preferably the same.
  • Examples of the hydrocarbon group represented by R 2 include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • a monocyclic unit is a structural unit having an aromatic ring and no condensed ring structure.
  • the aromatic ring may be an aromatic hydrocarbon ring, a heteroaromatic ring (sometimes referred to as a heteroaromatic ring), or multiple aromatic rings containing carbon atoms or heteroatoms may be connected via
  • a substituent may be attached to the ring.
  • substituents include halogen atoms, hydrocarbon groups, acyl groups, ester groups, halogenated alkyl groups, and cyano groups.
  • halogen atoms include fluorine, chlorine, bromine, and iodine, with fluorine being preferred.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group, and may be a linear aliphatic hydrocarbon group, but is more preferably a branched aliphatic hydrocarbon group.
  • hydrocarbon group examples include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited.
  • Acyl groups include, for example, acetyl group, propionyl group, isopropionyl group, butyryl group, isobutyryl group, pentanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group, decanoyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, oleoyl group, linoleoyl group, linolenoyl group and the like.
  • the ester group includes, for example, an acetoxy group, an acyloxy group, an alkoxycarbonyl group, a phosphate ester group, and the like.
  • a halogenated alkyl group means a substituent in which part of the hydrogen atoms of the hydrocarbon group R described above is substituted with a halogen atom.
  • Examples of monocyclic units include units represented by the following formulas (Ac-31) to (Ac-33).
  • * represents a bond.
  • the unit represented by formulas (Ac-31) to (Ac-33) is the terminal of the compound, * may be a hydrogen atom.
  • each of T 1 and T 2 may be the same between units or different from each other.
  • the ring may be bonded with the substituents described above.
  • the above formula (Ac-31) is preferably any one of the following formulas (Ac-31-1) to (Ac-31-3).
  • the above formula (Ac-32) is preferably the following formula (Ac-32-1).
  • the above formula (Ac-33) is preferably the following formula (Ac-33-1) or (Ac-33-2).
  • the compound of the present invention may be, for example, a polymer type compound having a repeating unit of a donor unit and an acceptor unit.
  • the donor unit and the acceptor unit may be arranged randomly, but are preferably arranged alternately.
  • the plurality of donor units constituting the polymer compound of the present invention include at least one unit represented by the above formula (Do-A) and further a unit represented by the following formula (Do-K). may contain.
  • Do-K a unit represented by the following formula
  • * represents a bond.
  • a donor unit including a unit represented by the following formula (Do-K) is the terminal of the compound, * may be a hydrogen atom.
  • the unit represented by the above formula (Do-K) is also excellent in electron donating properties. Further, by including the unit represented by the above formula (Do-K), it can be expected that the orientation is improved by the interaction between the molecules and the stability of the device is improved by deepening the LUMO. Therefore, by further including a unit represented by the above formula (Do-K) in the donor unit, performance and solubility can be appropriately adjusted.
  • the plurality of donor units constituting the polymer compound of the present invention are represented by the unit represented by the above formula (Do-A) and the above formula (Do-K) when the total donor unit is 100 mol%.
  • the total amount of the units is preferably 50 mol% or more, more preferably 70 mol% or more, and even more preferably 90 mol% or more.
  • the whole (100 mol %) of the donor units may be units represented by the above formula (Do-A) and units represented by the above formula (Do-K).
  • the above mixing ratio of the unit represented by the formula (Do-A) and the unit represented by the formula (Do-K) [the unit represented by the formula (Do-A)/the unit represented by the formula (Do-K) unit] is not particularly limited, but is preferably 3/7 to 7/3 in terms of molar ratio. More preferably, the mixing ratio is 4/6 to 6/4 in terms of molar ratio.
  • the compound of the present invention may be, for example, a low-molecular-weight compound having a total of two or three donor units and acceptor units.
  • a low-molecular-weight compound When it is a low-molecular-weight compound, it is preferably a trimer-type compound in which two acceptor units are linked to a donor unit.
  • the molecular weight of the compound of the present invention depends on the molecular weights of the donor unit and the acceptor unit that constitute the compound. It may be larger than the molecular weight of the compound.
  • the weight-average molecular weight (Mw) of the polymer compound of the present invention is, for example, preferably 1500 or more, more preferably 3000 or more, still more preferably 7000 or more.
  • the upper limit of the weight-average molecular weight (Mw) of the polymer type compound is not particularly limited, it may be, for example, 300,000 or less, and may be 200,000 or less.
  • the number average molecular weight (Mn) of the polymer compound of the present invention is, for example, preferably 1,000 or more, more preferably 2,000 or more, and even more preferably 4,000 or more.
  • the upper limit of the number average molecular weight (Mn) of the polymer type compound is not particularly limited, it may be, for example, 300,000 or less, and may be 200,000 or less.
  • the molecular weight of the low-molecular-weight compound of the present invention is preferably, for example, 2500 or less.
  • the molecular weight is more preferably 2300 or less, still more preferably 1300 or less.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the compound of the present invention can be calculated using gel permeation chromatography based on a calibration curve prepared using polystyrene as a standard sample.
  • the ionization energy of the compound of the present invention is preferably ⁇ 4 eV or less, more preferably ⁇ 4.5 eV or less, even more preferably ⁇ 5 eV or less, and particularly preferably ⁇ 5.1 eV or less.
  • the lower limit of the ionization energy is not particularly limited, but is preferably ⁇ 7 eV or higher, more preferably ⁇ 6.5 eV or higher, and still more preferably ⁇ 6.2 eV or higher.
  • the present invention also includes organic semiconductor materials containing the above compounds.
  • the donor unit containing the unit represented by the above formula (Do-A) has excellent electron-donating properties, and thus has one or more of each of the donor unit and the acceptor unit, A compound in which a unit and an acceptor unit are linked to each other is useful as an organic semiconductor material.
  • the compound of the present invention contains the unit represented by the above formula (Do-A) spiro-formed with an acetal structure, it has good solubility in a solvent. Therefore, the organic semiconductor material containing the compound of the present invention has good solubility in a solvent, good film quality when applied to a substrate, and good electron mobility.
  • the solvent examples include halogen-based organic solvents and non-halogen-based organic solvents.
  • the compounds of the present invention have good solubility in solvents, particularly in halogenated organic solvents and/or non-halogenated organic solvents.
  • Halogenated organic solvents include, for example, chloroform, tetrachloroethane, and chlorobenzene.
  • non-halogen organic solvents include toluene, 1-methylnaphthalene, 2-methylnaphthalene and the like.
  • the compound of the present invention preferably dissolves in at least a halogen-based organic solvent.
  • the organic semiconductor material of the present invention can be preferably used as an n-type organic semiconductor material.
  • the present invention also includes an organic electronic device containing the organic semiconductor material. That is, the organic semiconductor material can be suitably used as a material for organic electronic devices, for example, as a material for organic electronic devices such as organic electroluminescence elements, organic thin-film transistor elements, organic photoelectric conversion elements, and organic thin-film solar cell modules. can be used.
  • the organic semiconductor material can be suitably used as a material for organic electronic devices, for example, as a material for organic electronic devices such as organic electroluminescence elements, organic thin-film transistor elements, organic photoelectric conversion elements, and organic thin-film solar cell modules. can be used.
  • the compound of the present invention includes, for example, a compound in which tin having an organic substituent is bonded to the bond of the donor unit (hereinafter sometimes referred to as a donor raw material), and a compound in which a halogen atom is bonded to the bond of the acceptor unit. It can be produced by subjecting a compound (hereinafter sometimes referred to as an acceptor raw material) to a coupling reaction (hereinafter sometimes referred to as a coupling step).
  • a compound represented by the following formula (do-A) corresponding to the (Do-A) unit can be used as the donor raw material.
  • R a is the same as above.
  • the compound represented by the formula (do-A) when the R a is an ethylene group having 2 carbon atoms, the compound represented by the formula (do-A) is represented by the following formula (do-a) be.
  • R 11 and R 12 represent organic substituents and are each independently hydrocarbon groups. Among the plurality of R 11 's, there may be the same R 11's or different R 11's , and among the plurality of R 12 's, there may be the same R 12 's or different from each other R 12 may be present.
  • Examples of the hydrocarbon group represented by R 11 and R 12 include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 11 and R 12 is preferably 1 to 10, more preferably 2 or more, still more preferably 3 or more, more preferably 5 or less, still more preferably 4 or less. .
  • R 11 and R 12 may be different from each other, but are preferably the same.
  • the compound represented by formula (do-A) can be produced based on the method described in JP-A-2009-215278.
  • the unit represented by formula (Do-K) can be synthesized by coupling the compound represented by formula (do-A) and then changing the acetal structure to a ketone structure.
  • halogen atom that binds to the acceptor raw material examples include fluorine, chlorine, bromine, and iodine, with bromine being preferred.
  • Acceptor materials include, for example, the above-mentioned (1) compound in which a halogen atom is bonded to the bond of the heteroaromatic condensed ring type unit, (2) compound in which a halogen atom is bonded to the bond of the aromatic condensed ring type unit. and (3) compounds in which a halogen atom is bonded to the bond of the monocyclic unit.
  • Compounds in which a halogen atom is bound to the bond of the heteroaromatic condensed ring unit include, for example, compounds represented by the following formulas (ac-1) to (ac-17).
  • the heteroaromatic condensed ring type unit has two bonds, and a halogen atom Y is bonded to each bond.
  • the compounds are shown, when a compound represented by the following formulas (ac-1) to (ac-17) is attached to the donor unit as a terminal, a compound with one bond is used. good.
  • T 1 , T 2 , R 1 , R 2 , A 1 , A 2 , D 1 , D 2 and n are ) to Formula (Ac-17).
  • Y represents a halogen atom.
  • halogen atom Y examples include fluorine, chlorine, bromine, and iodine, with bromine being preferred.
  • Compounds in which a halogen atom is bonded to the bond of the aromatic condensed ring unit include, for example, compounds represented by the following formula (ac-21).
  • the following formula (ac-21) shows a compound in which the aromatic condensed ring type unit has two bonds and a halogen atom is bonded to each bond, but the donor unit
  • a compound represented by the following (ac-21) is bound as a terminal, a compound with one bond may be used.
  • T 1 , T 2 and R 2 are the same as in the formula (Ac-21).
  • Y represents a halogen atom.
  • T 1 , T 2 , R 2 and Y may be the same or different among the acceptor raw materials.
  • the ring may be bonded with the substituents described above.
  • halogen atom Y examples include fluorine, chlorine, bromine, and iodine, with bromine being preferred.
  • Compounds in which a halogen atom is bonded to the bond of the monocyclic unit include, for example, compounds represented by the following formulas (ac-31) to (ac-33).
  • the following formulas (ac-31) to (ac-33) show compounds in which the monocyclic unit has two bonds and a halogen atom is bonded to each bond.
  • a compound represented by the following formulas (ac-31) to (ac-33) is attached to the donor unit as a terminal, a compound having one bond may be used.
  • T 1 and T 2 are the same as described for the formulas (Ac-31) to (Ac-33).
  • Y represents a halogen atom.
  • T 1 , T 2 and Y may be the same or different among the acceptor raw materials. may be The ring may be bonded with the substituents described above.
  • halogen atom Y examples include fluorine, chlorine, bromine, and iodine, with bromine being preferred.
  • the organotin compound represented by the above formula (do-A) and the halide of the acceptor unit are preferably subjected to a coupling reaction in the presence of a metal catalyst.
  • metal catalysts used in the coupling reaction include transition metal catalysts such as palladium-based catalysts, nickel-based catalysts, iron-based catalysts, copper-based catalysts, rhodium-based catalysts, and ruthenium-based catalysts. Among these, palladium-based catalysts are preferred.
  • the valence of palladium contained in the palladium-based catalyst is not particularly limited, and may be zero or divalent.
  • palladium-based catalysts examples include palladium (II) chloride, palladium (II) bromide, palladium (II) iodide, palladium (II) oxide, palladium (II) sulfide, palladium (II) telluride, and palladium hydroxide.
  • Copper-based catalysts include, for example, copper, copper (I) fluoride, copper (I) chloride, copper (I) bromide, copper (I) iodide, copper (II) fluoride, copper (II) chloride, Copper halide compounds such as copper (II) bromide and copper (II) iodide; copper (I) oxide, copper (I) sulfide, copper (II) oxide, copper (II) sulfide, copper (I) acetate, Copper (II) acetate, copper (II) sulfate and the like can be mentioned.
  • the metal catalyst may be used singly or in combination of two or more.
  • the molar ratio of the organotin compound represented by the formula (do-A) to the metal catalyst (organotin compound represented by the formula (do-A):metal catalyst) is, for example, 1: about 0.0001 to 1:0.5, preferably 1:0.001 to 1:0.4, more preferably 1:0.005 to 1:0.3, 1:0.01 to 1: 0.2 is more preferred.
  • a ligand may be coordinated to the metal catalyst.
  • ligands include trimethylphosphine, triethylphosphine, tri(n-butyl)phosphine, tri(isopropyl)phosphine, tri(tert-butyl)phosphine, bis(tert-butyl)methylphosphine, tricyclohexylphosphine, diphenyl (methyl)phosphine, triphenylphosphine, tris(o-tolyl)phosphine, tris(m-tolyl)phosphine, tris(p-tolyl)phosphine, tris(2-furyl)phosphine, tris(2-methoxyphenyl)phosphine, tris(3-methoxyphenyl)phosphine, tris(4-methoxyphenyl)phosphine, tri-tert-butylphosphonium tetrafluoroborate
  • trimethylphosphine triethylphosphine, tri(n-butyl)phosphine, tri(isopropyl)phosphine, tri(tert-butyl)phosphine, bis(tert-butyl)methylphosphine, tricyclohexylphosphine, diphenyl(methyl) Phosphine, triphenylphosphine, tris(o-tolyl)phosphine, tris(m-tolyl)phosphine, tris(p-tolyl)phosphine, tris(2-furyl)phosphine, tris(2-methoxyphenyl)phosphine, tris(3 -methoxyphenyl)phosphine and tris(4-methoxyphenyl)phosphine, more preferably tris(2-methoxyphenyl)phosphine.
  • the ligands may be used singly or in combination of two or more.
  • the molar ratio of the metal catalyst and the ligand is, for example, about 1:0.5 to 1:10, such as 1:1. ⁇ 1:8 is preferred, 1:1 to 1:7 is more preferred, and 1:1 to 1:5 is even more preferred.
  • a solvent in the coupling step, it is preferable to use a solvent, and the solvent is not particularly limited as long as it does not affect the reaction.
  • examples include ether solvents, aromatic solvents, ester solvents, hydrocarbon solvents, Halogen-based solvents, ketone-based solvents, amide-based solvents, nitrile-based solvents, sulfoxide-based solvents, sulfone-based solvents, and the like can be used.
  • Ether-based solvents include, for example, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, methyltetrahydrofuran, dimethoxyethane, cyclopentylmethyl ether, tert-butylmethyl ether, and dioxane.
  • aromatic solvents include benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, and tetralin.
  • ester solvents include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and butyl acetate.
  • hydrocarbon solvents examples include pentane, hexane, heptane, octane, and decalin.
  • Halogen-based solvents include, for example, dichloromethane, chloroform, dichloroethane, and dichloropropane.
  • Ketone solvents include, for example, acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • amide solvents include N,N-dimethylformamide, N,N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro- (1H)-pyrimidine and the like.
  • nitrile-based solvents include acetonitrile and the like.
  • sulfoxide solvents include dimethylsulfoxide and the like.
  • sulfone-based solvents include sulfolane and the like. Among these, aromatic solvents are preferable, and chlorobenzene is more preferable.
  • the solvent may be used singly or in combination of two or more.
  • the amount of the solvent used in the coupling step is, for example, about 1 mL or more and 150 mL or less, and is preferably about 1 g in total of the organotin compound represented by the above formula (do-A) and the halide of the acceptor unit. is 5 mL or more, more preferably 8 mL or more, preferably 100 mL or less, more preferably 80 mL or less.
  • the reaction temperature in the coupling step is not particularly limited, but from the viewpoint of increasing the reaction yield, it is preferably 0°C or higher and 200°C or lower, more preferably 30°C or higher, still more preferably 40°C or higher, and more preferably 180°C. 150° C. or less, more preferably 150° C. or less.
  • the coupling reaction solid-liquid separation is performed according to a conventional method, and the recovered solid is washed to obtain one donor unit containing the unit represented by the above formula (Do-A) and one acceptor unit.
  • a compound having the above and in which the donor unit and the acceptor unit are linked to each other can be produced.
  • the compound is a high-molecular-weight compound
  • the high-molecular-weight compound can be produced, for example, by solid-liquid separation, Soxhlet washing, and extraction of the collected solid.
  • the compound is a low-molecular-weight compound
  • the low-molecular-weight compound can be produced by, for example, removing the catalyst by Celite filtration and then dispersing and washing the solid obtained by concentration.
  • a polymer compound further comprising a unit represented by the above formula (Do-K) as a plurality of donor units constituting the polymer compound is a donor comprising a unit represented by the above formula (Do-A) It can be produced by heating and stirring a polymer type compound having a repeating unit of a functional unit and an acceptor unit in the presence of water under acidic conditions to change the acetal structure to a ketone structure.
  • NMR spectrum measurement NMR spectra were measured using "400-MR” manufactured by Varian and "AVANCE NEO 600" manufactured by Bruker as NMR spectrometers.
  • UV-visible absorption spectrum measurement of polymer type compound The UV-visible absorption spectrum was measured in the state of a solution in which the polymer type compound was dissolved in a solvent. Specifically, the polymer type compound was dissolved in chloroform to a concentration of 0.03 g/L, and an ultraviolet/visible spectrometer (manufactured by Shimadzu Corporation, "UV-3600i Plus”) and an optical path length of 1 cm were used.
  • UV-visible absorption spectra in a solution state were measured using a cell of (Ultraviolet-visible absorption spectrum measurement of low-molecular-weight compounds)
  • the UV-visible absorption spectrum was measured in the state of a solution in which the low-molecular-weight compound was dissolved in a solvent.
  • a low-molecular-weight compound was dissolved in chloroform to a concentration of 0.03 g/L, and an ultraviolet/visible spectrometer (manufactured by Shimadzu Corporation, "UV-3600i Plus") and an optical path length of 1 cm were used.
  • UV-visible absorption spectra in a solution state were measured using a cell of The measurement results are indicated by solid lines.
  • Compound H was prepared based on Example 2 of JP-A-2009-215278.
  • Compound H is 2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d′]bisthiazole-7,2′-[1,3]dioxolane]; It is sometimes written as Ac-CBTZ-SB.
  • the reaction solution was added to methanol (45 mL), the precipitated solid was collected by filtration, and the resulting solid was Soxhlet-washed (methanol, acetone, hexane).
  • Soxhlet extraction chloroform
  • 110.3 mg (yield 42%) of dark blue solid was obtained.
  • the obtained dark blue solid was P-Ac-CBTZ-HD-DPP (hereinafter sometimes referred to as polymer type compound 1).
  • the ultraviolet-visible absorption spectrum measurement of the obtained polymer type compound 1 was performed in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 1 shows the measurement results of the UV-visible absorption spectrum.
  • the horizontal axis indicates the measurement wavelength
  • the vertical axis indicates the absorbance (hereinafter the same applies to the results of the UV-visible absorption spectrum measurement).
  • the reaction solution was added to methanol (30 mL), the precipitated solid was collected by filtration, and the resulting solid was Soxhlet-washed (methanol, acetone, hexane).
  • Soxhlet extraction chloroform
  • 36.7 mg (yield 37%) of dark blue solid was obtained.
  • the dark blue solid obtained was P-Ac-CBTZ-DMO-DPP (hereinafter sometimes referred to as polymer type compound 2).
  • the ultraviolet-visible absorption spectrum measurement of the obtained polymer type compound 2 was performed in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 2 shows the measurement results of the UV-visible absorption spectrum.
  • the reaction solution was added to methanol (30 mL), the precipitated solid was collected by filtration, and the resulting solid was Soxhlet-washed (methanol, acetone, hexane).
  • Soxhlet extraction chloroform
  • 107.2 mg yield 86%) of dark blue solid was obtained.
  • the dark blue solid obtained was P-Ac-CBTZ-ODD-DPPDPy (hereinafter sometimes referred to as polymer type compound 3).
  • the ultraviolet-visible absorption spectrum measurement of the obtained polymer type compound 3 was performed in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 3 shows the measurement results of the UV-visible absorption spectrum.
  • the reaction solution was added to methanol (30 mL), the precipitated solid was collected by filtration, and the resulting solid was Soxhlet-washed (methanol, acetone, hexane).
  • Soxhlet extraction chloroform
  • 8.8 mg (yield 8%) of dark blue solid was obtained.
  • the obtained dark blue solid was P-Ac-CBTZ-ODD-NDI (hereinafter sometimes referred to as polymer type compound 6).
  • the ultraviolet-visible absorption spectrum measurement of the obtained polymer type compound 6 was performed in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 6 shows the measurement results of the UV-visible absorption spectrum.
  • the reaction solution was added to methanol (30 mL), the precipitated solid was collected by filtration, and the resulting solid was Soxhlet-washed (methanol, acetone, hexane).
  • Soxhlet extraction chloroform
  • 23.4 mg (yield 34%) of dark blue solid was obtained.
  • the obtained dark blue solid was P-Ac-CBTZ-EH-IND (hereinafter sometimes referred to as polymer type compound 7).
  • the ultraviolet-visible absorption spectrum measurement of the obtained polymer type compound 7 was performed in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 7 shows the measurement results of the ultraviolet-visible absorption spectrum.
  • the obtained dark blue solid was P-Ac-CBTZ-ODD-NDI (hereinafter sometimes referred to as polymer type compound 8).
  • the ultraviolet-visible absorption spectrum measurement of the obtained polymer type compound 8 was performed in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 8 shows the measurement results of the ultraviolet-visible absorption spectrum.
  • the reaction solution was added to methanol (30 mL), the precipitated solid was collected by filtration, and the resulting solid was Soxhlet-washed (methanol, acetone, hexane).
  • Soxhlet extraction chloroform
  • 42.4 mg (yield 36%) of dark blue solid was obtained.
  • the dark blue solid obtained was P-Ac-CBTZ-TD-NDI (hereinafter sometimes referred to as polymer compound 9).
  • the ultraviolet-visible absorption spectrum measurement of the obtained polymer type compound 9 was performed in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 9 shows the measurement results of the ultraviolet-visible absorption spectrum.
  • Biotage's "Initiator + Microwave System 356700” was used as a microwave reactor, and 2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4 ,3-d′]bisthiazole-7,2′-[1,3]dioxolane] (Ac-CBTZ-SB, 100 mg, 0.122 mmol), 1,3-Dibromo-5-(2-decyltetradecyl)-4H- thieno[3,4-c]pyrrole-4,6(5H)-dione (TD-IMTH-DB, 79.0 mg, 0.122 mmol), tris(dibenzylideneacetone) dipalladium(0) chloroform adduct (5 mg , 4.8 ⁇ mol), tris(2-methoxyphenyl)phosphine (7.5 mg, 21 ⁇ mol) and chlorobenzene (4 mL) were added and the
  • the reaction solution was added to methanol (30 mL), the precipitated solid was collected by filtration, and the resulting solid was Soxhlet-washed (methanol, acetone, hexane).
  • Soxhlet extraction chloroform
  • 63.7 mg (yield 89%) of dark blue solid was obtained.
  • the dark blue solid obtained was P-Ac-CBTZ-TD-IMTH (hereinafter sometimes referred to as polymer type compound 11).
  • the obtained polymer type compound 11 was subjected to ultraviolet-visible absorption spectrum measurement in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 11 shows the measurement results of the ultraviolet-visible absorption spectrum.
  • the reaction solution was added to methanol (30 mL), the precipitated solid was collected by filtration, and the resulting solid was Soxhlet-washed (methanol, acetone, hexane).
  • Soxhlet extraction chloroform
  • 125 mg (yield 91%) of a dark blue solid was obtained.
  • the obtained dark blue solid was P-Ac-CBTZ-TD-NDI (hereinafter sometimes referred to as polymer type compound 12).
  • the obtained polymer type compound 12 was subjected to ultraviolet-visible absorption spectrum measurement in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 12 shows the measurement results of the ultraviolet-visible absorption spectrum.
  • the reaction solution was added to methanol (90 mL), the precipitated solid was collected by filtration, and the resulting solid was Soxhlet-washed (methanol, acetone, hexane, chloroform).
  • the solid inside the Soxhlet cylindrical filter paper was taken out, and dissolved again in chloroform by ultrasonic waves and stirring to obtain 285.3 mg of dark blue solid (yield: 70%).
  • the dark blue solid obtained was P-Ac-CBTZ-TD-NDI (hereinafter sometimes referred to as polymer compound 13).
  • the obtained polymer type compound 13 was subjected to ultraviolet-visible absorption spectrum measurement in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 13 shows the measurement results of the ultraviolet-visible absorption spectrum.
  • Example 14 4-bromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone (TD-NDI-DB, 299.2 mg, 0.2727 mmol), 2-(tributylstannyl)-Thiazole(Bu3Sn-Thz, 299.1 mg, 0.799 mmol), tetrakistriphenylphosphine palladium(0) (34 mg, 30 ⁇ mol) and toluene (6.4 mL) was added and reacted at 110° C. for 16 hours.
  • Example 15 Compound 14 obtained in Example 14 (TD-NDI-2Thz, 18.1 mg, 0.02 mmol) and tetrahydrofuran (0.25 mL) were added to a 20 mL flask, cooled at ⁇ 78° C., and normal butyllithium ( 1.6 mol/L, 0.05 mL) was added and reacted for 1 hour. After that, 1,3-Dibromo-5,5-dimethylhydantoin (DBH, 15.51 mg, 0.06 mmol) was added and reacted at room temperature for 1 hour.
  • DSH 1,3-Dibromo-5,5-dimethylhydantoin
  • Example 16 2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d′]bisthiazole-7,2′-[1,3]dioxolane] (Ac-CBTZ -SB), compound 15 obtained in Example 15, a catalytic amount of tris(dibenzylideneacetone) dipalladium(0) chloroform adduct, and tris(2-methoxy) as a ligand to be coordinated to the catalyst. Phenyl)phosphine is reacted by heating in chlorobenzene. The molar ratio of Ac-CBTZ-SB and compound 15 is 1:1. P-Ac-CBTZ-TD-NDI-2Thz (hereinafter sometimes referred to as polymer compound 16) is isolated from the reaction solution.
  • the polymer compounds 1 to 13 of the present invention can absorb light in the long wavelength region.
  • the molecular weights of the obtained high-molecular-weight compounds 1 to 13 were measured.
  • Gel permeation chromatography (GPC) was used for molecular weight measurements.
  • the polymer type compound was dissolved in a mobile phase solvent (chloroform) to a concentration of 0.8 g/L, and the measurement was performed under the following conditions. By doing so, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer compound were calculated.
  • GPC conditions in the measurement are as follows.
  • chloroform, chlorobenzene, or toluene was used as the solvent.
  • chloroform chloroform was added so that the concentration of the polymer compound was 5% by mass, and the mixture was heated at 60° C. for 30 minutes.
  • chlorobenzene chlorobenzene was added at room temperature so that the polymeric compounds 1 to 12 were 1 mg/mL.
  • chlorobenzene was added so as to be 1 mg/mL, and the mixture was heated at 130° C. for 60 minutes.
  • toluene When toluene was used, toluene was added at room temperature to the polymer compounds 1 to 9, 11 and 12 so as to be 1 mg/mL. Toluene was added to polymer type compound 13 so as to be 1 mg/mL, and the mixture was heated at 100° C. for 60 minutes. Polymer type compound 10 was not evaluated using toluene.
  • the ionization energy, bandgap, electron mobility ⁇ e, threshold voltage, and on/off ratio were measured. Also, the value of LUMO was obtained from the value of ionization energy and the value of bandgap.
  • the polymer compound was dissolved in chlorobenzene to a concentration of 8 mg/mL, and the resulting solution was drop-cast onto an ITO substrate to form a film.
  • the ionization energy (eV) of this film was measured at normal temperature and under reduced pressure (0.1 Pa or less) using an ionization energy measuring device (“BIP-KV202GD” manufactured by Spectroscopy Instruments Co., Ltd.).
  • the measured ionization energy values (eV) are shown in Table 1 below.
  • bandgap The bandgap of the polymer-type compound was calculated based on the rise of UV after performing UV (ultraviolet-visible absorption spectrum) measurement of a thin film containing the polymer-type compound. That is, the polymer compound was dissolved in chlorobenzene so that the concentration was 8 mg/mL, and the resulting solution was spun on a glass substrate (2.5 cm x 2.5 cm square, thickness 0.8 to 1.0 mm). A thin film was formed by coating. This thin film was subjected to UV measurement under normal temperature and normal pressure using an ultraviolet/visible spectrometer (manufactured by Shimadzu Corporation, "UV-3600i Plus"). The results of UV measurement in the thin film state are shown by dotted lines in FIGS. 1 to 5 and 7 to 13. FIG. For Example 6, UV measurement was not performed in the thin film state. Also, the bandgap (eV) was calculated based on the rise of UV. The calculated band gap values (eV) are shown in Table 1 below.
  • FIG. 14 is a schematic diagram prepared to explain the method for calculating the bandgap, in which an auxiliary line is drawn to the ultraviolet-visible absorption spectrum obtained by UV measurement of a thin film containing polymer compound 9. It is a schematic diagram. Regarding the ultraviolet-visible absorption spectrum measured in the region of 200 nm to 1000 nm, as shown in FIG. was obtained.
  • a tangent line is drawn as an auxiliary line to the curve of the region where the absorption increases from the high wavelength side to the low wavelength side in the curve of the peak showing the maximum absorption, and the intersection of this tangent line and the horizontal axis showing the absorbance of 0 was read, and this wavelength was taken as the rising wavelength ⁇ of UV.
  • the rise wavelength ⁇ is 841 nm.
  • Planck's constant h is 6.626 ⁇ 10 ⁇ 34
  • the speed of light c in vacuum is 2.998 ⁇ 10 8 . 47 eV.
  • E 1239.8/841 ⁇ 1.47 (eV)
  • Table 1 below shows the LUMO values (eV) calculated based on the ionization energies and band gaps shown in Table 1 below.
  • HMDS Hexamethyldisilazane
  • ODTS octadecyltrichlorosilane
  • An organic field effect transistor (OFET) device was fabricated by spin-coating a chloroform solution with a polymer compound concentration of 0.5% by mass (7.4 mg/mL) on the substrate surface after the treatment.
  • chlorobenzene was used in place of chloroform, and a chlorobenzene solution containing a high-molecular-weight compound at a concentration of 0.5% by mass was spin-coated.
  • the fabricated OFET device was annealed at 100° C.
  • Id-Vg characteristics were measured under a nitrogen atmosphere or under vacuum.
  • Id-Vg characteristics were measured under a nitrogen atmosphere or under vacuum.
  • Id-Vg characteristics were measured to obtain electron mobility ⁇ e (cm 2 /Vs), threshold voltage Vth (V), and on/off ratio (I on /I off ).
  • Table 1 below shows the results of Id-Vg characteristics measured after annealing at 150° C. for 1 hour.
  • "-" described in the columns of ionization energy, bandgap, and LUMO values shown in Table 1 below indicates unimplemented.
  • Polymeric compounds 1 to 13 of the present invention are compounds each having one or more donor units having a predetermined structure and one or more acceptor units, and the donor unit and the acceptor unit are linked to each other. In particular, it is a compound having a repeating unit of a donor unit and an acceptor unit.
  • Polymer type compounds 1 to 13 of the present invention had good solubility in solvents, particularly in halogenated organic solvents.
  • the polymer type compounds 1 to 13 of the present invention can be preferably used as an organic semiconductor material.
  • the polymer type compounds 1 to 13 of the present invention exhibited good electron mobility even after annealing at 150°C.
  • Example 16 Since the polymer compound 16 obtained in Example 16 contains a thiazole unit, the distortion between the donor unit and the acceptor unit is reduced, the structure is nearly planar, and the molecules are easily aligned. , it can be expected that the crystallinity will increase and the electron mobility will increase.
  • the dark blue solid obtained was Ac-CBTZ-2 (EH-NDI) (hereinafter sometimes referred to as low-molecular-weight compound 2).
  • the dark blue solid obtained was Ac-CBTZ-2 (Hex-NDI) (hereinafter sometimes referred to as low molecular weight compound 3).
  • Ultraviolet-visible absorption spectrum measurement of the obtained low-molecular-weight compound 3 was performed in a solution state, and the measurement results are shown by solid lines in FIG.
  • the dark blue solid obtained was Ac-CBTZ-2 (no-NDI) (hereinafter sometimes referred to as low-molecular-weight compound 4).
  • Ultraviolet-visible absorption spectrum measurement of the obtained low-molecular-weight compound 4 was performed in a solution state, and the measurement results are shown by solid lines in FIG.
  • the dark blue solid obtained was Ac-CBTZ-2 (DMO-NDI) (hereinafter sometimes referred to as low-molecular-weight compound 5).
  • Ultraviolet-visible absorption spectrum measurement of the obtained low-molecular-weight compound 5 was carried out in a solution state, and the measurement results are shown in FIG. 18 with a solid line.
  • the dark blue solid obtained was Ac-CBTZ-2 (DE-NDI) (hereinafter sometimes referred to as low molecular weight compound 6).
  • Ultraviolet-visible absorption spectrum measurement of the obtained low-molecular-weight compound 6 was carried out in a solution state, and the measurement results are shown by solid lines in FIG.
  • the dark blue solid obtained was Ac-CBTZ-2 (TD-NDI) (hereinafter sometimes referred to as low-molecular-weight compound 7).
  • Ultraviolet-visible absorption spectrum measurement of the obtained low-molecular-weight compound 7 was carried out in a solution state, and the measurement results are shown by a solid line in FIG.
  • the dark blue solid obtained was Ac-CBTZ-2 (PhEt-NDI) (hereinafter sometimes referred to as low molecular weight compound 8).
  • the low-molecular-weight compounds 1, 3 to 7 of the present invention can absorb light in the long-wavelength region both in the state of solution and in the state of thin film.
  • the ultraviolet-visible absorption spectrum of low-molecular-weight compound 2 could not be measured because the amount of the sample was small.
  • Ultraviolet-visible absorption spectrum could not be measured for low-molecular-weight compound 8 because it was hardly soluble in chloroform.
  • the ionization energy, bandgap, electron mobility ⁇ e, threshold voltage, and on/off ratio were measured.
  • the measurement conditions for the ionization energy, bandgap, electron mobility ⁇ e, threshold voltage, and on/off ratio are the same as in the measurement using the above-mentioned polymer compound.
  • the measurement results are shown in Table 2 below. 15 to 20 show the results of UV measurement in the thin film state by dotted lines.
  • OFET organic field effect transistor
  • chloroform, chlorobenzene, Or tetrachloroethane was used.
  • the solvents used are also shown in Table 2 below.
  • the value of LUMO was obtained from the ionization energy and bandgap.
  • trimer-type compounds were designed in which the substituents bonded to the nitrogen constituting the acceptor unit were methyl groups, and the ionization energy value (HOMO value) and LUMO predicted the value of The trimer type compound used for the calculation is shown in the following formula.
  • Gaussian 16 was used as calculation software for the DFT calculation.
  • the ionization energy values and LUMO values (eV) are shown in Table 2 below.
  • Table 2 below also shows bandgap (eV) values calculated from ionization energy values and LUMO values.
  • the electron mobility ⁇ e, the threshold voltage, and the on/off ratio were measured.
  • the conditions for measuring the electron mobility ⁇ e, threshold voltage, and on/off ratio are the same as in the case of using the above polymer type compound.
  • the measurement results are shown in Table 2 below.
  • the electron mobility ⁇ e, threshold voltage, and on/off ratio of low-molecular-weight compound 8 were not measured.
  • the low-molecular-weight compounds 1 to 8 of the present invention are compounds each having one or more donor units having a predetermined structure and one or more acceptor units, and the donor unit and the acceptor unit are linked to each other. In particular, it is a compound having a total of three donor units and three acceptor units (specifically, a trimeric compound in which two acceptor units are linked to a toner unit).
  • the low-molecular-weight compounds 1 to 8 of the present invention had good solubility in solvents.
  • the low-molecular-weight compounds 1 to 8 of the present invention can be preferably used as organic semiconductor materials.
  • the low-molecular-weight compounds 1 to 7 of the present invention exhibited good electron mobility even after annealing at 150.degree.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Ceramic Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

