WO2023106181A1 - 排ガス浄化触媒装置 - Google Patents

排ガス浄化触媒装置 Download PDF

Info

Publication number
WO2023106181A1
WO2023106181A1 PCT/JP2022/044228 JP2022044228W WO2023106181A1 WO 2023106181 A1 WO2023106181 A1 WO 2023106181A1 JP 2022044228 W JP2022044228 W JP 2022044228W WO 2023106181 A1 WO2023106181 A1 WO 2023106181A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
zeolite
alkali
catalyst
copper ion
Prior art date
Application number
PCT/JP2022/044228
Other languages
English (en)
French (fr)
Inventor
雄大 天田
啓人 今井
恵悟 堀
大輔 杉岡
明哉 千葉
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Publication of WO2023106181A1 publication Critical patent/WO2023106181A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites

Definitions

  • the present invention relates to an exhaust gas purification catalyst device.
  • a selective catalytic reduction (SCR) system is known as a technology for reducing and purifying NOx in exhaust gas emitted from a diesel engine before it is released into the atmosphere.
  • An SCR system is a technology that uses a reducing agent, such as ammonia (or an ammonia source such as urea), to reduce NOx in the exhaust gas to N2 .
  • a copper ion-exchanged zeolite having a silica-alumina ratio (SAR) of 3 to 10 which contains a metal selected from alkaline earth metals and the like, has catalytic activity for selective reduction of NOx, and a high degree of water It is described as having thermostable properties.
  • SAR silica-alumina ratio
  • copper ion-exchanged zeolites especially copper ion-exchanged zeolites with a low silica-alumina ratio (SAR), are known to have excellent NOx purification performance in low-temperature regions, but produce N 2 O as a by-product. . Since N 2 O is a greenhouse gas that contributes to global warming, its emissions should be controlled.
  • SAR silica-alumina ratio
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an exhaust gas purification catalyst that has sufficiently high NOx purification efficiency and produces a small amount of N 2 O.
  • the present invention for solving the above problems is as follows.
  • An exhaust gas purifying catalyst device having a substrate and one or more catalyst coating layers on the substrate, The one or more catalyst coating layers are a copper ion-exchanged zeolite; and an alkali-containing zeolite containing one or more selected from alkali metals and alkaline earth metals;
  • An exhaust gas purifying catalytic device that satisfies either one of the following conditions (A) and (B): (A) one catalyst coat layer of the catalyst coat layers contains both the copper ion-exchanged zeolite and the alkali-containing zeolite; and (B) the catalyst coat layer contains the copper ion-exchanged It includes a first catalyst coating layer containing zeolite and a second catalyst coating layer containing the alkali-containing zeolite, and the first catalyst coating layer and the second catalyst coating layer are laminated so as to be in direct contact with each other.
  • the exhaust gas purifying catalyst device according to .
  • an exhaust gas purification catalyst that has sufficiently high NOx purification efficiency and produces a small amount of N 2 O.
  • the exhaust gas purifying catalyst device of the present invention is An exhaust gas purifying catalytic device comprising a substrate and one or more catalyst coating layers on the substrate, The above one or two or more catalyst coating layers are a copper ion-exchanged zeolite; and an alkali-containing zeolite containing one or more selected from alkali metals and alkaline earth metals; An exhaust gas purifying catalytic device that satisfies either one of the following conditions (A) and (B): (A) one of the catalyst coat layers contains both a copper ion-exchanged zeolite and an alkali-containing zeolite; and (B) the catalyst coat layer comprises a copper ion-exchanged zeolite. and a second catalyst coat layer containing alkali-containing zeolite, and the first catalyst coat layer and the second catalyst coat layer are laminated so as to be in direct contact with each other.
  • the exhaust gas purifying catalyst device of the present invention when either one of the conditions (A) and (B) is satisfied, the copper ion-exchanged zeolite and the alkali-containing zeolite are arranged close to each other.
  • the exhaust gas purification catalyst device of the present invention achieves both the NOx purification efficiency and the suppression of the N 2 O generation amount.
  • the exhaust gas purifying catalyst device of the present invention suppresses the progress of the side reactions (3) and (4) and preferentially progresses the SCR reaction by the copper ion-exchanged zeolite.
  • the invention is not bound by any particular theory.
  • the first catalyst coating layer containing copper ion-exchanged zeolite and the second catalyst coating layer containing alkali-containing zeolite are not laminated so as to be in direct contact with each other. , the effect of suppressing the amount of N 2 O produced is small. This is because the degree of proximity arrangement between the copper ion-exchanged zeolite and the alkali-containing zeolite is insufficient, so that the alkali-containing zeolite traps the intermediate NO 3 - ions produced by the side reaction (3) of the copper ion-exchanged zeolite. It is thought that it depends on the difficulty.
  • the substrate in the exhaust gas purifying catalyst device of the present invention is a honeycomb substrate having a plurality of exhaust gas flow paths partitioned by partition walls.
  • the partition walls of the substrate may have pores that fluidly communicate between adjacent exhaust gas flow paths.
  • the constituent material of the base material may be, for example, a refractory inorganic oxide such as cordierite.
  • the substrate may be straight-flow or wall-flow.
  • the substrate in the exhaust gas purifying catalyst device of the present invention may typically be, for example, a cordierite straight-flow or wall-flow monolith honeycomb substrate.
  • the exhaust gas purifying catalytic device of the present invention has one or more catalyst coating layers on the base material as described above.
  • the one or more catalyst coating layers are copper ion-exchanged zeolites; and alkali-containing zeolites containing one or more selected from alkali metals and alkaline earth metals.
  • the exhaust gas purifying catalytic device of the present invention satisfies either one of the conditions (A) and (B) described later.
  • the copper ion-exchanged zeolite in the exhaust gas purification catalyst device of the present invention is zeolite ion-exchanged with copper ions.
  • the silica-alumina ratio (SAR) of the copper ion-exchanged zeolite is 20.0 or less, 18.0 or less, 15.0 or less, 14.0 or less, from the viewpoint of increasing the NOx purification performance, especially in the low temperature range. It may be 13.0 or less, 12.0 or less, 11.0 or less, 10.0 or less, 9.0 or less, or 8.0 or less.
  • the SAR of the copper ion-exchanged zeolite may be 4.0 or higher, 5.0 or higher, 6.0 or higher, or 7.0 or higher.
  • SAR is indicated herein as the ratio ( SiO2 / Al2O3 ) of the molar amount of silica ( SiO2 ) to the molar amount of alumina ( Al2O3 ) in the zeolite.
  • the fact that the SAR value is the value of the SiO 2 /Al 2 O 3 ratio also applies to alkali-containing zeolite described later.
  • the amount of Cu in the copper ion-exchanged zeolite is 0.08 mol or more, 0.10 mol/mol or more, 0.08 mol or more, 0.10 mol/mol or more, or 0.10 mol/mol or more per 1 mol of Al atoms in the zeolite, from the viewpoint of increasing the SCR activity of the exhaust gas purification catalyst device of the present invention. It may be 15 mol/mol or more, or 0.20 mol/mol or more.
  • the amount of Cu in the copper ion-exchanged zeolite there is no upper limit for the amount of Cu in the copper ion-exchanged zeolite from the viewpoint of SCR activity.
  • the amount of Cu in the copper ion-exchanged zeolite has a manufacturing limit, and from the viewpoint of appropriately maintaining the manufacturing cost of the exhaust gas purification catalyst device, the amount of Cu in the copper ion-exchanged zeolite is 1 mol of Al atoms in the zeolite. may be 0.80 mol/mol or less, 0.50 mol/mol or less, 0.45 mol/mol or less, 0.40 mol/mol or less, 0.35 mol/mol or less, or 0.30 mol/mol or less for .
  • the amount of Cu in the copper ion-exchanged zeolite may typically be 0.10 mol or more and 0.50 mol or less per 1 mol of Al atoms in the zeolite.
  • the crystal structure of the copper ion-exchanged zeolite is arbitrary.
  • the crystal structures of copper ion-exchanged zeolites applicable to the present invention are shown together with their structural codes (listed in parentheses).
  • ZSM-5 MFI
  • mordenite MOR
  • L-type L-type
  • FAU X- or Y-type
  • BEA beta-type
  • AEI-type AFX-type
  • chabazite (CHA) chabazite
  • the copper ion-exchanged zeolite may be Cu--CHA-type zeolite, in particular, chabazite (CHA)-type zeolite ion-exchanged with Cu.
  • the copper ion-exchanged zeolite in the exhaust gas purification catalyst device of the present invention may be particulate.
  • the particle size (secondary particle size) of the particulate copper ion-exchanged zeolite may be, for example, 0.5 ⁇ m or more, 1 ⁇ m or more, 3 ⁇ m or more, or 5 ⁇ m or more, and may be 40 ⁇ m or less, 20 ⁇ m or less, or 10 ⁇ m or less.
  • the particle size of the carrier particles may be the median diameter (D50) obtained by dynamic light scattering of a suspension of carrier particles in a suitable liquid medium (eg water).
  • a copper ion-exchanged zeolite may be produced, for example, by ion-exchanging a raw material zeolite having a desired SAR and crystal morphology with copper ions.
  • the raw zeolite may be a proton-exchanged zeolite.
  • the ion exchange for producing the copper ion-exchanged zeolite may be carried out by bringing the raw material zeolite and the copper ion source into contact in a suitable solvent (for example, water).
  • a suitable solvent for example, water
  • the raw material zeolite and the copper ion source may be mixed in a mortar.
  • the source of copper ions can be, for example, a solvable salt such as copper acetate, copper sulfate, and the like.
