WO2023106404A1 - 高分子化合物、有機半導体材料、および有機電子デバイス - Google Patents

高分子化合物、有機半導体材料、および有機電子デバイス Download PDF

Info

Publication number
WO2023106404A1
WO2023106404A1 PCT/JP2022/045472 JP2022045472W WO2023106404A1 WO 2023106404 A1 WO2023106404 A1 WO 2023106404A1 JP 2022045472 W JP2022045472 W JP 2022045472W WO 2023106404 A1 WO2023106404 A1 WO 2023106404A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer compound
unit
ring
hydrocarbon group
Prior art date
Application number
PCT/JP2022/045472
Other languages
English (en)
French (fr)
Inventor
裕隆 家
青萌 陣内
真理奈 三枝
一剛 萩谷
Original Assignee
国立大学法人大阪大学
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 東洋紡株式会社 filed Critical 国立大学法人大阪大学
Priority to JP2023514758A priority Critical patent/JP7291360B1/ja
Publication of WO2023106404A1 publication Critical patent/WO2023106404A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a polymer compound having a repeating unit of a donor unit containing a specific unit and a specific acceptor unit, an organic semiconductor material containing the polymer compound, and an organic electronic device containing the organic semiconductor material. .
  • Organic semiconductor materials are important materials in the field of organic electronics, and monomer compounds and polymer compounds are used as organic semiconductor materials.
  • Organic semiconductor materials can be classified into electron-donating p-type organic semiconductor materials and electron-accepting n-type organic semiconductor materials.
  • Devices can be manufactured.
  • Organic electronic devices include, for example, organic electroluminescence elements that emit light by the action of excitons formed by recombination of electrons and holes, organic thin-film transistor elements that control the amount of current or voltage, and organic photoelectric conversion elements. , organic thin-film solar cell modules that convert light into electric power, and the like.
  • Patent Document 1 proposes a polymer used as an n-type organic semiconductor material.
  • the polymer proposed in Patent Document 1 is a nitrogen-containing condensation polymer having at least one repeating unit represented by the following general formula (II) and at least one repeating unit represented by the following general formula (III). It is a ring polymer.
  • Z 1 and Z 2 are exemplified by S (sulfur atom)
  • Ar 1 is exemplified by a divalent aromatic hydrocarbon group or a divalent heterocyclic group. ing.
  • Patent Document 2 describes a nitrogen-containing condensed ring compound represented by the following formula (1).
  • R 11 and R 12 each independently represent a hydrogen atom, a halogen atom or a monovalent group which may have a substituent, and at least one of R 11 and R 12 has the following A group represented by formula (2), wherein Ar 11 and Ar 12 each independently represent an aromatic hydrocarbon group having 6 or more carbon atoms or a heterocyclic group having 4 or more carbon atoms.
  • Example 2 of Patent Document 2 describes a compound M represented by the following formula (M).
  • An object of the present invention is to provide a polymer compound that can be preferably used as an organic semiconductor material. Another object of the present invention is to provide an organic semiconductor material containing such a polymer compound. Another object of the present invention is to provide an organic electronic device containing such an organic semiconductor material.
  • the present invention includes the following inventions.
  • a polymer compound having, as repeating units, a donor unit containing a unit represented by the following formula (Do-K) and an acceptor unit, wherein the plurality of acceptor units contained in the polymer compound are: , a condensed ring type unit containing an aromatic ring, and at least one of the rings constituting the condensed ring of the condensed ring type unit is a heterocyclic ring composed of carbon atoms and heteroatoms. molecular compound.
  • Do-K * represents a bond.
  • a polymer compound that can be preferably used as an organic semiconductor material.
  • an organic semiconductor material containing such a polymer compound and an organic electronic device containing such an organic semiconductor material can be provided.
  • FIG. 1 shows the UV-visible absorption spectrum of polymer compound 1.
  • FIG. FIG. 2 shows the UV-visible absorption spectrum of polymer compound 2.
  • FIG. FIG. 3 shows the UV-visible absorption spectrum of polymer compound 3.
  • FIG. FIG. 4 shows the UV-visible absorption spectrum of polymer compound 4.
  • FIG. 5 is a schematic diagram for explaining a method for calculating the bandgap, and is a schematic diagram in which auxiliary lines are drawn for the ultraviolet-visible absorption spectrum obtained by UV measurement of a thin film containing polymer compound 2. be.
  • the polymer compound of the present invention has a donor unit containing a unit represented by the following formula (Do-K) and an acceptor unit as repeating units, and the acceptor unit has a condensed ring structure. and at least one of the rings is an aromatic ring, and the ring-constituting elements are carbon atoms and hetero atoms.
  • the polymer compound of the present invention is a polymer compound having, as repeating units, a donor unit containing a unit represented by the following formula (Do-K) and an acceptor unit, and the polymer compound has A heterocyclic ring in which the multiple acceptor units include a condensed ring unit containing an aromatic ring, and at least one of the rings constituting the condensed ring of the condensed ring unit is composed of a carbon atom and a heteroatom is.
  • Do-K * represents a bond.
  • a donor unit means an electron-donating structural unit.
  • the donor unit constituting the polymer compound of the present invention only needs to contain the unit represented by the above formula (Do-K), and may contain other known donor units.
  • the unit represented by the above formula (Do-K) is, for example, preferably 40 mol% or more, more preferably 50 mol% or more, and still more preferably 80 mol%. That's it.
  • the entire donor unit (100 mol %) may be a unit represented by the above formula (Do-K).
  • An acceptor unit means an electron-accepting structural unit.
  • the unit represented by the formula (Do-K) is excellent in electron donating properties. Therefore, by using a polymer compound in which a donor unit containing a unit represented by the formula (Do-K) and an acceptor unit are combined, the ionization energy value (HOMO value) and the LUMO value bandgap becomes smaller and the electrons move more easily. Furthermore, the electrostatic interaction works between molecules, so that the orientation becomes good, and an improvement in electron mobility can be expected. Also, the value of LUMO becomes, for example, ⁇ 3.5 eV or less, and it has atmospheric stability. Further, when the polymer compound has good solubility in the solvent, the film quality of the film obtained using the polymer compound is good, and the electron mobility is even better. Therefore, a polymer compound having a repeating unit of a donor unit containing a unit represented by the formula (Do-K) and an acceptor unit can be suitably used as an organic semiconductor material, for example.
  • the acceptor unit to be combined with the donor unit has a condensed ring structure, at least one of the rings is an aromatic ring, and the elements constituting the ring are carbon atoms and heteroatoms.
  • Heteroaromatic condensed ring type unit is.
  • a heteroaromatic condensed ring unit is a structural unit having a condensed ring structure, at least one of which is an aromatic ring, and the ring-constituting elements are carbon atoms and heteroatoms.
  • a heteroaromatic condensed ring unit is a condensed ring unit containing an aromatic ring, wherein at least one of the rings constituting the condensed ring of the condensed ring unit is composed of a carbon atom and a heteroatom. It is a unit that is a heterocycle. That is, a condensed ring unit having a condensed ring structure has at least one heterocyclic ring.
  • a heteroatom is an atom other than a carbon atom, each heteroatom being, for example, a nitrogen atom, a sulfur atom, or an oxygen atom.
  • the number of rings constituting the condensed ring structure is not particularly limited, it is preferably 2 or more and 10 or less, for example.
  • the number of rings may be 3 or more, or 8 or less.
  • the aromatic ring may be an aromatic hydrocarbon ring or a heteroaromatic ring (sometimes called heteroaromatic ring).
  • the elements constituting the ring are carbon atoms and heteroatoms, and the ring contains at least one heteroatom and the rest are carbon atoms.
  • the number of heteroatoms may be two or more, or three or more. Although the upper limit of the number of heteroatoms depends on the number of atoms constituting the condensed ring structure, it is preferably 10 or less, more preferably 8 or less, still more preferably 6 or less.
  • a substituent may be attached to the ring.
  • substituents include halogen atoms, hydrocarbon groups, alkoxy groups, acyl groups, ester groups, halogenated alkyl groups, and cyano groups.
  • halogen atoms include fluorine, chlorine, bromine, and iodine, with fluorine being preferred.
  • the hydrocarbon group (hereinafter sometimes referred to as the hydrocarbon group R) is preferably an aliphatic hydrocarbon group, an aralkyl group, or the like, and the aliphatic hydrocarbon group is a linear aliphatic hydrocarbon Although it may be a group, it is more preferably a branched aliphatic hydrocarbon group.
  • the number of carbon atoms in the hydrocarbon group R is not particularly limited, and is preferably 1 to 30, for example.
  • the number of carbon atoms in the hydrocarbon group R is preferably 3 or more, still more preferably 6 or more, and more preferably 28 or less, still more preferably 26 or less.
  • the lower limit of the number of carbon atoms is preferably 7 or more.
  • the hydrocarbon group R includes, for example, an alkyl group having 1 carbon atoms such as a methyl group; an alkyl group having 2 carbon atoms such as an ethyl group; an alkyl group having 3 carbon atoms such as an n-propyl group and an isopropyl group; n-butyl Alkyl groups having 4 carbon atoms such as groups; alkyl groups having 5 carbon atoms such as n-pentyl groups; alkyl groups having 6 carbon atoms such as n-hexyl groups; alkyl groups having 7 carbon atoms such as n-heptyl groups; -octyl group, 1-n-butylbutyl group, 1-n-propylpentyl group, 1-ethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group, 4-ethylhexyl group, 1-methylheptyl group, 2-methylheptyl group
  • An alkoxy group is represented by -OR 5 , where R 5 is a hydrocarbon group.
  • R 5 is a hydrocarbon group.
  • Examples of the hydrocarbon group represented by R 5 include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 5 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • Acyl groups include, for example, acetyl group, propionyl group, isopropionyl group, butyryl group, isobutyryl group, pentanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group, decanoyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, oleoyl group, linoleoyl group, linolenoyl group and the like.
  • the ester group includes, for example, an acetoxy group, an acyloxy group, an alkoxycarbonyl group, a phosphate ester group, and the like.
  • a halogenated alkyl group means a substituent in which part of the hydrogen atoms of the hydrocarbon group R described above is substituted with a halogen atom.
  • heteroaromatic condensed ring units examples include units represented by the following formulas (Ac-1) to (Ac-17).
  • R 1 is a hydrogen atom, a hydrocarbon group, or —(CH 2 ) p —OR 3 and R 3 is a hydrocarbon group.
  • the acceptor unit When the acceptor unit has a plurality of R 1's , the plurality of R 1 's may have the same R 1 's or different R 1's .
  • R2 is a hydrocarbon group.
  • the multiple R2 's When the acceptor unit has multiple R2's , the multiple R2 's may have the same R2 's or different R2 's .
  • a 1 and A 2 are each independently —(CH 2 ) q —OR 4 , or a thiophene ring optionally substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group or a thiazole ring optionally substituted with a hydrocarbon group or an organosilyl group, or substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, an organosilyl group, a halogen atom, or a halogenated alkyl group is a phenyl group, and R 4 is a hydrocarbon group.
  • D 1 is CH or a nitrogen atom.
  • the plurality of D1 's may include the same D1 's or different D1 's .
  • D2 is a carbon atom, a silicon atom, or a nitrogen atom.
  • n is 0 or 1; * represents a bond.
  • each of T 1 , T 2 , R 1 , R 2 , A 1 , A 2 , D 1 and D 2 may be the same among the units or different from each other. may The ring may be bonded with the substituents described above. ]
  • examples of the hydrocarbon group that the thiophene ring may have as a substitute include the same hydrocarbon groups R as described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • examples of the hydrocarbon group that the thiazole ring may have as a substitute include the same hydrocarbon groups R as described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • examples of the hydrocarbon group which the pyridine ring may have as a substitution include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • examples of the hydrocarbon group that the pyrazine ring may have as a substitute include the same hydrocarbon groups R as described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • T 1 and T 2 are each independently a single bond, a thiophene ring optionally substituted with a hydrocarbon group, or a hydrocarbon A thiazole ring optionally substituted with a group is preferred.
  • R 1 is a hydrocarbon group
  • examples of the hydrocarbon group include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 1 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, particularly preferably 8 or more, more preferably 28 or less, still more preferably 26. It is below.
  • examples of the hydrocarbon group represented by R 3 include the same hydrocarbon groups R as described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 3 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • p is an integer from 1 to 5, for example.
  • R 1 is preferably a hydrocarbon group.
  • the plurality of R 1 's may have the same R 1 's or different R 1's .
  • Examples of the hydrocarbon group represented by R 2 include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 2 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • examples of the hydrocarbon group represented by R 4 include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 4 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • q is an integer from 1 to 5, for example.
  • R 51 is a hydrocarbon group.
  • R 51 is a hydrocarbon group.
  • examples of the hydrocarbon group represented by R 51 include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 51 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • a thioalkoxy group that the thiophene ring may have as a substitute is represented by —SR 6 , where R 6 is a hydrocarbon group.
  • R 6 is a hydrocarbon group.
  • Examples of the hydrocarbon group represented by R 6 include those similar to the hydrocarbon group R described above.
  • the hydrocarbon group represented by R 6 preferably has 1 to 30 carbon atoms, more preferably 3 or more, still more preferably 6 or more, and more preferably 28 or less, still more preferably 26 or less.
  • hydrocarbon group that the thiophene ring may have by being substituted examples include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • the organosilyl group that the thiophene ring may be substituted with is a monovalent group in which one or more hydrocarbon groups are substituted on the Si atom.
  • the hydrocarbon group substituting the Si atom is preferably an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • the number of carbon atoms in the aliphatic hydrocarbon group substituted for the Si atom is preferably 1-18, more preferably 1-8.
  • Examples of aliphatic hydrocarbon groups include methyl group, ethyl group, isopropyl group, tert-butyl group, isobutyl group, octyl group and octadecyl group.
  • the number of carbon atoms in the aromatic hydrocarbon group substituting the Si atom is preferably 6-8, more preferably 6-7, and particularly preferably 6.
  • Aromatic hydrocarbon groups include, for example, a phenyl group.
  • the hydrocarbon group substituting the Si atom is preferably an aliphatic hydrocarbon group, more preferably a branched aliphatic hydrocarbon group, and particularly preferably an isopropyl group.
