WO2023106000A1 - 有機性排水処理装置及び有機性排水処理装置の運転方法 - Google Patents

有機性排水処理装置及び有機性排水処理装置の運転方法 Download PDF

Info

Publication number
WO2023106000A1
WO2023106000A1 PCT/JP2022/040878 JP2022040878W WO2023106000A1 WO 2023106000 A1 WO2023106000 A1 WO 2023106000A1 JP 2022040878 W JP2022040878 W JP 2022040878W WO 2023106000 A1 WO2023106000 A1 WO 2023106000A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
air
organic wastewater
membrane separation
aerobic tank
Prior art date
Application number
PCT/JP2022/040878
Other languages
English (en)
French (fr)
Inventor
壮一郎 矢次
信也 永江
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2023106000A1 publication Critical patent/WO2023106000A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an organic wastewater treatment device and a method for operating the organic wastewater treatment device.
  • Patent Document 1 proposes an organic wastewater treatment apparatus capable of efficiently biologically treating nitrogen-containing organic wastewater according to its properties.
  • the organic wastewater treatment equipment comprises a pair of anoxic tank arranged upstream along the flow of organic wastewater and an aerobic tank arranged downstream and having a membrane separator immersed in activated sludge. and a biological treatment tank in which a plurality of biological treatment units are connected in series, and a sludge that returns activated sludge from the aerobic tank arranged in the most downstream to the anoxic tank arranged in the most upstream
  • a return route, a raw water supply route that divides and supplies organic wastewater to the anoxic tank of each biological treatment unit, and a treated water delivery route that sends out the membrane permeate as treated water from the membrane separation device of each biological treatment unit. is equipped with
  • Patent Document 2 proposes a cleaning air volume control system that can more appropriately determine the maintenance cycle while reducing the cleaning air volume.
  • the cleaning air volume control system is installed in a representative pond to which air is supplied at a rated air volume. and the transmembrane pressure difference of the control pond separation membrane unit installed in the control pond to which air is supplied at a predetermined air volume less than the rated air volume, and filtering the same water to be treated as the water to be treated flowing into the representative pond.
  • a target value setting unit that sets a target value of the transmembrane pressure or membrane filtration resistance of the control reservoir, and an air volume control unit that controls the air volume supplied to the control reservoir based on the target value.
  • the actual retention time of the water to be treated in the anoxic tank is shortened compared to a general MBR (Membrane Bio Reactor), so the dissolved dissolved water brought in from the aerobic tank Oxygen (hereinafter referred to as "DO (Dissolved Oxygen)”) reduces the residence time for the water to be treated in the anoxic tank to reach a substantially oxygen-free state.
  • DO Dissolved Oxygen
  • the actual retention time of the water to be treated in the anoxic tank is shortened to half compared to a general MBR, and organic wastewater equipped with four biological treatment units In a processing device, it is shortened to one-fourth.
  • DO value dissolved oxygen concentration
  • the membrane cleaning air volume generally does not depend on the DO value of the aerobic tank. , is set at a constant air volume or is set based on the membrane filtration resistance.
  • the cleaning air volume is forcibly decreased, thereby controlling the increase in the DO value.
  • a method is also conceivable.
  • the membrane cleaning air volume is reduced based only on the DO value, the membrane fouling rate may increase rapidly.
  • the object of the present invention is to provide a treatment apparatus and a method for operating an organic wastewater treatment apparatus.
  • the organic wastewater treatment apparatus has a first characteristic configuration, which is a biological treatment comprising at least anoxic tank and an aerobic tank in which a membrane separator is immersed in activated sludge.
  • the membrane separation device is configured to repeat filtration operation and filtration stop, and organic wastewater containing nitrogen is biologically treated in activated sludge
  • the aerobic tank is provided with an air discharge pipe, and air is supplied to an aeration device provided in the membrane separation device and to the air discharge pipe
  • a switching mechanism is provided for switching between air and air, and based on the DO value of the aerobic tank, the air is selectively supplied to either the air discharge pipe or the aeration device via the switching mechanism when filtration of the membrane separation device is stopped. It is in that it is configured to care.
  • Membrane separation equipment is a membrane filtration operation that obtains treated water by membrane filtration while releasing fine air bubbles with an aeration device, and aeration by stopping membrane filtration while maintaining the release of fine air bubbles by an aeration device. Filtration pause for purifying the membrane surface with the upward flow of the water to be treated caused by the filtration is repeated at predetermined time intervals. At this time, the DO value increases due to fine air bubbles released from the aerator.
  • the concentration of nitrate nitrogen in the water to be treated tends to increase. Stopping the state and releasing air from the air release tube suppresses the increase in DO value.
  • the air released from the air discharge pipe locally becomes a large mass in the aerobic tank and rises quickly in the liquid, so it raises the DO value like fine bubbles released from the aeration device. never Since membrane filtration is not performed when filtration is suspended, fouling substances do not adhere to the membrane surface.
  • the air discharge from the air discharge pipe should be switched from the air discharge from the air discharge pipe to the diffusion by the aeration equipment when the filtration of the membrane separator is stopped. Then, the membrane surface is purified by the upward flow of the water to be treated caused by the aeration.
  • the second characteristic configuration is, in addition to the first characteristic configuration described above, that the air discharge pipe is arranged upstream of the organic wastewater flow or at a position separated from the sludge return route. It is in.
  • the air release pipe is preferably arranged upstream of the flow of organic wastewater into which the activated sludge flows from the anoxic tank, or at a position separated from the sludge return route.
  • the third characteristic configuration is that, in addition to the first characteristic configuration described above, the discharge pressure of the air release pipe is adjusted to the same discharge pressure as that of the aeration device.
  • the discharge pressure of the air discharge pipe and the discharge pressure of the aeration device are different, depending on which one is switched to during filtration suspension, the amount of air blown to other lines may fluctuate greatly, making it impossible to operate properly.
  • the discharge pressure of the air discharge pipe is adjusted to the same discharge pressure as that of the aerator, stable air blowing conditions can be realized for other lines as well. Therefore, for example, a throttle mechanism is provided in the air discharge pipe so that the discharge pressure is the same as the discharge pressure of the aeration device, or a constant flow valve that can supply a constant flow rate even if the pressure fluctuates is interposed. becomes necessary.
  • the biological treatment tank includes the anoxic tank and the aerobic tank as a pair of biological treatment units, and a plurality of biological treatment units are connected in series.
  • the sludge return route is configured to return activated sludge from the aerobic tank disposed most downstream to the anoxic tank disposed most upstream, and organic wastewater is returned to each organism
  • the organic wastewater is divided and supplied to the anoxic tank of the treatment unit, and the organic wastewater is biologically treated while repeating the denitrification treatment in the anoxic tank and the nitrification treatment in the aerobic tank.
  • the air discharge pipe or the aeration device is sent via the switching mechanism provided in the membrane separation device. It is in that it is configured to selectively supply air.
  • a characteristic configuration of an operating method of an organic wastewater treatment apparatus is a method of operating an organic wastewater treatment apparatus having any one of the first to fourth characteristic configurations described above, wherein DO of the aerobic tank When the value exceeds a predetermined threshold value, the switching mechanism is switched to supply air from the aeration device to the air discharge pipe when the filtration of the membrane separation device is suspended.
  • FIG. 1(a) is an explanatory plan view of an organic wastewater treatment apparatus according to the present invention
  • FIG. 1(b) is a cross-sectional view of the essential parts of the organic wastewater treatment apparatus according to the present invention.