有機半導体材料として好ましく用いることができる化合物であって、溶媒への溶解性が良好な化合物を提供する。こうした化合物を含む有機半導体材料を提供する。こうした有機半導体材料を含む有機電子デバイスを提供する。 下記式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットと、それぞれ1つ以上有し、ドナー性ユニットとアクセプター性ユニットが互いに連結されている化合物。下記式(Do-A)中、Rは炭素数2~10のアルキレン基を表し、*は、結合手を表す。

Description

化合物、有機半導体材料、および有機電子デバイス
 本発明は、特定の単位を含むドナー性ユニットと、アクセプター性ユニットとを有する化合物、該化合物を含む有機半導体材料、および該有機半導体材料を含む有機電子デバイスに関する。
 有機半導体材料は、有機エレクトロニクス分野において重要な材料であり、単量体化合物や高分子化合物が有機半導体材料として用いられている。有機半導体材料は、電子供与性のp型有機半導体材料と電子受容性のn型有機半導体材料に分類でき、p型有機半導体材料およびn型有機半導体材料を適切に組合せることにより様々な有機電子デバイスを製造できる。有機電子デバイスとしては、例えば、電子と正孔が再結合して形成する励起子(エキシトン)の作用により発光する有機エレクトロルミネッセンス素子、電流量または電圧量を制御する有機薄膜トランジスタ素子、有機光電変換素子、光を電力に変換する有機薄膜太陽電池モジュールなどが挙げられる。
 有機半導体材料の一例として、n型有機半導体材料として用いられる重合体が特許文献1に提案されている。特許文献1に提案されている重合体は、下記一般式(II)で表される繰り返し単位の少なくとも1つと、下記一般式(III)で表される繰り返し単位の少なくとも1つとを有する含窒素縮合環重合体である。式(II)中、ZおよびZとしてS(硫黄原子)が例示されており、式(III)中、Arとして2価の芳香族炭化水素基または2価の複素環基が例示されている。
Figure JPOXMLDOC01-appb-C000003
特開2009-215278号公報
 有機電子デバイスは、例えば、有機半導体材料を真空蒸着法によって有機薄膜にしたり、有機半導体材料を溶媒等に溶解したものを所定の製膜法によって有機薄膜にしたりすることにより、製造される。有機半導体材料が溶媒(特に、有機溶媒)に可溶であれば、例えば、印刷プロセスでの製膜が可能となるため、有機薄膜の大面積化および製造コストの削減ができる。そのため有機半導体材料には、溶媒への溶解性が良好であることが望まれる。しかし、上記特許文献1の実施例では、有機半導体材料として含窒素縮合環化合物を用い、有機半導体素子を真空蒸着法により作製している。真空蒸着法が採用されているのは、含窒素縮合環化合物が溶媒へ溶解しにくいことに原因があると考えられ、特許文献1においては含窒素縮合環化合物の溶媒への溶解性について検討されていない。本発明者らが有機半導体材料の溶解性について検討したところ改善の余地があることが判明した。
 本発明の目的は、有機半導体材料として好ましく用いることができる化合物であって、溶媒への溶解性が良好な化合物を提供することにある。また、本発明の他の目的は、こうした化合物を含む有機半導体材料を提供することにある。また、本発明の他の目的は、こうした有機半導体材料を含む有機電子デバイスを提供することにある。
 本発明は、以下の発明を含む。
 [1] 下記式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを、それぞれ1つ以上有し、ドナー性ユニットとアクセプター性ユニットが互いに連結されている化合物。下記式(Do-A)中、Rは炭素数2~10のアルキレン基を表し、*は、結合手を表す。
Figure JPOXMLDOC01-appb-C000004
 [2] 前記アクセプター性ユニットが、(1)縮環構造を有し、かつ環の少なくとも1つが芳香族環であり、環を構成する元素が炭素原子とヘテロ原子である、ヘテロ芳香族縮環型ユニット、(2)縮環構造を有し、かつ環の少なくとも1つが芳香族環であり、環を構成する元素が炭素原子である、芳香族縮環型ユニット、及び(3)芳香族環を有し、縮環構造を有さない、単環型ユニット、からなる群より選ばれる少なくとも1種を含む[1]に記載の化合物。
 [3] 前記ドナー性ユニットと、前記アクセプター性ユニットとを繰り返し単位として有する[1]または[2]に記載の高分子型化合物。
 [4] 前記ドナー性ユニットと前記アクセプター性ユニットとが交互に配置されている[3]に記載の高分子型化合物。
 [5] 重量平均分子量(Mw)が1500以上である[3]または[4]に記載の高分子型化合物。
 [6] 前記高分子型化合物に含まれる複数のドナー性ユニットが、更に下記式(Do-K)で表される単位を含む[3]~[5]のいずれかに記載の高分子型化合物。下記式(Do-K)中、*は、結合手を表す。
Figure JPOXMLDOC01-appb-C000005
 [7] 前記ドナー性ユニットおよび前記アクセプター性ユニットを合計で2つまたは3つ有する[1]に記載の低分子型化合物。
 [8] 前記ドナー性ユニットに2つの前記アクセプター性ユニットが連結されている[1]に記載の三量体型化合物。
 [9] [1]~[8]のいずれかに記載の化合物を含む有機半導体材料。
 [10] [9]に記載の有機半導体材料を含む有機電子デバイス。
 本発明によれば、有機半導体材料として好ましく用いることができ、しかも溶媒への溶解性が良好な化合物を提供できる。また、本発明によれば、こうした化合物を含む有機半導体材料、およびこうした有機半導体材料を含む有機電子デバイスを提供できる。
図1は、高分子型化合物1の紫外可視吸収スペクトルを示す。 図2は、高分子型化合物2の紫外可視吸収スペクトルを示す。 図3は、高分子型化合物3の紫外可視吸収スペクトルを示す。 図4は、高分子型化合物4の紫外可視吸収スペクトルを示す。 図5は、高分子型化合物5の紫外可視吸収スペクトルを示す。 図6は、高分子型化合物6の紫外可視吸収スペクトルを示す。 図7は、高分子型化合物7の紫外可視吸収スペクトルを示す。 図8は、高分子型化合物8の紫外可視吸収スペクトルを示す。 図9は、高分子型化合物9の紫外可視吸収スペクトルを示す。 図10は、高分子型化合物10の紫外可視吸収スペクトルを示す。 図11は、高分子型化合物11の紫外可視吸収スペクトルを示す。 図12は、高分子型化合物12の紫外可視吸収スペクトルを示す。 図13は、高分子型化合物13の紫外可視吸収スペクトルを示す。 図14は、バンドギャップの算出方法を説明するための模式図であり、高分子型化合物9を含む薄膜のUV測定を行って得られた紫外可視吸収スペクトルに対して補助線を引いた模式図である。 図15は、低分子型化合物1の紫外可視吸収スペクトルを示す。 図16は、低分子型化合物3の紫外可視吸収スペクトルを示す。 図17は、低分子型化合物4の紫外可視吸収スペクトルを示す。 図18は、低分子型化合物5の紫外可視吸収スペクトルを示す。 図19は、低分子型化合物6の紫外可視吸収スペクトルを示す。 図20は、低分子型化合物7の紫外可視吸収スペクトルを示す。
 本発明の化合物は、下記式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを、それぞれ1つ以上有し、ドナー性ユニットとアクセプター性ユニットが互いに連結されているものである。下記式(Do-A)中、Rは炭素数2~10のアルキレン基を表し、*は、結合手を表す。下記式(Do-A)で表される単位を含むドナー性ユニットが化合物の末端の場合は、*は水素原子であってもよい。
Figure JPOXMLDOC01-appb-C000006
 化合物を構成するドナー性ユニットとは、電子供与性の構造単位を意味する。化合物を構成するアクセプター性ユニットとは、電子受容性の構造単位を意味する。
 式(Do-A)で表される単位は、電子供与性に優れている。式(Do-A)で表される単位は、また、アセタール構造を含むスピロ骨格を有しているため、溶媒への溶解性が良好である。そのため、式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを組み合わせた化合物を用いれば、当該化合物の溶媒への溶解性は良好となる。ゆえに、当該化合物を基板に塗布した膜の膜質が良好となり、当該膜の電子移動度が良好となる。また、式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを組み合わせた化合物を用いれば、イオン化エネルギーの値(HOMOの値)とLUMOの値のバンドギャップが小さくなり、電子が移動しやすくなる。さらに、分子間で静電相互作用が働くことで配向性も良好となり、電子移動度の向上が期待出来る。また、LUMOの値が、例えば、-3.5eV以下となり、大気安定性を有するものとなる。従って当該式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを、それぞれ1つ以上有し、ドナー性ユニットとアクセプター性ユニットが互いに連結されている化合物は、例えば、有機半導体材料として好適に用いることができる。
 本発明の化合物は、上記式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを、それぞれ1つ以上有し、ドナー性ユニットとアクセプター性ユニットが互いに連結されているものである。このような化合物のうち、ドナー性ユニットおよびアクセプター性ユニットを合計で2つまたは3つ有する化合物を、以下、低分子型化合物とよぶことがある。また、上記式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを繰り返し単位として有する化合物を、以下、高分子型化合物とよぶことがある。高分子型化合物は、換言すると、上記式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを、それぞれ2つ以上有し、ドナー性ユニットとアクセプター性ユニットが互いに連結されている化合物である。低分子型化合物のうち、ドナー性ユニットおよびアクセプター性ユニットを合計で2つ有する化合物(即ち、1つのドナー性ユニットと1つのアクセプター性ユニットが互いに連結されている化合物)を二量体型化合物とよぶ。低分子型化合物のうち、ドナー性ユニットおよびアクセプター性ユニットを合計で3つ有し、ドナー性ユニットとアクセプター性ユニットが互いに連結されている化合物を、以下、三量体型化合物、または、単に三量体とよぶことがある。三量体型化合物は、1つのアクセプター性ユニットに2つのドナー性ユニットが連結されている化合物であってもよいが、1つのドナー性ユニットに2つのアクセプター性ユニットが連結されている化合物であることが好ましい。低分子型化合物である場合、高分子型化合物よりも溶媒への溶解性が一層良好となる。その結果、低分子型化合物を用いることにより、例えば、スピンコートにより均質な薄膜を製造できるため、電子移動度が良好となる。
 式(Do-A)中、前記Rの炭素数は、2~8が好ましく、2~6がより好ましく、2~4がさらに好ましい。アルキレン基は、直鎖アルキレン基でもよく、分岐を有するアルキレン基でもよいが、直鎖アルキレン基が好ましい。Rとしては、例えば、エチレン基、n-プロピレン基、1-メチル-エタン-1,2-イル基、1,2-ジメチル-エタン-1,2-イル基、1-メチル-プロパン-1,3-イル基などが挙げられ、これらのなかでも、エチレン基、n-プロピレン基が好ましい。
 式(Do-A)で表される単位において、前記Rが炭素数2のエチレン基である場合は、式(Do-A)で表される単位は下記式(Do-a)で表される。
Figure JPOXMLDOC01-appb-C000007
 本発明の化合物を構成するドナー性ユニットは、上記式(Do-A)で表される単位を含んでいればよく、公知のドナー性ユニットや後述する式(Do-K)で表される単位などの他のドナー性ユニットを含んでいてもよい。ドナー性ユニット全体を100mol%としたとき、上記式(Do-A)で表される単位の割合は、例えば、40mol%以上であることが好ましく、より好ましくは50mol%以上であり、更に好ましくは80mol%以上である。ドナー性ユニットの全体(100mol%)が上記式(Do-A)で表される単位であってもよい。
 化合物を構成するドナー性ユニットと組み合わせるアクセプター性ユニットは、公知のアクセプター性ユニットを用いることができる。アクセプター性ユニットは、例えば、下記(1)~(3)からなる群より選ばれる少なくとも1種を含むことが好ましい。
(1)縮環構造を有し、かつ環の少なくとも1つが芳香族環であり、環を構成する元素が炭素原子とヘテロ原子である、ヘテロ芳香族縮環型ユニット。
(2)縮環構造を有し、かつ環の少なくとも1つが芳香族環であり、環を構成する元素が炭素原子である、芳香族縮環型ユニット。
(3)芳香族環を有し、縮環構造を有さない、単環型ユニット。
 以下、(1)~(3)のユニットについて説明する。
 (1)ヘテロ芳香族縮環型ユニット
 ヘテロ芳香族縮環型ユニットとは、縮環構造を有し、かつ環の少なくとも1つが芳香族環であり、環を構成する元素が炭素原子とヘテロ原子である構造単位である。ヘテロ原子とは、炭素原子以外の原子のことである。ヘテロ芳香族縮環型ユニットを換言すると、芳香族環を含有する縮環型ユニットであって、この縮環型ユニットの縮環を構成する環の少なくとも1つが炭素原子とヘテロ原子から構成される複素環であるユニットである。即ち、縮環構造を有している縮環型ユニットは、少なくとも1つの複素環を有している。ヘテロ原子は各々、例えば窒素原子、硫黄原子、または酸素原子である。
 縮環構造を構成する環の数は特に限定されないが、例えば、2以上、10以下が好ましい。環の数は、3以上であってもよく、8以下であってもよい。
 芳香族環は、芳香族炭化水素環であってもよいし、複素芳香族環(芳香族複素環と呼ばれることもある)であってもよい。
 環を構成する元素は、炭素原子およびヘテロ原子であり、環は、ヘテロ原子を少なくとも1個含み、残部は炭素原子である。ヘテロ原子の数は、2個以上であってもよいし、3個以上であってもよい。ヘテロ原子の数の上限は縮環構造を構成する原子の数によるが、例えば、10個以下が好ましく、より好ましくは8個以下、更に好ましくは6個以下である。
 環には、置換基が結合していてもよい。置換基としては、例えば、ハロゲン原子、炭化水素基、アルコキシ基、アシル基、エステル基、ハロゲン化アルキル基、シアノ基などが挙げられる。ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでもフッ素が好ましい。炭化水素基(以下、炭化水素基Rと呼ぶことがある。)は、脂肪族炭化水素基、アラルキル基などであることが好ましく、前記脂肪族炭化水素基は、直鎖状の脂肪族炭化水素基であってもよいが、分岐を有する脂肪族炭化水素基であることがより好ましい。
 炭化水素基Rの炭素数は特に限定されず、例えば、1~30が好ましい。炭化水素基Rの炭素数は、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。但し、炭化水素基Rがアラルキル基の場合、炭素数の下限は7以上が好ましい。本発明の化合物が高分子型化合物の場合、炭化水素基Rの炭素数は大きい方が好ましく、炭素数が大きくなるほど溶媒への溶解性が良好となる。高分子型化合物の場合における炭化水素基Rの炭素数は、8以上が好ましく、より好ましくは10以上、更に好ましくは12以上である。本発明の化合物が低分子型化合物の場合、炭化水素基Rの炭素数は小さい方が好ましく、炭素数が小さくなるほど配向性がよくなり、電子が分子間を移動しやすくなり、電子移動度が向上する。低分子型化合物の場合における炭化水素基Rの炭素数は、24以下が好ましく、より好ましくは20以下、更に好ましくは14以下である。
 炭化水素基Rとしては、例えば、メチル基等の炭素数1のアルキル基;エチル基等の炭素数2のアルキル基;n-プロピル基、イソプロピル基等の炭素数3のアルキル基;n-ブチル基等の炭素数4のアルキル基;n-ペンチル基等の炭素数5のアルキル基;n-ヘキシル基等の炭素数6のアルキル基;n-ヘプチル基等の炭素数7のアルキル基;n-オクチル基、1-n-ブチルブチル基、1-n-プロピルペンチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、1-メチルヘプチル基、2-メチルヘプチル基、6-メチルヘプチル基、2,4,4-トリメチルペンチル基、2,5-ジメチルヘキシル基等の炭素数8のアルキル基;n-ノニル基、1-n-プロピルヘキシル基、2-n-プロピルヘキシル基、1-エチルヘプチル基、2-エチルヘプチル基、1-メチルオクチル基、2-メチルオクチル基、6-メチルオクチル基、2,3,3,4-テトラメチルペンチル基、3,5,5-トリメチルヘキシル基等の炭素数9のアルキル基;n-デシル基、1-n-ペンチルペンチル基、1-n-ブチルヘキシル基、2-n-ブチルヘキシル基、1-n-プロピルヘプチル基、1-エチルオクチル基、2-エチルオクチル基、1-メチルノニル基、2-メチルノニル基、3,7-ジメチルオクチル基等の炭素数10のアルキル基;n-ウンデシル基、1-n-ブチルヘプチル基、2-n-ブチルヘプチル基、1-n-プロピルオクチル基、2-n-プロピルオクチル基、1-エチルノニル基、2-エチルノニル基等の炭素数11のアルキル基;n-ドデシル基、1-n-ペンチルヘプチル基、2-n-ペンチルヘプチル基、1-n-ブチルオクチル基、2-n-ブチルオクチル基、1-n-プロピルノニル基、2-n-プロピルノニル基等の炭素数12のアルキル基;n-トリデシル基、1-n-ペンチルオクチル基、2-n-ペンチルオクチル基、1-n-ブチルノニル基、2-n-ブチルノニル基、1-メチルドデシル基、2-メチルドデシル基等の炭素数13のアルキル基;n-テトラデシル基、1-n-ヘプチルヘプチル基、1-n-ヘキシルオクチル基、2-n-ヘキシルオクチル基、1-n-ペンチルノニル基、2-n-ペンチルノニル基等の炭素数14のアルキル基;n-ペンタデシル基、1-n-ヘプチルオクチル基、1-n-ヘキシルノニル基、2-n-ヘキシルノニル基等の炭素数15のアルキル基;n-ヘキサデシル基、2-n-ヘキシルデシル基、1-n-オクチルオクチル基、1-n-ヘプチルノニル基、2-n-ヘプチルノニル基等の炭素数16のアルキル基;n-ヘプタデシル基、1-n-オクチルノニル基等の炭素数17のアルキル基;n-オクタデシル基、1-n-ノニルノニル基等の炭素数18のアルキル基;n-ノナデシル基等の炭素数19のアルキル基;n-エイコシル基、2-n-オクチルドデシル基等の炭素数20のアルキル基;n-ヘンエイコシル基等の炭素数21のアルキル基;n-ドコシル基等の炭素数22のアルキル基;n-トリコシル基等の炭素数23のアルキル基;n-テトラコシル基、2-n-デシルテトラデシル基等の炭素数24のアルキル基;n-ペンタコシル等の炭素数25のアルキル基;n-ヘキサコシル等の炭素数26のアルキル基;n-ヘプタコシル等の炭素数27のアルキル基;n-オクタコシル等の炭素数28のアルキル基;n-ノナコシル等の炭素数29のアルキル基;n-トリアコンチル等の炭素数30のアルキル基;フェニルメチル基、フェニルエチル基などのアラルキル基;等が挙げられる。
 アルコキシ基は、-ORで表され、Rは炭化水素基である。Rで表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 アシル基としては、例えば、アセチル基、プロピオニル基、イソプロピオニル基、ブチリル基、イソブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オレオイル基、リノレオイル基、リノレノイル基等が挙げられる。
 エステル基としては、例えば、アセトキシ基、アシルオキシ基、アルコキシカルボニル基、リン酸エステル基等が挙げられる。
 ハロゲン化アルキル基は、上記で説明した炭化水素基Rの一部の水素がハロゲン原子に置換した置換基を意味する。
 ヘテロ芳香族縮環型ユニットとしては、例えば、下記式(Ac-1)~式(Ac-17)で表されるユニットを挙げることができる。
Figure JPOXMLDOC01-appb-C000008
 [式(Ac-1)~式(Ac-17)中、TおよびTは、それぞれ独立に、単結合であるか、-CH=CH-であるか、-C≡C-であるか、炭化水素基で置換されていてもよいチオフェン環であるか、炭化水素基で置換されていてもよいチアゾール環であるか、炭化水素基で置換されていてもよいピリジン環であるか、炭化水素基で置換されていてもよいピラジン環である。
 Rは、水素原子であるか、炭化水素基であるか、-(CH-ORであり、Rは、炭化水素基である。アクセプター性ユニットが複数のRを有するとき、当該複数のRのうち、互いに同一のRがあってもよく、互いに異なるRがあってもよい。
 Rは、炭化水素基である。アクセプター性ユニットが複数のRを有するとき、当該複数のRのうちに、互いに同一のRがあってもよく、互いに異なるRがあってもよい。
 AおよびAは、それぞれ独立に、-(CH-ORであるか、アルコキシ基、チオアルコキシ基、炭化水素基、またはオルガノシリル基で置換されていてもよいチオフェン環であるか、炭化水素基またはオルガノシリル基で置換されていてもよいチアゾール環であるか、アルコキシ基、チオアルコキシ基、炭化水素基、オルガノシリル基、ハロゲン原子、またはハロゲン化アルキル基で置換されていてもよいフェニル基であり、Rは、炭化水素基である。
 Dは、CHまたは窒素原子である。アクセプター性ユニットが複数のDを有するとき、当該複数のDのうちに、互いに同一のDがあってもよく、互いに異なるDがあってもよい。
 Dは、炭素原子、ケイ素原子、または窒素原子である。
 nは、0または1である。
 *は、結合手を表す。式(Ac-1)~式(Ac-17)で表されるユニットが化合物の末端の場合は、*は水素原子であってもよい。