  • the alkali-containing zeolite in the exhaust gas purifying catalyst device of the present invention is zeolite containing one or more alkali components selected from alkali metals and alkaline earth metals.
  • the silica-alumina ratio (SAR) of the alkali-containing zeolite can be any value, such as 30.0 or less, 25.0 or less, 20.0 or less, 18.0 or less, or 15.0 or less. you can On the other hand, if the SAR is too low, synthesis of zeolite becomes difficult, which may lead to an excessive increase in catalyst cost. To avoid such situations, the SAR of the copper ion-exchanged zeolite may be 4.0 or higher, 6.0 or higher, 8.0 or higher, 10.0 or higher, or 12.0 or higher.
  • the alkali component contained in the alkali-containing zeolite is one or more selected from alkali metals and alkaline earth metals.
  • Alkali metals and alkaline earth metals must satisfy at least one (preferably both) of high basicity and large ionic radius from the viewpoint of high adsorption capacity for NO 3 - ions. is desirable.
  • alkali metals may be, for example, potassium, rubidium, cesium, etc.
  • alkaline earth metals may be, for example, calcium, strontium, barium, etc.
  • one or more selected from cesium, calcium, strontium, and barium may be used, and from the viewpoint of its high ability to adsorb NO 3 ⁇ ions, barium may be used in particular.
  • the amount of the alkali component in the alkali-containing zeolite is the total molar amount of the alkali metal and alkaline earth metal relative to 1 mol of Al atoms in the alkali-containing zeolite, from the viewpoint of effectively exhibiting the ability to adsorb NO 3 - ions. , 0.05 mol or more, 0.10 mol or more, 0.20 mol or more, 0.30 mol or more, 0.40 mol or more, or 0.50 mol or more.
  • the amount of the alkali component in the alkali-containing zeolite is the total moles of the alkali metal and alkaline earth metal per 1 mole of Al atoms in the alkali-containing zeolite.
  • the amount may be 2.00 mol or less, 1.80 mol or less, 1.50 mol or less, 1.20 mol or less, 1.00 mol or less, 0.80 mol/mol-Al or less, or 0.70 mol or less.
  • the amount of the alkali component in the alkali-containing zeolite is typically 0.05 mol or more, 0.075 mol or more as the total molar amount of the alkali metal and alkaline earth metal per 1 mol of Al atoms in the alkali-containing zeolite, Alternatively, it may be 0.10 mol or more, and may be 1.50 mol or less or 1.25 mol or less.
  • the alkali component in the alkali-containing zeolite may be contained in the alkali-containing zeolite in the form of ions from the viewpoint of high NO 3 ⁇ adsorption capacity.
  • the crystal structure of the alkali-containing zeolite is arbitrary.
  • the crystal structures of alkali-containing zeolites applicable to the present invention are shown together with their structure codes (listed in parentheses). -5 (MFI), mordenite (MOR), L-type (LTL), X- or Y-type (FAU), beta-type (BEA), AEI-type, AFX-type, chabazite (CHA), and the like.
  • the crystal structure of the alkali-containing zeolite may be the same as or different from the framework structure of the copper ion-exchanged zeolite.
  • the framework structure of the copper ion-exchanged zeolite and the framework structure of the alkali-containing zeolite are the same.
  • Alkali-containing zeolites are, for example, mixing a raw zeolite having the desired SAR and crystal morphology with an alkalinity source to obtain a mixture; and calcining the resulting mixture.
  • the alkalinity source can be, for example, the desired alkali metal or alkaline earth metal acetates, sulfates, nitrates, hydroxides, and the like.
  • the use of these alkali sources is preferable in that an alkali-containing zeolite containing an alkali component in an ionic state can be obtained, and the ability to adsorb NO 3 - ions increases.
  • the alkali component contained therein is considered not to be in an ionic state.
  • condition (A) in the exhaust gas purifying catalytic device of the present invention is that one of the one or more catalyst coating layers on the substrate contains both copper ion-exchanged zeolite and alkali-containing zeolite. It is that you are.
  • the exhaust gas purifying catalyst device of the present invention satisfies the condition (A)
  • the copper ion-exchanged zeolite and the alkali-containing zeolite are arranged in close proximity to each other, and the intermediate NO 3 - ions of the side reaction (3) by the copper ion-exchanged zeolite are produced. is effectively trapped by alkali-containing zeolites.
  • a catalyst coating layer containing both copper ion-exchanged zeolite and alkali-containing zeolite is hereinafter referred to as a "specific catalyst coating layer”.
  • the amount of copper ion-exchanged zeolite in the specific catalyst coat layer is 50 g/L or more, 60 g/L or more, and 70 g/L as the mass of copper ion-exchanged zeolite per 1 L of substrate volume. 80 g/L or more, 90 g/L or more, or 100 g/L or more.
  • the amount of copper ion-exchanged zeolite is 200 g / L or less as the mass of copper ion-exchanged zeolite per 1 L of base material capacity. It may be 180 g/L or less, 160 g/L or less, or 140 g/L or less.
  • the amount of the alkali-containing zeolite in the specific catalyst coat layer is determined from the viewpoint of ensuring the ability to adsorb the intermediate NO 3 - ions in the side reaction (3) by the copper ion-exchanged zeolite.
  • the mass of zeolite may be 20 mass parts or more, 25 mass parts or more, 30 mass % or more, 35 mass % or more, or 40 mass % or more.
  • the amount of the alkali-containing zeolite with respect to 100 parts by mass of the copper ion-exchanged zeolite is 200 parts by mass or less, 150 parts by mass or less, 120 parts by mass or less, and 100 parts by mass. Below, it may be 80 parts by mass or less, 60 parts by mass or less, or 50 parts by mass or less.
  • the specific catalyst coating layer may contain optional components other than the copper ion-exchanged zeolite and the alkali-containing zeolite.
  • This optional component may be, for example, an inorganic oxide other than the copper ion-exchanged zeolite and the alkali-containing zeolite, a binder, and the like.
  • the specific catalyst coating layer may or may not contain catalytic precious metals that are commonly used in exhaust gas purifying catalytic devices.
  • the catalytic noble metal is typically one or more selected from platinum, rhodium, and palladium.
  • the specific catalyst coating layer does not substantially contain catalytic precious metals.
  • the expression "the specific catalyst coat layer does not substantially contain the catalyst noble metal” means that the amount of the catalyst noble metal in the specific catalyst coat layer is 0.1 g/L or less and 0.05 g as the mass of the catalyst noble metal per 1 L of base material volume. /L or less, 0.01 g/L or less, 0.005 g/L or less, or 0.001 g/L or less, or 0 g/L.
  • the exhaust gas purifying catalytic device of the present invention may have only one specific catalyst coat layer, or may have two or more specific catalyst coat layers. In one embodiment of the present invention, the exhaust gas purifying catalytic device has only one specific catalyst coating layer.
  • the exhaust gas purifying catalytic device of the present invention may or may not have a catalyst coat layer other than the specific catalyst coat layer.
  • the catalyst coat layer is one or more selected from inorganic oxides, catalytic precious metals, binders, and the like. may contain
  • the exhaust gas purifying catalytic device does not have any catalyst coat layer other than the specific catalyst coat layer.
  • Condition (B) in the exhaust gas purifying catalyst device of the present invention is that the catalyst coat layer includes a first catalyst coat layer containing copper ion-exchanged zeolite and a second catalyst coat layer containing alkali-containing zeolite, and these first and the second catalyst coat layer are laminated so as to be in direct contact with each other.
  • the exhaust gas purifying catalyst device of the present invention satisfies the condition (B), the copper ion-exchanged zeolite and the alkali-containing zeolite are arranged close to each other, and the intermediate NO 3 of the side reaction (3) by the copper ion-exchanged zeolite is - ions are effectively trapped by alkali-containing zeolites.
  • first catalyst coating layer and the second catalyst coating layer are laminated so that they are in direct contact with each other, either one may be on the upper side (exhaust gas flow path side) or the lower side (on the base material side).
  • the coating amount of the first catalyst coating layer is such that the mass of the copper ion-exchanged zeolite per 1 L of base material volume is 50 g / L or more, 60 g / L or more, 70 g / L or more, 80 g /L or more, 90 g/L or more, or 100 g/L or more.
  • the coating amount of the first catalyst coating layer is such that the mass of the copper ion-exchanged zeolite per 1 L of base material volume is 200 g / L.
  • the coating amount may be 180 g/L or less, 160 g/L or less, or 140 g/L or less.
  • the amount of coating of the second catalyst coating layer is determined by the amount of the copper ion-exchanged zeolite in the first catalyst coating layer, from the viewpoint of ensuring the ability of the copper ion-exchanged zeolite to adsorb the intermediate NO 3 - ions in the side reaction (3).
  • the coating amount may be such that the mass of the alkali-containing zeolite with respect to 100 parts by mass is 20 mass parts or more, 25 mass parts or more, 30 mass % or more, 35 mass % or more, or 40 mass % or more.
  • the coating amount of the second catalyst coat layer is set so that the mass of the alkali-containing zeolite with respect to 100 parts by mass of the copper ion-exchanged zeolite in the first catalyst coat layer is , 200 parts by mass or less, 150 parts by mass or less, 120 parts by mass or less, 100 parts by mass or less, 80 parts by mass or less, 60 parts by mass or less, or 50 parts by mass or less.
  • the first catalyst coat layer and the second catalyst coat layer may each contain optional components other than the copper ion-exchanged zeolite and the alkali-containing zeolite.