  • FIG. 2 is an explanatory diagram of a membrane element provided in the membrane separation device.
  • FIG. 3 shows another embodiment, and is an explanatory diagram of a main part of a cross-sectional view of an organic wastewater treatment apparatus according to the present invention.
  • FIGS. 1(a) and 1(b) show a first embodiment of an organic wastewater treatment apparatus and a method of operating the organic wastewater treatment apparatus.
  • the organic wastewater treatment apparatus 1 is a water treatment apparatus that obtains treated water by biologically treating organic wastewater containing nitrogen, which is raw water, in activated sludge as water to be treated. 20, a plurality of biological treatment units (in this embodiment, four pairs of biological treatment units) are arranged endlessly in series along the flow of organic waste water. .
  • a plurality of biological treatment units may be configured by partitioning a single biological treatment tank 2 into a plurality of areas, or a plurality of individual anoxic tanks 10 and aerobic tanks 20 may be arranged along the flow of the water to be treated.
  • the biological treatment tank 2 may be configured by arranging in pairs.
  • the biological treatment tank 2 is configured linearly, and a water channel or pipeline as a sludge return route for returning activated sludge containing the water to be treated from the most downstream aerobic tank 20 to the most upstream anoxic tank 10 may be provided separately.
  • Organic wastewater which is raw water, is supplied to each anoxic tank 10 in approximately equal amounts through the raw water supply path 3, and after denitrification treatment, which is anaerobic treatment, is performed in each anoxic tank 10, downstream. It flows into the side aerobic tank 20 and is aerobically treated. A membrane separator 30 is immersed in each aerobic tank 20, and an auxiliary air diffuser 40 for aerobic treatment is installed in the vicinity thereof.
  • An anoxic tank 10 (10a) on the most upstream side is equipped with an air lift pump AP, and an upward flow in the air lift pipe generated by air bubbles supplied from the blower B through the valve V10 pushes the water to be treated together with the activated sludge to the downstream side.
  • the liquid is sent to the aerobic tank 20 (20a), and thereafter, the anoxic tank 10 (10b), the aerobic tank 20 (20b), the anoxic tank 10 (10c), the aerobic tank 20 (20c), the anoxic tank 10 (10d) and the aerobic tank 20 (20d) flow down by gravity in this order.
  • the air lift pump AP is provided in the anaerobic tank 10 (10a), compared with the case where the air lift pump AP is provided in the aerobic tank 20 and liquid is sent to the anaerobic tank 10, the dissolved oxygen in the anaerobic tank 10 It does not lead to an increase in DO.
  • four pairs of biological treatment units are arranged endlessly along the flow of the water to be treated, and the aerobic tank 20 (20d) disposed most downstream and the non-aerobic tank 20 (20d) disposed most upstream
  • An oxygen tank 10 (10a) is arranged adjacently across a partition wall, and a sludge return path for returning the activated sludge in the most downstream aerobic tank 20 (20d) to the most upstream anoxic tank 10 (10a) together with the water to be treated. 4 is formed on a part of the partition.
  • a partition wall W1 is formed between the anoxic tank 10 and the aerobic tank 20, and a part of the upper end side of the partition wall W1 is provided so that the water to be treated containing activated sludge in the anoxic tank 10 overflows into the aerobic tank 20.
  • a notch 11 (see FIG. 1(b)) is provided.
  • a partition wall W2 is formed between the aerobic tank 20 and the anoxic tank 10, and an outflow part 21 for the water to be treated containing activated sludge is provided at a position corresponding to the vicinity of the bottom of the membrane separation device 30 in the vertical direction. .
  • the upper end of the opening that serves as the outflow part 21 is submerged, and is provided at a site of 30 cm or less from the water surface of the aerobic tank 20 .
  • the outflow velocity of the activated sludge from the outflow part 21 is 0.5 m/sec. It is set below.
  • the outflow portion 21 formed in the most downstream aerobic tank 20 (20d) serves as the sludge return route 4 described above.
  • the arrow indicated by the two-dot chain line in FIG. 1(a) indicates that the activated sludge flows into each biological treatment unit to form a circulation flow.
  • the membrane separation device 30 includes a plurality of membrane elements 31 and an aeration device 32 installed below the membrane elements 31 (see FIG. 1(b)).
  • a plurality of membrane elements 31 are arranged and accommodated in two upper and lower stages at regular intervals in the casing so that each membrane surface takes a vertical posture.
  • the membrane element 31 is constructed by arranging separation membranes 31b on both front and back surfaces of a resin-made membrane support 31a having a water collection pipe 31c on the top.
  • the separation membrane 31b is composed of a microfiltration membrane having a nominal pore diameter of about 0.4 ⁇ m and having a porous organic polymer membrane on the surface of a non-woven fabric.
  • the type of the separation membrane 31b and the membrane element 31 are not limited to the embodiments described above, and any type of separation membrane and any form of membrane element (hollow fiber membrane element, tubular membrane element, monolithic membrane element, etc.) can be used.
  • the treated water that has passed through the separation membrane 31b flows along the grooves formed in the membrane support 31a into the water collecting pipe 31c, and as shown in FIGS.
  • the water flows into the air separation tank 35 via the air separation tank 34 and is collected in the treated water tank 37 through the liquid feed pipe 36 connected to the air separation tank 35 .
  • Each header pipe 34 is provided with valves V5, V6, V7, and V8 for adjusting the flow rate, respectively, and a suction pump P is arranged in the liquid feeding pipe 36.
  • the amount of permeated water from each membrane separator 30 is adjusted by adjusting the pressure by the suction pump P and by adjusting the opening degrees of the valves V5, V6, V7 and V8.
  • a pressure sensor Pm is provided upstream of the valves V5, V6, V7, and V8 in each header pipe 34 in order to detect the transmembrane pressure difference of the membrane separation device 30 .
  • symbol M indicates a motor for adjusting the opening of the valve.
  • a route through which water flows into the air separation tank 35 from the water collection pipe 31c via the header pipe 34 and is collected in the treated water tank 37 through the liquid feed pipe 36 connected to the air separation tank 35 is the treated water delivery route. .
  • a main blower pipe Tm connected to the blower B is branch-connected to four first auxiliary blower pipes Ts, and each aerator 32 is connected to each first auxiliary blower pipe Ts.
  • the first sub-blower pipe Ts is provided with flow rate limiting valves V1, V2 . configured to be controllable.
  • a single second sub-blower pipe Ta is branch-connected to the main blow-pipe Tm, and air for air lift is supplied via a valve V10 provided in the second sub-blower pipe Ta.
  • four third sub-blower pipes Tb are branch-connected to the main blow-pipe Tm, and the air release pipes 5 installed in the respective aerobic tanks 20 are connected to each of the third sub-blower pipes Tb. Valves Va, Vb, .
  • the water to be treated is aerated together with the activated sludge in the aerobic tank 20 by the auxiliary air diffuser 40, organic matter is decomposed, ammonia nitrogen is nitrified into nitrate nitrogen, and a portion of the treated water is converted to treated water by the membrane separation device 30. As a solid-liquid separation.
  • the water to be treated that has undergone nitrification treatment in the aerobic tank 20 flows together with the activated sludge into the anoxic tank 10 adjacent downstream, where nitrate nitrogen is reduced to nitrogen gas for denitrification treatment.
  • Q be the inflow of raw water per unit time
  • Q/4 be the inflow of raw water into each anoxic tank 10.
  • a total amount of Q permeate of treated water is withdrawn from each membrane separation device 30, and the most downstream
  • the activated sludge in the aerobic tank 20 (20d) of 3Q is returned to the most upstream anoxic tank 10 (10a) through the sludge return route, the substantial circulation ratio of the sludge is 3 ⁇ 4, a high circulation ratio of 12Q can be realized, and a high nitrogen removal rate can be obtained.
  • the organic wastewater treatment apparatus 1 includes a flow meter for measuring the inflow of organic wastewater, a liquid level meter for measuring the tank liquid level, a pressure sensor for measuring the transmembrane pressure difference of each membrane separation apparatus, and a A plurality of measuring devices are provided, such as a measuring device S for measuring the TN of the treated water, the NO 3 —N concentration of the treated water, and the NH 4 —N concentration of the treated water.
  • a controller 60 is provided as a controller for controlling the operation of the organic wastewater treatment apparatus 1 based on the values measured by these measuring devices.