 化合物が複数のアクセプター性ユニットを有するとき、T、T、R、R、A、A、D、およびDは各々、ユニット間で同一でもよく、互いに異なっていてもよい。
 環には、上述した置換基が結合していてもよい。]
 T、Tがチオフェン環である場合、チオフェン環が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 T、Tがチアゾール環である場合、チアゾール環が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 T、Tがピリジン環である場合、ピリジン環が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 T、Tがピラジン環である場合、ピラジン環が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 式(Ac-1)~式(Ac-17)中、TおよびTは、それぞれ独立に、単結合であるか、炭化水素基で置換されていてもよいチオフェン環であるか、炭化水素基で置換されていてもよいチアゾール環であるか、炭化水素基で置換されていてもよいピリジン環であることが好ましい。特に、高分子型化合物の場合は、式(Ac-1)~式(Ac-17)中、TおよびTは、それぞれ独立に、単結合であるか、炭化水素基で置換されていてもよいチオフェン環であるか、炭化水素基で置換されていてもよいチアゾール環であるか、炭化水素基で置換されていてもよいピリジン環であることが好ましく、低分子型化合物の場合は、式(Ac-1)~式(Ac-17)中、TおよびTは、それぞれ独立に、単結合であることが好ましい。
 Rが炭化水素基である場合、炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。炭化水素基は、脂肪族炭化水素基であることが好ましい。高分子型化合物の場合は、分岐を有する脂肪族炭化水素基が好ましい。これにより溶媒への溶解性を担保できる。低分子型化合物の場合は、直鎖状の脂肪族炭化水素基が好ましい。これにより配向性の向上が見込まれるため、電子移動度が向上すると考えられる。
 Rが-(CH-ORである場合、Rで表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。pは、例えば1~5の整数である。
 式(Ac-1)~式(Ac-17)中、Rは、炭化水素基であることが好ましい。アクセプター性ユニットが複数のRを有するとき、当該複数のRのうちに、互いに同一のRがあってもよく、互いに異なるRがあってもよい。
 Rで表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 A、Aが-(CH-ORである場合、Rで表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。qは、例えば1~5の整数である。
 A、Aがチオフェン環である場合、チオフェン環が置換されて有していてもよいアルコキシ基は、-OR51で表され、R51は炭化水素基である。R51で表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。R51で表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 チオフェン環が置換されて有していてもよいチオアルコキシ基は、-SRで表され、Rは炭化水素基である。Rで表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 チオフェン環が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 チオフェン環が置換されて有していてもよいオルガノシリル基としては、Si原子に1個以上の炭化水素基が置換した1価の基である。Si原子に置換する炭化水素基は、炭素数1~20の脂肪族炭化水素基、または、炭素数6~10の芳香族炭化水素基が好ましい。
 Si原子に置換する脂肪族炭化水素基の炭素数は、好ましくは1~18であり、より好ましくは1~8である。脂肪族炭化水素基としては、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、イソブチル基、オクチル基、オクタデシル基が挙げられる。
 Si原子に置換する芳香族炭化水素基の炭素数は、好ましくは6~8であり、より好ましくは6~7であり、特に好ましくは6である。芳香族炭化水素基としては、例えば、フェニル基が挙げられる。
 Si原子に置換する炭化水素基は、なかでも脂肪族炭化水素基が好ましく、分岐を有する脂肪族炭化水素基がより好ましく、イソプロピル基が特に好ましい。
 Si原子に置換する炭化水素基の数は、2個以上であることが好ましく、3個であることがさらに好ましい。Si原子に置換する炭化水素基の数が2個以上の場合、Si原子に置換する炭化水素基は、異なっていてもよいが、同一であることが好ましい。
 Si原子に置換する炭化水素基の数が3個の場合の具体例としては、トリメチルシリル基、エチルジメチルシリル基、イソプロピルジメチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、トリエチルシリル基、トリイソブチルシリル基、トリプロピルシリル基、トリブチルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基等のアルキルシリル基;トリフェニルシリル基、tert-ブチルクロロジフェニルシリル基等のアリールシリル基;等が挙げられる。中でも、アルキルシリル基が好ましく、トリメチルシリル基、トリイソプロピルシリル基が特に好ましい。
 A、Aがチアゾール環である場合、チアゾール環が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 チアゾール環が置換されて有していてもよいオルガノシリル基としては、上記で説明したオルガノシリル基と同様のものが挙げられる。
 A、Aがフェニル基である場合、フェニル基が置換されて有していてもよいアルコキシ基としては、上記で説明したアルコキシ基と同様のものが挙げられる。
 フェニル基が置換されて有していてもよいチオアルコキシ基としては、上記で説明したチオアルコキシ基と同様のものが挙げられる。
 フェニル基が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 フェニル基が置換されて有していてもよいオルガノシリル基としては、上記で説明したオルガノシリル基と同様のものが挙げられる。
 フェニル基が置換されて有していてもよいハロゲン原子としては、上記で説明したハロゲン原子と同様のものが挙げられる。
 フェニル基が置換されて有していてもよいハロゲン化アルキル基としては、炭化水素基の一部または全部の水素原子がハロゲン原子で置換されている基が挙げられ、なかでも全部の水素原子がハロゲン原子で置換されている基(パーフルオロアルキル基)が好ましい。ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでもフッ素が好ましい。ハロゲン化アルキル基としては、例えば、トリフルオロメチル基、トリフルオロエチル基、パーフルオロエチル基等が挙げられる。
 Dは、炭素原子、ケイ素原子、または窒素原子であり、Dが炭素原子またはケイ素原子の場合のnは1であり、Dが窒素原子の場合のnは0である。
 上記式(Ac-1)は、下記式(Ac-1-1)~式(Ac-1-4)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記式(Ac-2)は、下記式(Ac-2-1)または式(Ac-2-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 上記式(Ac-3)は、下記式(Ac-3-1)または式(Ac-3-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記式(Ac-4)は、下記式(Ac-4-1)~式(Ac-4-6)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 上記式(Ac-5)は、下記式(Ac-5-1)または式(Ac-5-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 上記式(Ac-6)は、下記式(Ac-6-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 上記式(Ac-7)は、下記式(Ac-7-1)~式(Ac-7-7)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 上記式(Ac-8)は、下記式(Ac-8-1)~式(Ac-8-3)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 上記式(Ac-9)は、下記式(Ac-9-1)または式(Ac-9-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 上記式(Ac-10)は、下記式(Ac-10-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 上記式(Ac-11)は、下記式(Ac-11-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 上記式(Ac-12)は、下記式(Ac-12-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 上記式(Ac-13)は、下記式(Ac-13-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 上記式(Ac-14)は、下記式(Ac-14-1)または式(Ac-14-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記式(Ac-15)は、下記式(Ac-15-1)~式(Ac-15-3)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000023
 上記式(Ac-16)は、下記式(Ac-16-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000024
 上記式(Ac-17)は、下記式(Ac-17-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 ヘテロ芳香族縮環型ユニットは、上記式(Ac-1)、式(Ac-7)、式(Ac-10)、式(Ac-13)、式(Ac-15)、または式(Ac-17)のいずれかで表されるユニットが好ましく、より好ましくは上記式(Ac-1-1)~式(Ac-1-4)、式(Ac-7-1)~式(Ac-7-7)、式(Ac-10-1)、式(Ac-13-1)、式(Ac-15-1)、式(Ac-15-2)、または式(Ac-17-1)のいずれかで表されるユニットであり、更に好ましくは上記式(Ac-1-1)、式(Ac-7-2)、式(Ac-7-5)、式(Ac-10-1)、式(Ac-13-1)、式(Ac-15-1)、式(Ac-15-2)、または式(Ac-17-1)のいずれかで表されるユニットである。特に、低分子型化合物の場合は、ヘテロ芳香族縮環型ユニットは、上記式(Ac-15)で表されるユニットが好ましく、より好ましくは上記式(Ac-15-1)または式(Ac-15-2)で表されるユニットであり、更に好ましくは上記式(Ac-15-1)で表されるユニットである。
 (2)芳香族縮環型ユニット
 芳香族縮環型ユニットとは、縮環構造を有し、かつ環の少なくとも1つが芳香族環であり、環を構成する元素が炭素原子である構造単位である。
 縮環構造を構成する環の数は特に限定されないが、例えば、2以上、10以下が好ましい。環の数は、3以上であってもよく、8以下であってもよい。
 環を構成する元素は、炭素原子であり、ヘテロ原子は含まない。ヘテロ原子とは、炭素原子以外の原子である。環を構成する元素とは、縮環構造に含まれるそれぞれの環構造を構成する全ての元素を意味し、縮環構造の環の少なくとも1つが芳香族環であるとき、該芳香族環は、実質的に芳香族炭化水素環を意味する。
 環には、置換基が結合していてもよい。置換基としては、例えば、ハロゲン原子、炭化水素基、アシル基、エステル基、ハロゲン化アルキル基、シアノ基などが挙げられる。
 ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでもフッ素が好ましい。
 炭化水素基は、脂肪族炭化水素基であることが好ましく、直鎖状の脂肪族炭化水素基であってもよいが、分岐を有する脂肪族炭化水素基であることがより好ましい。
 炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は特に限定されず、例えば、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 アシル基としては、例えば、アセチル基、プロピオニル基、イソプロピオニル基、ブチリル基、イソブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オレオイル基、リノレオイル基、リノレノイル基等が挙げられる。
 エステル基としては、例えば、アセトキシ基、アシルオキシ基、アルコキシカルボニル基、リン酸エステル基等が挙げられる。
 ハロゲン化アルキル基は、上記で説明した炭化水素基Rの一部の水素がハロゲン原子に置換した置換基を意味する。
 芳香族縮環型ユニットは、例えば、下記式(Ac-21)で表されるユニットを挙げることができる。
Figure JPOXMLDOC01-appb-C000026
 [式(Ac-21)中、TおよびTは、それぞれ独立に、単結合であるか、-CH=CH-であるか、-C≡C-であるか、炭化水素基で置換されていてもよいチオフェン環であるか、炭化水素基で置換されていてもよいチアゾール環であるか、炭化水素基で置換されていてもよいピリジン環であるか、炭化水素基で置換されていてもよいピラジン環である。
 Rは、炭化水素基であり、Rは、互いに同一でも異なっていてもよい。
 *は、結合手を表す。式(Ac-21)で表されるユニットが化合物の末端の場合は、*は水素原子であってもよい。
 化合物が複数のアクセプター性ユニットを有するとき、T、T、およびRは各々、ユニット間で同一でもよく、互いに異なっていてもよい。
 環には、上述した置換基が結合していてもよい。]
 TおよびTの説明は、上記(1)における説明が援用できる。TとTは、互いに異なっていてもよいが、同一であることが好ましい。
 Rで表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 上記式(Ac-21)は、下記式(Ac-21-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000027
 (3)単環型ユニット
 単環型ユニットとは、芳香族環を有し、縮環構造を有さない構造単位である。
 芳香族環は、芳香族炭化水素環であってもよいし、複素芳香族環(芳香族複素環と呼ばれることもある)であってもよいし、複数の芳香族環が炭素原子またはヘテロ原子を介して結合しているものであってもよい。
 環には、置換基が結合していてもよい。置換基としては、例えば、ハロゲン原子、炭化水素基、アシル基、エステル基、ハロゲン化アルキル基、シアノ基などが挙げられる。
 ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでもフッ素が好ましい。
 炭化水素基は、脂肪族炭化水素基であることが好ましく、直鎖状の脂肪族炭化水素基であってもよいが、分岐を有する脂肪族炭化水素基であることがより好ましい。
 炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は特に限定されず、例えば、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 アシル基としては、例えば、アセチル基、プロピオニル基、イソプロピオニル基、ブチリル基、イソブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オレオイル基、リノレオイル基、リノレノイル基等が挙げられる。
 エステル基としては、例えば、アセトキシ基、アシルオキシ基、アルコキシカルボニル基、リン酸エステル基等が挙げられる。
 ハロゲン化アルキル基は、上記で説明した炭化水素基Rの一部の水素がハロゲン原子に置換した置換基を意味する。
 単環型ユニットは、例えば、下記式(Ac-31)~式(Ac-33)で表されるユニットを挙げることができる。
Figure JPOXMLDOC01-appb-C000028
 [式(Ac-31)~式(Ac-33)中、TおよびTは、それぞれ独立に、単結合であるか、-CH=CH-であるか、-C≡C-であるか、炭化水素基で置換されていてもよいチオフェン環であるか、炭化水素基で置換されていてもよいチアゾール環であるか、炭化水素基で置換されていてもよいピリジン環であるか、炭化水素基で置換されていてもよいピラジン環である。
 *は、結合手を表す。式(Ac-31)~式(Ac-33)で表されるユニットが化合物の末端の場合は、*は水素原子であってもよい。
 化合物が複数のアクセプター性ユニットを有するとき、TおよびTは各々、ユニット間で同一でもよく、互いに異なっていてもよい。
 環には、上述した置換基が結合していてもよい。]
 TおよびTの説明は、上記(1)における説明が援用できる。
 上記式(Ac-31)は、下記式(Ac-31-1)~式(Ac-31-3)のいずれかであることが好ましい。上記式(Ac-32)は、下記式(Ac-32-1)であることが好ましい。上記式(Ac-33)は、下記式(Ac-33-1)または式(Ac-33-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
 本発明の化合物は、例えば、ドナー性ユニットとアクセプター性ユニットとを繰り返し単位として有している高分子型化合物であってもよい。高分子型化合物である場合、ドナー性ユニットとアクセプター性ユニットは、ランダムに配置されていてもよいが、交互に配置されていることが好ましい。
 本発明の高分子型化合物を構成する複数のドナー性ユニットは、上記式(Do-A)で表される単位を少なくとも1つ以上含み、更に下記式(Do-K)で表される単位を含んでもよい。下記式(Do-K)中、*は、結合手を表す。下記式(Do-K)で表される単位を含むドナー性ユニットが化合物の末端の場合は、*は水素原子であってもよい。
Figure JPOXMLDOC01-appb-C000030
 上記式(Do-K)で表される単位も電子供与性に優れている。また、上記式(Do-K)で表される単位を含むことにより、分子間での相互作用による配向性向上や、LUMOの深化によるデバイスの安定性向上が期待出来る。そのためドナー性ユニットが、更に上記式(Do-K)で表される単位を含むことにより、性能と溶解性を適宜調整できる。
 本発明の高分子型化合物を構成する複数のドナー性ユニットは、ドナー性ユニット全体を100mol%としたとき、上記式(Do-A)で表される単位と上記式(Do-K)で表される単位の合計は、例えば、50mol%以上であることが好ましく、より好ましくは70mol%以上であり、更に好ましくは90mol%以上である。ドナー性ユニットの全体(100mol%)が上記式(Do-A)で表される単位および上記式(Do-K)で表される単位であってもよい。
 本発明の高分子型化合物を構成する複数のドナー性ユニットが、上記式(Do-A)で表される単位と上記式(Do-K)で表される単位の両方を含有する場合、上記式(Do-A)で表される単位と上記式(Do-K)で表される単位の混合比[式(Do-A)で表される単位/上記式(Do-K)で表される単位]は特に限定されないが、モル比で、3/7~7/3であることが好ましい。混合比は、モル比で、4/6~6/4であることがより好ましい。
 本発明の化合物は、例えば、ドナー性ユニットおよびアクセプター性ユニットを合計で2つまたは3つ有する低分子型化合物であってもよい。低分子型化合物である場合、ドナー性ユニットに2つのアクセプター性ユニットが連結されている三量体型化合物であることが好ましい。
 本発明の化合物の分子量は、該化合物を構成するドナー性ユニットおよびアクセプター性ユニットの分子量によるため、ドナー性ユニットおよびアクセプター性ユニットの分子量によっては、低分子型化合物の分子量の方が、高分子型化合物の分子量よりも大きくなることがある。
 本発明の高分子型化合物の重量平均分子量(Mw)は、例えば、1500以上が好ましく、より好ましくは3000以上、更に好ましくは7000以上である。高分子型化合物の重量平均分子量(Mw)の上限は特に限定されないが、例えば、300000以下であればよく、200000以下であってもよい。
 本発明の高分子型化合物の数平均分子量(Mn)は、例えば、1000以上が好ましく、より好ましくは2000以上であり、更に好ましくは4000以上である。高分子型化合物の数平均分子量(Mn)の上限は特に限定されないが、例えば、300000以下であればよく、200000以下であってもよい。
 本発明の低分子型化合物の分子量は、例えば、2500以下が好ましい。当該分子量は、2300以下がより好ましく、さらに好ましくは1300以下である。
 本発明の化合物の重量平均分子量(Mw)および数平均分子量(Mn)は、ゲル浸透クロマトグラフィを用い、ポリスチレンを標準試料として作成した較正曲線に基づいて算出することができる。
 本発明の化合物のイオン化エネルギーは、-4eV以下であることが好ましく、より好ましくは-4.5eV以下、さらに好ましくは-5eV以下、特に好ましくは-5.1eV以下である。イオン化エネルギーの下限は、特に限定されないが、例えば、-7eV以上が好ましく、より好ましくは-6.5eV以上、更に好ましくは-6.2eV以上である。