  • the number of hydrocarbon groups substituting the Si atom is preferably 2 or more, more preferably 3.
  • the hydrocarbon groups substituting the Si atom may be different, but are preferably the same.
  • the number of hydrocarbon groups substituted on the Si atom is 3 include a trimethylsilyl group, an ethyldimethylsilyl group, an isopropyldimethylsilyl group, a triisopropylsilyl group, a tert-butyldimethylsilyl group, a triethylsilyl group, Alkylsilyl groups such as triisobutylsilyl group, tripropylsilyl group, tributylsilyl group, dimethylphenylsilyl group and methyldiphenylsilyl group; Arylsilyl groups such as triphenylsilyl group and tert-butylchlorodiphenylsilyl group; be done. Among them, an alkylsilyl group is preferred, and a trimethylsilyl group and a triisopropylsilyl group are particularly preferred.
  • examples of the hydrocarbon group that the thiazole ring may have as a substitute include the same hydrocarbon groups R as described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • organosilyl group that the thiazole ring may have as a substitution examples include those similar to the organosilyl groups described above.
  • a 1 and A 2 are phenyl groups
  • alkoxy groups that the phenyl groups may have by substitution include the same alkoxy groups as described above.
  • Examples of the thioalkoxy group that the phenyl group may have as a substituent include the same thioalkoxy groups as described above.
  • hydrocarbon group that the phenyl group may have by being substituted examples include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • halogen atoms examples include the same halogen atoms as those described above.
  • halogen atoms include fluorine, chlorine, bromine, and iodine, with fluorine being preferred.
  • Halogenated alkyl groups include, for example, a trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group and the like.
  • D2 is a carbon atom, a silicon atom, or a nitrogen atom
  • n is 1 when D2 is a carbon atom or a silicon atom
  • n is 0 when D2 is a nitrogen atom.
  • the above formula (Ac-1) is preferably any one of the following formulas (Ac-1-1) to (Ac-1-4).
  • the above formula (Ac-2) is preferably the following formula (Ac-2-1) or (Ac-2-2).
  • the above formula (Ac-3) is preferably the following formula (Ac-3-1) or (Ac-3-2).
  • the above formula (Ac-4) is preferably any one of the following formulas (Ac-4-1) to (Ac-4-6).
  • the above formula (Ac-5) is preferably the following formula (Ac-5-1) or (Ac-5-2).
  • the above formula (Ac-7) is preferably any one of the following formulas (Ac-7-1) to (Ac-7-7).
  • the above formula (Ac-8) is preferably any one of the following formulas (Ac-8-1) to (Ac-8-3).
  • the above formula (Ac-9) is preferably the following formula (Ac-9-1) or (Ac-9-2).
  • the above formula (Ac-14) is preferably the following formula (Ac-14-1) or (Ac-14-2).
  • the above formula (Ac-15) is preferably any one of the following formulas (Ac-15-1) to (Ac-15-3).
  • the heteroaromatic condensed ring unit is preferably a unit represented by any one of the above formula (Ac-7), formula (Ac-15), or formula (Ac-17), more preferably the above formula (Ac- 7-1) to a unit represented by any of formula (Ac-7-7), formula (Ac-15-1), formula (Ac-15-2), or formula (Ac-17-1) is, more preferably a unit represented by any of formula (Ac-7-2), formula (Ac-15-1), formula (Ac-15-2), or formula (Ac-17-1) be.
  • a plurality of acceptor units contained in the polymer compound contain the heteroaromatic condensed ring-type unit described above, and all the acceptor units contained in the polymer compound are It may be a heteroaromatic condensed ring type unit as described above.
  • a known acceptor unit can be used, for example, selected from the group consisting of (a) or (b) below. At least one acceptor unit can be used.
  • an aromatic condensed ring type unit having a condensed ring structure, at least one of which is an aromatic ring, and an element constituting the ring is a carbon atom;
  • a monocyclic unit having an aromatic ring and no condensed ring structure;
  • Aromatic condensed ring type unit is a structural unit having a condensed ring structure, at least one ring being an aromatic ring, and an element constituting the ring being a carbon atom. be.
  • the number of rings constituting the condensed ring structure is not particularly limited, it is preferably 2 or more and 10 or less, for example.
  • the number of rings may be 3 or more, or 8 or less.
  • the elements that constitute the ring are carbon atoms and do not contain heteroatoms.
  • a heteroatom is an atom other than a carbon atom.
  • the ring-constituting elements refer to all the elements constituting each ring structure contained in the condensed ring structure, and when at least one of the rings in the condensed ring structure is an aromatic ring, the aromatic ring is It substantially means an aromatic hydrocarbon ring.
  • a substituent may be attached to the ring.
  • substituents include halogen atoms, hydrocarbon groups, acyl groups, ester groups, halogenated alkyl groups, and cyano groups.
  • halogen atoms include fluorine, chlorine, bromine, and iodine, with fluorine being preferred.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group, and may be a linear aliphatic hydrocarbon group, but is more preferably a branched aliphatic hydrocarbon group.
  • hydrocarbon group examples include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited.
  • Acyl groups include, for example, acetyl group, propionyl group, isopropionyl group, butyryl group, isobutyryl group, pentanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group, decanoyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, oleoyl group, linoleoyl group, linolenoyl group and the like.
  • the ester group includes, for example, an acetoxy group, an acyloxy group, an alkoxycarbonyl group, a phosphate ester group, and the like.
  • a halogenated alkyl group means a substituent in which part of the hydrogen atoms of the hydrocarbon group R described above is substituted with a halogen atom.
  • aromatic condensed-ring units examples include units represented by the following formula (Ac-21).
  • R 2 is a hydrocarbon group, and R 2 may be the same or different.
  • * represents a bond.
  • * represents a bond.
  • * When the unit represented by formula (Ac-21) is the terminal of the polymer compound, * may be a hydrogen atom.
  • each of T 1 , T 2 and R 2 may be the same or different between units.
  • the ring may be bonded with the substituents described above.
  • T 1 and T 2 the description of the heteroaromatic condensed ring unit can be used.
  • T 1 and T 2 may be different from each other, but are preferably the same.
  • Examples of the hydrocarbon group represented by R 2 include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group represented by R 2 is preferably 1 to 30, more preferably 3 or more, still more preferably 6 or more, more preferably 28 or less, still more preferably 26 or less.
  • a monocyclic unit is a structural unit having an aromatic ring and no condensed ring structure.
  • the aromatic ring may be an aromatic hydrocarbon ring, a heteroaromatic ring (sometimes referred to as a heteroaromatic ring), or multiple aromatic rings containing carbon atoms or heteroatoms may be connected via
  • a substituent may be attached to the ring.
  • substituents include halogen atoms, hydrocarbon groups, acyl groups, ester groups, halogenated alkyl groups, and cyano groups.
  • halogen atoms include fluorine, chlorine, bromine, and iodine, with fluorine being preferred.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group, and may be a linear aliphatic hydrocarbon group, but is more preferably a branched aliphatic hydrocarbon group.
  • hydrocarbon group examples include those similar to the hydrocarbon group R described above.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited.
  • Acyl groups include, for example, acetyl group, propionyl group, isopropionyl group, butyryl group, isobutyryl group, pentanoyl group, hexanoyl group, heptanoyl group, octanoyl group, nonanoyl group, decanoyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, oleoyl group, linoleoyl group, linolenoyl group and the like.
  • the ester group includes, for example, an acetoxy group, an acyloxy group, an alkoxycarbonyl group, a phosphate ester group, and the like.
  • a halogenated alkyl group means a substituent in which part of the hydrogen atoms of the hydrocarbon group R described above is substituted with a halogen atom.
  • Examples of monocyclic units include units represented by the following formulas (Ac-31) to (Ac-33).
  • * represents a bond.
  • the units represented by formulas (Ac-31) to (Ac-33) are terminals of the polymer compound, * may be a hydrogen atom.
  • each of T 1 and T 2 may be the same or different between units.
  • the ring may be bonded with the substituents described above.
  • T 1 and T 2 the description of the heteroaromatic condensed ring unit can be used.
  • the above formula (Ac-31) is preferably any one of the following formulas (Ac-31-1) to (Ac-31-3).
  • the above formula (Ac-32) is preferably the following formula (Ac-32-1).
  • the above formula (Ac-33) is preferably the following formula (Ac-33-1) or (Ac-33-2).
  • the polymer compound of the present invention has a donor unit and an acceptor unit as repeating units, and the donor unit and the acceptor unit may be arranged randomly or alternately. is preferred.
  • the weight-average molecular weight (Mw) of the polymer compound of the present invention is, for example, preferably 2500 or more, more preferably 2600 or more, still more preferably 3000 or more.
  • the upper limit of the weight-average molecular weight (Mw) of the polymer compound is not particularly limited, but may be, for example, 450,000 or less, and may be 300,000 or less, 200,000 or less, 100,000 or less, or 50,000 or less.
  • the number average molecular weight (Mn) of the polymer compound of the present invention is, for example, preferably 1500 or more, more preferably 2000 or more, still more preferably 3000 or more.
  • the upper limit of the number average molecular weight (Mn) of the polymer compound is not particularly limited.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer compound can be calculated using gel permeation chromatography based on a calibration curve prepared using polystyrene as a standard sample.
  • the ionization energy of the polymer compound of the present invention is preferably ⁇ 4 eV or less, more preferably ⁇ 4.5 eV or less, still more preferably ⁇ 5 eV or less, particularly preferably ⁇ 5.1 eV or less, most preferably ⁇ 5. 0.5 eV or less.
  • the lower limit of the ionization energy is not particularly limited, but is preferably ⁇ 7 eV or higher, more preferably ⁇ 6.5 eV or higher, and still more preferably ⁇ 6.2 eV or higher.
  • the present invention also includes an organic semiconductor material containing the polymer compound.
  • a donor unit containing a unit represented by the above formula (Do-K) is excellent in electron-donating properties, so that the donor unit and an acceptor unit (in particular, a heteroaromatic condensed ring unit) as a repeating unit [preferably, a donor unit containing a unit represented by the above formula (Do-K) and an acceptor unit (particularly, a heteroaromatic condensed ring type unit) are alternately arranged polymer compounds] are useful as organic semiconductor materials.
  • the organic semiconductor material of the present invention containing the polymer compound can be preferably used as an n-type organic semiconductor material.
  • the present invention also includes an organic electronic device containing the organic semiconductor material. That is, the organic semiconductor material can be suitably used as a material for organic electronic devices, for example, as a material for organic electronic devices such as organic electroluminescence elements, organic thin-film transistor elements, organic photoelectric conversion elements, and organic thin-film solar cell modules. can be used.
  • the organic semiconductor material can be suitably used as a material for organic electronic devices, for example, as a material for organic electronic devices such as organic electroluminescence elements, organic thin-film transistor elements, organic photoelectric conversion elements, and organic thin-film solar cell modules. can be used.
  • the polymer compound of the present invention includes, for example, a compound in which tin having an organic substituent is bonded to the bond of the donor unit (hereinafter sometimes referred to as a donor raw material) and a halogen atom in the bond of the acceptor unit. It can be produced by changing the acetal structure to a ketone structure after coupling the bound compound (hereinafter sometimes referred to as an acceptor raw material) (hereinafter sometimes referred to as a coupling step).
  • a compound represented by the formula (do-A) corresponding to the following (Do-A) unit, which is a precursor of the (Do-K) unit, can be used as the donor raw material.
  • the number of carbon atoms in R a is preferably 2 to 8, more preferably 2 to 6, even more preferably 2 to 4.
  • the alkylene group may be a linear alkylene group or a branched alkylene group, but is preferably a linear alkylene group.
  • R a include ethylene group, n-propylene group, 1-methyl-ethan-1,2-yl group, 1,2-dimethyl-ethan-1,2-yl group, 1-methyl-propane-1 , 3-yl group and the like, and among these, an ethylene group and an n-propylene group are preferred.
  • R a is the same as above.
  • the compound represented by the formula (do-A) when the R a is an ethylene group having 2 carbon atoms, the compound represented by the formula (do-A) is represented by the following formula (do-a) be.
  • R 11 and R 12 represent organic substituents and are each independently hydrocarbon groups. Among the plurality of R 11 's, there may be the same R 11's or different R 11's , and among the plurality of R 12 's, there may be the same R 12 's or different from each other R 12 may be present.
  • the hydrocarbon groups represented by R 11 and R 12 include the same hydrocarbon groups R as described above. Each of the hydrocarbon groups represented by R 11 and R 12 preferably has 1 to 10 carbon atoms, more preferably 2 or more, still more preferably 3 or more, more preferably 5 or less, and still more preferably 4 or less. be. R 11 and R 12 may be different from each other, but are preferably the same.
  • the compound represented by formula (do-A) can be produced based on the method described in JP-A-2009-215278.
  • a compound in which a halogen atom is bonded to the bond of the heteroaromatic condensed ring type unit described above can be used.
  • Compounds in which a halogen atom is bound to the bond of the heteroaromatic condensed ring unit include, for example, compounds represented by the following formulas (ac-1) to (ac-17).
  • T 1 , T 2 , R 1 , R 2 , A 1 , A 2 , D 1 , D 2 and n are ) to Formula (Ac-17).
  • Y represents a halogen atom.
  • halogen atom Y examples include fluorine, chlorine, bromine, and iodine, with bromine being preferred.
  • a compound in which a halogen atom is bonded to the bond of the heteroaromatic fused-ring type unit described above may be used, or a compound in which a halogen atom is bonded to the bond of the heteroaromatic fused-ring type unit.
  • (a) a compound in which a halogen atom is bonded to the bond of the aromatic condensed ring unit, and/or (b) a compound in which a halogen atom is bonded to the bond of the monocyclic unit. may be used.
  • T 1 , T 2 and R 2 are the same as described for the formula (Ac-21).
  • Y represents a halogen atom.
  • T 1 , T 2 , R 2 and Y may be the same or different among the acceptor raw materials.
  • the ring may be bonded with the substituents described above.
  • halogen atom Y examples include fluorine, chlorine, bromine, and iodine, with bromine being preferred.
  • Compounds in which a halogen atom is bonded to the bond of the monocyclic unit include, for example, compounds represented by the following formulas (ac-31) to (ac-33).
  • T 1 and T 2 are the same as described for the formulas (Ac-31) to (Ac-33).
  • Y represents a halogen atom.
  • T 1 , T 2 and Y may be the same or different among the acceptor raw materials. may be The ring may be bonded with the substituents described above.
  • halogen atom Y examples include fluorine, chlorine, bromine, and iodine, with bromine being preferred.
  • the organotin compound represented by the above formula (do-A) and the halide of the acceptor unit are preferably subjected to a coupling reaction in the presence of a metal catalyst.