  • the control unit 60 is composed of a control panel equipped with a computer including an arithmetic circuit, an input circuit, an output circuit, and the like.
  • the control unit 60 measures the inflow of raw water measured by these measuring devices, the water level of the biological treatment tank 2, the value of each pressure sensor Pm, and the total nitrogen (TN) concentration measuring device provided in the treated water tank 37. While monitoring the value of S and the like, each membrane separation device 30 is repeatedly operated in two modes: a filtration operation state and a filtration suspension state.
  • the filtration operation state is a state in which membrane-permeated water is drawn as treated water from the water collection pipe 31c while aeration is performed by the aeration device 32
  • the filtration resting state is a state in which the valve provided in the header pipe 34 is closed or the suction pump P is closed. is stopped, the surface of the separation membrane 31b is cleaned by the upward flow generated by the air bubbles by performing aeration by the aeration device 32.
  • the filtration resting state can also be expressed as a relaxation operating state.
  • the control unit 60 repeats filtration operation for a first predetermined time (for example, 9 minutes) and relaxation operation for a second predetermined time (for example, 1 minute).
  • the actual retention time of the water to be treated in the anoxic tank 10 is shortened to 1/4 of that of a general MBR, so denitrification treatment in the anoxic tank 10 is excellent. , it is necessary to suppress the DO value of the aerobic tank 20 . Especially when the load of organic waste water, which is the water to be treated, is low, the increase in the DO value becomes remarkable.
  • the control unit 60 selects either the air discharge pipe 5 or the aeration device 32 via the switching mechanism when the filtration of the membrane separation device 30 is suspended.
  • the switching mechanism is switched so that air is blown to the air discharge pipe 5 when the filtration of the membrane separation device 30 is suspended, and when the DO value falls below 0.8 mg/L , the switching mechanism is switched so that aeration is performed from the aeration device 32 when the filtration of the membrane separation device 30 is suspended.
  • the proper range of DO value is set in the range of 0.8 mg/L to 1.5 mg/L.
  • valves V1, V2, . . . and the valves Va, Vb, . are controlled to close, and when the valves Va, Vb, . . . are controlled to open, the valves V1, V2, .
  • valves V1, V2 . . . and the valves Va, Vb . is configured.
  • the switching mechanism may be a three-way valve that switches between directing air from the main blower pipe Tm to each aerator 32 and directing it to each air discharge pipe 5 .
  • the discharge pressure when leading to each air discharge pipe 5 is higher than the discharge pressure when leading to each aeration device 32 If the pressure is low, there is a risk that the amount of air blown to the organic wastewater treatment equipment of other lines will decrease. Therefore, the discharge pressure of the air discharge pipe 5 must be adjusted to the same discharge pressure as that of the aerator 32 .
  • a throttle mechanism is provided in the air discharge pipe 5, or a constant flow valve capable of supplying a constant flow rate even if the pressure fluctuates is interposed.
  • the air discharge pipe 5 is located in the aerobic tank 20 at a location remote from the upstream side of the flow of organic waste water, the inlet of the sludge polarization path, or the outlet 21 which substantially functions as a sludge return path. There is a need. This is to prevent the air discharged from the air discharge pipe 5 from being returned to the anoxic tank 10 via the sludge return route or the like.
  • control unit 60 switches to supply air from the aeration device 32 to the air discharge pipe 5 via the switching mechanism during the relaxation operation of the membrane separation device 30, the control unit 60 simultaneously stops the diffusion from the auxiliary air diffusion device 40. can be controlled to
  • the control unit 60 synchronizes and relaxes the membrane separation devices 30 of all the aerobic tanks 20 constituting the organic wastewater treatment device 1.
  • the aerobic tank 20 is switched to supply air to the air discharge pipe 5 from the aeration device 32 for each cycle of operation, and the DO value of the aerobic tank 20 falls within the appropriate range, all of the preferable
  • the membrane separation device 30 of the air tank 20 is synchronously switched to supply air from the air discharge pipe 5 to the aeration device 32 every cycle of the relaxation operation.
  • the standard of "when the DO value of the aerobic tank 20 exceeds the appropriate range” is the average value of the DO values of the water to be treated in the plurality of aerobic tanks 20 or the DO of the water to be treated in all the aerobic tanks 20 However, it is preferable to use the DO value of the water to be treated in any one of the aerobic tanks 20 .
  • the standard of "when the aerobic tank 20 falls within the appropriate range of DO values” is the average value of the DO value of the water to be treated in the plurality of aerobic tanks 20 or the water to be treated in all the aerobic tanks 20
  • the DO value can be used, it is preferable to use the DO value of the water to be treated in any one of the aerobic tanks 20 .
  • the expression “the DO value of the water to be treated in the aerobic tank 20” is also simply expressed as “the DO value of the aerobic tank 20”.
  • the organic wastewater treatment apparatus 1 has a pair of anoxic tank 10 and aerobic tank 20 as biological treatment units, and four pairs of biological treatment units are arranged in series along the flow of organic wastewater.
  • the biological treatment tanks 2 are disposed in the terminal shape, the number of biological treatment units may be two or more.
  • FIG. 3 shows a second embodiment of the organic wastewater treatment apparatus and the method of operating the organic wastewater treatment apparatus.
  • the same reference numerals are given to the same functional blocks as in the first mode.
  • the organic wastewater treatment apparatus 1 includes a biological treatment tank 2 comprising an anoxic tank 10 and an aerobic tank 20 in which a membrane separation device 30 is immersed in activated sludge. and a sludge return route 4 for returning the activated sludge to.
  • a first sub-blower pipe Ts is branch-connected to the main blow-pipe Tm connected to the blower B, and each aerator 32 is connected to the sub-blower pipe Ts.
  • the auxiliary air pipe Ts is provided with a valve V1 for flow rate restriction, and is configured to be able to control the amount of aeration and stop and start of aeration.
  • a third sub-blower pipe Tb is branch-connected to the main blow-pipe Tm, and an air discharge pipe 5 installed in each aerobic tank 20 is connected to the third sub-blower pipe Tb.
  • a valve Va for restricting the flow rate is provided in the third sub blower pipe Tb, and is configured so as to be able to control the stop and start of air release.
  • a switching mechanism for switching between the supply of air to the aeration device 32 provided in the membrane separation device 30 and the supply of air to the air release pipe 5 is configured by the valve V1 and the valve Va. As in the first mode, it is also possible to configure the switching mechanism with a three-way valve that switches between directing the air from the main air blowing pipe Tm to the aeration device 32 and directing it to each of the air discharge pipes 5 .
  • the membrane separation device 30 is controlled by the controller 60 so as to repeat filtration operation and filtration suspension.
  • the controller 60 controls the membrane separation device 30 so as to repeat filtration operation and filtration suspension.
  • the control unit 60 selects either the air discharge pipe 5 or the aeration device 32 via the switching mechanism when the filtration of the membrane separation device 30 is suspended.
  • the organic wastewater treatment apparatus 1 is composed of one anoxic tank 10 and one aerobic tank 20, and has a sludge return route for returning activated sludge from the aerobic tank 20 to the anoxic tank 10.
  • the present invention can be applied to any configuration.
  • a representative pond pressure gauge that is installed in a representative pond to which air is supplied at a rated air volume and measures the transmembrane pressure difference of a representative pond separation membrane unit that filters the water to be treated flowing into the representative pond, and the rated air volume.
  • the membrane of the control pond A cleaning air volume control system comprising a target value setting unit that sets a target value of the differential pressure or membrane filtration resistance, and an air volume control unit that controls the air volume supplied to the control pond based on the target value,
  • Organic wastewater treatment device 2 Organic wastewater treatment device 2: Biological treatment tank 3: Raw water supply route 4: Sludge return route 5: Air discharge pipe 10: Anoxic tank 11: Notch 20: Aerobic tank 21: Outflow part (sludge return route ) 30: Membrane separation device 32: Aeration device 40: Auxiliary air diffusion device 60: Control unit (control device)