  • This optional component may be, for example, an inorganic oxide other than the copper ion-exchanged zeolite and the alkali-containing zeolite, a binder, and the like.
  • Each of the first catalyst coat layer and the second catalyst coat layer may or may not contain a catalytic precious metal normally used in an exhaust gas purifying catalytic device.
  • the catalytic noble metal is typically one or more selected from platinum, rhodium, and palladium.
  • both the first catalyst coating layer and the second catalyst coating layer are substantially free of catalytic precious metals.
  • the phrase "the first catalyst coat layer and the second catalyst coat layer do not substantially contain a catalyst noble metal” means that the amounts of the catalyst noble metal in the first catalyst coat layer and the second catalyst coat layer are equal to the base material capacity
  • the mass of catalytic noble metal per liter is 0.1 g/L or less, 0.05 g/L or less, 0.01 g/L or less, 0.005 g/L or less, or 0.001 g/L or less, or 0 g /L.
  • the exhaust gas purifying catalytic device of the present invention may or may not have a catalyst coat layer other than the first catalyst coat layer and the second catalyst coat layer.
  • the catalyst coat layer is made of an inorganic oxide, a catalytic precious metal, a binder, or the like. It may contain one or more selected types.
  • an exhaust gas purifying catalytic device has a first catalyst coating layer and a second catalyst coating layer laminated in this order on a substrate, and has other catalyst coating layers. do not have.
  • an exhaust gas purifying catalytic device has a second catalyst coating layer and a first catalyst coating layer laminated in this order on a substrate, and has other catalyst coating layers. not
  • the exhaust gas purification catalyst device of the present invention may be manufactured by any method.
  • the exhaust gas purifying catalyst device of the present invention for example, A method comprising forming a specific catalyst coating layer on a substrate, or a method comprising forming a first catalyst coating layer and a second catalyst coating layer on a substrate in a desired order. you can
  • the base material may be appropriately selected according to the base material in the desired exhaust gas purification catalyst device.
  • it may be a straight-flow or wall-flow monolithic honeycomb substrate made of cordierite.
  • the coating liquid containing the raw material components of the desired catalyst coating layer is coated to form the coating layer.
  • a method of forming and baking the obtained coat layer may be used. This forms a specific catalyst coating layer on the substrate. After coating and before baking, the coating layer may be dried, if necessary.
  • the coating liquid for forming the specific catalyst coating layer may contain copper ion-exchanged zeolite and alkali-containing zeolite, and optionally optional components or precursors thereof.
  • the coating liquid for forming the first catalyst coating layer may contain the copper ion-exchanged zeolite and, if necessary, optional components or precursors thereof.
  • the coating liquid for forming the second catalyst coating layer may contain the alkali-containing zeolite and, if necessary, optional components or precursors thereof.
  • any of the solvents in the above coating liquid may be water, an aqueous organic solvent, or a mixture thereof, and is typically water.
  • the coating of the coating liquid, and the drying and baking after coating may be carried out according to known methods.
  • the exhaust gas purification catalyst device of the present invention is suitable as a catalyst device for selective reduction of nitrogen oxides using ammonia or an ammonia source.
  • the present invention provides A method for purifying exhaust gas, comprising adding ammonia or an ammonia source to an exhaust gas containing nitrogen oxides, and bringing the exhaust gas into contact with an exhaust gas purifying catalytic device of the present invention to reduce the nitrogen oxides to nitrogen. be done.
  • ammonia sources include aqueous ammonia, urea, and ammonium salts (eg, ammonium carbonate, ammonium hydrogencarbonate, ammonium carbamate, etc.). Further, using an ammonia storage material such as magnesium chloride or strontium chloride and using the ammonia stored therein as an ammonia source is also included in the embodiments of the present invention.
  • H-CHA CHA-type zeolite ion-exchanged with protons
  • SAR15 H-MFI MFI-type zeolite ion-exchanged with protons
  • SAR20 H-BEA BEA-type zeolite ion-exchanged with protons
  • SAR20 Cu-CHA CHA-type zeolite ion-exchanged with copper ions
  • Cu/Al 0.22 mol/mol
  • the slurry for coating the Cu-CHA coating layer was applied to a straight-flow type cordierite honeycomb substrate having an apparent volume of about 1 L so that the coating amount after firing was 120 g / L, and the slurry was heated to 500 g/L in the air. C. for 1 hour to produce an exhaust gas purifying catalyst device having a Cu--CHA coating layer of single-layer structure on the base material.
  • Example 1 Lower layer Cu-CHA, upper layer Ba-CHA>> A Cu—CHA coating layer coating slurry was prepared in the same manner as in Comparative Example 1. Further, Ba-CHA obtained above, a silicone binder, and water were mixed to obtain a Ba-CHA coating layer coating slurry.
  • the Cu-CHA coating layer coating slurry was applied to a straight-flow cordierite honeycomb substrate having an apparent volume of about 1 L so that the coating amount after firing was 120 g/L, and the slurry was coated in the air at 500°C. After baking for 1 hour, a Cu—CHA coating layer was formed on the substrate. Subsequently, the Ba-CHA coating layer coating slurry obtained above was applied onto the Cu-CHA coating layer so that the coating amount after firing was 50 g/L, and the mixture was heated in the air at 500°C. An exhaust gas purifying catalyst device having a Cu--CHA coating layer and a Ba--CHA coating layer in this order on the substrate was manufactured by firing for 1 hour.
  • Example 2 Lower layer Ba-CHA, upper layer Cu-CHA>> A Ba-CHA coating layer and a Cu-CHA coating layer were formed on the substrate in this order in the same manner as in Example 1, except that the Cu-CHA coating layer and the Ba-CHA coating layer were formed in the reverse order.
  • An exhaust gas purifying catalyst device having
  • Example 3 Cu-CHA+Ba-CHA mixed monolayer>> SAR 7.5, Cu-CHA having a Cu amount per Al atom (Cu/Al) of 0.22 mol/mol, Ba-CHA obtained above, a silicone binder, and water are mixed to obtain Cu-CHA + Ba-CHA. A mixed coat layer coating slurry was obtained.
  • the Cu-CHA+Ba-CHA mixed coat layer coating slurry obtained above was applied to a straight-flow type cordierite honeycomb substrate having an apparent volume of about 1 L so that the coating amount after firing was 170 g/L. Then, by firing in air at 500° C. for 1 hour, an exhaust gas purifying catalyst device having a single-layer coating layer containing Cu—CHA and Ba—CHA on the substrate was manufactured.
  • Examples 4 to 8 Cu-CHA + various alkali-containing zeolite mixed single layers>> Ba-MFI obtained above (Example 4), Ba-BEA (Example 5), Sr-CHA (Example 6), Ca-CHA (Example 7), or Cs instead of Ba-CHA
  • -CHA Example 8
  • an exhaust gas purifying catalyst device having a single-layer coating layer containing Cu-CHA and various alkali-containing zeolites on a substrate was manufactured. manufactured.
  • Ba- The CHA coating layer coating slurry was applied and baked in air at 500° C. for 1 hour to form a Ba—CHA coating layer on the upstream side of the substrate. Subsequently, from the downstream end of the substrate on which the Ba-CHA coating layer was formed, Cu-CHA coating was performed so that the coating width was 50% of the length of the substrate and the coating amount after baking was 170 g / L. By applying the layer coating slurry and baking at 500 ° C. for 1 hour in the air, a single layer coating layer containing Ba-CHA on the upstream side of the substrate and a single layer containing Cu-CHA on the downstream side.
  • An exhaust gas purifying catalyst device having a coating layer of
  • N 2 O emissions N 2 O concentration (ppm) in exhaust gas after stabilizing composition NOx purification rate (%): ⁇ 1 ⁇ (NOx concentration in exhaust gas (ppm)/NOx concentration in supply gas (ppm) ⁇ 100
  • the concentration unit "ppm" in the above is parts per million on a molar basis.
  • Table 2 shows the composition of the model gas.
  • Table 3 shows the evaluation results.
  • the exhaust gas purifying catalyst devices of Comparative Examples 2, 5, and 7 to 9 each have a monolayer catalyst coat layer containing alkali-containing copper ion-exchanged zeolite, which is copper ion-exchanged zeolite (Cu—CHA) to which an alkali component is added.
  • Cu—CHA copper ion-exchanged zeolite
  • the coat layer containing the copper ion-exchanged zeolite and the coat layer containing the alkali-containing zeolite are zone-coated on the upstream and downstream sides.
  • the exhaust gas purifying catalytic device of Comparative Example 6 has a catalyst coat layer of a single-layer structure containing both copper ion-exchanged zeolite and NH 4 ion-exchanged zeolite (NH 4 —CHA). In these exhaust gas purification catalyst devices, no significant difference was observed in the NOx purification rate and the N 2 O emission amount compared with the exhaust gas purification catalyst device of Comparative Example 1.
  • the coat layer containing the copper ion-exchanged zeolite and the coat layer containing the alkali-containing zeolite are laminated so as to be in direct contact with each other.
  • the exhaust gas purifying catalytic devices of Examples 3 to 8 each have a catalyst coat layer of a single-layer structure containing both the copper ion-exchanged zeolite and the alkali-containing zeolite.
  • the exhaust gas purifying catalytic device of these Examples improved the NOx purification rate and reduced the N 2 O emission amount.
  • the N 2 O emissions were effectively suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