  • metal catalysts used in the coupling reaction include transition metal catalysts such as palladium-based catalysts, nickel-based catalysts, iron-based catalysts, copper-based catalysts, rhodium-based catalysts, and ruthenium-based catalysts. Among these, palladium-based catalysts are preferred.
  • the valence of palladium contained in the palladium-based catalyst is not particularly limited, and may be zero or divalent.
  • palladium-based catalysts examples include palladium (II) chloride, palladium (II) bromide, palladium (II) iodide, palladium (II) oxide, palladium (II) sulfide, palladium (II) telluride, and palladium hydroxide.
  • Copper-based catalysts include, for example, copper, copper (I) fluoride, copper (I) chloride, copper (I) bromide, copper (I) iodide, copper (II) fluoride, copper (II) chloride, Copper halide compounds such as copper (II) bromide and copper (II) iodide; copper (I) oxide, copper (I) sulfide, copper (II) oxide, copper (II) sulfide, copper (I) acetate, Copper (II) acetate, copper (II) sulfate and the like can be mentioned.
  • the metal catalyst may be used singly or in combination of two or more.
  • the molar ratio of the organotin compound represented by the formula (do-A) to the metal catalyst (organotin compound represented by the formula (do-A):metal catalyst) is, for example, 1: about 0.0001 to 1:0.5, preferably 1:0.001 to 1:0.4, more preferably 1:0.005 to 1:0.3, 1:0.01 to 1: 0.2 is more preferred.
  • a ligand may be coordinated to the metal catalyst.
  • ligands include trimethylphosphine, triethylphosphine, tri(n-butyl)phosphine, tri(isopropyl)phosphine, tri(tert-butyl)phosphine, bis(tert-butyl)methylphosphine, tricyclohexylphosphine, diphenyl (methyl)phosphine, triphenylphosphine, tris(o-tolyl)phosphine, tris(m-tolyl)phosphine, tris(p-tolyl)phosphine, tris(2-furyl)phosphine, tris(2-methoxyphenyl)phosphine, tris(3-methoxyphenyl)phosphine, tris(4-methoxyphenyl)phosphine, tri-tert-butylphosphonium tetrafluoroborate
  • trimethylphosphine triethylphosphine, tri(n-butyl)phosphine, tri(isopropyl)phosphine, tri(tert-butyl)phosphine, bis(tert-butyl)methylphosphine, tricyclohexylphosphine, diphenyl(methyl) Phosphine, triphenylphosphine, tris(o-tolyl)phosphine, tris(m-tolyl)phosphine, tris(p-tolyl)phosphine, tris(2-furyl)phosphine, tris(2-methoxyphenyl)phosphine, tris(3 -methoxyphenyl)phosphine and tris(4-methoxyphenyl)phosphine, more preferably tris(2-methoxyphenyl)phosphine.
  • the ligands may be used singly or in combination of two or more.
  • the molar ratio of the metal catalyst and the ligand is, for example, about 1:0.5 to 1:10, such as 1:1. ⁇ 1:8 is preferred, 1:1 to 1:7 is more preferred, and 1:1 to 1:5 is even more preferred.
  • a solvent in the coupling step, it is preferable to use a solvent, and the solvent is not particularly limited as long as it does not affect the reaction.
  • examples include ether solvents, aromatic solvents, ester solvents, hydrocarbon solvents, Halogen-based solvents, ketone-based solvents, amide-based solvents, nitrile-based solvents, sulfoxide-based solvents, sulfone-based solvents, and the like can be used.
  • Ether-based solvents include, for example, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, methyltetrahydrofuran, dimethoxyethane, cyclopentylmethyl ether, tert-butylmethyl ether, and dioxane.
  • aromatic solvents include benzene, toluene, xylene, mesitylene, chlorobenzene, dichlorobenzene, and tetralin.
  • ester solvents include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and butyl acetate.
  • hydrocarbon solvents examples include pentane, hexane, heptane, octane, and decalin.
  • Halogen-based solvents include, for example, dichloromethane, chloroform, dichloroethane, and dichloropropane.
  • Ketone solvents include, for example, acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • amide solvents include N,N-dimethylformamide, N,N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro- (1H)-pyrimidine and the like.
  • nitrile-based solvents include acetonitrile and the like.
  • sulfoxide solvents include dimethylsulfoxide and the like.
  • sulfone-based solvents include sulfolane and the like. Among these, aromatic solvents are preferable, and chlorobenzene is more preferable.
  • the solvent may be used singly or in combination of two or more.
  • the amount of the solvent used in the coupling step is, for example, about 1 mL or more and 150 mL or less, and is preferably about 1 g in total of the organotin compound represented by the above formula (do-A) and the halide of the acceptor unit. is 5 mL or more, more preferably 8 mL or more, preferably 100 mL or less, more preferably 80 mL or less.
  • the reaction temperature in the coupling step is not particularly limited, but from the viewpoint of increasing the reaction yield, it is preferably 0°C or higher and 200°C or lower, more preferably 30°C or higher, still more preferably 40°C or higher, and more preferably 180°C. 150° C. or less, more preferably 150° C. or less.
  • NMR spectrum measurement NMR spectra were measured using "400-MR” manufactured by Varian and "AVANCE NEO 600" manufactured by Bruker as NMR spectrometers.
  • UV-visible absorption spectrum measurement The UV-visible absorption spectrum was measured in the state of a solution in which a polymer compound was dissolved in a solvent. Specifically, the polymer compound was dissolved in chloroform so as to have a concentration of 0.03 g/L, and an ultraviolet/visible spectrometer (manufactured by Shimadzu Corporation, "UV-3600i Plus”) and an optical path length of 1 cm. A UV-visible absorption spectrum was measured using the cell.
  • Compound H was prepared based on Example 2 of JP-A-2009-215278.
  • Compound H is 2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d′]bisthiazole-7,2′-[1,3]dioxolane]; It is sometimes written as Ac-CBTZ-SB.
  • the dark blue solid obtained was P-CBTZ-HD-DPP (hereinafter sometimes referred to as polymer compound 1).
  • the obtained polymer compound 1 was subjected to ultraviolet-visible absorption spectrum measurement in a solution state, and the measurement results were also taken into consideration.
  • FIG. 1 shows the measurement results of the ultraviolet-visible absorption spectrum. The horizontal axis indicates the measurement wavelength, and the vertical axis indicates the absorbance (hereinafter the same applies to the results of the UV-visible absorption spectrum measurement).
  • the dark blue solid obtained was P-CBTZ-EH-PDI (hereinafter sometimes referred to as polymer compound 2).
  • the obtained polymer compound 2 was subjected to ultraviolet-visible absorption spectrum measurement in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 2 shows the measurement results of the UV-visible absorption spectrum.
  • the obtained dark blue solid was dissolved in chlorobenzene, and a large excess of acetic acid and hydrochloric acid were added, followed by stirring at 100° C. for 15 hours. After completion of the reaction, the reaction mixture was concentrated, methanol was added, and the mixture was collected by filtration to obtain 9.3 mg of dark blue solid (yield: 80%).
  • the obtained dark blue solid was P-CBTZ-TD-NDI (hereinafter sometimes referred to as polymer compound 3).
  • the obtained polymer compound 3 was subjected to ultraviolet-visible absorption spectrum measurement in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 3 shows the measurement results of the UV-visible absorption spectrum.
  • the reaction solution was added to methanol (90 mL), the precipitated solid was collected by filtration, and the obtained solid was Soxhlet-washed (methanol, acetone, hexane, chloroform).
  • the solid inside the Soxhlet cylindrical filter paper was taken out, and dissolved again in chloroform by ultrasonic waves and stirring to obtain 285.3 mg of dark blue solid (yield: 70%).
  • a portion (30 mg, 26 ⁇ mol) of the obtained dark blue solid was dissolved in chlorobenzene, and a large excess of acetic acid and hydrochloric acid was added, followed by stirring at 100° C. for 15 hours.
  • the reaction mixture was concentrated, methanol was added, and the mixture was filtered to obtain 22.8 mg of dark blue solid (yield: 82%).
  • the dark blue solid obtained was P-CBTZ-TD-NDI (hereinafter sometimes referred to as polymer compound 4).
  • the obtained polymer compound 4 was subjected to ultraviolet-visible absorption spectrum measurement in a solution state, and the measurement results were also taken into consideration.
  • the solid line in FIG. 4 shows the measurement results of the UV-visible absorption spectrum.
  • Example 5 4-bromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone (TD-NDI-DB, 299.2 mg, 0.2727 mmol), 2-(tributylstannyl)-Thiazole(Bu3Sn-Thz, 299.1 mg, 0.799 mmol), tetrakistriphenylphosphine palladium(0) (34 mg, 30 ⁇ mol) and toluene (6.4 mL) was added and reacted at 110° C. for 16 hours.
  • Example 6 Compound 5 obtained in Example 5 (TD-NDI-2Thz, 18.1 mg, 0.02 mmol) and tetrahydrofuran (0.25 mL) were added to a 20 mL flask, cooled at ⁇ 78° C., and normal butyllithium ( 1.6 mol/L, 0.05 mL) was added and reacted for 1 hour. After that, 1,3-Dibromo-5,5-dimethylhydantoin (DBH, 15.51 mg, 0.06 mmol) was added and reacted at room temperature for 1 hour.
  • DSH 1,3-Dibromo-5,5-dimethylhydantoin
  • Example 7 2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d′]bisthiazole-7,2′-[1,3]dioxolane] (Ac-CBTZ -SB), compound 6 obtained in Example 6, a catalytic amount of tris(dibenzylideneacetone) dipalladium(0) chloroform adduct, and tris(2-methoxy) as a ligand to be coordinated to the catalyst. Phenyl)phosphine is reacted by heating in chlorobenzene. The molar ratio of Ac-CBTZ-SB and compound 6 is 1:1.
  • P-Ac-CBTZ-TD-NDI-2Thz is isolated from the reaction solution and reacted in the presence of acid.
  • P-CBTZ-TD-NDI-2Thz (hereinafter sometimes referred to as polymer compound 7) is isolated from the reaction solution.
  • the polymer compounds 1 to 4 of the present invention can absorb light in the long wavelength region.
  • the molecular weights of the obtained polymer compounds 1 to 4 were measured.
  • Gel permeation chromatography (GPC) was used for molecular weight measurements.
  • the polymer compound is dissolved in a mobile phase solvent (chloroform) to a concentration of 0.8 g/L, the measurement is performed under the following conditions, and conversion is performed based on a calibration curve prepared using polystyrene as a standard sample.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the GPC conditions for the measurement of polymer compounds 1 to 3 are as follows. Apparatus: High Performance Liquid Chromatograph L-2420/L-2130 (manufactured by Hitachi High-Tech Co., Ltd.) Mobile phase: chloroform flow rate 1 mL/min Column: Shodex GPC K-803L (manufactured by Showa Denko KK)
  • the GPC conditions for the measurement of polymer compound 4 are as follows. Apparatus: HLC-8320GPC (manufactured by TOSOH) Mobile phase: chloroform flow rate 0.6 mL/min Column: TSKgel SuperHM-H ⁇ 2 + TSKgel SuperH2000 (manufactured by TOSOH)
  • a dimer (two-fold repeating structure) having a methyl group as a substituent bonded to the nitrogen constituting the acceptor unit was designed, and the ionization energy value was determined by DFT calculation. (HOMO values) and LUMO values were predicted.
  • the dimers used for the calculation are shown in the following formula.
  • Gaussian 16 was used as calculation software for the DFT calculation.
  • the ionization energy values and LUMO values (eV) are shown in Table 1 below. Table 1 below also shows band gap (eV) values calculated from ionization energy values and LUMO values.
  • a dimer (two-fold repeating structure) having a methyl group as a substituent bonded to the nitrogen constituting the acceptor unit was designed, and the ionization energy value was determined by DFT calculation. (HOMO values) and LUMO values were predicted.
  • the dimers used for the calculation are shown in the following formula.
  • Gaussian 16 was used as calculation software for the DFT calculation.
  • the ionization energy values and LUMO values (eV) are shown in Table 1 below. Table 1 below also shows band gap (eV) values calculated from ionization energy values and LUMO values.
  • Example 3 using polymer compound 2 obtained in Example 2 and polymer compound 3 obtained in Example 3, the ionization energy and bandgap were measured. Also, the value of LUMO was obtained from the value of ionization energy and the value of bandgap.
  • the polymer compound was dissolved in chlorobenzene so as to have a concentration of 8 mg/mL, and the resulting solution was drop-cast onto an ITO substrate to form a film.
  • the ionization energy (eV) of this film was measured at normal temperature and under reduced pressure (0.1 Pa or less) using an ionization energy measuring device (“BIP-KV202GD” manufactured by Spectroscopy Instruments Co., Ltd.). The measured ionization energy values (eV) are shown in Table 1 below.
  • bandgap The bandgap of the polymer compound was calculated based on the UV rise after performing UV (ultraviolet-visible absorption spectrum) measurement of the thin film containing the polymer compound. That is, the polymer compound was dissolved in chlorobenzene so as to have a concentration of 8 mg/mL, and the obtained solution was spin-coated on a glass substrate to form a thin film. This thin film was subjected to UV measurement under normal temperature and normal pressure using an ultraviolet/visible spectrometer (manufactured by Shimadzu Corporation, "UV-3600i Plus"). The results of UV measurement in the thin film state are shown by dotted lines in FIGS. 2 to 4. FIG. For Example 1, UV measurement was not performed in the thin film state. Also, the bandgap (eV) was calculated based on the rise of UV. The calculated band gap values (eV) are shown in Table 1 below.
  • FIG. 5 is a schematic diagram prepared to explain the method for calculating the bandgap, and is a schematic diagram in which an auxiliary line is drawn for the ultraviolet-visible absorption spectrum obtained by UV measurement of a thin film containing polymer compound 2. It is a diagram. Regarding the ultraviolet-visible absorption spectrum measured in the region of 200 nm to 1000 nm, as shown in FIG. was obtained.
  • a tangent line is drawn as an auxiliary line to the curve of the region where the absorption increases from the high wavelength side to the low wavelength side in the curve of the peak showing the maximum absorption, and the intersection of this tangent line and the horizontal axis showing the absorbance of 0 was read, and this wavelength was taken as the rising wavelength ⁇ of UV.
  • the rise wavelength ⁇ is 670 nm.
  • Table 1 below shows the LUMO values (eV) calculated based on the ionization energies and band gaps shown in Table 1 below.
  • the ozone-treated silicon substrate was treated with hexamethyldisilazane (HMDS).
  • HMDS hexamethyldisilazane
  • An organic field effect transistor (OFET) device was fabricated by spin-coating a chloroform solution having a polymer compound concentration of 0.5% by mass (7.4 mg/mL) on the substrate surface after the treatment.
  • the fabricated OFET device was annealed at 100° C. for 1 hour, allowed to cool, annealed at 150° C. for 1 hour, and after cooling, the Id-Vg characteristics were measured. Id-Vg characteristics were measured under a nitrogen atmosphere or under vacuum.
  • Id-Vg characteristics For the measurement of the Id-Vg characteristics, "4200-SCS" manufactured by KEITHLEY was used, and the channel length of the organic semiconductor element was 25 ⁇ m and the channel width was 294 mm. Id-Vg characteristics were measured to obtain electron mobility ⁇ e (cm 2 /Vs), threshold voltage Vth (V), and on/off ratio (I on /I off ). Table 1 below shows the results of Id-Vg characteristics measured after annealing at 150° C. for 1 hour.
  • the polymer compounds 1 to 4 of the present invention have a donor unit having a predetermined structure and a specific acceptor unit as repeating units, they can be preferably used as organic semiconductor materials.
  • Polymer compounds 1 to 4 of the present invention in particular, had donor units and acceptor units alternately arranged, and showed good electron mobility even after annealing at 150.degree. Since the polymer compound 7 obtained in Example 7 contains a thiazole unit, the distortion between the donor unit and the acceptor unit is reduced, the structure is nearly planar, and the molecules are easily aligned. , it can be expected that the crystallinity will increase and the electron mobility will increase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