 本発明には、上記化合物を含む有機半導体材料も含まれる。例えば、上記式(Do-A)で表される単位を含むドナー性ユニットは、電子供与性に優れているため、当該ドナー性ユニットとアクセプター性ユニットとを、それぞれ1つ以上有し、ドナー性ユニットとアクセプター性ユニットが互いに連結している化合物は、有機半導体材料として有用である。また、本発明の化合物は、アセタール構造でスピロ化された上記式(Do-A)で表される単位を含んでいるため、溶媒への溶解性が良好となる。そのため、本発明の化合物を含む有機半導体材料は、溶媒への溶解性が良好となり、基板に塗布した膜の膜質が良好となり、電子移動度が良好となる。
 上記溶媒は、ハロゲン系有機溶媒およびノンハロゲン系有機溶媒が挙げられる。本発明の化合物は、溶媒、特にハロゲン系有機溶媒および/またはノンハロゲン系有機溶媒への溶解性が良好である。ハロゲン系有機溶媒としては、例えば、クロロホルム、テトラクロロエタン、クロロベンゼン等が挙げられる。ノンハロゲン系有機溶媒としては、例えば、トルエン、1-メチルナフタレン、2-メチルナフタレン等が挙げられる。本発明の化合物は、少なくともハロゲン系有機溶媒に溶解することが好ましい。
 本発明の有機半導体材料は、n型有機半導体材料として好ましく用いることができる。
 本発明には、上記有機半導体材料を含む有機電子デバイスも含まれる。即ち、上記有機半導体材料は、有機電子デバイスの素材として好適に用いることができ、例えば、有機エレクトロルミネッセンス素子、有機薄膜トランジスタ素子、有機光電変換素子、有機薄膜太陽電池モジュール等の有機電子デバイスの材料として用いることができる。
 次に、本発明の化合物を製造できる方法について説明する。
 本発明の化合物は、例えば、ドナー性ユニットの結合手に有機置換基を有するスズが結合した化合物(以下、ドナー原料と呼ぶ場合がある)と、アクセプター性ユニットの結合手にハロゲン原子が結合した化合物(以下、アクセプター原料と呼ぶ場合がある)とをカップリング反応させることによって製造できる(以下、カップリング工程と呼ぶ場合がある)。
 ドナー原料には、前記(Do-A)単位に対応する下記式(do-A)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000031
 式(do-A)中、Rは前記と同じである。式(do-A)で表される化合物において、前記Rが炭素数2のエチレン基である場合は、式(do-A)で表される化合物は下記式(do-a)で表される。
Figure JPOXMLDOC01-appb-C000032
 R11およびR12は、有機置換基を表し、それぞれ独立に、炭化水素基である。複数のR11のうちに、互いに同一のR11があってもよいし互いに異なるR11があってもよく、複数のR12のうちに、互いに同一のR12があってもよいし互いに異なるR12があってもよい。R11、R12で表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。R11、R12で表される炭化水素基の炭素数は、1~10が好ましく、より好ましくは2以上、更に好ましくは3以上であり、より好ましくは5以下、更に好ましくは4以下である。R11とR12は、互いに異なっていてもよいが、同一であることが好ましい。
 式(do-A)で表される化合物は、特開2009-215278号公報に記載の方法に基づいて製造できる。
 なお式(Do-K)で表される単位は、式(do-A)で表される化合物をカップリングした後、アセタール構造をケトン構造に変化させることで合成できる。
 アクセプター原料に結合する前記ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでも臭素が好ましい。
 アクセプター原料には、例えば、上述した(1)ヘテロ芳香族縮環型ユニットの結合手にハロゲン原子が結合している化合物、(2)芳香族縮環型ユニットの結合手にハロゲン原子が結合している化合物、(3)単環型ユニットの結合手にハロゲン原子が結合している化合物が挙げられる。
 (1)ヘテロ芳香族縮環型ユニットの結合手にハロゲン原子が結合している化合物は、例えば、下記式(ac-1)~式(ac-17)で表される化合物が挙げられる。なお、下記式(ac-1)~式(ac-17)には、ヘテロ芳香族縮環型ユニットが結合手を2つ有しており、それぞれの結合手にハロゲン原子Yが結合している化合物を示したが、ドナー性ユニットに対して、下記(ac-1)~式(ac-17)で表される化合物を末端として結合させる場合は、結合手を1つにした化合物を用いればよい。
Figure JPOXMLDOC01-appb-C000033
 [式(ac-1)~式(ac-17)中、T、T、R、R、A、A、D、D、およびnは、前記式(Ac-1)~式(Ac-17)について説明したのと同じである。
 Yは、ハロゲン原子を表す。
 式(ac-1)~式(ac-17)で表されるアクセプター原料の2種以上を組み合わせて用いるとき、T、T、R、R、A、A、D、D、およびYは各々、アクセプター原料間で同一でもよく、互いに異なっていてもよい。
 環には、上述した置換基が結合していてもよい。]
 ハロゲン原子Yとしては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでも臭素が好ましい。
 (2)芳香族縮環型ユニットの結合手にハロゲン原子が結合している化合物は、例えば、下記式(ac-21)で表される化合物が挙げられる。なお、下記式(ac-21)には、芳香族縮環型ユニットが結合手を2つ有しており、それぞれの結合手にハロゲン原子が結合している化合物を示したが、ドナー性ユニットに対して、下記(ac-21)で表される化合物を末端として結合させる場合は、結合手を1つにした化合物を用いればよい。
Figure JPOXMLDOC01-appb-C000034
 [式(ac-21)中、T、T、及びRは、前記式(Ac-21)と同じである。
 Yは、ハロゲン原子を表す。
 式(ac-21)で表されるアクセプター原料の2種以上を組み合わせて用いるとき、T、T、R、およびYは各々、アクセプター原料間で同一でもよく、互いに異なっていてもよい。
 環には、上述した置換基が結合していてもよい。]
 ハロゲン原子Yとしては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでも臭素が好ましい。
 (3)単環型ユニットの結合手にハロゲン原子が結合している化合物は、例えば、下記式(ac-31)~式(ac-33)で表される化合物が挙げられる。なお、下記式(ac-31)~式(ac-33)には、単環型ユニットが2つの結合手を有しており、それぞれの結合手にハロゲン原子が結合している化合物を示したが、ドナー性ユニットに対して、下記(ac-31)~式(ac-33)で表される化合物を末端として結合させる場合は、結合手の数を1つにした化合物を用いればよい。
Figure JPOXMLDOC01-appb-C000035
 [式(ac-31)~式(ac-33)中、TおよびTは、前記式(Ac-31)~式(Ac-33)について説明したのと同じである。
 Yは、ハロゲン原子を表す。
 式(ac-31)~式(ac-33)で表されるアクセプター原料の2種以上を組み合わせて用いるとき、T、T、およびYは各々、アクセプター原料間で同一でもよく、互いに異なっていてもよい。
 環には、上述した置換基が結合していてもよい。]
 ハロゲン原子Yとしては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでも臭素が好ましい。
 上記式(do-A)で表される有機スズ化合物と、アクセプター性ユニットのハロゲン化物は、金属触媒の存在下でカップリング反応させることが好ましい。
 カップリング反応に用いる金属触媒としては、例えば、パラジウム系触媒、ニッケル系触媒、鉄系触媒、銅系触媒、ロジウム系触媒、ルテニウム系触媒などの遷移金属触媒が挙げられる。これらのなかでも、パラジウム系触媒が好ましい。パラジウム系触媒に含まれるパラジウムの価数は特に限定されず、0価でも2価でもよい。
 パラジウム系触媒としては、例えば、塩化パラジウム(II)、臭化パラジウム(II)、ヨウ化パラジウム(II)、酸化パラジウム(II)、硫化パラジウム(II)、テルル化パラジウム(II)、水酸化パラジウム(II)、セレン化パラジウム(II)、パラジウムシアニド(II)、パラジウムアセテート(II)、パラジウムトリフルオロアセテート(II)、パラジウムアセチルアセトナート(II)、ジアセテートビス(トリフェニルホスフィン)パラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム(0)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロビス(アセトニトリル)パラジウム(II)、ジクロロビス(ベンゾニトリル)パラジウム(II)、ジクロロ[1,2-ビス(ジフェニルホスフィノ)エタン]パラジウム(II)、ジクロロ[1,3-ビス(ジフェニルホスフィノ)プロパン]パラジウム(II)、ジクロロ[1,4-ビス(ジフェニルホスフィノ)ブタン]パラジウム(II)、ジクロロ[1,1-ビス(ジフェニルホスフィノフェロセン)]パラジウム(II)、ジクロロ[1,1-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロロメタン付加体、ビス(ジベンジリデンアセトン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体、ジクロロ[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン](3-クロロピリジル)パラジウム(II)、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)、ジクロロ[2,5-ノルボルナジエン]パラジウム(II)、ジクロロビス(エチレンジアミン)パラジウム(II)、ジクロロ(1,5-シクロオクタジエン)パラジウム(II)、ジクロロビス(メチルジフェニルホスフィン)パラジウム(II)が挙げられる。これらのなかでも、トリス(ジベンジリデンアセトン)ジパラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体を用いることが好ましい。
 銅系触媒としては、例えば、銅、フッ化銅(I)、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)、フッ化銅(II)、塩化銅(II)、臭化銅(II)、ヨウ化銅(II)等のハロゲン化銅化合物;酸化銅(I)、硫化銅(I)、酸化銅(II)、硫化銅(II)、酢酸銅(I)、酢酸銅(II)、硫酸銅(II)等が挙げられる。
 金属触媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 カップリング工程において、上記式(do-A)で表される有機スズ化合物と金属触媒とのモル比(式(do-A)で表される有機スズ化合物:金属触媒)は、例えば、1:0.0001~1:0.5程度であり、1:0.001~1:0.4が好ましく、1:0.005~1:0.3がより好ましく、1:0.01~1:0.2がさらに好ましい。
 カップリング工程では、金属触媒に配位子を配位させてもよい。配位子としては、例えば、トリメチルホスフィン、トリエチルホスフィン、トリ(n-ブチル)ホスフィン、トリ(イソプロピル)ホスフィン、トリ(tert-ブチル)ホスフィン、ビス(tert-ブチル)メチルホスフィン、トリシクロヘキシルホスフィン、ジフェニル(メチル)ホスフィン、トリフェニスホスフィン、トリス(o-トリル)ホスフィン、トリス(m-トリル)ホスフィン、トリス(p-トリル)ホスフィン、トリス(2-フリル)ホスフィン、トリス(2-メトキシフェニル)ホスフィン、トリス(3-メトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリ-tert-ブチルホスホニウムテトラフルオロボラート、2-ジシクロヘキシルホスフィノビフェニル、2-ジシクロヘキシルホスフィノ-2’-メチルビフェニル、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシ-1,1’-ビフェニル、2-ジシクロヘキシルホスフィノ-2’-(N,N’-ジメチルアミノ)ビフェニル、2-ジフェニルホスフィノ-2’-(N,N’-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチル)ホスフィノ-2’-(N,N’-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチル)ホスフィノビフェニル、2-(ジ-tert-ブチル)ホスフィノ-2’-メチルビフェニル、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,2-ビス(ジシクロヘキシルホスフィノ)エタン、1,3-ビス(ジシクロヘキシルホスフィノ)プロパン、1,4-ビス(ジシクロヘキシルホスフィノ)ブタン、1,2-ビスジフェニルホスフィノエチレン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、1,2-エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、2,2’-ビピリジル、1,3-ジフェニルジヒドロイミダゾリリデン、1,3-ジメチルジヒドロイミダゾリリデン、ジエチルジヒドロイミダゾリリデン、1,3-ビス(2,4,6-トリメチルフェニル)ジヒドロイミダゾリリデン、1,3-ビス(2,6-ジイソプロピルフェニル)ジヒドロイミダゾリリデン、1,10-フェナントロリン、5,6-ジメチル-1,10-フェナントロリン、バトフェナントロリンが挙げられる。これらのなかでも、トリメチルホスフィン、トリエチルホスフィン、トリ(n-ブチル)ホスフィン、トリ(イソプロピル)ホスフィン、トリ(tert-ブチル)ホスフィン、ビス(tert-ブチル)メチルホスフィン、トリシクロヘキシルホスフィン、ジフェニル(メチル)ホスフィン、トリフェニスホスフィン、トリス(o-トリル)ホスフィン、トリス(m-トリル)ホスフィン、トリス(p-トリル)ホスフィン、トリス(2-フリル)ホスフィン、トリス(2-メトキシフェニル)ホスフィン、トリス(3-メトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィンが好ましく、より好ましくはトリス(2-メトキシフェニル)ホスフィンである。
 配位子は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 金属触媒に配位子を配位させる場合、金属触媒と配位子とのモル比(金属触媒:配位子)は、例えば、1:0.5~1:10程度であり、1:1~1:8が好ましく、1:1~1:7がより好ましく、1:1~1:5がさらに好ましい。
 カップリング工程では、溶媒を用いることが好ましく、溶媒は、反応に影響を及ぼさない限り特に限定されることはなく、例えば、エーテル系溶媒、芳香族系溶媒、エステル系溶媒、炭化水素系溶媒、ハロゲン系溶媒、ケトン系溶媒、アミド系溶媒、ニトリル系溶媒、スルホキシド系溶媒、スルホン系溶媒等を用いることができる。
 エーテル系溶媒としては、例えば、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジメトキシエタン、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、ジオキサンなどが挙げられる。芳香族系溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、テトラリンなどが挙げられる。エステル系溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチルなどが挙げられる。炭化水素系溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、デカリンなどが挙げられる。ハロゲン系溶媒としては、例えば、ジクロロメタン、クロロホルム、ジクロロエタン、ジクロロプロパンなどが挙げられる。ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンなどが挙げられる。アミド系溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-(1H)-ピリミジンなどが挙げられる。ニトリル系溶媒としては、例えば、アセトニトリル等が挙げられる。スルホキシド系溶媒としては、例えば、ジメチルスルホキシド等が挙げられる。スルホン系溶媒としては、例えば、スルホラン等が挙げられる。これらのなかでも、芳香族系溶媒が好ましく、より好ましくはクロロベンゼンである。
 溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 カップリング工程で用いる溶媒の量は、上記式(do-A)で表される有機スズ化合物とアクセプター性ユニットのハロゲン化物の合計1gに対して、例えば、1mL以上、150mL以下程度であり、好ましくは5mL以上、より好ましくは8mL以上であり、好ましくは100mL以下、より好ましくは80mL以下である。
 カップリング工程における反応温度は特に限定されないが、反応収率を高める観点から0℃以上、200℃以下が好ましく、より好ましくは30℃以上、更に好ましくは40℃以上であり、より好ましくは180℃以下、更に好ましくは150℃以下である。
 カップリング反応後は、常法に従って固液分離し、回収した固体を洗浄することによって上記式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを、それぞれ1つ以上有し、ドナー性ユニットとアクセプター性ユニットが互いに連結されている化合物を製造できる。化合物が、高分子型化合物の場合は、例えば、固液分離し、回収した固体をソックスレー洗浄および抽出することによって高分子型化合物を製造できる。化合物が、低分子型化合物の場合は、例えば、セライトろ過によって触媒を除去した後、濃縮して得られた固体を分散洗浄することによって低分子型化合物を製造できる。
 高分子型化合物を構成する複数のドナー性ユニットとして、更に上記式(Do-K)で表される単位を含む高分子型化合物は、上記式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを繰り返し単位として有する高分子型化合物を、水の存在下で、酸性条件で、加熱撹拌することにより、アセタール構造をケトン構造に変化させることで製造できる。
 本願は、2021年12月9日に出願された日本国特許出願第2021-200324号に基づく優先権の利益を主張するものである。上記日本国特許出願第2021-200324号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、以下においては、特に断りのない限り、「%」は「質量%」を意味する。
 実験1では高分子型化合物を合成し、実験2では低分子型化合物を合成し、溶媒への溶解性、および有機半導体材料として好適に用いることができるかどうかを評価した。実施例で用いた測定方法は、下記の通りである。
 [測定方法]
 (NMRスペクトル測定)
 NMRスペクトル測定装置として、Varian社製の「400-MR」、およびBruker社製の「AVANCE NEO 600」を用いて、NMRスペクトル測定を行った。
 (高分子型化合物の紫外可視吸収スペクトル測定)
 紫外可視吸収スペクトルの測定は、高分子型化合物を溶媒に溶解させた溶液の状態で測定した。具体的には、高分子型化合物を、濃度が0.03g/Lになる様にクロロホルムに溶解し、紫外・可視分光装置(島津製作所社製、「UV-3600i Plus」)、および光路長1cmのセルを用いて、溶液状態における紫外可視吸収スペクトルを測定した。
 (低分子型化合物の紫外可視吸収スペクトル測定)
 紫外可視吸収スペクトルの測定は、低分子型化合物を溶媒に溶解させた溶液の状態で測定した。具体的には、低分子型化合物を、濃度が0.03g/Lになる様にクロロホルムに溶解し、紫外・可視分光装置(島津製作所社製、「UV-3600i Plus」)、および光路長1cmのセルを用いて、溶液状態における紫外可視吸収スペクトルを測定した。測定結果は実線で示した。
 特開2009-215278号公報の実施例2に基づいて化合物Hを調製した。化合物Hは、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane]であり、以下、Ac-CBTZ-SBと表記することがある。
 [実験1]
 (実施例1)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、217mg、0.265mmol)、3,6-Bis(5-bromo-2-thienyl)-2,5-bis(2-hexyldecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione(HD-DPP-DB、242mg、0.265mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(10mg、9.7μmol)、トリス(2-メトキシフェニル)ホスフィン(16mg、45μmol)およびクロロベンゼン(8mL)を加え130℃で24時間反応した。反応終了後、メタノール(45mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が110.3mg(収率42%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-HD-DPP(以下、高分子型化合物1ということがある)であった。この際に、得られた高分子型化合物1の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図1に実線で示す。横軸は測定波長、縦軸は吸光度を示す(以下、紫外可視吸収スペクトル測定の結果について同じ)。