基材、及び前記基材上の1又は2以上の触媒コート層を有する排ガス浄化触媒装置であって、前記1又は2以上の触媒コート層は、銅イオン交換ゼオライト、及びアルカリ金属及びアルカリ土類金属から選択される1種又は2種以上を含む、アルカリ含有ゼオライトを含み、下記の条件(A)及び(B)のいずれか一方を満足する、排ガス浄化触媒装置:(A)前記触媒コート層のうちの1つの触媒コート層に、前記銅イオン交換ゼオライト及び前記アルカリ含有ゼオライトの双方が含まれていること、並びに(B)前記触媒コート層が、前記銅イオン交換ゼオライトを含む第1の触媒コート層、及び前記アルカリ含有ゼオライトを含む第2の触媒コート層を含み、前記第1の触媒コート層と第2の触媒コート層とが直接接するように積層されていること。

Description

排ガス浄化触媒装置
 本発明は、排ガス浄化触媒装置に関する。
 ディーゼルエンジンから排出される排ガス中のNOxを、大気に放出される前に、還元浄化する技術として、選択的接触還元(SCR:Selective Catalytic Reduction)システムが知られている。SCRシステムは、還元剤、例えばアンモニア(又は尿素等のアンモニア源)を用いて、排ガス中のNOをNに還元する技術である。
 このSCRシステムでは、ゼオライトを銅(Cu)でイオン交換した、銅イオン交換ゼオライトが、NOx浄化能に優れるものとして知られている。
 例えば、特許文献1には、アルカリ土類金属等から選択される金属を含む、シリカアルミナ比(SAR)3~10の銅イオン交換ゼオライトが、NOxの選択還元触媒活性を有し、高度の水熱安定特性を有すると説明されている。
特表2015-505290号公報
 SCRシステムにおいて、銅イオン交換ゼオライト、特にシリカアルミナ比(SAR)が低い銅イオン交換ゼオライトは、低温領域におけるNOx浄化能に優れるが、副生成物としてNOが生成することが知られている。NOは、地球温暖化に影響する温室効果ガスであるため、その排出量は抑制されるべきである。
 本発明は、上記の事情に鑑みてなされたものであり、その目的は、NOxの浄化効率が十分に高く、かつ、NOの生成量が少ない、排ガス浄化触媒を提供することである。
 上記課題を解決する本発明は、以下のとおりである。
 《態様1》基材、及び前記基材上の1又は2以上の触媒コート層を有する排ガス浄化触媒装置であって、
 前記1又は2以上の触媒コート層は、
  銅イオン交換ゼオライト、及び
  アルカリ金属及びアルカリ土類金属から選択される1種又は2種以上を含む、アルカリ含有ゼオライト
を含み、
 下記の条件(A)及び(B)のいずれか一方を満足する、排ガス浄化触媒装置:
  (A)前記触媒コート層のうちの1つの触媒コート層に、前記銅イオン交換ゼオライト及び前記アルカリ含有ゼオライトの双方が含まれていること、並びに
  (B)前記触媒コート層が、前記銅イオン交換ゼオライトを含む第1の触媒コート層、及び前記アルカリ含有ゼオライトを含む第2の触媒コート層を含み、前記第1の触媒コート層と第2の触媒コート層とが直接接するように積層されていること。
 《態様2》前記条件(A)を満足する、態様1に記載の排ガス浄化触媒装置。
 《態様3》前記条件(B)を満足する、態様1に記載の排ガス浄化触媒装置。
 《態様4》前記銅イオン交換ゼオライトのSARが15.0以下である、態様1~3のいずれか一項に記載の排ガス浄化触媒装置。
 《態様5》前記銅イオン交換ゼオライト中のCu量が、前記銅イオン交換ゼオライト中のAl原子1モルに対して、0.10mol以上0.50mol以下である、態様1~4のいずれか一項に記載の排ガス浄化触媒装置。
 《態様6》前記銅イオン交換ゼオライトが、Cu-CHA型ゼオライトである、態様1~5のいずれか一項に記載の排ガス浄化触媒装置。
 《態様7》前記アルカリ含有ゼオライトが、アルカリ金属及びアルカリ土類金属から選択される1種又は2種以上を含む、LTA型、FER型、MWW型、MFI型、MOR型、LTL型、FAU型、BEA型、AEI型、AFX型、又はCHA型のゼオライトである、態様1~6のいずれか一項に記載の排ガス浄化触媒装置。
 《態様8》前記アルカリ含有ゼオライト中の、アルカリ金属及びアルカリ土類金属から選択される1種又は2種以上の合計含有量が、前記アルカリ含有ゼオライト中のAl原子1モルに対して、0.05mol以上1.50mol以下である、態様1~7のいずれか一項に記載の排ガス浄化触媒装置。
 《態様9》前記銅イオン交換ゼオライトの骨格構造と、前記アルカリ含有ゼオライトの骨格構造とが同じである、態様1~8のいずれか一項に記載の排ガス浄化触媒装置。
 《態様10》前記銅イオン交換ゼオライト100質量部に対する前記アルカリ含有ゼオライトの量が、20質量部以上である、態様1~9のいずれか一項に記載の排ガス浄化触媒装置。
 《態様11》前記基材容量1L当たりの前記銅イオン交換ゼオライトの量が、50g/L以上である、態様1~10のいずれか一項に記載の排ガス浄化触媒装置。
 《態様12》アンモニア又はアンモニア源を用いる窒素酸化物の選択還元用である、態様1~11のいずれか一項に記載の排ガス浄化触媒装置。
 《態様13》窒素酸化物を含む排ガスに、アンモニア又はアンモニア源を添加すること、及び
 前記排ガスを、態様1~12のいずれか一項に記載の排ガス浄化触媒装置と接触させて、前記窒素酸化物を窒素に還元すること
を含む、排ガス浄化方法。
 本発明によると、NOxの浄化効率が十分に高く、かつ、NOの生成量が少ない、排ガス浄化触媒が提供される。
 《排ガス浄化触媒装置》
 本発明の排ガス浄化触媒装置は、
 基材、及び前記基材上の1又は2以上の触媒コート層を有する排ガス浄化触媒装置であって、
 上記の1又は2以上の触媒コート層は、
  銅イオン交換ゼオライト、及び
  アルカリ金属及びアルカリ土類金属から選択される1種又は2種以上を含む、アルカリ含有ゼオライト
を含み、
 下記の条件(A)及び(B)のいずれか一方を満足する、排ガス浄化触媒装置である:
  (A)触媒コート層のうちの1つの触媒コート層に、銅イオン交換ゼオライト及びアルカリ含有ゼオライトの双方が含まれていること、並びに
  (B)触媒コート層が、銅イオン交換ゼオライトを含む第1の触媒コート層、及びアルカリ含有ゼオライトを含む第2の触媒コート層を含み、これら第1の触媒コート層と第2の触媒コート層とが直接接するように積層されていること。
 本発明の排ガス浄化触媒装置では、条件(A)及び(B)のいずれか一方を満足すると、銅イオン交換ゼオライトとアルカリ含有ゼオライトとが、近接して配置されることになる。本発明の排ガス浄化触媒装置は、このような構成を有することにより、NOxの浄化効率と、NOの生成量の抑制とが両立されるのである。
 その理由につき、本発明者らは、以下のように推察している。
 銅イオン交換ゼオライトによるSCR反応において、NOxが浄化される機構は、以下の反応(1)及び(2)によると考えられている。
  4NO+4NH+O→4N+6HO   (1)
  2NO+2NO+4NH→4N+6HO   (2)
 しかしながら、このSCR反応中に、以下の副反応(3)及び(4)が起こり、NOが生成すると考えられる。
  2NO+2NH→NHNO+N+HO   (3)
  NHNO→NO+2HO   (4)
 上記の副反応(3)は、反応の中間段階でNO イオンを生成した後に、NHNOを生ずると考えられる。そして、アルカリ含有ゼオライトは、NO イオンの吸着能を有すると考えられる。そこで、銅イオン交換ゼオライトとアルカリ含有ゼオライトとを近接して配置して、銅イオン交換ゼオライトによる副反応(3)の中間体NO イオンを、アルカリ含有ゼオライトで捕捉させることにした。アルカリ含有ゼオライトに捕捉されたNO イオンは、アルカリ成分と硝酸塩を形成した後、排ガス中の還元成分との反応によって還元されて、Nとして放出されると考えられる。
 本発明の排ガス浄化触媒装置は、このような機構によって、副反応(3)及び(4)の進行を抑制し、銅イオン交換ゼオライトによるSCR反応の優先的な進行を図ったものである。ただし、本発明は、特定の理論に拘束されない。
 なお、後述の実施例(比較例)に示したように、銅イオン交換ゼオライト自体にアルカリ成分を含有させると、NOの生成量は減ずるものの、SCR反応の活性が低下して、NOxの浄化能が損なわれる。
 また、銅イオン交換ゼオライトを含む第1の触媒コート層と、アルカリ含有ゼオライトを含む第2の触媒コート層とを、直接接するように積層させずに、例えば、基材の上流側と下流側とに分けて配置すると、NO生成量の抑制効果は少ない。これは、銅イオン交換ゼオライトとアルカリ含有ゼオライトとの近接配置の程度が不十分のため、アルカリ含有ゼオライトが、銅イオン交換ゼオライトの副反応(3)によって生じた中間体NO イオンを捕捉し難いことによると考えられる。
 以下、本発明の排ガス浄化触媒装置の要素について、順に説明する。
 〈基材〉
 本発明の排ガス浄化触媒装置における基材は、隔壁によって区画された複数の排ガス流路を有するハニカム基材である。基材の隔壁は、隣接する排ガス流路間を流体的に連通する細孔を有していてよい。
 基材の構成材料は、例えば、コージェライト等の耐火性無機酸化物であってよい。基材は、ストレートフロー型であっても、ウォールフロー型であってもよい。
 本発明の排ガス浄化触媒装置における基材は、典型的には、例えば、コージェライト製のストレートフロー型又はウォールフロー型のモノリスハニカム基材であってよい。