有機半導体材料として好ましく用いることができる高分子化合物を提供する。こうした高分子化合物を含む有機半導体材料を提供する。こうした有機半導体材料を含む有機電子デバイスを提供する。 下記式(Do-K)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを繰り返し単位として有する高分子化合物であり、前記高分子化合物に含まれる複数のアクセプター性ユニットが、芳香族環を含有する縮環型ユニットを含み、かつこの縮環型ユニットの縮環を構成する環の少なくとも1つが炭素原子とヘテロ原子から構成される複素環であることを特徴とする高分子化合物。下記式(Do-K)中、*は、結合手を表す。

Description

高分子化合物、有機半導体材料、および有機電子デバイス
 本発明は、特定の単位を含むドナー性ユニットと、特定のアクセプター性ユニットとを繰り返し単位として有する高分子化合物、該高分子化合物を含む有機半導体材料、および該有機半導体材料を含む有機電子デバイスに関する。
 有機半導体材料は、有機エレクトロニクス分野において重要な材料であり、単量体化合物や高分子化合物が有機半導体材料として用いられている。有機半導体材料は、電子供与性のp型有機半導体材料と電子受容性のn型有機半導体材料に分類でき、p型有機半導体材料およびn型有機半導体材料を適切に組合せることにより様々な有機電子デバイスを製造できる。有機電子デバイスとしては、例えば、電子と正孔が再結合して形成する励起子(エキシトン)の作用により発光する有機エレクトロルミネッセンス素子、電流量または電圧量を制御する有機薄膜トランジスタ素子、有機光電変換素子、光を電力に変換する有機薄膜太陽電池モジュールなどが挙げられる。
 有機半導体材料の一例として、n型有機半導体材料として用いられる重合体が特許文献1に提案されている。特許文献1に提案されている重合体は、下記一般式(II)で表される繰り返し単位の少なくとも1つと、下記一般式(III)で表される繰り返し単位の少なくとも1つとを有する含窒素縮合環重合体である。式(II)中、ZおよびZとしてS(硫黄原子)が例示されており、式(III)中、Arとして2価の芳香族炭化水素基または2価の複素環基が例示されている。
Figure JPOXMLDOC01-appb-C000002
 また、特許文献2には、下記式(1)で表される、含窒素縮環化合物が記載されている。式(1)中、R11およびR12は、各々独立に、水素原子、ハロゲン原子または置換基を有していてもよい1価の基を示し、R11およびR12の少なくとも一方は、下記式(2)で表される基であり、Ar11およびAr12は、各々独立に、炭素数6以上の芳香族炭化水素基または炭素数4以上の複素環基を示す。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 特許文献2の実施例2には、下記式(M)で表される化合物Mが記載されている。
Figure JPOXMLDOC01-appb-C000005
特開2009-215278号公報 特開2011-184324号公報
 本発明の目的は、有機半導体材料として好ましく用いることができる高分子化合物を提供することにある。また、本発明の他の目的は、こうした高分子化合物を含む有機半導体材料を提供することにある。また、本発明の他の目的は、こうした有機半導体材料を含む有機電子デバイスを提供することにある。
 本発明は、以下の発明を含む。
 [1] 下記式(Do-K)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを繰り返し単位として有する高分子化合物であり、前記高分子化合物に含まれる複数のアクセプター性ユニットが、芳香族環を含有する縮環型ユニットを含み、かつこの縮環型ユニットの縮環を構成する環の少なくとも1つが炭素原子とヘテロ原子から構成される複素環であることを特徴とする高分子化合物。下記式(Do-K)中、*は、結合手を表す。
Figure JPOXMLDOC01-appb-C000006