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

好気槽から無酸素槽への返送汚泥量を増した場合でも、膜分離装置の膜詰まりを回避しながら無酸素槽の硝酸性窒素濃度の上昇を抑制できる有機性排水処理装置を提供する。 少なくとも無酸素槽と、膜分離装置が活性汚泥中に浸漬配置された好気槽と、からなる生物処理槽と、前記好気槽から前記無酸素槽へ活性汚泥を返送する汚泥返送経路と、を備え、前記膜分離装置はろ過運転とろ過休止とを繰り返すように構成され、窒素を含む有機性排水を活性汚泥中で生物処理する有機性排水処理装置であって、前記好気槽に空気放出管を備えるとともに、前記膜分離装置に備えた曝気装置への給気と前記空気放出管への給気とを切り替える切替機構を備え、前記好気槽のDO値に基づいて、前記膜分離装置のろ過休止時に前記切替機構を介して前記空気放出管または前記曝気装置の何れかに選択的に給気するように構成されている。

Description

有機性排水処理装置及び有機性排水処理装置の運転方法
 本発明は、有機性排水処理装置及び有機性排水処理装置の運転方法に関する。
 特許文献1には、窒素を含有する有機性排水の性状に応じて効率的に生物処理を行なうことができる有機性排水処理装置が提案されている。
 当該有機性排水処理装置は、有機性排水の流れに沿う上流側に配設された無酸素槽と下流側に配設され膜分離装置が活性汚泥中に浸漬配置された好気槽とを一対の生物処理単位とし、複数の生物処理単位が直列に接続された生物処理槽と、最下流に配設された好気槽から最上流に配設された無酸素槽へ活性汚泥を返送する汚泥返送経路と、有機性排水を各生物処理単位の無酸素槽に分割して供給する原水供給経路と、各生物処理単位の膜分離装置から膜透過液を処理水として送出する処理水送出経路と、を備えている。
 そして、有機性排水の流入量、水槽液位、各膜分離装置の膜間差圧、処理水のT-N、処理水のNO-N濃度、処理水のNH-N濃度の少なくとも一つを測定する測定装置と、前記測定装置で得られた測定値を指標として、前記生物処理単位毎に稼働中の膜分離装置の停止または停止中の膜分離装置の起動の可否を判断する制御装置と、を備えている。
 特許文献2には、洗浄風量の削減を図りながら、より適切にメンテナンス周期を決定することができる洗浄風量制御システムが提案されている。
 当該洗浄風量制御システムは、定格風量で空気が供給される代表池に設置され、前記代表池に流入する被処理水をろ過する代表池分離膜ユニットの膜間差圧を測定する代表池圧力計と、前記定格風量より少ない所定の風量で空気が供給される制御池に設置され、前記代表池に流入する被処理水と同様の被処理水をろ過する制御池分離膜ユニットの膜間差圧又は膜ろ過抵抗の上限値と、前記代表池分離膜ユニットの膜間差圧に基づいて算出される膜ろ過抵抗又は前記代表池分離膜ユニットの膜間差圧の経時変化情報と、に基づいて前記制御池の膜間差圧又は膜ろ過抵抗の目標値を設定する目標値設定部と、前記目標値に基づいて前記制御池に供給される風量を制御する風量制御部と、を備えている。
特開2018-176016号公報 特開2020-199475号公報
 特許文献1に開示された有機性排水処理装置では、無酸素槽における被処理水の実滞留時間は一般的なMBR(Membrane Bio Reactor)と比べて短縮されるため、好気槽から持ち込まれる溶存酸素(以下、「DO(Dissolved Oxygen)」と記す。)により無酸素槽における被処理水の実質的に無酸素状態となる滞留時間が削減される。そのため、無酸素槽での脱窒処理が進まずに処理水中の硝酸性窒素濃度が上昇し易くなる。
 例えば2つの生物処理単位を備えた有機性排水処理装置では無酸素槽における被処理水の実滞留時間は一般的なMBRと比べて半分まで短縮され、4つの生物処理単位を備えた有機性排水処理装置では4分の1まで短縮されてしまう。
 そのため、好気槽における被処理水の溶存酸素濃度(以下、「DO値」と記す。)を抑制することが必要となるが、流入負荷が低い有機性排水処理装置の場合、好気槽に給気する補助散気装置の風量だけでなく、膜分離装置に備えた曝気装置による膜洗浄風量も抑制しなければ、DO値が理想的な濃度である1.0mg/L程度まで低下しない状況が想定される。
 無酸素槽と膜分離装置が活性汚泥中に浸漬配置された好気槽を其々1槽ずつ備えた標準的なMBRであっても、汚泥返送経路を介した返送汚泥量を増加させると、同様の状況が生じる虞がある。
 特許文献2に開示されたような、膜ろ過抵抗の経時変化情報に基づいて洗浄風量を自動調節する洗浄風量制御システムを含め、一般的に膜洗浄風量は好気槽のDO値に拠らず、一定風量に設定され或いは膜ろ過抵抗に基づいて設定される。
 そこで、DO値の上昇を考慮して、好気槽における被処理水のDO値が上限値に達すると、強制的に洗浄風量を減少させることで、DO値の上昇を抑制するように制御する方法も考えられる。しかし、DO値のみに基づいて膜洗浄風量を低下させると、膜ファウリング速度が急激に上昇する虞がある。
 本発明の目的は、好気槽から無酸素槽への返送汚泥量を増した場合でも、膜分離装置の膜詰まりを回避しながら無酸素槽の硝酸性窒素濃度の上昇を抑制できる有機性排水処理装置及び有機性排水処理装置の運転方法を提供する点にある。
 上述の目的を達成するため、本発明による有機性排水処理装置の第一特徴構成は、少なくとも無酸素槽と、膜分離装置が活性汚泥中に浸漬配置された好気槽と、からなる生物処理槽と、前記好気槽から前記無酸素槽へ活性汚泥を返送する汚泥返送経路と、を備え、前記膜分離装置はろ過運転とろ過休止とを繰り返すように構成され、窒素を含む有機性排水を活性汚泥中で生物処理する有機性排水処理装置であって、前記好気槽に空気放出管を備えるとともに、前記膜分離装置に備えた曝気装置への給気と前記空気放出管への給気とを切り替える切替機構を備え、前記好気槽のDO値に基づいて、前記膜分離装置のろ過休止時に前記切替機構を介して前記空気放出管または前記曝気装置の何れかに選択的に給気するように構成されている点にある。
 膜分離装置は、曝気装置により微細な気泡を放出しながら膜ろ過により処理水を得る膜ろ過運転と、曝気装置による微細な気泡の放出を維持した状態で膜ろ過を停止することで、散気により生じる被処理水の上向流で膜表面を浄化するろ過休止とが、所定時間間隔で繰り返される。このとき、曝気装置から放出される微細な気泡によりDO値が高くなる。
 そこで、好気槽のDO値が高く、無酸素槽での脱窒処理が進まずに被処理水中の硝酸性窒素濃度が上昇し易い状態になると、膜分離装置のろ過休止時に曝気装置による曝気状態を停止して、空気放出管から空気を放出することで、DO値の上昇を抑制する。空気放出管から放出される空気は、好気槽の中で局所的に大きな塊となって速やかに液中を上昇するため、曝気装置から放出される微細な気泡のようにDO値を上昇させることがない。ろ過休止時には膜ろ過が行なわれないため、膜表面にファウリング物質が付着するようなこともない。