 〈触媒コート層〉
 本発明の排ガス浄化触媒装置は、上記のような基材上に、1又は2以上の触媒コート層を有する。
 この1又は2以上の触媒コート層は、
  銅イオン交換ゼオライト、及び
  アルカリ金属及びアルカリ土類金属から選択される1種又は2種以上を含む、アルカリ含有ゼオライト
を含む。
 そして、本発明の排ガス浄化触媒装置は、後述の条件(A)及び(B)のいずれか一方を満足する。
 以下、銅イオン交換ゼオライト、及びアルカリ含有ゼオライトについて、順に説明した後、条件(A)及び(B)について説明する。
 〈銅イオン交換ゼオライト〉
 本発明の排ガス浄化触媒装置における銅イオン交換ゼオライトとは、銅イオンでイオン交換されたゼオライトである。
 銅イオン交換ゼオライトのシリカアルミナ比(SAR)は、NOx浄化能、特に低温領域におけるNOx浄化能を高くする観点から、20.0以下、18.0以下、15.0以下、14.0以下、13.0以下、12.0以下、11.0以下、10.0以下、9.0以下、又は8.0以下であってよい。一方で、SARが低すぎると、ゼオライトの合成が困難となり、触媒コストの過度の上昇を招く場合がある。このような事態を回避するため、銅イオン交換ゼオライトのSARは、4.0以上、5.0以上、6.0以上、又は7.0以上であってよい。
 本明細書において、SARの値は、ゼオライト中のシリカ(SiO)のモル量と、アルミナ(Al)のモル量との比(SiO/Al)として示される。SARの値が比SiO/Alの値であることは、後述のアルカリ含有ゼオライトについても同様である。
 銅イオン交換ゼオライトのCu量は、本発明の排ガス浄化触媒装置のSCR活性を高くする観点から、ゼオライト中のAl原子1モルに対して、0.08mol以上、0.10mol/mol以上、0.15mol/mol以上、又は0.20mol/mol以上であってよい。
 銅イオン交換ゼオライトのCu量の上限については、SCR活性の観点からの制限はない。しかしながら、銅イオン交換ゼオライト中のCu量には製造上の限界があり、排ガス浄化触媒装置の製造コストを適正に維持する観点から、銅イオン交換ゼオライトにおけるCu量は、ゼオライト中のAl原子1モルに対して、0.80mol/mol以下、0.50mol/mol以下、0.45mol/mol以下、0.40mol/mol以下、0.35mol/mol以下、又は0.30mol/mol以下であってよい。
 銅イオン交換ゼオライトのCu量は、典型的には、ゼオライト中のAl原子1モルに対して、0.10mol以上0.50mol以下であってよい。
 銅イオン交換ゼオライトの結晶構造は任意である。本発明に適用可能な銅イオン交換ゼオライトの結晶構造を、それぞれの構造コード(カッコ内に記載)とともに示せば、例えば、A型(LTA)、フェリエライト(FER)、MCM-22(MWW)、ZSM-5(MFI)、モルデナイト(MOR)、L型(LTL)、X型又はY型(FAU)、ベータ型(BEA)、AEI型、AFX型、チャバサイト(CHA)等であってよい。
 銅イオン交換ゼオライトは、特に、チャバサイト(CHA)型のゼオライトがCuでイオン交換された、Cu-CHA型ゼオライトであってよい。
 本発明の排ガス浄化触媒装置における銅イオン交換ゼオライトは、粒子状であってよい。粒子状の銅イオン交換ゼオライトの粒径(二次粒径)は、例えば、0.5μm以上、1μm以上、3μm以上、又は5μm以上であってよく、40μm以下、20μm以下、又は10μm以下であってよい。この担体粒子の粒径は、担体粒子を適当な液状媒体(例えば水)中に分散した懸濁液について、動的光散乱法によって得られたメジアン径(D50)であってよい。
 銅イオン交換ゼオライトは、例えば、所望のSAR及び結晶形態を有する原料ゼオライトを、銅イオンでイオン交換することにより、製造されてよい。原料ゼオライトは、プロトンでイオン交換されたゼオライトであってもよい。
 銅イオン交換ゼオライトを製造するためのイオン交換は、原料ゼオライトと、銅イオン源とを、適当な溶媒中(例えば水中)で接触させることにより、行われてよい。または、原料ゼオライトと、銅イオン源とを、乳鉢中で混合させることにより行われてよい。銅イオン源は、例えば、酢酸銅、硫酸銅等の、溶媒可能な塩であってよい。
 〈アルカリ含有ゼオライト〉
 本発明の排ガス浄化触媒装置におけるアルカリ含有ゼオライトは、アルカリ金属及びアルカリ土類金属から選択される1種又は2種以上のアルカリ成分を含むゼオライトである。
 アルカリ含有ゼオライトのシリカアルミナ比(SAR)は、任意での値であってよく、例えば、30.0以下、25.0以下、20.0以下、18.0以下、又は15.0以下であってよい。一方で、SARが低すぎると、ゼオライトの合成が困難となり、触媒コストの過度の上昇を招く場合がある。このような事態を回避するため、銅イオン交換ゼオライトのSARは、4.0以上、6.0以上、8.0以上、10.0以上、又は12.0以上であってよい。
 アルカリ含有ゼオライトに含まれるアルカリ成分は、アルカリ金属及びアルカリ土類金属から選択される1種又は2種以上である。アルカリ金属及びアルカリ土類金属としては、NO イオンの吸着能が高いとの観点から、塩基性が高いこと、及びイオン半径が大きいことのうちの、少なくとも一方(好ましくは双方)を満たすことが望ましい。このような観点から、アルカリ金属は、例えば、カリウム、ルビジウム、セシウム等であってよく、アルカリ土類金属は、例えば、カルシウム、ストロンチウム、バリウム等であってよい。
 これらのうち、セシウム、カルシウム、ストロンチウム、及びバリウムから選択される1種又は2種以上であってよく、NO イオンの吸着能が高いとの観点から、特にバリウムであってよい。
 アルカリ含有ゼオライトにおけるアルカリ成分の量は、NO イオンの吸着能を効果的に発揮させる観点から、アルカリ含有ゼオライト中のAl原子1モルに対する、アルカリ金属及びアルカリ土類金属の合計のモル量として、0.05mol以上、0.10mol以上、0.20mol以上、0.30mol以上、0.40mol以上、又は0.50mol以上であってよい。
 一方で、排ガス浄化触媒の製造コストを適正に維持するとの観点から、アルカリ含有ゼオライトにおけるアルカリ成分の量は、アルカリ含有ゼオライト中のAl原子1モルに対する、アルカリ金属及びアルカリ土類金属の合計のモル量として、2.00mol以下、1.80mol以下、1.50mol以下、1.20mol以下、1.00mol以下、0.80mol/mol-Al以下、又は0.70mol下であってよい。
 アルカリ含有ゼオライトにおけるアルカリ成分の量は、典型的には、アルカリ含有ゼオライト中のAl原子1モルに対する、アルカリ金属及びアルカリ土類金属の合計のモル量として、0.05mol以上、0.075mol以上、又は0.10mol以上であってよく、1.50mol以下又は1.25mol以下であってよい。
 アルカリ含有ゼオライト中のアルカリ成分は、NO の吸着能が高いとの観点から、イオンの状態でアルカリ含有ゼオライト中に含まれていてよい。
 アルカリ含有ゼオライトの結晶構造は任意である。本発明に適用可能なアルカリ含有ゼオライトの結晶構造を、それぞれの構造コード(カッコ内に記載)とともに示せば、例えば、A型(LTA)、フェリエライト(FER)、MCM-22(MWW)、ZSM-5(MFI)、モルデナイト(MOR)、L型(LTL)、X型又はY型(FAU)、ベータ型(BEA)、AEI型、AFX型、チャバサイト(CHA)等であってよい。
 アルカリ含有ゼオライトの結晶構造は、銅イオン交換ゼオライトの骨格構造と同じであってもよいし、異なっていてもよい。本発明のある態様では、銅イオン交換ゼオライトの骨格構造と、アルカリ含有ゼオライトの骨格構造とが同じである。
 アルカリ含有ゼオライトは、例えば、
  所望のSAR及び結晶形態を有する原料ゼオライトと、アルカリ源とを混合して混合物を得ること、及び
  得られた混合物を焼成すること
を含む、方法によって製造されてよい。
 アルカリ源は、例えば、所望のアルカリ金属又はアルカリ土類金属の酢酸塩、硫酸塩、硝酸塩、水酸化物等であってよい。これらのアルカリ源を使用すると、アルカリ成分をイオン状態で含むアルカリ含有ゼオライトが得られ、NO イオンの吸着能が高くなる点で、好ましい。一方、アルカリ源として炭酸塩を用いて得られたアルカリ含有ゼオライトでは、これに含まれるアルカリ成分は、イオン状態にはないと考えられる。
 〈条件(A)〉
 本発明の排ガス浄化触媒装置における条件(A)は、基材上の1又は2以上の触媒コート層のうちの1つの触媒コート層に、銅イオン交換ゼオライト及びアルカリ含有ゼオライトの双方が含まれていること、である。
 本発明の排ガス浄化触媒装置が条件(A)を満たすと、銅イオン交換ゼオライトとアルカリ含有ゼオライトとが近接して配置されて、銅イオン交換ゼオライトによる副反応(3)の中間体NO イオンが、アルカリ含有ゼオライトによって効果的に捕捉される。
 銅イオン交換ゼオライト及びアルカリ含有ゼオライトの双方を含む触媒コート層を、以下、「特定触媒コート層」として参照する。
 特定触媒コート層における、銅イオン交換ゼオライトの量は、SCR性能を確保するとの観点から、基材容量1L当たりの銅イオン交換ゼオライトの質量として、50g/L以上、60g/L以上、70g/L以上、80g/L以上、90g/L以上、又は100g/L以上であってよい。