 [2] 前記ドナー性ユニットと前記アクセプター性ユニットとが交互に配置されている[1]に記載の高分子化合物。
 [3] 重量平均分子量(Mw)が2500以上である[1]または[2]に記載の高分子化合物。
 [4] [1]~[3]のいずれかに記載の高分子化合物を含む有機半導体材料。
 [5] [4]に記載の有機半導体材料を含む有機電子デバイス。
 本発明によれば、有機半導体材料として好ましく用いることができる高分子化合物を提供できる。また、本発明によれば、こうした高分子化合物を含む有機半導体材料、およびこうした有機半導体材料を含む有機電子デバイスを提供できる。
図1は、高分子化合物1の紫外可視吸収スペクトルを示す。 図2は、高分子化合物2の紫外可視吸収スペクトルを示す。 図3は、高分子化合物3の紫外可視吸収スペクトルを示す。 図4は、高分子化合物4の紫外可視吸収スペクトルを示す。 図5は、バンドギャップの算出方法を説明するための模式図であり、高分子化合物2を含む薄膜のUV測定を行って得られた紫外可視吸収スペクトルに対して補助線を引いた模式図である。
 本発明の高分子化合物は、下記式(Do-K)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを繰り返し単位として有し、前記アクセプター性ユニットが、縮環構造を有し、かつ環の少なくとも1つが芳香族環であり、環を構成する元素が炭素原子とヘテロ原子である、ヘテロ芳香族縮環型ユニットを含むものである。換言すると、本発明の高分子化合物は、下記式(Do-K)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを繰り返し単位として有する高分子化合物であり、前記高分子化合物に含まれる複数のアクセプター性ユニットが、芳香族環を含有する縮環型ユニットを含み、かつこの縮環型ユニットの縮環を構成する環の少なくとも1つが炭素原子とヘテロ原子から構成される複素環である。下記式(Do-K)中、*は、結合手を表す。
Figure JPOXMLDOC01-appb-C000007
 ドナー性ユニットとは、電子供与性の構造単位を意味する。
 本発明の高分子化合物を構成するドナー性ユニットは、上記式(Do-K)で表される単位を含んでいればよく、公知の他のドナー性ユニットを含んでいてもよい。ドナー性ユニット全体を100mol%としたとき、上記式(Do-K)で表される単位は、例えば、40mol%以上であることが好ましく、より好ましくは50mol%以上であり、更に好ましくは80mol%以上である。ドナー性ユニットの全体(100mol%)が上記式(Do-K)で表される単位であってもよい。
 アクセプター性ユニットとは、電子受容性の構造単位を意味する。
 式(Do-K)で表される単位は、電子供与性に優れている。そのため、式(Do-K)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを組み合わせた高分子化合物を用いれば、イオン化エネルギーの値(HOMOの値)とLUMOの値のバンドギャップが小さくなり、電子が移動しやすくなる。さらに、分子間で静電相互作用が働くことで配向性も良好となり、電子移動度の向上が期待出来る。また、LUMOの値が、例えば、-3.5eV以下となり、大気安定性を有するものとなる。また、溶媒に対する高分子化合物の溶解性が良好な場合には、高分子化合物を用いて得られる膜の膜質が良好となり、電子移動度が一層良好となる。従って当該式(Do-K)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを繰り返し単位として有する高分子化合物は、例えば、有機半導体材料として好適に用いることができる。
 ドナー性ユニットと組み合わせるアクセプター性ユニットは、縮環構造を有し、かつ環の少なくとも1つが芳香族環であり、環を構成する元素が炭素原子とヘテロ原子である、ヘテロ芳香族縮環型ユニットである。ヘテロ芳香族縮環型ユニットとは、縮環構造を有し、かつ環の少なくとも1つが芳香族環であって、環を構成する元素が炭素原子とヘテロ原子である構造単位のことである。ヘテロ芳香族縮環型ユニットを換言すると、芳香族環を含有する縮環型ユニットであって、この縮環型ユニットの縮環を構成する環の少なくとも1つが炭素原子とヘテロ原子から構成される複素環であるユニットである。即ち、縮環構造を有している縮環型ユニットは、少なくとも1つの複素環を有している。ヘテロ原子とは、炭素原子以外の原子のことであり、ヘテロ原子は各々、例えば窒素原子、硫黄原子、または酸素原子である。
 縮環構造を構成する環の数は特に限定されないが、例えば、2以上、10以下が好ましい。環の数は、3以上であってもよく、8以下であってもよい。
 芳香族環は、芳香族炭化水素環であってもよいし、複素芳香族環(芳香族複素環と呼ばれることもある)であってもよい。
 環を構成する元素は、炭素原子およびヘテロ原子であり、環は、ヘテロ原子を少なくとも1個含み、残部は炭素原子である。ヘテロ原子の数は、2個以上であってもよいし、3個以上であってもよい。ヘテロ原子の数の上限は縮環構造を構成する原子の数によるが、例えば、10個以下が好ましく、より好ましくは8個以下、更に好ましくは6個以下である。
 環には、置換基が結合していてもよい。置換基としては、例えば、ハロゲン原子、炭化水素基、アルコキシ基、アシル基、エステル基、ハロゲン化アルキル基、シアノ基などが挙げられる。ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでもフッ素が好ましい。炭化水素基(以下、炭化水素基Rと呼ぶことがある。)は、脂肪族炭化水素基、アラルキル基などであることが好ましく、前記脂肪族炭化水素基は、直鎖状の脂肪族炭化水素基であってもよいが、分岐を有する脂肪族炭化水素基であることがより好ましい。
 炭化水素基Rの炭素数は特に限定されず、例えば、1~30が好ましい。炭化水素基Rの炭素数は、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。但し、炭化水素基Rがアラルキル基の場合、炭素数の下限は7以上が好ましい。
 炭化水素基Rとしては、例えば、メチル基等の炭素数1のアルキル基;エチル基等の炭素数2のアルキル基;n-プロピル基、イソプロピル基等の炭素数3のアルキル基;n-ブチル基等の炭素数4のアルキル基;n-ペンチル基等の炭素数5のアルキル基;n-ヘキシル基等の炭素数6のアルキル基;n-ヘプチル基等の炭素数7のアルキル基;n-オクチル基、1-n-ブチルブチル基、1-n-プロピルペンチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、1-メチルヘプチル基、2-メチルヘプチル基、6-メチルヘプチル基、2,4,4-トリメチルペンチル基、2,5-ジメチルヘキシル基等の炭素数8のアルキル基;n-ノニル基、1-n-プロピルヘキシル基、2-n-プロピルヘキシル基、1-エチルヘプチル基、2-エチルヘプチル基、1-メチルオクチル基、2-メチルオクチル基、6-メチルオクチル基、2,3,3,4-テトラメチルペンチル基、3,5,5-トリメチルヘキシル基等の炭素数9のアルキル基;n-デシル基、1-n-ペンチルペンチル基、1-n-ブチルヘキシル基、2-n-ブチルヘキシル基、1-n-プロピルヘプチル基、1-エチルオクチル基、2-エチルオクチル基、1-メチルノニル基、2-メチルノニル基、3,7-ジメチルオクチル基等の炭素数10のアルキル基;n-ウンデシル基、1-n-ブチルヘプチル基、2-n-ブチルヘプチル基、1-n-プロピルオクチル基、2-n-プロピルオクチル基、1-エチルノニル基、2-エチルノニル基等の炭素数11のアルキル基;n-ドデシル基、1-n-ペンチルヘプチル基、2-n-ペンチルヘプチル基、1-n-ブチルオクチル基、2-n-ブチルオクチル基、1-n-プロピルノニル基、2-n-プロピルノニル基等の炭素数12のアルキル基;n-トリデシル基、1-n-ペンチルオクチル基、2-n-ペンチルオクチル基、1-n-ブチルノニル基、2-n-ブチルノニル基、1-メチルドデシル基、2-メチルドデシル基等の炭素数13のアルキル基;n-テトラデシル基、1-n-ヘプチルヘプチル基、1-n-ヘキシルオクチル基、2-n-ヘキシルオクチル基、1-n-ペンチルノニル基、2-n-ペンチルノニル基等の炭素数14のアルキル基;n-ペンタデシル基、1-n-ヘプチルオクチル基、1-n-ヘキシルノニル基、2-n-ヘキシルノニル基等の炭素数15のアルキル基;n-ヘキサデシル基、2-n-ヘキシルデシル基、1-n-オクチルオクチル基、1-n-ヘプチルノニル基、2-n-ヘプチルノニル基等の炭素数16のアルキル基;n-ヘプタデシル基、1-n-オクチルノニル基等の炭素数17のアルキル基;n-オクタデシル基、1-n-ノニルノニル基等の炭素数18のアルキル基;n-ノナデシル基等の炭素数19のアルキル基;n-エイコシル基、2-n-オクチルドデシル基等の炭素数20のアルキル基;n-ヘンエイコシル基等の炭素数21のアルキル基;n-ドコシル基等の炭素数22のアルキル基;n-トリコシル基等の炭素数23のアルキル基;n-テトラコシル基、2-n-デシルテトラデシル基等の炭素数24のアルキル基;n-ペンタコシル等の炭素数25のアルキル基;n-ヘキサコシル等の炭素数26のアルキル基;n-ヘプタコシル等の炭素数27のアルキル基;n-オクタコシル等の炭素数28のアルキル基;n-ノナコシル等の炭素数29のアルキル基;n-トリアコンチル等の炭素数30のアルキル基;フェニルメチル基、フェニルエチル基などのアラルキル基;等が挙げられる。
 アルコキシ基は、-ORで表され、Rは炭化水素基である。Rで表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 アシル基としては、例えば、アセチル基、プロピオニル基、イソプロピオニル基、ブチリル基、イソブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オレオイル基、リノレオイル基、リノレノイル基等が挙げられる。
 エステル基としては、例えば、アセトキシ基、アシルオキシ基、アルコキシカルボニル基、リン酸エステル基等が挙げられる。
 ハロゲン化アルキル基は、上記で説明した炭化水素基Rの一部の水素がハロゲン原子に置換した置換基を意味する。
 ヘテロ芳香族縮環型ユニットとしては、例えば、下記式(Ac-1)~式(Ac-17)で表されるユニットを挙げることができる。
Figure JPOXMLDOC01-appb-C000008
 [式(Ac-1)~式(Ac-17)中、TおよびTは、それぞれ独立に、単結合であるか、-CH=CH-であるか、-C≡C-であるか、炭化水素基で置換されていてもよいチオフェン環であるか、炭化水素基で置換されていてもよいチアゾール環であるか、炭化水素基で置換されていてもよいピリジン環であるか、炭化水素基で置換されていてもよいピラジン環である。
 Rは、水素原子であるか、炭化水素基であるか、-(CH-ORであり、Rは、炭化水素基である。アクセプター性ユニットが複数のRを有するとき、当該複数のRのうちに、互いに同一のRがあってもよく、互いに異なるRがあってもよい。
 Rは、炭化水素基である。アクセプター性ユニットが複数のRを有するとき、当該複数のRのうちに、互いに同一のRがあってもよく、互いに異なるRがあってもよい。
 AおよびAは、それぞれ独立に、-(CH-ORであるか、アルコキシ基、チオアルコキシ基、炭化水素基、またはオルガノシリル基で置換されていてもよいチオフェン環であるか、炭化水素基またはオルガノシリル基で置換されていてもよいチアゾール環であるか、アルコキシ基、チオアルコキシ基、炭化水素基、オルガノシリル基、ハロゲン原子、またはハロゲン化アルキル基で置換されていてもよいフェニル基であり、Rは、炭化水素基である。
 Dは、CHまたは窒素原子である。アクセプター性ユニットが複数のDを有するとき、当該複数のDのうちに、互いに同一のDがあってもよく、互いに異なるDがあってもよい。
 Dは、炭素原子、ケイ素原子、または窒素原子である。
 nは、0または1である。
 *は、結合手を表す。
 高分子化合物が複数のアクセプター性ユニットを有するとき、T、T、R、R、A、A、D、およびDは各々、ユニット間で同一でもよく、互いに異なっていてもよい。
 環には、上述した置換基が結合していてもよい。]
 T、Tがチオフェン環である場合、チオフェン環が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 T、Tがチアゾール環である場合、チアゾール環が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 T、Tがピリジン環である場合、ピリジン環が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 T、Tがピラジン環である場合、ピラジン環が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 式(Ac-1)~式(Ac-17)中、TおよびTは、それぞれ独立に、単結合であるか、炭化水素基で置換されていてもよいチオフェン環であるか、炭化水素基で置換されていてもよいチアゾール環であることが好ましい。
 Rが炭化水素基である場合、炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上、特に好ましくは8以上であり、より好ましくは28以下、更に好ましくは26以下である。
 Rが-(CH-ORである場合、Rで表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。pは、例えば1~5の整数である。
 式(Ac-1)~式(Ac-17)中、Rは、炭化水素基であることが好ましい。アクセプター性ユニットが複数のRを有するとき、当該複数のRのうちに、互いに同一のRがあってもよく、互いに異なるRがあってもよい。
 Rで表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 A、Aが-(CH-ORである場合、Rで表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。qは、例えば1~5の整数である。
 A、Aがチオフェン環である場合、チオフェン環が置換されて有していてもよいアルコキシ基は、-OR51で表され、R51は炭化水素基である。R51で表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。R51で表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 チオフェン環が置換されて有していてもよいチオアルコキシ基は、-SRで表され、Rは炭化水素基である。Rで表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 チオフェン環が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 チオフェン環が置換されて有していてもよいオルガノシリル基としては、Si原子に1個以上の炭化水素基が置換した1価の基である。Si原子に置換する炭化水素基は、炭素数1~20の脂肪族炭化水素基、または、炭素数6~10の芳香族炭化水素基が好ましい。
 Si原子に置換する脂肪族炭化水素基の炭素数は、好ましくは1~18であり、より好ましくは1~8である。脂肪族炭化水素基としては、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、イソブチル基、オクチル基、オクタデシル基が挙げられる。
 Si原子に置換する芳香族炭化水素基の炭素数は、好ましくは6~8であり、より好ましくは6~7であり、特に好ましくは6である。芳香族炭化水素基としては、例えば、フェニル基が挙げられる。
 Si原子に置換する炭化水素基は、なかでも脂肪族炭化水素基が好ましく、分岐を有する脂肪族炭化水素基がより好ましく、イソプロピル基が特に好ましい。
 Si原子に置換する炭化水素基の数は、2個以上であることが好ましく、3個であることがさらに好ましい。Si原子に置換する炭化水素基の数が2個以上の場合、Si原子に置換する炭化水素基は、異なっていてもよいが、同一であることが好ましい。
 Si原子に置換する炭化水素基の数が3個の場合の具体例としては、トリメチルシリル基、エチルジメチルシリル基、イソプロピルジメチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、トリエチルシリル基、トリイソブチルシリル基、トリプロピルシリル基、トリブチルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基等のアルキルシリル基;トリフェニルシリル基、tert-ブチルクロロジフェニルシリル基等のアリールシリル基;等が挙げられる。中でも、アルキルシリル基が好ましく、トリメチルシリル基、トリイソプロピルシリル基が特に好ましい。
 A、Aがチアゾール環である場合、チアゾール環が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 チアゾール環が置換されて有していてもよいオルガノシリル基としては、上記で説明したオルガノシリル基と同様のものが挙げられる。
 A、Aがフェニル基である場合、フェニル基が置換されて有していてもよいアルコキシ基としては、上記で説明したアルコキシ基と同様のものが挙げられる。
 フェニル基が置換されて有していてもよいチオアルコキシ基としては、上記で説明したチオアルコキシ基と同様のものが挙げられる。
 フェニル基が置換されて有していてもよい炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 フェニル基が置換されて有していてもよいオルガノシリル基としては、上記で説明したオルガノシリル基と同様のものが挙げられる。
 フェニル基が置換されて有していてもよいハロゲン原子としては、上記で説明したハロゲン原子と同様のものが挙げられる。
 フェニル基が置換されて有していてもよいハロゲン化アルキル基としては、炭化水素基の一部または全部の水素原子がハロゲン原子で置換されている基が挙げられ、なかでも全部の水素原子がハロゲン原子で置換されている基(パーフルオロアルキル基)が好ましい。ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでもフッ素が好ましい。ハロゲン化アルキル基としては、例えば、トリフルオロメチル基、トリフルオロエチル基、パーフルオロエチル基等が挙げられる。
 Dは、炭素原子、ケイ素原子、または窒素原子であり、Dが炭素原子またはケイ素原子の場合のnは1であり、Dが窒素原子の場合のnは0である。
 上記式(Ac-1)は、下記式(Ac-1-1)~式(Ac-1-4)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記式(Ac-2)は、下記式(Ac-2-1)または式(Ac-2-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 上記式(Ac-3)は、下記式(Ac-3-1)または式(Ac-3-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記式(Ac-4)は、下記式(Ac-4-1)~式(Ac-4-6)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 上記式(Ac-5)は、下記式(Ac-5-1)または式(Ac-5-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 上記式(Ac-6)は、下記式(Ac-6-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 上記式(Ac-7)は、下記式(Ac-7-1)~式(Ac-7-7)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 上記式(Ac-8)は、下記式(Ac-8-1)~式(Ac-8-3)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 上記式(Ac-9)は、下記式(Ac-9-1)または式(Ac-9-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 上記式(Ac-10)は、下記式(Ac-10-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 上記式(Ac-11)は、下記式(Ac-11-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 上記式(Ac-12)は、下記式(Ac-12-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 上記式(Ac-13)は、下記式(Ac-13-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 上記式(Ac-14)は、下記式(Ac-14-1)または式(Ac-14-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記式(Ac-15)は、下記式(Ac-15-1)~式(Ac-15-3)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000023
 上記式(Ac-16)は、下記式(Ac-16-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000024
 上記式(Ac-17)は、下記式(Ac-17-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 ヘテロ芳香族縮環型ユニットは、上記式(Ac-7)、式(Ac-15)、または式(Ac-17)のいずれかで表されるユニットが好ましく、より好ましくは上記式(Ac-7-1)~式(Ac-7-7)、式(Ac-15-1)、式(Ac-15-2)、または式(Ac-17-1)のいずれかで表されるユニットであり、更に好ましくは式(Ac-7-2)、式(Ac-15-1)、式(Ac-15-2)、または式(Ac-17-1)のいずれかで表されるユニットである。
 本発明に係る高分子化合物は、該高分子化合物に含まれる複数のアクセプター性ユニットが上述したヘテロ芳香族縮環型ユニットを含むものであり、高分子化合物に含まれる全てのアクセプター性ユニットが、上述したヘテロ芳香族縮環型ユニットであってもよい。