Figure JPOXMLDOC01-appb-C000036
 (実施例2)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、3,6-Bis(5-bromo-2-thienyl)-2,5-bis(3,7-dimethyloctyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione(DMO-DPP-DB、90.1mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(6.7mg、19μmol)およびクロロベンゼン(4mL)を加え130℃で24時間反応した。反応終了後、メタノール(30mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が36.7mg(収率37%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-DMO-DPP(以下、高分子型化合物2ということがある)であった。この際に、得られた高分子型化合物2の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図2に実線で示す。
Figure JPOXMLDOC01-appb-C000037
 (実施例3)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、3,6-Bis(5-bromo-2-pyridinyl)-2,5-dihydro-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-dione(ODD-DPPDPy-DB、116mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(6.7mg、19μmol)およびクロロベンゼン(4mL)を加え130℃で24時間反応した。反応終了後、メタノール(30mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が107.2mg(収率86%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-ODD-DPPDPy(以下、高分子型化合物3ということがある)であった。この際に、得られた高分子型化合物3の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図3に実線で示す。
Figure JPOXMLDOC01-appb-C000038
 (実施例4)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、5,13-Dibromo-2,9-bis(2-octyldodecyl)anthra[2,1,9-def:6,5,10-d’e’f’]diisoquinoline-1,3,8,10(2H,9H)-tetrone(ODD-PDI-DB、135mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(6.7mg、19μmol)およびクロロベンゼン(4mL)を加え130℃で24時間反応した。反応終了後、メタノール(30mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、褐色固体が48.4mg(収率39%)得られた。NMRスペクトル測定の結果、得られた褐色固体は、P-Ac―CBTZ-ODD-PDI(以下、高分子型化合物4ということがある)であった。この際に、得られた高分子型化合物4の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図4に実線で示す。
Figure JPOXMLDOC01-appb-C000039
 (実施例5)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、1,3-Dibromo-5,7-bis(2-butyloctyl)-4H,8H-benzo[1,2-c:4,5-c’]dithiophene-4,8-dione(BO-BDT-DB、87.5mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(7.5mg、21μmol)およびクロロベンゼン(4mL)を加え130℃で24時間反応した。反応終了後、メタノール(30mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、褐色固体が22.9mg(収率29%)得られた。NMRスペクトル測定の結果、得られた褐色固体は、P-Ac―CBTZ-BO-BDT(以下、高分子型化合物5ということがある)であった。この際に、得られた高分子型化合物5の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図5に実線で示す。
Figure JPOXMLDOC01-appb-C000040
 (実施例6)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、4,9-Dibromo-2,7-bis(2-octyldodecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(ODD-NDI-DB、120mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(7.5mg、21μmol)およびクロロベンゼン(4mL)を加え130℃で24時間反応した。反応終了後、メタノール(30mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が8.8mg(収率8%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-ODD-NDI(以下、高分子型化合物6ということがある)であった。この際に、得られた高分子型化合物6の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図6に実線で示す。
Figure JPOXMLDOC01-appb-C000041
 (実施例7)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、6-Bromo-3-(5-bromo-2,3-dihydro-3-oxo-2-ethylhexyl-1H-isoindol-1-ylidene)-2,3-dihydro-2-ethylhexyl-1H-Isoindol-1-one(EH-IND-DB、78.6mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(6.7mg、19μmol)およびクロロベンゼン(4mL)を加え130℃で24時間反応した。反応終了後、メタノール(30mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が23.4mg(収率34%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-EH-IND(以下、高分子型化合物7ということがある)であった。この際に、得られた高分子型化合物7の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図7に実線で示す。
Figure JPOXMLDOC01-appb-C000042
 (実施例8)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、4,9-Dibromo-2,7-bis(2-octyldodecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(ODD-NDI-DB、121.4mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(7.5mg、21μmol)およびクロロベンゼン(4mL)を加え、溶解性を確認しながら50℃から100℃まで段階的に昇温し、100℃で15時間反応した。50℃から100℃までの昇温は、溶解性を確認しながら50℃で1時間保持、65℃に昇温して1時間保持、75℃に昇温して1時間保持、85℃に昇温して1時間保持した後、100℃に昇温した。反応終了後、メタノール(30mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が43.2mg(収率41%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-ODD-NDI(以下、高分子型化合物8ということがある)であった。この際に、得られた高分子型化合物8の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図8に実線で示す。
Figure JPOXMLDOC01-appb-C000043
 (実施例9)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、4,9-Dibromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(TD-NDI-DB、134mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(7.5mg、21μmol)およびクロロベンゼン(4mL)を加え130℃で15時間反応した。反応終了後、メタノール(30mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が42.4mg(収率36%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-TD-NDI(以下、高分子型化合物9ということがある)であった。この際に、得られた高分子型化合物9の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図9に実線で示す。
Figure JPOXMLDOC01-appb-C000044
 (実施例10)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、217mg、0.265mmol)、3,6-Bis(5-bromo-2-thienyl)-2,5-bis(2-hexyldecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione(HD-DPP-DB、242mg、0.265mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(10mg、9.7μmol)、トリス(2-メトキシフェニル)ホスフィン(16mg、45μmol)およびクロロベンゼン(8mL)を加え130℃で24時間反応した。反応終了後、メタノール(45mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が110.3mg(収率42%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-HD-DPPであった。
 得られた紺色固体の一部(41.2mg,41.9μmol)をクロロホルムに溶かし、メタンスルホン酸および水を大過剰に加えて60℃で15時間攪拌した。攪拌後、濃縮し、メタノールを加え、ろ取した結果、紺色固体が26.1mg(収率64%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-HD-DPP/P-CBTZ-HD-DPP(50/50)(以下、高分子型化合物10ということがある)であった。この際に、得られた高分子型化合物10の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図10に実線で示す。
Figure JPOXMLDOC01-appb-C000045
 (実施例11)
 マイクロウェーブ反応装置としてBiotage製の「Initiator+ Microwave System 356700」を用い、5mLのマイクロウェーブ(MW)用反応容器に、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、1,3-Dibromo-5-(2-decyltetradecyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione(TD-IMTH-DB、79.0mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(7.5mg、21μmol)およびクロロベンゼン(4mL)を加え180℃で10分間MW反応を実施した。反応終了後、メタノール(30mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が63.7mg(収率89%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-TD-IMTH(以下、高分子型化合物11ということがある)であった。この際に、得られた高分子型化合物11の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図11に実線で示す。
Figure JPOXMLDOC01-appb-C000046
 (実施例12)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、4,9-Dibromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(TD-NDI-DB、134mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(7.5mg、21μmol)およびクロロベンゼン(4mL)を加え、溶解性を確認しながら50℃から100℃まで段階的に昇温し、100℃で15時間反応した。50℃から100℃までの昇温は、溶解性を確認しながら50℃で1時間保持、70℃に昇温して1時間保持した後、100℃に昇温した。反応終了後、メタノール(30mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が125mg(収率91%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-TD-NDI(以下、高分子型化合物12ということがある)であった。この際に、得られた高分子型化合物12の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図12に実線で示す。
Figure JPOXMLDOC01-appb-C000047
 (実施例13)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、300mg、0.367mmol)、4,9-Dibromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(TD-NDI-DB、402mg、0.367mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(15mg、14.7μmol)、トリス(2-メトキシフェニル)ホスフィン(22.0mg、62μmol)およびクロロベンゼン(12mL)を加え、130℃で24時間反応した。反応終了後、メタノール(90mL)に反応液を加えて析出した固体をろ取して、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン、クロロホルム)した。次いでソックスレー円筒ろ紙内部の固体を取り出し、再度クロロホルム中、超音波および攪拌操作によって溶解した結果、紺色固体が285.3mg(収率70%)得られた。クロロホルム可溶部に関してNMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-TD-NDI(以下、高分子型化合物13ということがある)であった。この際に、得られた高分子型化合物13の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図13に実線で示す。
Figure JPOXMLDOC01-appb-C000048
 (実施例14)
 20mLフラスコに、4-bromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(TD-NDI-DB、299.2mg、0.2727mmol)、2-(tributylstannyl)-Thiazole(Bu3Sn-Thz、299.1mg、0.799mmol)、テトラキストリフェニルホスフィンパラジウム(0)(34mg、30μmol)およびトルエン(6.4mL)を添加し、110℃で16時間反応した。反応終了後、ブライン洗浄、トルエン抽出を実施し、濃縮した。さらに、メタノール(10mL)を加え、析出した固体をろ取した結果、黄色固体が247.9mg(収率82.2%)で得られた。NMRスペクトル測定の結果、得られた黄色固体は、TD-NDI-2Thz(以下、化合物14ということがある)であった。
H NMR(400MHz,CDCl):8.915(s,1H),8.018(d,2H),7.645(d,2H),4.024(d,4H),1.895(bs,2H),1.199(bs,80H),0.847(t,12H)
Figure JPOXMLDOC01-appb-C000049
 (実施例15)
 20mLフラスコに、実施例14で得られた化合物14(TD-NDI-2Thz、18.1mg、0.02mmol)およびテトラヒドロフラン(0.25mL)を添加し、-78℃で冷却後、ノルマルブチルリチウム(1.6mol/L、0.05mL)を添加し1時間反応させた。その後、1,3-Dibromo-5,5-dimethylhydantoin(DBH、15.51mg、0.06mmol)を添加し、室温で1時間反応した。反応終了後、酢酸エチルで抽出し、亜硫酸ナトリウム、水洗を実施し、有機層を硫酸マグネシウムで乾燥後に濃縮した。カラムクロマトグラフィー(クロロホルム/酢酸エチル=10)、メタノール(10mL)を加え、析出した固体をろ取した結果、黄色固体が15mg(収率72.5%)で得られた。NMRスペクトル測定の結果、得られた黄色固体は、TD-NDI-2Thz―Br(以下、化合物15ということがある)であった。
H NMR(400MHz,CDCl):9.140(s,2H),7.931(s,2H),4.085(d,4H),1.227-1.186(bs,80H),0.855(t,12H)
Figure JPOXMLDOC01-appb-C000050
 (実施例16)
 20mLフラスコ中において、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB)と、実施例15で得られた化合物15と、触媒量のトリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体と、触媒に配位させる配位子としてのトリス(2-メトキシフェニル)ホスフィンをクロロベンゼン中で加熱して反応させる。Ac-CBTZ-SBと化合物15のモル比は、1:1とする。反応液から、P-Ac-CBTZ-TD-NDI―2Thz(以下、高分子化合物16ということがある)を単離する。
Figure JPOXMLDOC01-appb-C000051
 図1~図13から明らかなように、本発明の高分子型化合物1~13は、長波長領域の光を吸収できることが分かる。
 次に、得られた高分子型化合物1~13の分子量を測定した。分子量の測定には、ゲル浸透クロマトグラフィー(GPC)を用いた。測定に際しては、高分子型化合物を0.8g/Lの濃度となるように移動相溶媒(クロロホルム)に溶解し、下記条件で測定を行い、ポリスチレンを標準試料として作成した較正曲線に基づいて換算することによって、高分子型化合物の重量平均分子量(Mw)および数平均分子量(Mn)を算出した。測定におけるGPC条件は、下記の通りである。
装置:高速液体クロマトグラフ L-2420/L-2130(株式会社日立ハイテク社製)
移動相:クロロホルム流速1mL/min
カラム:Shodex GPC K-803L(昭和電工株式会社製)
 分子量の測定結果を下記表1に示す。なお、分子量を示すピークが2つ検出された場合は、2つの分子量を下記表1に示した。
 次に、得られた高分子型化合物1~13の溶媒への溶解性について評価した。溶媒はクロロホルム、クロロベンゼン、またはトルエンを用いた。クロロホルムを用いた場合は、高分子型化合物の濃度が5質量%となるようにクロロホルムを添加し、60℃で30分間加熱した。クロロベンゼンを用いた場合は、高分子型化合物1~12を1mg/mLとなるようにクロロベンゼンを室温で添加した。高分子型化合物13については1mg/mLとなるようにクロロベンゼンを添加し、130℃で60分間加熱した。トルエンを用いた場合は、高分子型化合物1~9、11、12を1mg/mLとなるようにトルエンを室温で添加した。高分子型化合物13については1mg/mLとなるようにトルエンを添加し、100℃で60分間加熱した。なお、高分子型化合物10については、トルエンを用いた評価は行わなかった。
 溶媒を添加した後または加熱後、高分子型化合物が溶解しているか目視で観察し、下記基準に基づいて評価した。評価結果を下記表1に示す。
<評価基準>
○:溶媒に溶解した。
△:高分子型化合物の一部が溶解せずに残っていた。