 一方で、過度の圧力損失を避けて、効率的に排ガス浄化を行うとの観点から、銅イオン交換ゼオライトの量は、基材容量1L当たりの銅イオン交換ゼオライトの質量として、200g/L以下、180g/L以下、160g/L以下、又は140g/L以下であってよい。
 特定触媒コート層における、アルカリ含有ゼオライトの量は、銅イオン交換ゼオライトによる副反応(3)の中間体NO イオンの吸着能を確保するとの観点から、銅イオン交換ゼオライト100質量部に対するアルカリ含有ゼオライトの質量として、20質量部以上、25質量部以上、30質量%以上、35質量%以上、又は40質量%以上であってよい。
 一方、銅イオン交換ゼオライトのSCR活性を十分に発揮させる観点から、銅イオン交換ゼオライト100質量部に対するアルカリ含有ゼオライトの量は、200質量部以下、150質量部以下、120質量部以下、100質量部以下、80質量部以下、60質量部以下、又は50質量部以下であってよい。
 特定触媒コート層は、銅イオン交換ゼオライト及びアルカリ含有ゼオライト以外の任意成分を含んでいてよい。この任意成分は、例えば、銅イオン交換ゼオライト及びアルカリ含有ゼオライト以外の無機酸化物、バインダー等であってよい。
 特定触媒コート層は、排ガス浄化触媒装置に通常用いられる触媒貴金属を、含んでいてもよいし、含んでいなくてもよい。触媒貴金属は、典型的には、白金、ロジウム、及びパラジウムから選択される1種又は2種以上である。
 本発明のある実施態様では、特定触媒コート層は、触媒貴金属を実質的に含まない。「特定触媒コート層が触媒貴金属を実質的に含まない」とは、特定触媒コート層の触媒貴金属量が、基材容量1L当たりの触媒貴金属の質量として、0.1g/L以下、0.05g/L以下、0.01g/L以下、0.005g/L以下、若しくは0.001g/L以下であるか、又は0g/Lであることを意味する。
 本発明の排ガス浄化触媒装置は、特定触媒コート層を1層だけ有していてもよいし、2層以上の特定触媒コート層を有していてもよい。本発明のある実施態様では、排ガス浄化触媒装置は、特定触媒コート層を1層だけ有している。
 本発明の排ガス浄化触媒装置は、特定触媒コート層以外の触媒コート層を有していてもよいし、有していなくてもよい。
 本発明の排ガス浄化触媒装置が、特定触媒コート層以外の触媒コート層を有している場合、この触媒コート層は、無機酸化物、触媒貴金属、バインダー等から選択される1種又は2種以上を含んでいてよい。
 本発明のある実施態様において、排ガス浄化触媒装置は、特定触媒コート層以外の触媒コート層を有していない。
 〈条件(B)〉
 本発明の排ガス浄化触媒装置における条件(B)は、触媒コート層が、銅イオン交換ゼオライトを含む第1の触媒コート層、及びアルカリ含有ゼオライトを含む第2の触媒コート層を含み、これら第1の触媒コート層と第2の触媒コート層とが直接接するように積層されていること、である。
 本発明の排ガス浄化触媒装置が条件(B)を満たすことによっても、銅イオン交換ゼオライトとアルカリ含有ゼオライトとが近接して配置されて、銅イオン交換ゼオライトによる副反応(3)の中間体NO イオンが、アルカリ含有ゼオライトによって効果的に捕捉される。
 第1の触媒コート層及び第2の触媒コート層は、これらが直接接するように積層されていれば、どちらが上(排ガス流路側)であっても下(基材側)であってもよい。
 第1の触媒コート層のコート量は、SCR性能を確保するとの観点から、基材容量1L当たりの銅イオン交換ゼオライトの質量が、50g/L以上、60g/L以上、70g/L以上、80g/L以上、90g/L以上、又は100g/L以上となるコート量であってよい。
 一方で、過度の圧力損失を避けて、効率的に排ガス浄化を行うとの観点から第1の触媒コート層のコート量は、基材容量1L当たりの銅イオン交換ゼオライトの質量が、200g/L以下、180g/L以下、160g/L以下、又は140g/L以下となるコート量であってよい。
 第2の触媒コート層のコート量は、銅イオン交換ゼオライトによる副反応(3)の中間体NO イオンの吸着能を確保するとの観点から、第1の触媒コート層中の銅イオン交換ゼオライト100質量部に対するアルカリ含有ゼオライトの質量が、20質量部以上、25質量部以上、30質量%以上、35質量%以上、又は40質量%以上となるコート量であってよい。
 一方、銅イオン交換ゼオライトのSCR活性を十分に発揮させる観点から、第2の触媒コート層のコート量は、第1の触媒コート層中の銅イオン交換ゼオライト100質量部に対するアルカリ含有ゼオライトの質量が、200質量部以下、150質量部以下、120質量部以下、100質量部以下、80質量部以下、60質量部以下、又は50質量部以下となるコート量であってよい。
 第1の触媒コート層及び第2の触媒コート層は、それぞれ、銅イオン交換ゼオライト及びアルカリ含有ゼオライト以外の任意成分を含んでいてよい。この任意成分は、例えば、銅イオン交換ゼオライト及びアルカリ含有ゼオライト以外の無機酸化物、バインダー等であってよい。
 第1の触媒コート層及び第2の触媒コート層は、それぞれ、排ガス浄化触媒装置に通常用いられる触媒貴金属を、含んでいてもよいし、含んでいなくてもよい。触媒貴金属は、典型的には、白金、ロジウム、及びパラジウムから選択される1種又は2種以上である。
 本発明のある実施態様では、第1の触媒コート層及び第2の触媒コート層は、いずれも、触媒貴金属を実質的に含まない。「第1の触媒コート層及び第2の触媒コート層が触媒貴金属を実質的に含まない」とは、第1の触媒コート層及び第2の触媒コート層それぞれの触媒貴金属量が、基材容量1L当たりの触媒貴金属の質量として、0.1g/L以下、0.05g/L以下、0.01g/L以下、0.005g/L以下、若しくは0.001g/L以下であるか、又は0g/Lであることを意味する。
 本発明の排ガス浄化触媒装置は、第1の触媒コート層及び第2の触媒コート層以外の触媒コート層を有していてもよいし、有していなくてもよい。
 本発明の排ガス浄化触媒装置が、第1の触媒コート層及び第2の触媒コート層以外の触媒コート層を有している場合、この触媒コート層は、無機酸化物、触媒貴金属、バインダー等から選択される1種又は2種以上を含んでいてよい。
 本発明のある実施態様において、排ガス浄化触媒装置は、基材上に、第1の触媒コート層及び第2の触媒コート層がこの順に積層されており、これら以外の触媒コート層を有していない。本発明の他の実施態様において、排ガス浄化触媒装置は、基材上に、第2の触媒コート層及び第1の触媒コート層がこの順に積層されており、これら以外の触媒コート層を有していない。
 《排ガス浄化触媒装置の製造方法》
 本発明の排ガス浄化触媒装置は、任意の方法で製造されてよい。
 しかしながら、本発明の排ガス浄化触媒装置は、例えば、
  基材上に、特定触媒コート層を形成することを含む方法、又は
  基材上に、第1の触媒コート層及び第2の触媒コート層を所望の順で形成することを含む方法
によって製造されてよい。
 基材は、所望の排ガス浄化触媒装置における基材に応じて、適宜に選択されてよい。例えば、コージェライト製の、ストレートフロー型又はウォールフロー型のモノリスハニカム基材であってよい。
 基材上に、特定触媒コート層、又は第1の触媒コート層若しくは第2の触媒コート層を形成するには、所望の触媒コート層の原料成分を含む塗工液をコートしてコート層を形成し、得られたコート層を焼成する方法によってよい。このことによって、基材上に特定触媒コート層が形成される。コート後、焼成前に、必要に応じて、コート層の乾燥を行ってもよい。
 特定触媒コート層を形成するための塗工液は、銅イオン交換ゼオライト及びアルカリ含有ゼオライト、並びに必要に応じて任意成分又はその前駆体を含んでいてよい。第1の触媒コート層を形成するための塗工液は、銅イオン交換ゼオライト、及び必要に応じて任意成分又はその前駆体を含んでいてよい。第2の触媒コート層を形成するための塗工液は、アルカリ含有ゼオライト、及び必要に応じて任意成分又はその前駆体を含んでいてよい。
 上記の塗工液の溶媒は、いずれも、水、若しくは水性有機溶媒、又はこれらの混合物であってよく、典型的には水である。
 塗工液のコート、並びにコート後の乾燥及び焼成は、それぞれ、公知の方法に準じて行われてよい。
 《排ガス浄化方法》
 本発明の排ガス浄化触媒装置は、アンモニア又はアンモニア源を用いる窒素酸化物の選択還元用の触媒装置として好適である。
 したがって、本発明は、別の観点において、
  窒素酸化物を含む排ガスに、アンモニア又はアンモニア源を添加すること、及び
  排ガスを、本発明の排ガス浄化触媒装置と接触させて、窒素酸化物を窒素に還元すること
を含む、排ガス浄化方法が提供される。
 アンモニア源としては、例えば、アンモニア水、尿素、アンモニア塩(例えば、炭酸アンモニウム、炭酸水素アンモニウム、カルバミン酸アンモニウム等)等が挙げられる。また、塩化マグネシウム、塩化ストロンチウム等のアンモニア吸蔵材を用い、これに吸蔵されたアンモニアをアンモニア源として用いることも、本発明の実施態様に包含される。
 1.アルカリ含有ゼオライトの合成
 (1)Ba-CHA型ゼオライトの合成