 ドナー性ユニットと組み合わせるアクセプター性ユニットとしては、ヘテロ芳香族縮環型ユニットに加えて、更に公知のアクセプター性ユニットを用いることができ、例えば、下記(a)または(b)からなる群より選ばれる少なくとも1種のアクセプター性ユニットを用いることができる。
(a)縮環構造を有し、かつ環の少なくとも1つが芳香族環であり、環を構成する元素が炭素原子である、芳香族縮環型ユニット。
(b)芳香族環を有し、縮環構造を有さない、単環型ユニット。
 以下、(a)、(b)のユニットについて説明する。
 (a)芳香族縮環型ユニット
 芳香族縮環型ユニットとは、縮環構造を有し、かつ環の少なくとも1つが芳香族環であり、環を構成する元素が炭素原子である構造単位である。
 縮環構造を構成する環の数は特に限定されないが、例えば、2以上、10以下が好ましい。環の数は、3以上であってもよく、8以下であってもよい。
 環を構成する元素は、炭素原子であり、ヘテロ原子は含まない。ヘテロ原子とは、炭素原子以外の原子である。環を構成する元素とは、縮環構造に含まれるそれぞれの環構造を構成する全ての元素を意味し、縮環構造の環の少なくとも1つが芳香族環であるとき、該芳香族環は、実質的に芳香族炭化水素環を意味する。
 環には、置換基が結合していてもよい。置換基としては、例えば、ハロゲン原子、炭化水素基、アシル基、エステル基、ハロゲン化アルキル基、シアノ基などが挙げられる。
 ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでもフッ素が好ましい。
 炭化水素基は、脂肪族炭化水素基であることが好ましく、直鎖状の脂肪族炭化水素基であってもよいが、分岐を有する脂肪族炭化水素基であることがより好ましい。
 炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は特に限定されず、例えば、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 アシル基としては、例えば、アセチル基、プロピオニル基、イソプロピオニル基、ブチリル基、イソブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オレオイル基、リノレオイル基、リノレノイル基等が挙げられる。
 エステル基としては、例えば、アセトキシ基、アシルオキシ基、アルコキシカルボニル基、リン酸エステル基等が挙げられる。
 ハロゲン化アルキル基は、上記で説明した炭化水素基Rの一部の水素がハロゲン原子に置換した置換基を意味する。
 芳香族縮環型ユニットは、例えば、下記式(Ac-21)で表されるユニットを挙げることができる。
Figure JPOXMLDOC01-appb-C000026
 [式(Ac-21)中、TおよびTは、それぞれ独立に、単結合であるか、-CH=CH-であるか、-C≡C-であるか、炭化水素基で置換されていてもよいチオフェン環であるか、炭化水素基で置換されていてもよいチアゾール環であるか、炭化水素基で置換されていてもよいピリジン環であるか、炭化水素基で置換されていてもよいピラジン環である。
 Rは、炭化水素基であり、Rは、互いに同一でも異なっていてもよい。
 *は、結合手を表す。式(Ac-21)で表されるユニットが高分子化合物の末端の場合は、*は水素原子であってもよい。
 高分子化合物が複数のアクセプター性ユニットを有するとき、T、T、およびRは各々、ユニット間で同一でもよく、互いに異なっていてもよい。
 環には、上述した置換基が結合していてもよい。]
 TおよびTの説明は、上記ヘテロ芳香族縮環型ユニットにおける説明が援用できる。TとTは、互いに異なっていてもよいが、同一であることが好ましい。
 Rで表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。Rで表される炭化水素基の炭素数は、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 上記式(Ac-21)は、下記式(Ac-21-1)であることが好ましい。
Figure JPOXMLDOC01-appb-C000027
 (b)単環型ユニット
 単環型ユニットとは、芳香族環を有し、縮環構造を有さない構造単位である。
 芳香族環は、芳香族炭化水素環であってもよいし、複素芳香族環(芳香族複素環と呼ばれることもある)であってもよいし、複数の芳香族環が炭素原子またはヘテロ原子を介して結合しているものであってもよい。
 環には、置換基が結合していてもよい。置換基としては、例えば、ハロゲン原子、炭化水素基、アシル基、エステル基、ハロゲン化アルキル基、シアノ基などが挙げられる。
 ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでもフッ素が好ましい。
 炭化水素基は、脂肪族炭化水素基であることが好ましく、直鎖状の脂肪族炭化水素基であってもよいが、分岐を有する脂肪族炭化水素基であることがより好ましい。
 炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。炭化水素基の炭素数は特に限定されず、例えば、1~30が好ましく、より好ましくは3以上、更に好ましくは6以上であり、より好ましくは28以下、更に好ましくは26以下である。
 アシル基としては、例えば、アセチル基、プロピオニル基、イソプロピオニル基、ブチリル基、イソブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、ノナノイル基、デカノイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オレオイル基、リノレオイル基、リノレノイル基等が挙げられる。
 エステル基としては、例えば、アセトキシ基、アシルオキシ基、アルコキシカルボニル基、リン酸エステル基等が挙げられる。
 ハロゲン化アルキル基は、上記で説明した炭化水素基Rの一部の水素がハロゲン原子に置換した置換基を意味する。
 単環型ユニットは、例えば、下記式(Ac-31)~式(Ac-33)で表されるユニットを挙げることができる。
Figure JPOXMLDOC01-appb-C000028
 [式(Ac-31)~式(Ac-33)中、TおよびTは、それぞれ独立に、単結合であるか、-CH=CH-であるか、-C≡C-であるか、炭化水素基で置換されていてもよいチオフェン環であるか、炭化水素基で置換されていてもよいチアゾール環であるか、炭化水素基で置換されていてもよいピリジン環であるか、炭化水素基で置換されていてもよいピラジン環である。
 *は、結合手を表す。式(Ac-31)~式(Ac-33)で表されるユニットが高分子化合物の末端の場合は、*は水素原子であってもよい。
 高分子化合物が複数のアクセプター性ユニットを有するとき、TおよびTは各々、ユニット間で同一でもよく、互いに異なっていてもよい。
 環には、上述した置換基が結合していてもよい。]
 TおよびTの説明は、上記ヘテロ芳香族縮環型ユニットにおける説明が援用できる。
 上記式(Ac-31)は、下記式(Ac-31-1)~式(Ac-31-3)のいずれかであることが好ましい。上記式(Ac-32)は、下記式(Ac-32-1)であることが好ましい。上記式(Ac-33)は、下記式(Ac-33-1)または式(Ac-33-2)であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
 本発明の高分子化合物は、ドナー性ユニットとアクセプター性ユニットとを繰り返し単位として有しており、ドナー性ユニットとアクセプター性ユニットは、ランダムに配置されていてもよいが、交互に配置されていることが好ましい。
 本発明の高分子化合物の重量平均分子量(Mw)は、例えば、2500以上が好ましく、より好ましくは2600以上、更に好ましくは3000以上である。高分子化合物の重量平均分子量(Mw)の上限は特に限定されないが、例えば、450000以下であればよく、300000以下、200000以下、100000以下、または50000以下であってもよい。
 本発明の高分子化合物の数平均分子量(Mn)は、例えば、1500以上が好ましく、より好ましくは2000以上であり、更に好ましくは3000以上である。高分子化合物の数平均分子量(Mn)の上限は特に限定されないが、例えば、300000以下であればよく、200000以下、100000以下、または50000以下であってもよい。
 高分子化合物の重量平均分子量(Mw)および数平均分子量(Mn)は、ゲル浸透クロマトグラフィを用い、ポリスチレンを標準試料として作成した較正曲線に基づいて算出することができる。
 本発明の高分子化合物のイオン化エネルギーは、-4eV以下であることが好ましく、より好ましくは-4.5eV以下、さらに好ましくは-5eV以下、特に好ましくは-5.1eV以下、最も好ましくは-5.5eV以下である。イオン化エネルギーの下限は、特に限定されないが、例えば、-7eV以上が好ましく、より好ましくは-6.5eV以上、更に好ましくは-6.2eV以上である。
 本発明には、上記高分子化合物を含む有機半導体材料も含まれる。例えば、上記式(Do-K)で表される単位を含むドナー性ユニットは、電子供与性に優れているため、当該ドナー性ユニットとアクセプター性ユニット(特に、ヘテロ芳香族縮環型ユニット)とを繰り返し単位として有する高分子化合物[好ましくは、上記式(Do-K)で表される単位を含むドナー性ユニットと、アクセプター性ユニット(特に、ヘテロ芳香族縮環型ユニット)とが交互に配置されている高分子化合物]は、有機半導体材料として有用である。
 上記高分子化合物を含む本発明の有機半導体材料は、n型有機半導体材料として好ましく用いることができる。
 本発明には、上記有機半導体材料を含む有機電子デバイスも含まれる。即ち、上記有機半導体材料は、有機電子デバイスの素材として好適に用いることができ、例えば、有機エレクトロルミネッセンス素子、有機薄膜トランジスタ素子、有機光電変換素子、有機薄膜太陽電池モジュール等の有機電子デバイスの材料として用いることができる。
 次に、本発明の高分子化合物を製造できる方法について説明する。
 本発明の高分子化合物は、例えば、ドナー性ユニットの結合手に有機置換基を有するスズが結合した化合物(以下、ドナー原料と呼ぶ場合がある)と、アクセプター性ユニットの結合手にハロゲン原子が結合した化合物(以下、アクセプター原料と呼ぶ場合がある)とをカップリング反応させた後(以下、カップリング工程と呼ぶ場合がある)、アセタール構造をケトン構造に変化させることによって製造できる。
 ドナー原料には、前記(Do-K)単位の前駆体となる下記(Do-A)単位に対応する式(do-A)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000030
 前記Rの炭素数は、2~8が好ましく、2~6がより好ましく、2~4がさらに好ましい。アルキレン基は、直鎖アルキレン基でもよく、分岐を有するアルキレン基でもよいが、直鎖アルキレン基が好ましい。Rとしては、例えば、エチレン基、n-プロピレン基、1-メチル-エタン-1,2-イル基、1,2-ジメチル-エタン-1,2-イル基、1-メチル-プロパン-1,3-イル基などが挙げられ、これらのなかでも、エチレン基、n-プロピレン基が好ましい。
Figure JPOXMLDOC01-appb-C000031
 式(do-A)中、Rは前記と同じである。式(do-A)で表される化合物において、前記Rが炭素数2のエチレン基である場合は、式(do-A)で表される化合物は下記式(do-a)で表される。
Figure JPOXMLDOC01-appb-C000032
 R11およびR12は、有機置換基を表し、それぞれ独立に、炭化水素基である。複数のR11のうちに、互いに同一のR11があってもよいし互いに異なるR11があってもよく、複数のR12のうちに、互いに同一のR12があってもよいし互いに異なるR12があってもよい。R11およびR12で表される炭化水素基としては、上記で説明した炭化水素基Rと同様のものが挙げられる。R11およびR12で表される炭化水素基の炭素数は各々、1~10が好ましく、より好ましくは2以上、更に好ましくは3以上であり、より好ましくは5以下、更に好ましくは4以下である。R11とR12は、互いに異なっていてもよいが、同一であることが好ましい。
 式(do-A)で表される化合物は、特開2009-215278号公報に記載の方法に基づいて製造できる。
 アクセプター原料としては、例えば、上述したヘテロ芳香族縮環型ユニットの結合手にハロゲン原子が結合している化合物を用いることができる。ヘテロ芳香族縮環型ユニットの結合手にハロゲン原子が結合している化合物は、例えば、下記式(ac-1)~式(ac-17)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000033
 [式(ac-1)~式(ac-17)中、T、T、R、R、A、A、D、D、およびnは、前記式(Ac-1)~式(Ac-17)について説明したのと同じである。
 Yは、ハロゲン原子を表す。
 式(ac-1)~式(ac-17)で表されるアクセプター原料の2種以上を組み合わせて用いるとき、T、T、R、R、A、A、D、D、およびYは各々、アクセプター原料間で同一でもよく、互いに異なっていてもよい。
 環には、上述した置換基が結合していてもよい。]
 ハロゲン原子Yとしては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでも臭素が好ましい。
 アクセプター原料には、上述したヘテロ芳香族縮環型ユニットの結合手にハロゲン原子が結合している化合物のみを用いてもよいし、ヘテロ芳香族縮環型ユニットの結合手にハロゲン原子が結合している化合物と併せて、更に、(a)芳香族縮環型ユニットの結合手にハロゲン原子が結合している化合物、および/または(b)単環型ユニットの結合手にハロゲン原子が結合している化合物を用いてもよい。
 (a)芳香族縮環型ユニットの結合手にハロゲン原子が結合している化合物は、例えば、下記式(ac-21)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000034
 [式(ac-21)中、T、T、およびRは、前記式(Ac-21)について説明したのと同じである。
 Yは、ハロゲン原子を表す。
 式(ac-21)で表されるアクセプター原料の2種以上を組み合わせて用いるとき、T、T、R、およびYは各々、アクセプター原料間で同一でもよく、互いに異なっていてもよい。
 環には、上述した置換基が結合していてもよい。]
 ハロゲン原子Yとしては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでも臭素が好ましい。
 (b)単環型ユニットの結合手にハロゲン原子が結合している化合物は、例えば、下記式(ac-31)~式(ac-33)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000035
 [式(ac-31)~式(ac-33)中、TおよびTは、前記式(Ac-31)~式(Ac-33)について説明したのと同じである。
 Yは、ハロゲン原子を表す。
 式(ac-31)~式(ac-33)で表されるアクセプター原料の2種以上を組み合わせて用いるとき、T、T、およびYは各々、アクセプター原料間で同一でもよく、互いに異なっていてもよい。
 環には、上述した置換基が結合していてもよい。]
 ハロゲン原子Yとしては、例えば、フッ素、塩素、臭素、ヨウ素などが挙げられ、なかでも臭素が好ましい。
 上記式(do-A)で表される有機スズ化合物と、アクセプター性ユニットのハロゲン化物は、金属触媒の存在下でカップリング反応させることが好ましい。
 カップリング反応に用いる金属触媒としては、例えば、パラジウム系触媒、ニッケル系触媒、鉄系触媒、銅系触媒、ロジウム系触媒、ルテニウム系触媒などの遷移金属触媒が挙げられる。これらのなかでも、パラジウム系触媒が好ましい。パラジウム系触媒に含まれるパラジウムの価数は特に限定されず、0価でも2価でもよい。
 パラジウム系触媒としては、例えば、塩化パラジウム(II)、臭化パラジウム(II)、ヨウ化パラジウム(II)、酸化パラジウム(II)、硫化パラジウム(II)、テルル化パラジウム(II)、水酸化パラジウム(II)、セレン化パラジウム(II)、パラジウムシアニド(II)、パラジウムアセテート(II)、パラジウムトリフルオロアセテート(II)、パラジウムアセチルアセトナート(II)、ジアセテートビス(トリフェニルホスフィン)パラジウム(II)、テトラキス(トリフェニルホスフィン)パラジウム(0)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロビス(アセトニトリル)パラジウム(II)、ジクロロビス(ベンゾニトリル)パラジウム(II)、ジクロロ[1,2-ビス(ジフェニルホスフィノ)エタン]パラジウム(II)、ジクロロ[1,3-ビス(ジフェニルホスフィノ)プロパン]パラジウム(II)、ジクロロ[1,4-ビス(ジフェニルホスフィノ)ブタン]パラジウム(II)、ジクロロ[1,1-ビス(ジフェニルホスフィノフェロセン)]パラジウム(II)、ジクロロ[1,1-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロロメタン付加体、ビス(ジベンジリデンアセトン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体、ジクロロ[1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール-2-イリデン](3-クロロピリジル)パラジウム(II)、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)、ジクロロ[2,5-ノルボルナジエン]パラジウム(II)、ジクロロビス(エチレンジアミン)パラジウム(II)、ジクロロ(1,5-シクロオクタジエン)パラジウム(II)、ジクロロビス(メチルジフェニルホスフィン)パラジウム(II)が挙げられる。これらのなかでも、トリス(ジベンジリデンアセトン)ジパラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体を用いることが好ましい。
 銅系触媒としては、例えば、銅、フッ化銅(I)、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)、フッ化銅(II)、塩化銅(II)、臭化銅(II)、ヨウ化銅(II)等のハロゲン化銅化合物;酸化銅(I)、硫化銅(I)、酸化銅(II)、硫化銅(II)、酢酸銅(I)、酢酸銅(II)、硫酸銅(II)等が挙げられる。
 金属触媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 カップリング工程において、上記式(do-A)で表される有機スズ化合物と金属触媒とのモル比(式(do-A)で表される有機スズ化合物:金属触媒)は、例えば、1:0.0001~1:0.5程度であり、1:0.001~1:0.4が好ましく、1:0.005~1:0.3がより好ましく、1:0.01~1:0.2がさらに好ましい。
 カップリング工程では、金属触媒に配位子を配位させてもよい。配位子としては、例えば、トリメチルホスフィン、トリエチルホスフィン、トリ(n-ブチル)ホスフィン、トリ(イソプロピル)ホスフィン、トリ(tert-ブチル)ホスフィン、ビス(tert-ブチル)メチルホスフィン、トリシクロヘキシルホスフィン、ジフェニル(メチル)ホスフィン、トリフェニスホスフィン、トリス(o-トリル)ホスフィン、トリス(m-トリル)ホスフィン、トリス(p-トリル)ホスフィン、トリス(2-フリル)ホスフィン、トリス(2-メトキシフェニル)ホスフィン、トリス(3-メトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリ-tert-ブチルホスホニウムテトラフルオロボラート、2-ジシクロヘキシルホスフィノビフェニル、2-ジシクロヘキシルホスフィノ-2’-メチルビフェニル、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシ-1,1’-ビフェニル、2-ジシクロヘキシルホスフィノ-2’-(N,N’-ジメチルアミノ)ビフェニル、2-ジフェニルホスフィノ-2’-(N,N’-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチル)ホスフィノ-2’-(N,N’-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチル)ホスフィノビフェニル、2-(ジ-tert-ブチル)ホスフィノ-2’-メチルビフェニル、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,2-ビス(ジシクロヘキシルホスフィノ)エタン、1,3-ビス(ジシクロヘキシルホスフィノ)プロパン、1,4-ビス(ジシクロヘキシルホスフィノ)ブタン、1,2-ビスジフェニルホスフィノエチレン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、1,2-エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、2,2’-ビピリジル、1,3-ジフェニルジヒドロイミダゾリリデン、1,3-ジメチルジヒドロイミダゾリリデン、ジエチルジヒドロイミダゾリリデン、1,3-ビス(2,4,6-トリメチルフェニル)ジヒドロイミダゾリリデン、1,3-ビス(2,6-ジイソプロピルフェニル)ジヒドロイミダゾリリデン、1,10-フェナントロリン、5,6-ジメチル-1,10-フェナントロリン、バトフェナントロリンが挙げられる。これらのなかでも、トリメチルホスフィン、トリエチルホスフィン、トリ(n-ブチル)ホスフィン、トリ(イソプロピル)ホスフィン、トリ(tert-ブチル)ホスフィン、ビス(tert-ブチル)メチルホスフィン、トリシクロヘキシルホスフィン、ジフェニル(メチル)ホスフィン、トリフェニスホスフィン、トリス(o-トリル)ホスフィン、トリス(m-トリル)ホスフィン、トリス(p-トリル)ホスフィン、トリス(2-フリル)ホスフィン、トリス(2-メトキシフェニル)ホスフィン、トリス(3-メトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィンが好ましく、より好ましくはトリス(2-メトキシフェニル)ホスフィンである。