×:溶媒に溶解しなかった。
 次に、得られた高分子型化合物1~13を用い、イオン化エネルギー、バンドギャップ、電子移動度μe、しきい値電圧、オン/オフ比を測定した。また、イオン化エネルギーの値およびバンドギャップの値からLUMOの値を求めた。
 (イオン化エネルギーの測定)
 高分子型化合物の濃度が8mg/mLとなるようにクロロベンゼンに溶解し、得られた溶液をITO基板上にドロップキャストして成膜した。この膜について、常温、減圧下(0.1Pa以下)で、イオン化エネルギー測定装置(分光計器株式会社製、「BIP-KV202GD」)によりイオン化エネルギー(eV)を測定した。測定したイオン化エネルギーの値(eV)を下記表1に示す。
 (バンドギャップ)
 高分子型化合物のバンドギャップは、高分子型化合物を含む薄膜のUV(紫外可視吸収スペクトル)測定を行い、UVの立ち上がりに基づいて算出した。即ち、高分子型化合物の濃度が8mg/mLとなるようにクロロベンゼンに溶解し、得られた溶液をガラス基板(2.5cm×2.5cm四方、厚み0.8~1.0mm)上にスピンコートして薄膜を成膜した。この薄膜について、常温常圧下で、紫外・可視分光装置(島津製作所社製、「UV-3600i Plus」)によりUV測定を行った。薄膜の状態で測定したUV測定の結果を図1~図5、図7~図13に点線で示した。なお、実施例6については、薄膜の状態でのUV測定は行わなかった。また、UVの立ち上がりに基づいてバンドギャップ(eV)を算出した。算出したバンドギャップの値(eV)を下記表1に示す。
 バンドギャップの算出方法について、図14を用いて説明する。図14は、バンドギャップの算出方法を説明するために作成した模式図であり、高分子型化合物9を含む薄膜のUV測定を行って得られた紫外可視吸収スペクトルに対して補助線を引いた模式図である。200nm~1000nmの領域で測定した紫外可視吸収スペクトルについて、図14に示すように、化合物由来のピークの長波長側にピークトップ付近から接線を引き、接線と横軸(波長)との交点から立ち上がりの波長λを求めた。即ち、最大吸収を示すピークの曲線における高波長側から低波長側に向かって吸収が大きくなる領域の曲線に対して補助線として接線を引き、この接線と吸光度が0を示す横軸との交点における波長を読み取り、この波長をUVの立ち上がり波長λとした。図14に示した高分子型化合物9の場合は、立ち上がり波長λは841nmとなる。
 HOMO-LUMO間のバンドギャップ(エネルギーギャップ)をE、プランク定数をh、真空中の光速をcとすると、次式の関係が成立する。
E=hc/λ
 ここで、プランク定数hは6.626×10-34、真空中の光速cは2.998×10であるから、立ち上がり波長λとして841を代入すると、バンドギャップEは下記式の通り1.47eVとなる。
E=1239.8/841≒1.47(eV)
 一方、イオン化エネルギーの値(HOMOの値)は、-5.96eVであるので、LUMOの値は、下記の通り-4.49eVとなる。
LUMO=-5.96+1.47=-4.49(eV)
 下記表1に示したイオン化エネルギーとバンドギャップに基づいて算出したLUMOの値(eV)を下記表1に示す。
 (電子移動度、しきい値電圧、オン/オフ比の測定)
 オゾン処理したシリコン基板上を、ヘキサメチルジシラザン(HMDS)またはオクタデシルトリクロロシラン(ODTS)を用いて処理した。処理後の基板表面に、高分子型化合物の濃度が0.5質量%(7.4mg/mL)のクロロホルム溶液をスピンコートすることで、有機電界効果型トランジスタ(OFET)素子を作製した。なお、実施例13については、クロロホルムの代わりにクロロベンゼンを用い、高分子型化合物の濃度が0.5質量%のクロロベンゼン溶液をスピンコートした。作製したOFET素子につき、100℃で1時間のアニールを実施、放冷、150℃で1時間のアニールを実施、放冷後、Id-Vg特性を測定した。Id-Vg特性は、窒素雰囲気下または真空下で測定した。Id-Vg特性の測定には、ケースレーインスツルメンツ(KEITHLEY)製の「4200-SCS」を用い、有機半導体素子のチャネル長さは25μm、チャネル幅は294mmとした。Id-Vg特性の測定を行い、電子移動度μe(cm/Vs)、しきい値電圧Vth(V)、オン/オフ比(Ion/Ioff)を求めた。150℃で1時間アニールを実施した後に測定したId-Vg特性の結果を下記表1に示す。なお、下記表1に示したイオン化エネルギー、バンドギャップ、LUMOの値の欄に記載した「-」は未実施を示している。
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
 表1から次のように考察できる。本発明の高分子型化合物1~13は、所定の構造を有するドナー性ユニットと、アクセプター性ユニットとを、それぞれ1つ以上有し、ドナー性ユニットとアクセプター性ユニットが互いに連結されている化合物であり、特に、ドナー性ユニットと、アクセプター性ユニットとを繰り返し単位として有している化合物である。本発明の高分子型化合物1~13は、溶媒、特にハロゲン系有機溶媒への溶解性が良好であった。また、本発明の高分子型化合物1~13は、有機半導体材料として好ましく用いることができる。また、本発明の高分子型化合物1~13は、150℃のアニールを行っても良好な電子移動度を示した。実施例16で得られる高分子化合物16については、チアゾールユニットを含んでいるため、ドナー性ユニットとアクセプター性ユニットとの間の歪みが少なくなり、平面に近い構造となり、分子同士が配列しやすくなり、結晶性が上がり、電子移動度が上がることが期待できる。
 [実験2]
 (実施例21)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、60mg、0.0735mmol)、4-bromo-2,7-dibutyl-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(BU-NDI-MB、67.3mg、0.147mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(6mg、5.9μmol)、トリス(2-メトキシフェニル)ホスフィン(8.9mg、25.0μmol)およびクロロベンゼン(4mL)を添加し、130℃で16時間反応した。反応終了後、セライトろ過を実施し、濃縮した。さらに、クロロホルム(3mL)、メタノール(7mL)を加え、析出した固体をろ取した結果、紺色固体が52.7mg(収率72.3%)で得られた。NMRスペクトル測定の結果、得られた紺色固体は、Ac-CBTZ-2(Bu-NDI)(以下、低分子型化合物1ということがある)であった。得られた低分子型化合物1の紫外可視吸収スペクトル測定を溶液の状態で行ない、測定結果を図15に実線で示す。
H NMR(400MHz,CDCl):9.075(s,2H),8.847(d,2H),8.826(d,2H),4.596(s,4H),4.216-4.134(m,8H),1.771-1.597(m,8H),1.407-1.201(m,16H),0.862(t,12H)
Figure JPOXMLDOC01-appb-C000054
 (実施例22)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、60mg、0.0735mmol)、4-bromo-2,7-bis(2-ethylhexyl)-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(EH-NDI-MB、84.3mg、0.147mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(6mg、5.9μmol)、トリス(2-メトキシフェニル)ホスフィン(8.9mg、25.0μmol)およびクロロベンゼン(4mL)を添加し、130℃で16時間反応した。反応終了後、セライトろ過を実施し、濃縮した。さらに、メタノール(10mL)を加え、析出した固体をろ取した結果、紺色固体が40.1mg(収率44.2%)で得られた。NMRスペクトル測定の結果、得られた紺色固体は、Ac-CBTZ-2(EH-NDI)(以下、低分子型化合物2ということがある)であった。
H NMR(400MHz,CDCl):9.367(s,2H),8.818(d,2H),8.788(d,2H),4.597(s,4H),4.218-4.139(m,8H),1.407-1.201(m,49H),0.951-0.864(m,32H)
Figure JPOXMLDOC01-appb-C000055
 (実施例23)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、60mg、0.0735mmol)、4-bromo-2,7-dihexyl-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(Hex-NDI-MB、75.3mg、0.147mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(6mg、5.9μmol)、トリス(2-メトキシフェニル)ホスフィン(8.9mg、25.0μmol)およびクロロベンゼン(4mL)を添加し、130℃で16時間反応した。反応終了後、セライトろ過を実施し、濃縮した。さらに、メタノール(7mL)を加え、析出した固体をろ取した結果、紺色固体が59.9mg(収率73.3%)で得られた。NMRスペクトル測定の結果、得られた紺色固体は、Ac-CBTZ-2(Hex-NDI)(以下、低分子型化合物3ということがある)であった。得られた低分子型化合物3の紫外可視吸収スペクトル測定を溶液の状態で行ない、測定結果を図16に実線で示す。
H NMR(400MHz,CDCl):9.334(s,2H),8.821(d,2H),8.786(d,2H),4.596(s,4H),4.218(quin,8H),1.836-1.588(m,4H),1.547-1.318(m,32H),0.894(t,12H)
Figure JPOXMLDOC01-appb-C000056
 (実施例24)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、60mg、0.0735mmol)、4-bromo-2,7-dioctyl-benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(n-o-NDI-MB、83.5mg、0.147mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(6mg、5.9μmol)、トリス(2-メトキシフェニル)ホスフィン(8.9mg、25.0μmol)およびクロロベンゼン(4mL)を添加し、130℃で16時間反応した。反応終了後、セライトろ過を実施し、濃縮した。さらに、メタノール(7mL)を加え、析出した固体をろ取した結果、紺色固体が71.7mg(収率80%)で得られた。NMRスペクトル測定の結果、得られた紺色固体は、Ac-CBTZ-2(n-o-NDI)(以下、低分子型化合物4ということがある)であった。得られた低分子型化合物4の紫外可視吸収スペクトル測定を溶液の状態で行ない、測定結果を図17に実線で示す。
H NMR(400MHz,CDCl):9.341(s,2H),8.832(d,2H),8.787(d,2H),4.596(s,4H),4.218(quin,8H),1.535-1.153(m,48H),0.826(t,12H)
Figure JPOXMLDOC01-appb-C000057
 (実施例25)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、60mg、0.0735mmol)、4-bromo-2,7- bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(DMO-NDI-MB、91.2mg、0.147mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(6mg、5.9μmol)、トリス(2-メトキシフェニル)ホスフィン(8.9mg、25.0μmol)およびクロロベンゼン(4mL)を添加し、130℃で16時間反応した。反応終了後、セライトろ過を実施し、濃縮した。さらに、メタノール(7mL)を加え、析出した固体をろ取した結果、紺色固体が85.9mg(収率95.5%)で得られた。NMRスペクトル測定の結果、得られた紺色固体は、Ac-CBTZ-2(DMO-NDI)(以下、低分子型化合物5ということがある)であった。得られた低分子型化合物5の紫外可視吸収スペクトル測定を溶液の状態で行ない、測定結果を図18に実線で示す。
H NMR(400MHz,CDCl):9.355(s,2H),8.814(d,2H),8.778(d,2H),4.599(s,4H),4.214(quin,8H),1.505-1.123(m,48H),1.008(t,24H),0.849(t,12H)
Figure JPOXMLDOC01-appb-C000058
 (実施例26)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、60mg、0.0735mmol)、4-bromo-2,7-didecylbenzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(DE-NDI-MB、92.5mg、0.147mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(6mg、5.9μmol)、トリス(2-メトキシフェニル)ホスフィン(8.9mg、25.0μmol)およびクロロベンゼン(4mL)を添加し、130℃で16時間反応した。反応終了後、セライトろ過を実施し、濃縮した。さらに、メタノール(7mL)を加え、析出した固体をろ取した結果、紺色固体が57.5mg(収率71.0%)で得られた。NMRスペクトル測定の結果、得られた紺色固体は、Ac-CBTZ-2(DE-NDI)(以下、低分子型化合物6ということがある)であった。得られた低分子型化合物6の紫外可視吸収スペクトル測定を溶液の状態で行ない、測定結果を図19に実線で示す。
H NMR(400MHz,CDCl):9.341(s,2H),8.820(d,2H),8.785(d,2H),4.596(s,4H),4.180(quin,4H),1.719(bs,4H),1.423-1.340(m,56H),0.859(t,12H)
Figure JPOXMLDOC01-appb-C000059
 (実施例27)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、60mg、0.0735mmol)、4-bromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(TD-NDI-MB、183.4mg、0.147mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(6mg、5.9μmol)、トリス(2-メトキシフェニル)ホスフィン(8.9mg、25.0μmol)およびクロロベンゼン(4mL)を添加し、130℃で16時間反応した。反応終了後、セライトろ過を実施し、濃縮した。さらに、メタノール(7mL)を加え、析出した固体をろ取した結果、紺色固体が58.3mg(収率38.3%)で得られた。NMRスペクトル測定の結果、得られた紺色固体は、Ac-CBTZ-2(TD-NDI)(以下、低分子型化合物7ということがある)であった。得られた低分子型化合物7の紫外可視吸収スペクトル測定を溶液の状態で行ない、測定結果を図20に実線で示す。
H NMR(400MHz,CDCl):9.393(s,2H),8.817(d,2H),8.780(d,2H),4.600(s,4H),4.131(t,4H),1.974(bs,4H),1.546-0.867(m,168H),0.818(t,12H)
Figure JPOXMLDOC01-appb-C000060
 (実施例28)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、60mg、0.0735mmol)、4-bromo-2,7-bis(2-phenylethyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(PhEt-NDI-MB、81.8mg、0.147mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(6mg、5.9μmol)、トリス(2-メトキシフェニル)ホスフィン(8.9mg、25.0μmol)およびクロロベンゼン(4mL)を添加し、130℃で16時間反応した。反応終了後、セライトろ過を実施し、濃縮した。さらに、メタノール(7mL)を加え、析出した固体をろ取した結果、紺色固体が68.3mg(収率84.2%)で得られた。NMRスペクトル測定の結果、得られた紺色固体は、Ac-CBTZ-2(PhEt-NDI)(以下、低分子型化合物8ということがある)であった。
H NMR(400MHz,CDCl):8.931(s,2H),8.806(d,2H),8.772(d,2H),7.732-7.205(m,10H),4.441-4.390(m,4H),3.055-3.006(m,8H)
Figure JPOXMLDOC01-appb-C000061
 図15~図20から明らかなように、本発明の低分子型化合物1、3~7は、溶液の状態でも、薄膜の状態でも、長波長領域の光を吸収できることが分かる。なお、低分子型化合物2は試料量が少なかったため紫外可視吸収スペクトルを測定できなかった。低分子型化合物8は、クロロホルムにほとんど溶解しなかったため、紫外可視吸収スペクトルを測定できなかった。
 次に、得られた低分子型化合物1~8の溶媒への溶解性について評価した。溶媒はクロロホルム、クロロベンゼン、トルエン、テトラクロロエタン、または1-メチルナフタレンを用いた。クロロホルムを用いた場合は、低分子型化合物の濃度が1質量%となるようにクロロホルムを室温で添加した。クロロベンゼンを用いた場合は、低分子型化合物が1質量%となるようにクロロベンゼンを室温で添加した。トルエンを用いた場合は、低分子型化合物が1質量%となるようにトルエンを室温で添加した。テトラクロロエタンを用いた場合は、低分子型化合物が1質量%となるようにテトラクロロエタンを室温で添加した後、110℃に加熱した。1-メチルナフタレンを用いた場合は、低分子型化合物が1質量%となるように1-メチルナフタレンを室温で添加した後、110℃に加熱した。なお、低分子型化合物1のクロロホルムに対する溶解性は、低分子型化合物1の濃度が1質量%となるようにクロロホルムを室温で添加した後、50℃に加熱して評価した。低分子型化合物1のクロロベンゼンに対する溶解性は、低分子型化合物1の濃度が1質量%となるようにクロロベンゼンを室温で添加した後、110℃に加熱して評価した。
 溶媒を添加した後、低分子型化合物が溶解しているか目視で観察し、下記基準に基づいて評価した。評価結果を下記表2に示す。下記表2において「-」は評価していないことを示している。
<評価基準>
○:溶媒に溶解した。
△:低分子型化合物の一部が溶解せずに残っていた。
×:溶媒に溶解しなかった。
 次に、得られた低分子型化合物1、3~7を用い、イオン化エネルギー、バンドギャップ、電子移動度μe、しきい値電圧、およびオン/オフ比を測定した。イオン化エネルギー、バンドギャップ、電子移動度μe、しきい値電圧、およびオン/オフ比の測定条件は、上記高分子型化合物を用いて測定した場合と同じである。測定結果を下記表2に示す。また、薄膜の状態で測定したUV測定の結果を図15~図20に点線で示した。なお、電子移動度μe、しきい値電圧、およびオン/オフ比を測定するための有機電界効果型トランジスタ(OFET)素子を作製する際には、スピンコートする溶液の溶媒として、クロロホルム、クロロベンゼン、またはテトラクロロエタンを用いた。用いた溶媒を下記表2に併せて示す。また、イオン化エネルギーおよびバンドギャップからLUMOの値を求めた。
 次に、低分子型化合物2、8について、アクセプター性ユニットを構成する窒素に結合する置換基がメチル基の三量体型化合物を設計し、DFT計算によってイオン化エネルギーの値(HOMOの値)およびLUMOの値を予測した。計算に用いた三量体型化合物を下記式に示す。DFT計算は、計算ソフトとしてGaussian 16を用いた。イオン化エネルギーの値、およびLUMOの値(eV)を下記表2に示す。また、下記表2には、イオン化エネルギーの値とLUMOの値から算出したバンドギャップ(eV)の値も示した。また、低分子型化合物2を用い、電子移動度μe、しきい値電圧、およびオン/オフ比を測定した。電子移動度μe、しきい値電圧、およびオン/オフ比の測定条件は、上記高分子型化合物を用いて測定した場合と同じである。測定結果を下記表2に示す。なお、低分子型化合物8については、電子移動度μe、しきい値電圧、およびオン/オフ比を測定しなかった。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-T000063
 表2から次のように考察できる。本発明の低分子型化合物1~8は、所定の構造を有するドナー性ユニットと、アクセプター性ユニットとを、それぞれ1つ以上有し、ドナー性ユニットとアクセプター性ユニットが互いに連結されている化合物であり、特に、ドナー性ユニットおよびアクセプター性ユニットを合計で3つ有する化合物(詳細には、トナー性ユニットに2つのアクセプター性ユニットが連結されている三量体型化合物)である。本発明の低分子型化合物1~8は、溶媒への溶解性が良好であった。また、本発明の低分子型化合物1~8は、有機半導体材料として好ましく用いることができる。また、本発明の低分子型化合物1~7は、150℃のアニールを行っても良好な電子移動度を示した。