 プロトンでイオン交換されている、シリカアルミナ比(SAR)15のCHA型ゼオライト(H-CHA)、及びバリウム源としての酢酸バリウムを、乳鉢中で30分間混合した。得られた混合物を、空気中、500℃にて3時間焼成して、バリウムでイオン交換されているCHA型ゼオライト(Ba-CHA)を得た。酢酸バリウムの使用量は、CHA型ゼオライト中のAl原子1モルに対するバリウム原子の量が、Ba/Al=0.5(mol/mol)となる量とした。
 (2)その他のアルカリ含有ゼオライトの合成
 ゼオライトの種類、並びにアルカリ源の種類及び使用量(ゼオライト中のAl原子1モルに対する、アルカリ金属又はアルカリ土類金属原子(M)の量、M/Al比(mol/mol))を、それぞれ、表1のとおりに変更した他は、Ba-CHAの合成と同様にして、各種のアルカリ含有ゼオライトを合成した。
Figure JPOXMLDOC01-appb-T000001
 表1における「原料ゼオライト」欄の略称は、それぞれ、以下の意味である。
  H-CHA:プロトンでイオン交換されているCHA型ゼオライト、SAR15
  H-MFI:プロトンでイオン交換されているMFI型ゼオライト、SAR20
  H-BEA:プロトンでイオン交換されているBEA型ゼオライト、SAR20
  Cu-CHA:銅イオンでイオン交換されているCHA型ゼオライト、Cu/Al=0.22mol/mol、SAR7.5
 2.排ガス浄化触媒装置の製造
 《比較例1:Cu-CHA単層(基準)》
 SAR7.5、Al原子当たりのCu量(Cu/Al)0.22mol/molのCu-CHA、シリコーン系バインダー、及び水を混合して、Cu-CHAコート層塗工用スラリーを得た。
 焼成後のコート量が120g/Lとなるように、見かけ容積約1Lのストレートフロー型のコージェライト製ハニカム基材に上記のCu-CHAコート層塗工用スラリーを塗工し、空気中、500℃において1時間焼成することにより、基材上に、単層構成のCu-CHAコート層を有する排ガス浄化触媒装置を製造した。
 《実施例1:下層Cu-CHA、上層Ba-CHA》
 比較例1と同様にして、Cu-CHAコート層塗工用スラリーを調製した。また、上記で得られたBa-CHA、シリコーン系バインダー、及び水を混合して、Ba-CHAコート層塗工用スラリーを得た。
 焼成後のコート量が120g/Lとなるように、見かけ容積約1Lのストレートフロー型のコージェライト製ハニカム基材にCu-CHAコート層塗工用スラリーを塗工し、空気中、500℃において1時間焼成して、基材上にCu-CHAコート層を形成した。続いて、焼成後のコート量が50g/Lとなるように、このCu-CHAコート層上に上記で得られたBa-CHAコート層塗工用スラリーを塗工して、空気中、500℃において1時間焼成することにより、基材上に、Cu-CHAコート層及びBa-CHAコート層を、この順に有する排ガス浄化触媒装置を製造した。
 《実施例2:下層Ba-CHA、上層Cu-CHA》
 Cu-CHAコート層及びBa-CHAコート層を、逆の順序で形成した他は、実施例1と同様にして、基材上に、Ba-CHAコート層及びCu-CHAコート層を、この順に有する排ガス浄化触媒装置を製造した。
 《実施例3:Cu-CHA+Ba-CHA混合単層》
 SAR7.5、Al原子当たりのCu量(Cu/Al)0.22mol/molのCu-CHA、上記で得られたBa-CHA、シリコーン系バインダー、及び水を混合して、Cu-CHA+Ba-CHA混合コート層塗工用スラリーを得た。ここで、Cu-CHAとBa-CHAとの質量割合は、Cu-CHA:Ba-CHA=7:3とした。
 焼成後のコート量が170g/Lとなるように、見かけ容積約1Lのストレートフロー型のコージェライト製ハニカム基材に上記で得られたCu-CHA+Ba-CHA混合コート層塗工用スラリーを塗工し、空気中、500℃において1時間焼成することにより、基材上に、Cu-CHA及びBa-CHAを含む単層のコート層を有する、排ガス浄化触媒装置を製造した。
 《実施例4~8:Cu-CHA+各種アルカリ含有ゼオライト混合単層》
 Ba-CHAに代えて、上記で得られたBa-MFI(実施例4)、Ba-BEA(実施例5)、Sr-CHA(実施例6)、Ca-CHA(実施例7)、又はCs-CHA(実施例8)を用いた他は、実施例3と同様にして、基材上に、Cu-CHA及び各種アルカリ含有ゼオライトを含む単層のコート層を有する、排ガス浄化触媒装置をそれぞれ製造した。
 《比較例2:Ba-Cu-CHA単層》
 Cu-CHAの代わりに、上記で得られたBa-Cu-CHAを用いた他は、比較例1と同様にして、基材上に、Ba-Cu-CHAを含む単層のコート層を有する、排ガス浄化触媒装置を製造した。
 《比較例3:上流側Ba-CHA、下流側Cu-CHA》
 実施例1と同様にして、Ba-CHAコート層塗工用スラリーを調製した。また、比較例1と同様にして、Cu-CHAコート層塗工用スラリーを調製した。
 コート幅が基材の長さの50%、焼成後のコート量が170g/Lとなるように、見かけ容積約1Lのストレートフロー型のコージェライト製ハニカム基材の上流側端部から、Ba-CHAコート層塗工用スラリーを塗工し、空気中、500℃において1時間焼成して、基材の上流側にBa-CHAコート層を形成した。続いて、コート幅が基材の長さの50%、焼成後のコート量が170g/Lとなるように、Ba-CHAコート層を形成した基材の下流側端部から、Cu-CHAコート層塗工用スラリーを塗工し、空気中、500℃において1時間焼成することにより、基材の上流側にBa-CHAを含む単層のコート層、下流側にCu-CHAを含む単層のコート層を有する、排ガス浄化触媒装置を製造した。
 《比較例4:上流側Cu-CHA、下流側Ba-CHA》
 Cu-CHAコート層の形成位置を上流側とし、Ba-CHAコート層の形成位置を下流側とした他は、比較例3と同様にして、基材の上流側にCu-CHAを含む単層のコート層、下流側にBa-CHAを含む単層のコート層を有する、排ガス浄化触媒装置を製造した。
 《比較例5:炭酸Ba-Cu-CHA単層》
 Cu-CHAの代わりに、上記で得られた炭酸Ba-Cu-CHAを用いた他は、比較例1と同様にして、基材上に、炭酸Ba-Cu-CHAを含む単層のコート層を有する、排ガス浄化触媒装置を製造した。
した。
 《比較例6:Cu-CHA+NH-CHA混合単層》
 Ba-CHAに代えて、SAR15のNH-CHAを用いた他は、実施例3と同様にして、基材上に、Cu-CHA及びNH-CHAを含む単層のコート層を有する、排ガス浄化触媒装置を製造した。
 《比較例7~9:Ba-Cu-CHA単層》
 Cu-CHAの代わりに、上記で得られたSr-Cu-CHA(比較例7)、Ca-Cu-CHA(比較例8)、又はCs-Cu-CHA(比較例9)を用いた他は、比較例1と同様にして、基材上に、Ba-Cu-CHAを含む単層のコート層を有する、排ガス浄化触媒装置を製造した。
 3.排ガス浄化触媒装置の評価
 上述の各実施例及び比較例で得られた排ガス浄化触媒装置に、水蒸気10質量%を含む空気を流通させながら、触媒層温度650℃にて、50時間の水熱耐久を行った。
 水熱耐久後の排ガス浄化触媒装置に、下記組成のモデルガスを、空間速度80,000h-1にて供給して、流通させながら、触媒層温度200℃におけるNOx浄化率、及び触媒層温度300℃におけるNO排出量を測定した。これらの量の評価は、組成が安定した後の排出ガスの組成に基づいて、以下の基準により行った。
  NO排出量:組成が安定した後の排出ガス中のNO濃度(ppm)
  NOx浄化率(%):{1-(排出ガス中のNOx濃度(ppm)/供給ガス中のNOx濃度(ppm)}×100
 上記における濃度単位「ppm」は、モル基準の百万分率である。
 モデルガスの組成を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 評価結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 比較例2、5、及び7~9の排ガス浄化触媒装置は、銅イオン交換ゼオライト(Cu-CHA)にアルカリ成分が添加された、アルカリ含有銅イオン交換ゼオライトを含む、単層構成の触媒コート層を有する。これらの排ガス浄化触媒装置では、銅イオン交換ゼオライトを含む、単層構成のコート層を有する比較例1の排ガス浄化触媒装置と比較して、NO排出量は低減されたものの、NOx浄化率が損なわれた。
 一方、比較例3及び4の排ガス浄化触媒装置では、銅イオン交換ゼオライトを含むコート層と、アルカリ含有ゼオライトを含むコート層とが、上流側と下流側とにゾーンコート配置されている。また、比較例6の排ガス浄化触媒装置は、銅イオン交換ゼオライト及びNHでイオン交換されたゼオライト(NH-CHA)双方を含む、単層構成の触媒コート層を有する。これらの排ガス浄化触媒装置では、比較例1の排ガス浄化触媒装置と比較して、NOx浄化率及びNO排出量に有意差が見られなかった。
 これらに対して、実施例1及び2の排ガス浄化触媒装置では、銅イオン交換ゼオライトを含むコート層と、アルカリ含有ゼオライトを含むコート層とが、直接接するように積層して配置されている。また、実施例3~8の排ガス浄化触媒装置は、銅イオン交換ゼオライト及びアルカリ含有ゼオライト双方を含む、単層構成の触媒コート層を有する。
 これらの実施例の排ガス浄化触媒装置では、比較例1の排ガス浄化触媒装置と比較して、NOx浄化率が向上し、かつ、NO排出量が低減していた。特に、アルカリ成分としてバリウムを含む実施例1~5の排ガス浄化触媒装置において、NO排出量が効果的に抑制されていた。