 配位子は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 金属触媒に配位子を配位させる場合、金属触媒と配位子とのモル比(金属触媒:配位子)は、例えば、1:0.5~1:10程度であり、1:1~1:8が好ましく、1:1~1:7がより好ましく、1:1~1:5がさらに好ましい。
 カップリング工程では、溶媒を用いることが好ましく、溶媒は、反応に影響を及ぼさない限り特に限定されることはなく、例えば、エーテル系溶媒、芳香族系溶媒、エステル系溶媒、炭化水素系溶媒、ハロゲン系溶媒、ケトン系溶媒、アミド系溶媒、ニトリル系溶媒、スルホキシド系溶媒、スルホン系溶媒等を用いることができる。
 エーテル系溶媒としては、例えば、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジメトキシエタン、シクロペンチルメチルエーテル、tert-ブチルメチルエーテル、ジオキサンなどが挙げられる。芳香族系溶媒としては、例えば、ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、テトラリンなどが挙げられる。エステル系溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチルなどが挙げられる。炭化水素系溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、デカリンなどが挙げられる。ハロゲン系溶媒としては、例えば、ジクロロメタン、クロロホルム、ジクロロエタン、ジクロロプロパンなどが挙げられる。ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンなどが挙げられる。アミド系溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-(1H)-ピリミジンなどが挙げられる。ニトリル系溶媒としては、例えば、アセトニトリル等が挙げられる。スルホキシド系溶媒としては、例えば、ジメチルスルホキシド等が挙げられる。スルホン系溶媒としては、例えば、スルホラン等が挙げられる。これらのなかでも、芳香族系溶媒が好ましく、より好ましくはクロロベンゼンである。
 溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 カップリング工程で用いる溶媒の量は、上記式(do-A)で表される有機スズ化合物とアクセプター性ユニットのハロゲン化物の合計1gに対して、例えば、1mL以上、150mL以下程度であり、好ましくは5mL以上、より好ましくは8mL以上であり、好ましくは100mL以下、より好ましくは80mL以下である。
 カップリング工程における反応温度は特に限定されないが、反応収率を高める観点から0℃以上、200℃以下が好ましく、より好ましくは30℃以上、更に好ましくは40℃以上であり、より好ましくは180℃以下、更に好ましくは150℃以下である。
 カップリング反応後は、常法に従って固液分離し、回収した固体を洗浄することによって上記式(Do-A)で表される単位を含むドナー性ユニットと、アクセプター性ユニットとを繰り返し単位として有する高分子化合物を製造でき、この高分子化合物を、水の存在下で、酸性条件で、加熱撹拌することにより、アセタール構造をケトン構造に変化させることで、上記式(Do-K)で表される単位を含むドナー性ユニットと、アクセプター性ユニット(特に、ヘテロ芳香族縮環型ユニット)とを繰り返し単位として含む高分子化合物を製造できる。
 本願は、2021年12月9日に出願された日本国特許出願第2021-200323号に基づく優先権の利益を主張するものである。上記日本国特許出願第2021-200323号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、以下においては、特に断りのない限り、「%」は「質量%」を意味する。
 実施例で用いた測定方法は、下記の通りである。
 [測定方法]
 (NMRスペクトル測定)
 NMRスペクトル測定装置として、Varian社製の「400-MR」、およびBruker社製の「AVANCE NEO 600」を用いて、NMRスペクトル測定を行った。
 (紫外可視吸収スペクトル測定)
 紫外可視吸収スペクトルの測定は、高分子化合物を溶媒に溶解させた溶液の状態で測定した。具体的には、高分子化合物を、濃度が0.03g/Lになる様にクロロホルムに溶解し、紫外・可視分光装置(島津製作所社製、「UV-3600i Plus」)、および光路長1cmのセルを用いて紫外可視吸収スペクトルを測定した。
 特開2009-215278号公報の実施例2に基づいて化合物Hを調製した。化合物Hは、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane]であり、以下、Ac-CBTZ-SBと表記することがある。
 (実施例1)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、3,6-Bis(5-bromo-2-thienyl)-2,5-bis(3,7-hexyldecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione(HD-DPP-DB、110.6mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(7.5mg、21μmol)およびクロロベンゼン(4mL)を添加し、130℃で24時間反応させた。反応終了後、塩酸および酢酸を添加し、更に100℃で2時間反応させた。その後、メタノール(30mL)に反応液を加え、析出した固体をろ取し、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が63.7mg(収率52%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-Ac―CBTZ-HD-DPP/P-CBTZ-HD-DPP(20/80)であった。
 得られた紺色固体の一部(14mg、15μmol)をクロロホルムに溶かし、メタンスルホン酸および水を大過剰に加えて60℃で15時間攪拌した。反応終了後、濃縮しメタノールを加えてろ取した結果、紺色固体が6.7mg(収率51%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-CBTZ-HD-DPP(以下、高分子化合物1ということがある)であった。この際に、得られた高分子化合物1の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図1に示す。横軸は測定波長、縦軸は吸光度を示す(以下、紫外可視吸収スペクトル測定の結果について同じ)。
Figure JPOXMLDOC01-appb-C000036
 (実施例2)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、5,12-Dibromo-2,9-bis(2-ethylhexyl)anthra[2,1,9-def:6,5,10-d’e’f’]diisoquinoline-1,3,8,10(2H,9H)-tetrone(EH-PDI-DB、94.2mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)-クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(6.7mg、19μmol)およびクロロベンゼン(4mL)を添加し、130℃で24時間反応させた。反応終了後、酢酸および塩酸を添加し、更に100℃で2時間反応させた。その後、メタノール(30mL)に反応液を加え、析出した固体をろ取し、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が19.5mg(収率20%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-CBTZ-EH-PDI(以下、高分子化合物2ということがある)であった。この際に、得られた高分子化合物2の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図2に実線で示す。
Figure JPOXMLDOC01-appb-C000037
 (実施例3)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、100mg、0.122mmol)、4,9-Dibromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(TD-NDI-DB、134mg、0.122mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(5mg、4.8μmol)、トリス(2-メトキシフェニル)ホスフィン(7.5mg、21μmol)およびクロロベンゼン(4mL)を添加し、溶解性を確認しながら50℃から100℃まで段階的に昇温し、100℃で15時間反応した。50℃から100℃までの昇温は、溶解性を確認しながら50℃で1時間保持、70℃に昇温して1時間保持した後、100℃に昇温した。反応終了後、メタノール(30mL)に反応液を加え、析出した固体をろ取し、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン)した。次いでソックスレー抽出(クロロホルム)した結果、紺色固体が125mg(収率91%)得られた。得られた紺色固体の一部(10mg、8.5μmol)をクロロベンゼンに溶かし、酢酸および塩酸を大過剰に加えて100℃で15時間攪拌した。反応終了後、濃縮しメタノールを加えてろ取した結果、紺色固体が9.3mg(収率80%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-CBTZ-TD-NDI(以下、高分子化合物3ということがある)であった。この際に、得られた高分子化合物3の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図3に実線で示す。
Figure JPOXMLDOC01-appb-C000038
 (実施例4)
 20mLフラスコに、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB、300mg、0.367mmol)、4,9-Dibromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(TD-NDI-DB、402mg、0.367mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体(15mg、14.7μmol)、トリス(2-メトキシフェニル)ホスフィン(22.0mg、62μmol)およびクロロベンゼン(12mL)を加え、130℃で24時間反応した。反応終了後、メタノール(90mL)に反応液を加えて析出した固体をろ取し、得られた固体をソックスレー洗浄(メタノール、アセトン、ヘキサン、クロロホルム)した。次いでソックスレー円筒ろ紙内部の固体を取り出し、再度クロロホルム中、超音波および攪拌操作によって溶解した結果、紺色固体が285.3mg(収率70%)得られた。得られた紺色固体の一部(30mg、26μmol)をクロロベンゼンに溶かし、酢酸および塩酸を大過剰に加えて100℃で15時間攪拌した。反応終了後、濃縮しメタノールを加えてろ取した結果、紺色固体が22.8mg(収率82%)得られた。NMRスペクトル測定の結果、得られた紺色固体は、P-CBTZ-TD-NDI(以下、高分子化合物4ということがある)であった。この際に、得られた高分子化合物4の紫外可視吸収スペクトル測定を溶液の状態で行い、その測定結果も考慮に入れた。紫外可視吸収スペクトルの測定結果を図4に実線で示す。
 (実施例5)
 20mLフラスコに、4-bromo-2,7-bis(2-decyltetradecyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetrone(TD-NDI-DB、299.2mg、0.2727mmol)、2-(tributylstannyl)-Thiazole(Bu3Sn-Thz、299.1mg、0.799mmol)、テトラキストリフェニルホスフィンパラジウム(0)(34mg、30μmol)およびトルエン(6.4mL)を添加し、110℃で16時間反応した。反応終了後、ブライン洗浄、トルエン抽出を実施し、濃縮した。さらに、メタノール(10mL)を加え、析出した固体をろ取した結果、黄色固体が247.9mg(収率82.2%)で得られた。NMRスペクトル測定の結果、得られた黄色固体は、TD-NDI-2Thz(以下、化合物5ということがある)であった。
H NMR(400MHz,CDCl):8.915(s,1H),8.018(d,2H),7.645(d,2H),4.024(d,4H),1.895(bs,2H),1.199(bs,80H),0.847(t,12H)
Figure JPOXMLDOC01-appb-C000039
 (実施例6)
 20mLフラスコに、実施例5で得られた化合物5(TD-NDI-2Thz、18.1mg、0.02mmol)およびテトラヒドロフラン(0.25mL)を添加し、-78℃で冷却後、ノルマルブチルリチウム(1.6mol/L、0.05mL)を添加し1時間反応させた。その後、1,3-Dibromo-5,5-dimethylhydantoin(DBH、15.51mg、0.06mmol)を添加し、室温で1時間反応した。反応終了後、酢酸エチルで抽出し、亜硫酸ナトリウム、水洗を実施し、有機層を硫酸マグネシウムで乾燥後に濃縮した。カラムクロマトグラフィー(クロロホルム/酢酸エチル=10)、メタノール(10mL)を加え、析出した固体をろ取した結果、黄色固体が15mg(収率72.5%)で得られた。NMRスペクトル測定の結果、得られた黄色固体は、TD-NDI-2Thz―Br(以下、化合物6ということがある)であった。
H NMR(400MHz,CDCl):9.140(s,2H),7.931(s,2H),4.085(d,4H),1.227-1.186(bs,80H),0.855(t,12H)
Figure JPOXMLDOC01-appb-C000040
 (実施例7)
 20mLフラスコ中において、2,5-Bis(tributylstannyl)spiro[7H-cyclopenta[1,2-d:4,3-d’]bisthiazole-7,2’-[1,3]dioxolane](Ac-CBTZ-SB)と、実施例6で得られた化合物6と、触媒量のトリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルム付加体と、触媒に配位させる配位子としてのトリス(2-メトキシフェニル)ホスフィンをクロロベンゼン中で加熱して反応させる。Ac-CBTZ-SBと化合物6のモル比は、1:1とする。反応液から、P-Ac-CBTZ-TD-NDI―2Thzを単離し、酸の存在下で反応させる。反応液から、P-CBTZ-TD-NDI―2Thz(以下、高分子化合物7ということがある)を単離する。
Figure JPOXMLDOC01-appb-C000041
 図1~図4から明らかなように、本発明の高分子化合物1~4は、長波長領域の光を吸収できることが分かる。
 次に、得られた高分子化合物1~4の分子量を測定した。分子量の測定には、ゲル浸透クロマトグラフィー(GPC)を用いた。測定に際しては、高分子化合物を0.8g/Lの濃度となるように移動相溶媒(クロロホルム)に溶解し、下記条件で測定を行い、ポリスチレンを標準試料として作成した較正曲線に基づいて換算することによって、高分子化合物の重量平均分子量(Mw)および数平均分子量(Mn)を算出した。
 高分子化合物1~3の測定におけるGPC条件は、下記の通りである。
装置:高速液体クロマトグラフ L-2420/L-2130(株式会社日立ハイテク社製)
移動相:クロロホルム流速1mL/min
カラム:Shodex GPC K-803L(昭和電工株式会社製)
 高分子化合物4の測定におけるGPC条件は、下記の通りである。
装置:HLC-8320GPC(TOSOH社製)
移動相:クロロホルム流速0.6mL/min
カラム:TSKgel SuperHM-H×2+TSKgel SuperH2000(TOSOH社製)
 分子量の測定結果を下記表1に示す。なお、分子量を示すピークが2つ検出された場合は、2つの分子量を下記表1に示した。
 次に、実施例1で得られた高分子化合物1について、アクセプター性ユニットを構成する窒素に結合する置換基がメチル基のダイマー(2回繰り返し構造)を設計し、DFT計算によってイオン化エネルギーの値(HOMOの値)およびLUMOの値を予測した。計算に用いたダイマーを下記式に示す。DFT計算は、計算ソフトとしてGaussian 16を用いた。イオン化エネルギーの値、およびLUMOの値(eV)を下記表1に示す。また、下記表1には、イオン化エネルギーの値とLUMOの値から算出したバンドギャップ(eV)の値も示した。
Figure JPOXMLDOC01-appb-C000042
 次に、実施例4で得られた高分子化合物4について、アクセプター性ユニットを構成する窒素に結合する置換基がメチル基のダイマー(2回繰り返し構造)を設計し、DFT計算によってイオン化エネルギーの値(HOMOの値)およびLUMOの値を予測した。計算に用いたダイマーを下記式に示す。DFT計算は、計算ソフトとしてGaussian 16を用いた。イオン化エネルギーの値、およびLUMOの値(eV)を下記表1に示す。また、下記表1には、イオン化エネルギーの値とLUMOの値から算出したバンドギャップ(eV)の値も示した。
Figure JPOXMLDOC01-appb-C000043
 次に、実施例2で得られた高分子化合物2、および実施例3で得られた高分子化合物3を用い、イオン化エネルギー、およびバンドギャップを測定した。また、イオン化エネルギーの値およびバンドギャップの値からLUMOの値を求めた。
 (イオン化エネルギーの測定)
 高分子化合物の濃度が8mg/mLとなるようにクロロベンゼンに溶解し、得られた溶液をITO基板上にドロップキャストして成膜した。この膜について、常温、減圧下(0.1Pa以下)で、イオン化エネルギー測定装置(分光計器株式会社製、「BIP-KV202GD」)によりイオン化エネルギー(eV)を測定した。測定したイオン化エネルギーの値(eV)を下記表1に示す。
 (バンドギャップ)
 高分子化合物のバンドギャップは、高分子化合物を含む薄膜のUV(紫外可視吸収スペクトル)測定を行い、UVの立ち上がりに基づいて算出した。即ち、高分子化合物の濃度が8mg/mLとなるようにクロロベンゼンに溶解し、得られた溶液をガラス基板上にスピンコートして薄膜を成膜した。この薄膜について、常温常圧下で、紫外・可視分光装置(島津製作所社製、「UV-3600i Plus」)によりUV測定を行った。薄膜の状態で測定したUV測定の結果を図2~図4に点線で示した。なお、実施例1については、薄膜の状態でのUV測定は行わなかった。また、UVの立ち上がりに基づいてバンドギャップ(eV)を算出した。算出したバンドギャップの値(eV)を下記表1に示す。
 バンドギャップの算出方法について、図5を用いて説明する。図5は、バンドギャップの算出方法を説明するために作成した模式図であり、高分子化合物2を含む薄膜のUV測定を行って得られた紫外可視吸収スペクトルに対して補助線を引いた模式図である。200nm~1000nmの領域で測定した紫外可視吸収スペクトルについて、図5に示すように、化合物由来のピークの長波長側にピークトップ付近から接線を引き、接線と横軸(波長)との交点から立ち上がりの波長λを求めた。即ち、最大吸収を示すピークの曲線における高波長側から低波長側に向かって吸収が大きくなる領域の曲線に対して補助線として接線を引き、この接線と吸光度が0を示す横軸との交点における波長を読み取り、この波長をUVの立ち上がり波長λとした。図5に示した高分子化合物2の場合は、立ち上がり波長λは670nmとなる。
 HOMO-LUMO間のバンドギャップ(エネルギーギャップ)をE、プランク定数をh、真空中の光速をcとすると、次式の関係が成立する。
E=hc/λ
 ここで、プランク定数hは6.626×10-34、真空中の光速cは2.998×10であるから、立ち上がり波長λとして670を代入すると、バンドギャップEは下記式の通り1.85eVとなる。
E=1239.8/670≒1.85(eV)
 一方、イオン化エネルギーの値(HOMOの値)は、-5.88eVであるので、LUMOの値は、下記の通り-4.03eVとなる。
LUMO=-5.88+1.85=-4.03(eV)
 下記表1に示したイオン化エネルギーとバンドギャップに基づいて算出したLUMOの値(eV)を下記表1に示す。
 次に、得られた高分子化合物1~4を用い、電子移動度μe、しきい値電圧、オン/オフ比を測定した。
 (電子移動度、しきい値電圧、オン/オフ比の測定)
 オゾン処理したシリコン基板上を、ヘキサメチルジシラザン(HMDS)を用いて処理した。処理後の基板表面に、高分子化合物の濃度が0.5質量%(7.4mg/mL)のクロロホルム溶液をスピンコートすることで、有機電界効果型トランジスタ(OFET)素子を作製した。作製したOFET素子につき、100℃で1時間のアニールを実施、放冷、150℃で1時間のアニールを実施、放冷後、Id-Vg特性を測定した。Id-Vg特性は、窒素雰囲気下または真空下で測定した。Id-Vg特性の測定には、ケースレーインスツルメンツ(KEITHLEY)製の「4200-SCS」を用い、有機半導体素子のチャネル長さは25μm、チャネル幅は294mmとした。Id-Vg特性の測定を行い、電子移動度μe(cm/Vs)、しきい値電圧Vth(V)、オン/オフ比(Ion/Ioff)を求めた。150℃で1時間アニールを実施した後に測定したId-Vg特性の結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000044
 表1から次のように考察できる。本発明の高分子化合物1~4は、所定の構造を有するドナー性ユニットと、特定のアクセプター性ユニットとを繰り返し単位として有しているため、有機半導体材料として好ましく用いることができる。本発明の高分子化合物1~4は、特にドナー性ユニットとアクセプター性ユニットとが交互に配置されており、150℃のアニールを行っても良好な電子移動度を示した。実施例7で得られる高分子化合物7については、チアゾールユニットを含んでいるため、ドナー性ユニットとアクセプター性ユニットとの間の歪みが少なくなり、平面に近い構造となり、分子同士が配列しやすくなり、結晶性が上がり、電子移動度が上がることが期待できる。
 