Claims (10)

  1.  下記式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを、それぞれ1つ以上有し、ドナー性ユニットとアクセプター性ユニットが互いに連結されている化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(Do-A)中、Rは炭素数2~10のアルキレン基を表し、*は、結合手を表す。]
  2.  前記アクセプター性ユニットが、
    (1)縮環構造を有し、かつ環の少なくとも1つが芳香族環であり、環を構成する元素が炭素原子とヘテロ原子である、ヘテロ芳香族縮環型ユニット、
    (2)縮環構造を有し、かつ環の少なくとも1つが芳香族環であり、環を構成する元素が炭素原子である、芳香族縮環型ユニット、及び
    (3)芳香族環を有し、縮環構造を有さない、単環型ユニット、
    からなる群より選ばれる少なくとも1種を含む請求項1に記載の化合物。
  3.  前記ドナー性ユニットと、前記アクセプター性ユニットとを繰り返し単位として有する請求項1に記載の高分子型化合物。
  4.  前記ドナー性ユニットと前記アクセプター性ユニットとが交互に配置されている請求項3に記載の高分子型化合物。
  5.  重量平均分子量(Mw)が1500以上である請求項3に記載の高分子型化合物。
  6.  前記高分子型化合物に含まれる複数のドナー性ユニットが、更に下記式(Do-K)で表される単位を含む請求項3に記載の高分子型化合物。
    Figure JPOXMLDOC01-appb-C000002
    [式(Do-K)中、*は、結合手を表す。]
  7.  前記ドナー性ユニットおよび前記アクセプター性ユニットを合計で2つまたは3つ有する請求項1に記載の低分子型化合物。
  8.  前記ドナー性ユニットに2つの前記アクセプター性ユニットが連結されている請求項1に記載の三量体型化合物。
  9.  請求項1に記載の化合物を含む有機半導体材料。
  10.  請求項9に記載の有機半導体材料を含む有機電子デバイス。
PCT/JP2022/045473 2021-12-09 2022-12-09 化合物、有機半導体材料、および有機電子デバイス WO2023106405A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023541123A JPWO2023106405A1 (ja) 2021-12-09 2022-12-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021200324 2021-12-09
JP2021-200324 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023106405A1 true WO2023106405A1 (ja) 2023-06-15