Claims (13)

  1.  基材、及び前記基材上の1又は2以上の触媒コート層を有する排ガス浄化触媒装置であって、
     前記1又は2以上の触媒コート層は、
      銅イオン交換ゼオライト、及び
      アルカリ金属及びアルカリ土類金属から選択される1種又は2種以上を含む、アルカリ含有ゼオライト
    を含み、
     下記の条件(A)及び(B)のいずれか一方を満足する、排ガス浄化触媒装置:
      (A)前記触媒コート層のうちの1つの触媒コート層に、前記銅イオン交換ゼオライト及び前記アルカリ含有ゼオライトの双方が含まれていること、並びに
      (B)前記触媒コート層が、前記銅イオン交換ゼオライトを含む第1の触媒コート層、及び前記アルカリ含有ゼオライトを含む第2の触媒コート層を含み、前記第1の触媒コート層と第2の触媒コート層とが直接接するように積層されていること。
  2.  前記条件(A)を満足する、請求項1に記載の排ガス浄化触媒装置。
  3.  前記条件(B)を満足する、請求項1に記載の排ガス浄化触媒装置。
  4.  前記銅イオン交換ゼオライトのSARが15.0以下である、請求項1~3のいずれか一項に記載の排ガス浄化触媒装置。
  5.  前記銅イオン交換ゼオライト中のCu量が、前記銅イオン交換ゼオライト中のAl原子1モルに対して、0.10mol以上0.50mol以下である、請求項1~4のいずれか一項に記載の排ガス浄化触媒装置。
  6.  前記銅イオン交換ゼオライトが、Cu-CHA型ゼオライトである、請求項1~5のいずれか一項に記載の排ガス浄化触媒装置。
  7.  前記アルカリ含有ゼオライトが、アルカリ金属及びアルカリ土類金属から選択される1種又は2種以上を含む、LTA型、FER型、MWW型、MFI型、MOR型、LTL型、FAU型、BEA型、AEI型、AFX型、又はCHA型のゼオライトである、請求項1~6のいずれか一項に記載の排ガス浄化触媒装置。
  8.  前記アルカリ含有ゼオライト中の、アルカリ金属及びアルカリ土類金属から選択される1種又は2種以上の合計含有量が、前記アルカリ含有ゼオライト中のAl原子1モルに対して、0.05mol以上1.50mol以下である、請求項1~7のいずれか一項に記載の排ガス浄化触媒装置。
  9.  前記銅イオン交換ゼオライトの骨格構造と、前記アルカリ含有ゼオライトの骨格構造とが同じである、請求項1~8のいずれか一項に記載の排ガス浄化触媒装置。
  10.  前記銅イオン交換ゼオライト100質量部に対する前記アルカリ含有ゼオライトの量が、20質量部以上である、請求項1~9のいずれか一項に記載の排ガス浄化触媒装置。
  11.  前記基材容量1L当たりの前記銅イオン交換ゼオライトの量が、50g/L以上である、請求項1~10のいずれか一項に記載の排ガス浄化触媒装置。
  12.  アンモニア又はアンモニア源を用いる窒素酸化物の選択還元用である、請求項1~11のいずれか一項に記載の排ガス浄化触媒装置。
  13.  窒素酸化物を含む排ガスに、アンモニア又はアンモニア源を添加すること、及び
     前記排ガスを、請求項1~12のいずれか一項に記載の排ガス浄化触媒装置と接触させて、前記窒素酸化物を窒素に還元すること
    を含む、排ガス浄化方法。
PCT/JP2022/044228 2021-12-06 2022-11-30 排ガス浄化触媒装置 WO2023106181A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-197746 2021-12-06
JP2021197746A JP7372302B2 (ja) 2021-12-06 2021-12-06 排ガス浄化触媒装置

Publications (1)

Publication Number Publication Date
WO2023106181A1 true WO2023106181A1 (ja) 2023-06-15

Family

ID=86730306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044228 WO2023106181A1 (ja) 2021-12-06 2022-11-30 排ガス浄化触媒装置

Country Status (2)

Country Link
JP (1) JP7372302B2 (ja)
WO (1) WO2023106181A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212799A (ja) * 2007-03-01 2008-09-18 Okayama Univ 排ガス中の窒素酸化物を接触還元するための触媒と方法
JP2015505290A (ja) 2011-12-02 2015-02-19 ピーキュー コーポレイション 安定化したミクロポーラス結晶性材料、その製造方法およびNOxの選択触媒還元のための使用方法
JP2015518420A (ja) * 2012-04-11 2015-07-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company 金属含有ゼオライト触媒
JP2015533343A (ja) * 2012-10-19 2015-11-24 ビーエーエスエフ コーポレーション 低温性能を向上させるための促進剤を有する8員環小孔分子ふるい
JP2016500562A (ja) * 2012-10-19 2016-01-14 ビーエーエスエフ コーポレーション 混合金属8員環小孔分子ふるい触媒組成物、触媒製品、システム及び方法
JP2016536126A (ja) * 2013-08-30 2016-11-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Noxを含む排気ガスを処理するためのゼオライトブレンド触媒
JP2018507777A (ja) * 2015-02-27 2018-03-22 ビーエーエスエフ コーポレーション 排ガス処理システム
JP2018526194A (ja) * 2015-06-18 2018-09-13 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Nh3過剰負荷耐性scr触媒
US20210205796A1 (en) * 2020-01-03 2021-07-08 Hyundai Motor Company Catalyst and manufacturing method thereof
JP2021520995A (ja) * 2018-04-11 2021-08-26 ビーエーエスエフ コーポレーション 混合ゼオライト含有scr触媒

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201517578D0 (en) 2015-10-06 2015-11-18 Johnson Matthey Plc Passive nox adsorber

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212799A (ja) * 2007-03-01 2008-09-18 Okayama Univ 排ガス中の窒素酸化物を接触還元するための触媒と方法
JP2015505290A (ja) 2011-12-02 2015-02-19 ピーキュー コーポレイション 安定化したミクロポーラス結晶性材料、その製造方法およびNOxの選択触媒還元のための使用方法
JP2015518420A (ja) * 2012-04-11 2015-07-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company 金属含有ゼオライト触媒
JP2015533343A (ja) * 2012-10-19 2015-11-24 ビーエーエスエフ コーポレーション 低温性能を向上させるための促進剤を有する8員環小孔分子ふるい
JP2016500562A (ja) * 2012-10-19 2016-01-14 ビーエーエスエフ コーポレーション 混合金属8員環小孔分子ふるい触媒組成物、触媒製品、システム及び方法
JP2016536126A (ja) * 2013-08-30 2016-11-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Noxを含む排気ガスを処理するためのゼオライトブレンド触媒
JP2018507777A (ja) * 2015-02-27 2018-03-22 ビーエーエスエフ コーポレーション 排ガス処理システム
JP2018526194A (ja) * 2015-06-18 2018-09-13 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Nh3過剰負荷耐性scr触媒
JP2021520995A (ja) * 2018-04-11 2021-08-26 ビーエーエスエフ コーポレーション 混合ゼオライト含有scr触媒
US20210205796A1 (en) * 2020-01-03 2021-07-08 Hyundai Motor Company Catalyst and manufacturing method thereof

Also Published As

Publication number Publication date
JP7372302B2 (ja) 2023-10-31
JP2023083819A (ja) 2023-06-16

Similar Documents

Publication Publication Date Title
JP7158453B2 (ja) 高温scr触媒としての8員環小孔分子ふるい
JP6742382B2 (ja) ゼオライトで活性化されるV/TiW触媒
JP7304383B2 (ja) バイメタルモレキュラーシーブ触媒
KR102428707B1 (ko) 배기가스를 처리하기 위한 분자체 촉매
US20150290632A1 (en) IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION
US11344868B2 (en) Selective catalytic reduction articles and systems
JP7152401B2 (ja) 酸化バナジウムを含有するscr触媒装置、及び鉄を含有するモレキュラーシーブ
JP7489761B2 (ja) アンモニア酸化触媒装置
KR102336320B1 (ko) NOx 흡착제 촉매
EP3609838A1 (en) Copper-containing small-pore zeolites having a low alkali metal content, method of making thereof, and their use as scr catalysts
JP2024012293A (ja) NOx吸収体およびSCR触媒の組み合わせ
CN109843432B (zh) 选择性催化还原制品和系统
CN108698841B (zh) 制备铁(iii)交换的沸石组合物的方法
JP7379155B2 (ja) 酸化バナジウム及び鉄含有分子篩を収容するscr触媒デバイス
CN108712927B (zh) 具有scr活性涂层的催化剂
JP7372302B2 (ja) 排ガス浄化触媒装置
JP7410122B2 (ja) 窒素酸化物吸蔵触媒
KR20190132914A (ko) 내열성이 개선된 제올라이트 및 이를 이용한 촉매 복합체
JP7206336B1 (ja) 排ガス浄化触媒
JP7320568B2 (ja) 排ガス浄化触媒
WO2023095619A1 (ja) 排ガス浄化触媒装置
JP2023554318A (ja) Cu及びFeを含む低N2OのSCR触媒を製造するための方法
KR20230115334A (ko) Fe 및 Cu-교환된 제올라이트를 포함하는 SCR 촉매의제조 방법, 상기 촉매, 상기 촉매를 포함하는 시스템, 및 이를 사용한 배기 가스 처리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904112

Country of ref document: EP

Kind code of ref document: A1