 好気槽のDO値が低下して、無酸素槽での脱窒処理が進む環境になると、膜分離装置のろ過休止時に、空気放出管からの空気の放出から曝気装置による散気に切替えることで、散気により生じる被処理水の上向流によって膜表面が浄化されるようになる。
 同第二の特徴構成は、上述した第一の特徴構成に加えて、前記空気放出管は、有機性排水の流れの上流側、または、前記汚泥返送経路から離隔した位置に配置されている点にある。
 空気放出管から放出される空気が汚泥返送経路を介して無酸素槽に返送されることが無いように留意する必要がある。そのため、空気放出管は、無酸素槽から活性汚泥が流入する有機性排水の流れの上流側、または、汚泥返送経路から離隔した位置に配置することが好ましい。
 同第三の特徴構成は、上述した第一の特徴構成に加えて、前記空気放出管の吐出圧は、前記曝気装置の吐出圧と同等の吐出圧に調節されている点にある。
 空気放出管の吐出圧と曝気装置の吐出圧とが異なる場合には、ろ過休止時に何れに切替えるかによって他の系列への送風量が大きく変動して適切に運転できなくなる虞がある。しかし、空気放出管の吐出圧を曝気装置の吐出圧と同等の吐出圧に調節しておけば、他の系列に対しても安定した送風状態が実現できる。そのため、例えば、曝気装置の吐出圧と同等の吐出圧となるように、空気放出管に絞り機構を設けたり、圧力変動があっても一定の流量を供給可能な定流量弁を介在させたりすることが必要になる。
 同第四の特徴構成は、上述した第一の特徴構成に加えて、前記生物処理槽は、前記無酸素槽と前記好気槽とを一対の生物処理単位として、複数の生物処理単位が直列に接続され、前記汚泥返送経路は、最下流に配設された前記好気槽から最上流に配設された前記無酸素槽へ活性汚泥を返送するように構成され、有機性排水を各生物処理単位の無酸素槽に分割して供給し、前記無酸素槽での脱窒処理と前記好気槽での硝化処理を繰り返しながら有機性排水を生物処理するように構成されており、前記好気槽の何れかのDO値に基づいて、当該好気槽に備えた膜分離装置のろ過休止時に当該膜分離装置に備えた切替機構を介して前記空気放出管または前記曝気装置の何れかに選択的に給気するように構成されている点にある。
 このような生物処理槽を採用することにより、汚泥返送経路を介した汚泥の実質的な循環比を大きな値に設定できるようになり、高い窒素除去率が得られる。そして、DO値が上昇した場合には、膜分離装置のろ過休止時に切替機構を介して空気放出管または曝気装置の何れかに選択的に給気することで、膜分離装置の膜ファウリングを抑制しつつDO値を低下させることができる。
 本発明による有機性排水処理装置の運転方法の特徴構成は、上述した第一から第四の何れかの特徴構成を備えた有機性排水処理装置の運転方法であって、前記好気槽のDO値が所定の閾値を上回ると、前記膜分離装置のろ過休止時に前記切替機構を介して前記曝気装置から前記空気放出管に給気するように切り替える点にある。
 以上説明した通り、本発明によれば、好気槽から無酸素槽への返送汚泥量を増した場合でも、膜分離装置の膜詰まりを回避しながら無酸素槽の硝酸性窒素濃度の上昇を抑制できる有機性排水処理装置及び有機性排水処理装置の運転方法を提供することができるようになった。
図1(a)は本発明による有機性排水処理装置の平面視の説明図であり、図1(b)は本発明による有機性排水処理装置の断面視の要部説明図である。 図2は膜分離装置に備えた膜エレメントの説明図である。 図3は別実施形態を示し、本発明による有機性排水処理装置の断面視の要部説明図である。
 以下、本発明による有機性排水処理装置及び有機性排水処理装置の運転方法の実施形態を説明する。
[第1の態様]
 図1(a)、図1(b)には、有機性排水処理装置及び有機性排水処理装置の運転方法の第1の態様が示されている。
 有機性排水処理装置1は、原水である窒素を含む有機性排水を被処理水として活性汚泥中で生物処理して処理水を得る水処理装置であり、一対の無酸素槽10と好気槽20を生物処理単位として、複数の生物処理単位(本実施形態では4対の生物処理単位)を有機性排水の流れに沿って直列に且つ無終端状に配置した生物処理槽2を備えている。
 なお、単一の生物処理槽2を複数領域に仕切ることにより複数の生物処理単位を構成してもよいし、被処理水の流れに沿って個別の無酸素槽10と好気槽20を複数対配列することにより生物処理槽2を構成してもよい。
 また、生物処理槽2を直線状に構成し、最下流の好気槽20から最上流の無酸素槽10へ被処理水を含む活性汚泥を返送するための汚泥返送経路としての水路または管路を別途設けてもよい。
 原水である有機性排水が原水供給経路3を介して各無酸素槽10に略等量に分割して供給され、各無酸素槽10で嫌気性処理である脱窒処理が行なわれた後に下流側の好気槽20に流入して好気処理される。各好気槽20に膜分離装置30が浸漬設置され、その近傍に好気処理のための補助散気装置40が設置されている。
 最上流側の無酸素槽10(10a)にはエアリフトポンプAPが設置され、ブロワーBからバルブV10を介して供給される気泡により発生するエアリフト管内の上昇流によって活性汚泥とともに被処理水が下流側の好気槽20(20a)に送液され、以後、無酸素槽10(10b)、好気槽20(20b)、無酸素槽10(10c)、好気槽20(20c)、無酸素槽10(10d)、好気槽20(20d)の順に自然流下する。無酸素槽10(10a)にエアリフトポンプAPを設けているため、好気槽20にエアリフトポンプAPを設けて無酸素槽10に液送する場合と比較して、無酸素槽10での溶存酸素DOの増加を招くことがない。
 本実施形態では、被処理水の流れに沿って4対の生物処理単位が無終端状に配置され、最下流に配設された好気槽20(20d)と最上流に配設された無酸素槽10(10a)とが隔壁を隔てて隣接配置され、最下流の好気槽20(20d)の活性汚泥を被処理水とともに最上流の無酸素槽10(10a)に返送する汚泥返送経路4が当該隔壁の一部に形成されている。
 無酸素槽10と好気槽20との間に隔壁W1が形成され、無酸素槽10の活性汚泥を含む被処理水が好気槽20にオーバーフローするように、隔壁W1の上端側一部に切欠き部11(図1(b)参照。)が設けられている。
 好気槽20と無酸素槽10との間に隔壁W2が形成され、上下方向で膜分離装置30の底部近傍に対応する位置に活性汚泥を含む被処理水の流出部21が設けられている。流出部21となる開口の上端は水没しており、好気槽20の水面から30cm以下の部位に設けられている。当該流出部21から活性汚泥の流出流速は0.5m/sec.以下に設定されている。最下流の好気槽20(20d)に形成された流出部21が上述した汚泥返送経路4となる。図1(a)に二点鎖線で示される矢印は、活性汚泥が生物処理ユニット単位に流れて循環流が形成されていることを示している。