Family

ID=86730537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045473 WO2023106405A1 (ja) 2021-12-09 2022-12-09 化合物、有機半導体材料、および有機電子デバイス

Country Status (3)

Country Link
JP (1) JPWO2023106405A1 (ja)
TW (1) TW202330554A (ja)
WO (1) WO2023106405A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098254A1 (en) * 2008-02-05 2009-08-13 Basf Se SEMICONDUCTOR MATERIALS PREPARED FROM RYLENE-(π-ACCEPTOR) COPOLYMERS
WO2012070582A1 (ja) * 2010-11-24 2012-05-31 住友化学株式会社 共役系化合物、並びにこれを用いた有機薄膜及び有機薄膜素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098254A1 (en) * 2008-02-05 2009-08-13 Basf Se SEMICONDUCTOR MATERIALS PREPARED FROM RYLENE-(π-ACCEPTOR) COPOLYMERS
WO2012070582A1 (ja) * 2010-11-24 2012-05-31 住友化学株式会社 共役系化合物、並びにこれを用いた有機薄膜及び有機薄膜素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI SHUANG-BAO, DUAN YU-AI, GENG YUN, GAO HONG-ZE, QIU YONG-QING, SU ZHONG-MIN: "Theoretical design and characterization of pyridalthiadiazole-based chromophores with fast charge transfer at donor/acceptor interface toward small molecule organic photovoltaics", RSC ADVANCES, vol. 5, no. 37, 1 January 2015 (2015-01-01), pages 29401 - 29411, XP093070284, DOI: 10.1039/C5RA00785B *

Also Published As

Publication number Publication date
TW202330554A (zh) 2023-08-01
JPWO2023106405A1 (ja) 2023-06-15

Similar Documents

Publication Publication Date Title
KR102158583B1 (ko) 전자 응용을 위한 관능화 벤조디티오펜 중합체
EP3106484A1 (en) Organic semiconductor material
EP2035428B1 (en) Diketopyrrolopyrrole polymers as organic semiconductors
EP2834286B1 (en) Diketopyrrolopyrrole polymers and small molecules
EP2764034B1 (en) Polymers based on benzodiones
EP2875028A1 (en) Dithienobenzofuran polymers and small molecules for electronic application
JP6642455B2 (ja) 光電変換素子、および有機薄膜太陽電池
JP6688453B2 (ja) 有機半導体材料
Mori et al. Synthesis, characterization, and solar cell and transistor applications of phenanthro [1, 2‐b: 8, 7‐b′] dithiophene–Diketopyrrolopyrrole semiconducting polymers
WO2023106405A1 (ja) 化合物、有機半導体材料、および有機電子デバイス
JP7291360B1 (ja) 高分子化合物、有機半導体材料、および有機電子デバイス
WO2023106404A1 (ja) 高分子化合物、有機半導体材料、および有機電子デバイス
JP7468346B2 (ja) 高分子化合物
KR101739259B1 (ko) 신규 피롤 단량체 및 그 제조방법, 피롤 단량체로부터 합성된 고분자 또는 화합물 및 그 제조방법
JP6459971B2 (ja) 有機半導体材料
JP7026391B2 (ja) 半導体ポリマー
KR102570660B1 (ko) 디피롤로[1,2-b:1',2'-g][2,6]나프티리딘-5,11-디온 기재 중합체 및 화합물
JP6798651B1 (ja) 高分子化合物
WO2023068017A1 (ja) 有機半導体材料
KR20240024264A (ko) 유기 광검출기, 및 이것에 이용되는 유기 반도체 화합물
CN117447491A (zh) 稠环单元、含该单元的小分子、聚合物及它们的制备方法与应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023541123

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904332

Country of ref document: EP

Kind code of ref document: A1