Claims (5)

  1.  下記式(Do-K)で表される単位を含むドナー性ユニットと、
     アクセプター性ユニットとを繰り返し単位として有する高分子化合物であり、
     前記高分子化合物に含まれる複数のアクセプター性ユニットが、芳香族環を含有する縮環型ユニットを含み、かつこの縮環型ユニットの縮環を構成する環の少なくとも1つが炭素原子とヘテロ原子から構成される複素環である
     ことを特徴とする高分子化合物。
    Figure JPOXMLDOC01-appb-C000001

    [式(Do-K)中、*は、結合手を表す。]
  2.  前記ドナー性ユニットと前記アクセプター性ユニットとが交互に配置されている請求項1に記載の高分子化合物。
  3.  重量平均分子量(Mw)が2500以上である請求項1または2に記載の高分子化合物。
  4.  請求項1に記載の高分子化合物を含む有機半導体材料。
  5.  請求項4に記載の有機半導体材料を含む有機電子デバイス。
PCT/JP2022/045472 2021-12-09 2022-12-09 高分子化合物、有機半導体材料、および有機電子デバイス WO2023106404A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023514758A JP7291360B1 (ja) 2021-12-09 2022-12-09 高分子化合物、有機半導体材料、および有機電子デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021200323 2021-12-09
JP2021-200323 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023106404A1 true WO2023106404A1 (ja) 2023-06-15

Family

ID=86730532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045472 WO2023106404A1 (ja) 2021-12-09 2022-12-09 高分子化合物、有機半導体材料、および有機電子デバイス

Country Status (2)

Country Link
TW (1) TW202336021A (ja)
WO (1) WO2023106404A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184324A (ja) * 2010-03-05 2011-09-22 Sumitomo Chemical Co Ltd 含窒素縮合環化合物、有機薄膜及び有機薄膜素子
JP2012126876A (ja) * 2010-11-24 2012-07-05 Sumitomo Chemical Co Ltd 共役系化合物、並びにこれを用いた有機薄膜及び有機薄膜素子
JP2013074136A (ja) * 2011-09-28 2013-04-22 Fujifilm Corp 有機薄膜太陽電池、これに用いられる有機半導体ポリマーおよび有機半導体材料用組成物
JP2013082787A (ja) * 2011-10-07 2013-05-09 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた電子素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184324A (ja) * 2010-03-05 2011-09-22 Sumitomo Chemical Co Ltd 含窒素縮合環化合物、有機薄膜及び有機薄膜素子
JP2012126876A (ja) * 2010-11-24 2012-07-05 Sumitomo Chemical Co Ltd 共役系化合物、並びにこれを用いた有機薄膜及び有機薄膜素子
JP2013074136A (ja) * 2011-09-28 2013-04-22 Fujifilm Corp 有機薄膜太陽電池、これに用いられる有機半導体ポリマーおよび有機半導体材料用組成物
JP2013082787A (ja) * 2011-10-07 2013-05-09 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた電子素子

Also Published As

Publication number Publication date
TW202336021A (zh) 2023-09-16

Similar Documents

Publication Publication Date Title
JP6500786B2 (ja) 有機半導体材料
KR102158583B1 (ko) 전자 응용을 위한 관능화 벤조디티오펜 중합체
US8247810B2 (en) Electroactive materials
KR20150001792A (ko) 디케토피롤로피롤 중합체 및 소분자
JP2015501337A (ja) ベンゾジオン系ポリマー
US8992800B2 (en) Electroactive materials
JP6688453B2 (ja) 有機半導体材料
JP7291360B1 (ja) 高分子化合物、有機半導体材料、および有機電子デバイス
WO2023106404A1 (ja) 高分子化合物、有機半導体材料、および有機電子デバイス
WO2023106405A1 (ja) 化合物、有機半導体材料、および有機電子デバイス
JP7468346B2 (ja) 高分子化合物
JP6459971B2 (ja) 有機半導体材料
JP7026391B2 (ja) 半導体ポリマー
WO2023068017A1 (ja) 有機半導体材料
JP6798651B1 (ja) 高分子化合物
JP7448103B1 (ja) 化合物、有機薄膜、及び有機光検出器
KR20180069823A (ko) 디피롤로[1,2-b:1',2'-g][2,6]나프티리딘-5,11-디온 기재 중합체 및 화합물
EP3224296A1 (en) Preparation of polymers comprising at least one benzo[c][1,2,5]thiadiazol-5,6-dicarbonitrile-unit
JPWO2008140087A1 (ja) 導電性樹脂組成物および導電性樹脂膜並びに導電性樹脂膜の形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023514758

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904331

Country of ref document: EP

Kind code of ref document: A1