 膜分離装置30は、複数の膜エレメント31と、膜エレメント31の下方に設置された曝気装置32を備えている(図1(b)参照。)。複数の膜エレメント31は各膜面が縦姿勢となるように、ケーシングに一定間隔を隔てて上下二段に配列収容されている。
 図2に示すように、膜エレメント31は上部に集水管31cを備えた樹脂製の膜支持体31aの表裏両面に分離膜31bが配置されて構成されている。本実施形態では、分離膜31bは、不織布の表面に多孔性を有する有機高分子膜を備えた公称孔径が0.4μm程度の精密ろ過膜で構成されている。
 分離膜31bの種類及び膜エレメント31は、上述した態様に限定されるものではなく、任意の種類の分離膜及び任意の形態の膜エレメント(中空糸膜エレメント、管状膜エレメント、モノリス膜エレメント等)を用いることが可能である。
 分離膜31bを透過した処理水は、膜支持体31aに形成された溝部に沿って集水管31cに流れ、図1(a)、図1(b)に示すように、集水管31cからヘッダー管34を経由して空気分離タンク35に流入し、空気分離タンク35に接続された送液管36を介して処理水槽37に集水される。
 各ヘッダー管34には、それぞれ流量調整用のバルブV5,V6,V7,V8が設けられ、送液管36には吸引ポンプPが配されている。吸引ポンプPによる圧力調整及びバルブV5,V6,V7,V8の開度調節によって各膜分離装置30からの膜透過水量が調整される。
 膜分離装置30の膜間差圧を検出するために、各ヘッダー管34のうちバルブV5,V6,V7,V8の上流に圧力センサPmが設けられている。なお、図中、符号Mはバルブの開度を調整するためのモータを示す。集水管31cからヘッダー管34を経由して空気分離タンク35に流入し、空気分離タンク35に接続された送液管36を介して処理水槽37に集水される経路が処理水送出経路となる。
 ブロワーBに接続された主送風管Tmに4本の第1副送風管Tsが分岐接続され、各第1副送風管Tsに各曝気装置32が接続されている。各好気槽20に設置された膜分離装置30に対応して第1副送風管Tsにはそれぞれ流量制限用のバルブV1,V2・・・が設けられ、曝気量や曝気の停止及び開始が制御可能に構成されている。
 また、主送風管Tmに1本の第2副送風管Taが分岐接続され、第2副送風管Taに備えたバルブV10を介してエアリフト用の空気が供給されている。
 さらに、主送風管Tmに4本の第3副送風管Tbが分岐接続され、各第3副送風管Tbに各好気槽20に設置された空気放出管5が接続されている。第3副送風管Tbにはそれぞれ流量制限用のバルブVa,Vb・・・が設けられ、空気放出の停止及び開始が制御可能に構成されている。
 補助散気装置40によって好気槽20内の活性汚泥とともに被処理水が曝気されて、有機物が分解されるとともにアンモニア性窒素が硝酸性窒素に硝化され、膜分離装置30によって一部が処理水として固液分離される。好気槽20で硝化処理された被処理水は活性汚泥とともに下流側に隣接する無酸素槽10に流入し、硝酸性窒素が窒素ガスに還元除去される脱窒処理が進む。
 単位時間あたりの原水の流入量をQ、各無酸素槽10への原水の流入量をQ/4とし、各膜分離装置30から総量でQの透過液量の処理水が引抜かれ、最下流の好気槽20(20d)の活性汚泥が汚泥返送経路を介して最上流の無酸素槽10(10a)に3Qの汚泥が返送される場合には、汚泥の実質的な循環比が3×4となり12Qという高い循環比が実現でき、高い窒素除去率が得られる。
 有機性排水処理装置1には、有機性排水の流入量を測定する流量計、水槽液位を計測する液位計、各膜分離装置の膜間差圧を計測する圧力センサ、処理水槽37に設けられ処理水のT-N、処理水のNO-N濃度、処理水のNH-N濃度を測定する測定器Sなどの複数の測定装置が設けられている。そして、それら測定装置により測定された値に基づいて有機性排水処理装置1を運転制御する制御装置となる制御部60が設けられている。制御部60は演算回路、入力回路、出力回路等でなるコンピュータを備えた制御盤で構成されている。
 制御部60は、それら測定装置によって測定された原水の流入量の程度、生物処理槽2の水位、各圧力センサPmの値、処理水槽37に備えたトータル窒素(T-N)濃度の測定器Sの値などをモニタしながら、各膜分離装置30をろ過運転状態とろ過休止状態の二態様で繰返し運転する。
 ろ過運転状態とは曝気装置32による曝気を行ないつつ集水管31cから膜透過水を処理水として引抜く状態をいい、ろ過休止状態とはヘッダー管34に備えたバルブを閉塞し、または吸引ポンプPを停止した状態で、曝気装置32による曝気を行なうことにより、気泡により生じる上向流で分離膜31bの表面をクリーニングする状態をいう。ろ過休止状態を、リラグゼーション運転状態と表現することもできる。制御部60によって、第1の所定時間(例えば9分)のろ過運転と、第2の所定時間(例えば1分)のリラグゼーション運転が繰り返される。
 このような有機性排水処理装置1では無酸素槽10における被処理水の実滞留時間は一般的なMBRと比べて4分の1まで短縮されるため、無酸素槽10における脱窒処理を良好に維持するために、好気槽20のDO値を抑制することが必要となる。特に被処理水である有機性排水の負荷が低い場合にDO値の上昇が顕著になる。
 そこで、制御部60は、好気槽20に設置したDOセンサSdoの値に基づいて、膜分離装置30のろ過休止時に切替機構を介して空気放出管5または曝気装置32の何れかに選択的に給気するように構成されている。本実施形態では、DO値が1.5mg/Lを超えると、膜分離装置30のろ過休止時に空気放出管5へ送風するように切替機構を切替え、DO値が0.8mg/Lを下回ると、膜分離装置30のろ過休止時に曝気装置32から曝気するように切替機構を切り替える。すなわち。DO値の適正範囲は0.8mg/Lから1.5mg/Lの範囲に設定されている。
 上述したバルブV1,V2・・・とバルブVa,Vb・・・は、制御部60によって相反的に開閉制御され、バルブV1,V2・・・が開制御されるときにはバルブVa,Vb・・・は閉制御され、バルブVa,Vb・・・が開制御されるときにはバルブV1,V2・・・は閉制御される。
 つまり、バルブV1,V2・・・とバルブVa,Vb・・・とで、膜分離装置30に備えた各曝気装置32への給気と各空気放出管5への給気とを切り替える切替機構が構成される。なお、切替機構として、主送風管Tmからの送風を各曝気装置32へ導くか、各空気放出管5へ導くかを切り替える三方弁で構成してもよい。
 何れの構成であっても、主送風管Tmは複数系列の有機性排水処理装置に送風されているため、各曝気装置32に導く際の吐出圧よりも各空気放出管5へ導く際の吐出圧が低ければ、他の系列の有機性排水処理装置への送風量が減少する虞がある。そのため、空気放出管5の吐出圧は、曝気装置32の吐出圧と同等の吐出圧に調節される必要がある。
 そのため、曝気装置32の吐出圧と同等の吐出圧となるように、空気放出管5に絞り機構を設け、或いは、圧力変動があっても一定の流量を供給可能な定流量弁を介在させている。
 空気放出管5は、好気槽20のうち、有機性排水の流れの上流側、汚泥偏光経路の入口、または実質的に汚泥返送経路として機能する流出部21から離隔した位置に配置されている必要がある。空気放出管5から放出される空気が汚泥返送経路などを介して無酸素槽10に返送されることを回避するためである。
 制御部60は、膜分離装置30のリラグゼーション運転時に切替機構を介して曝気装置32から空気放出管5に給気するように切り替える場合に、同時に補助散気装置40からの散気を停止するように制御してもよい。
 制御部60は、好気槽20がDO値の適正範囲から大きくなった場合に、有機性排水処理装置1を構成する全ての好気槽20の膜分離装置30に対して、同期してリラグゼーション運転の1サイクル毎に曝気装置32から空気放出管5に給気するように切り替え、好気槽20がDO値の適正範囲に収まった場合に、有機性排水処理装置1を構成する全ての好気槽20の膜分離装置30に対して、同期してリラグゼーション運転の1サイクル毎に空気放出管5から曝気装置32に給気するように切り替える。
 「好気槽20がDO値の適正範囲から大きくなった場合」の基準は、複数の好気槽20における被処理水のDO値の平均値または全ての好気槽20における被処理水のDO値とすることができるが、何れか一つの好気槽20における被処理水のDO値とすることが好ましい。また、「好気槽20がDO値の適正範囲に収まった場合」の基準を、複数の好気槽20における被処理水のDO値の平均値または全ての好気槽20における被処理水のDO値とすることができるが、何れか一つの好気槽20における被処理水のDO値とすることが好ましい。以下では、「好気槽20における被処理水のDO値」との表現を、単に「好気槽20のDO値」とも表現する。
 以上説明した通り、本発明による有機性排水処理装置の運転方法は、好気槽20のDO値が所定の閾値を上回ると、膜分離装置30のろ過休止時に切替機構を介して曝気装置32から空気放出管5に給気するように切り替えるように運転する。なお、膜ろ過運転時には、切替機構を介して空気放出管5から曝気装置32に給気することはいうまでもない。
 以下、別実施形態を説明する。
 上述した実施形態では、有機性排水処理装置1が、一対の無酸素槽10と好気槽20を生物処理単位として、4対の生物処理単位を有機性排水の流れに沿って直列に且つ無終端状に配置した生物処理槽2を備えて構成される態様を説明したが、生物処理単位の数は2対以上の複数であればよい。
[第2の態様]
 図3には、有機性排水処理装置及び有機性排水処理装置の運転方法の第2の態様が示されている。第1の態様と同じ機能ブロックには、同じ符号を示している。有機性排水処理装置1は、無酸素槽10と、膜分離装置30が活性汚泥中に浸漬配置された好気槽20と、からなる生物処理槽2と、好気槽20から無酸素槽10へ活性汚泥を返送する汚泥返送経路4と、を備えている。
 ブロワーBに接続された主送風管Tmに第1副送風管Tsが分岐接続され、副送風管Tsに各曝気装置32が接続されている。好気槽20に設置された膜分離装置30に対応して副送風管Tsには流量制限用のバルブV1が設けられ、曝気量や曝気の停止及び開始が制御可能に構成されている。
 主送風管Tmに第3副送風管Tbが分岐接続され、第3副送風管Tbに各好気槽20に設置された空気放出管5が接続されている。第3副送風管Tbには流量制限用のバルブVaが設けられ、空気放出の停止及び開始が制御可能に構成されている。
 バルブV1とバルブVaとで、膜分離装置30に備えた曝気装置32への給気と空気放出管5への給気とを切り替える切替機構が構成される。なお、第1の態様と同様に、主送風管Tmからの送風を曝気装置32へ導くか、各空気放出管5へ導くかを切り替える三方弁で切替機構を構成することも可能である。
 第1の態様と同じく、膜分離装置30はろ過運転とろ過休止とを繰り返すように制御部60により制御される。汚泥返送経路4を介して返送される汚泥量を増加させると、無酸素槽の実滞留時間が短縮され、好気槽20のDO値を抑制することが必要となる。
 そこで、制御部60は、好気槽20に設置したDOセンサSdoの値に基づいて、膜分離装置30のろ過休止時に切替機構を介して空気放出管5または曝気装置32の何れかに選択的に給気するように構成されている。好気槽20のDO値に基づいて、膜分離装置30のろ過休止時に切替機構を介して空気放出管5または曝気装置32の何れかに選択的に給気するように構成されている。
 本実施形態でも、DO値が1.5mg/Lを超えると、膜分離装置30のろ過休止時に空気放出管5へ送風するように切替え、DO値が0.8mg/Lを下回ると、膜分離装置30のろ過休止時に曝気装置32から曝気するように切り替える。つまり、有機性排水処理装置1が、1槽の無酸素槽10と1槽の好気槽20で構成され、好気槽20から無酸素槽10へ活性汚泥を返送する汚泥返送経路を備えた構成であっても本発明を適用することができる。
 特許文献2に記載されたような洗浄風量制御システムに本発明を適用することも可能である。
 すなわち、定格風量で空気が供給される代表池に設置され、前記代表池に流入する被処理水をろ過する代表池分離膜ユニットの膜間差圧を測定する代表池圧力計と、前記定格風量より少ない所定の風量で空気が供給される制御池に設置され、前記代表池に流入する被処理水と同様の被処理水をろ過する制御池分離膜ユニットの膜間差圧又は膜ろ過抵抗の上限値と、前記代表池分離膜ユニットの膜間差圧に基づいて算出される膜ろ過抵抗又は前記代表池分離膜ユニットの膜間差圧の経時変化情報と、に基づいて前記制御池の膜間差圧又は膜ろ過抵抗の目標値を設定する目標値設定部と、前記目標値に基づいて前記制御池に供給される風量を制御する風量制御部と、を備えた洗浄風量制御システムに、本発明を組み込み、DO値が適正な範囲内であれば、洗浄風量制御システムに基づいて制御池に供給される風量を制御するとともに、DO値が適正な範囲から超過した場合のみ空気放出管5から空気を放出するのである。
 上述した実施形態は、何れも本発明の一例であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。
1:有機性排水処理装置
2:生物処理槽
3:原水供給経路
4:汚泥返送経路
5:空気放出管
10:無酸素槽
11:切欠き部
20:好気槽
21:流出部(汚泥返送経路)
30:膜分離装置
32:曝気装置
40:補助散気装置
60:制御部(制御装置)

Claims (5)

  1.  少なくとも無酸素槽と、膜分離装置が活性汚泥中に浸漬配置された好気槽と、からなる生物処理槽と、前記好気槽から前記無酸素槽へ活性汚泥を返送する汚泥返送経路と、を備え、前記膜分離装置はろ過運転とろ過休止とを繰り返すように構成され、窒素を含む有機性排水を活性汚泥中で生物処理する有機性排水処理装置であって、
     前記好気槽に空気放出管を備えるとともに、前記膜分離装置に備えた曝気装置への給気と前記空気放出管への給気とを切り替える切替機構を備え、
     前記好気槽のDO値に基づいて、前記膜分離装置のろ過休止時に前記切替機構を介して前記空気放出管または前記曝気装置の何れかに選択的に給気するように構成されている有機性排水処理装置。
  2.  前記空気放出管は、有機性排水の流れの上流側、または、前記汚泥返送経路から離隔した位置に配置されている請求項1記載の有機性排水処理装置。
  3.  前記空気放出管の吐出圧は、前記曝気装置の吐出圧と同等の吐出圧に調節されている請求項1記載の有機性排水処理装置。
  4.  前記生物処理槽は、前記無酸素槽と前記好気槽とを一対の生物処理単位として、複数の生物処理単位が直列に接続され、前記汚泥返送経路は、最下流に配設された前記好気槽から最上流に配設された前記無酸素槽へ活性汚泥を返送するように構成され、有機性排水を各生物処理単位の無酸素槽に分割して供給し、前記無酸素槽での脱窒処理と前記好気槽での硝化処理を繰り返しながら有機性排水を生物処理するように構成されており、
     前記好気槽の何れかのDO値に基づいて、当該好気槽に備えた膜分離装置のろ過休止時に当該膜分離装置に備えた切替機構を介して前記空気放出管または前記曝気装置の何れかに選択的に給気するように構成されている請求項1記載の有機性排水処理装置。
  5.  請求項1から4の何れかに記載の有機性排水処理装置の運転方法であって、
     前記好気槽のDO値が所定の閾値を上回ると、前記膜分離装置のろ過休止時に前記切替機構を介して前記曝気装置から前記空気放出管に給気するように切り替える有機性排水処理装置の運転方法。
     
     
PCT/JP2022/040878 2021-12-07 2022-11-01 有機性排水処理装置及び有機性排水処理装置の運転方法 WO2023106000A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-198517 2021-12-07
JP2021198517A JP2023084369A (ja) 2021-12-07 2021-12-07 有機性排水処理装置及び有機性排水処理装置の運転方法

Publications (1)

Publication Number Publication Date
WO2023106000A1 true WO2023106000A1 (ja) 2023-06-15

Family

ID=86730159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040878 WO2023106000A1 (ja) 2021-12-07 2022-11-01 有機性排水処理装置及び有機性排水処理装置の運転方法

Country Status (2)

Country Link
JP (1) JP2023084369A (ja)
WO (1) WO2023106000A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182551A (ja) * 2015-03-26 2016-10-20 株式会社クボタ 有機性排水の処理方法及びその処理システム
JP2018176016A (ja) * 2017-04-04 2018-11-15 株式会社クボタ 有機性排水処理方法及び有機性排水処理装置
JP2020040048A (ja) * 2018-09-13 2020-03-19 株式会社クボタ 有機性排水処理方法及び有機性排水処理装置
JP2020081976A (ja) * 2018-11-27 2020-06-04 三菱ケミカル株式会社 排水処理設備
JP2020199475A (ja) * 2019-06-12 2020-12-17 東芝インフラシステムズ株式会社 洗浄風量制御システム及び洗浄風量制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182551A (ja) * 2015-03-26 2016-10-20 株式会社クボタ 有機性排水の処理方法及びその処理システム
JP2018176016A (ja) * 2017-04-04 2018-11-15 株式会社クボタ 有機性排水処理方法及び有機性排水処理装置
JP2020040048A (ja) * 2018-09-13 2020-03-19 株式会社クボタ 有機性排水処理方法及び有機性排水処理装置
JP2020081976A (ja) * 2018-11-27 2020-06-04 三菱ケミカル株式会社 排水処理設備
JP2020199475A (ja) * 2019-06-12 2020-12-17 東芝インフラシステムズ株式会社 洗浄風量制御システム及び洗浄風量制御装置

Also Published As

Publication number Publication date
JP2023084369A (ja) 2023-06-19

Similar Documents

Publication Publication Date Title
US8623202B2 (en) Infiltration/inflow control for membrane bioreactor
JP5304250B2 (ja) 浸漬型膜分離装置およびその運転方法
US11643345B2 (en) Method for treating organic wastewater, and device for treating organic wastewater
WO2014157488A1 (ja) 有機性排水処理装置の運転方法及び有機性排水処理装置
JP5822264B2 (ja) 膜分離活性汚泥処理装置の運転方法
KR100645952B1 (ko) 폐수 정화용 중공사막 여과 장치, 여과 모듈 및 그를 이용하는 물 또는 폐수 처리 방법
US10822260B2 (en) Organic wastewater treatment method and organic wastewater treatment device
KR101005422B1 (ko) 초기막오염제어를 이용한 고플럭스 막여과 하폐수 처리장치및 처리방법
JPH1015574A (ja) 汚水処理装置
JP4588043B2 (ja) 膜分離方法および装置
EP2342316A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
WO2023106000A1 (ja) 有機性排水処理装置及び有機性排水処理装置の運転方法
JP4046445B2 (ja) 汚水の処理方法
JP2000084554A (ja) 膜分離装置を備えた水処理装置の運転方法
JPH08141566A (ja) 汚水処理装置
JP2003290766A (ja) 膜分離排水処理方法および装置
JP2001062471A (ja) 窒素含有汚水の処理装置
JPH08141585A (ja) 浄化槽
JPH04244294A (ja) 汚水処理装置
JP6475580B2 (ja) 活性汚泥処理装置
JP3106063B2 (ja) 膜分離設備
JP2000084555A (ja) 膜分離装置を備えた水処理装置の運転方法
JPH1015552A (ja) 膜分離汚水処理装置
JP2004305806A (ja) 活性汚泥濾過方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903932

Country of ref document: EP

Kind code of ref document: A1