WO2023102730A1 - 一种微波等离子体化学气相沉积设备及微波系统 - Google Patents

一种微波等离子体化学气相沉积设备及微波系统 Download PDF

Info

Publication number
WO2023102730A1
WO2023102730A1 PCT/CN2021/136074 CN2021136074W WO2023102730A1 WO 2023102730 A1 WO2023102730 A1 WO 2023102730A1 CN 2021136074 W CN2021136074 W CN 2021136074W WO 2023102730 A1 WO2023102730 A1 WO 2023102730A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
chamber
vapor deposition
chemical vapor
microwave
Prior art date
Application number
PCT/CN2021/136074
Other languages
English (en)
French (fr)
Inventor
黄春林
冯智飞
刘文科
邹广田
吕宪义
王启亮
Original Assignee
成都纽曼和瑞微波技术有限公司
吉林大学深圳研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都纽曼和瑞微波技术有限公司, 吉林大学深圳研究院 filed Critical 成都纽曼和瑞微波技术有限公司
Priority to PCT/CN2021/136074 priority Critical patent/WO2023102730A1/zh
Publication of WO2023102730A1 publication Critical patent/WO2023102730A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy

Definitions

  • the invention relates to the technical field of chemical vapor deposition, in particular to a microwave plasma chemical vapor deposition equipment and a microwave system.
  • Diamond has excellent properties such as high hardness, high thermal conductivity, low expansion coefficient, high light transmittance, high resistivity, and high current-carrying mobility, which makes it widely used in military, aerospace, bioengineering, computer chips, and electronic information engineering.
  • the field has broad application prospects.
  • microwave plasma chemical vapor deposition is considered to be the first choice and the most advanced method for preparing high-quality diamond films in the world today; and the above methods require special microwave plasma Bulk chemical vapor deposition system.
  • One of the core components of the above-mentioned system is a vacuum resonant cavity, and the vacuum resonant cavity is formed by buckling the cavity cover on the vacuum cavity base and sealing it, and then vacuumizing it.
  • the microwave plasma discharge in the vacuum resonator will generate a large amount of radiant heat, which directly leads to the overheating of the cavity cover. If the temperature cannot be effectively cooled, it will affect the long-term and stable operation of the resonator under high microwave power.
  • the purpose of the present invention is to provide a microwave plasma vapor deposition equipment, which can effectively reduce the temperature of the cavity by setting a cooling interlayer.
  • Another object of the present invention is to provide a microwave system, which adopts the above-mentioned microwave plasma chemical vapor deposition equipment.
  • a microwave plasma chemical vapor deposition equipment comprising:
  • the vacuum chamber base is connected to the frame, and the middle part of the vacuum chamber base is provided with a sample stage;
  • a chamber cover assembly comprising a chamber body and a sleeve
  • the cavity includes a first cavity and a second cavity;
  • the first cavity includes a first cylinder and a first top plate, the lower part of the first cylinder is connected to the vacuum chamber base, the The upper part of the first cylinder is connected to the first top plate;
  • the second cavity is arranged in the middle of the first top plate and communicates with the first cavity;
  • the sleeve is sleeved on the second cavity, the bottom of the sleeve is in sealing connection with the first top plate, the upper part of the sleeve is in sealing connection with the upper part of the second cavity, the A cooling interlayer is formed between the sleeve and the outer wall of the second cavity.
  • annular cover plate is also provided on the first top plate, a cooling groove is provided on the first top plate, and the cover plate is sleeved on the second cavity and connected to the first top plate .
  • a third cavity is included, the bottom of the third cavity communicates with the upper part of the second cavity; the top of the third cavity is provided with a cooling channel.
  • cooling channel extends along the radial direction of the third cavity.
  • sample stage is made of beryllium oxide.
  • an auxiliary bias pin is provided at the bottom of the sample stage for connecting with an auxiliary bias power supply.
  • a tuning device is also included, and the tuning device includes a rectangular waveguide, a circular waveguide, a door button, and an inner conductor;
  • the middle part of the base of the vacuum chamber is provided with an installation through hole
  • the upper plate of the rectangular waveguide is provided with an upper through hole
  • the upper end of the circular waveguide is connected to the installation through hole, and the lower end is connected to the The upper through hole
  • the upper end of the inner conductor passes through the installation through hole, and the lower end is connected to the door button
  • the bottom of the sample substrate stage is provided with a middle through hole; the upper end of the inner conductor extends to the middle through hole;
  • the bottom of the door knob is provided with an annular channel.
  • the lower plate of the rectangular waveguide is provided with an L-shaped channel, one end of the L-shaped channel extends to the side of the lower plate, and the other end extends to the upper surface of the lower plate, and is connected with the The annular channel communicates.
  • a microwave system includes microwave, microwave transmission device and the microwave plasma chemical vapor deposition equipment; the microwave source is connected with the microwave plasma chemical vapor deposition equipment through the microwave transmission device.
  • the microwave plasma chemical vapor deposition equipment obtained through the above design of the present invention when in use, the cooling interlayer is connected with the external water inlet pipe and the water outlet pipe, and the cooling water is passed into the cooling interlayer to take away the heat on the cavity , so as to prevent the cavity temperature from being too high; it provides favorable conditions for the long-term stable discharge of microwave plasma under ultra-high microwave power and ultra-high pressure, and then the production of high-quality diamond.
  • FIG. 1 is a schematic structural diagram of a chamber cover assembly and a tuning device provided in an embodiment of the present invention
  • Fig. 2 is a cross-sectional view of Fig. 1 provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a sample stage provided by an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a door button provided by an embodiment of the present invention.
  • FIG. 5 is a thermal simulation diagram of the cavity cover assembly and the tuning device in the prior art when they are in operation;
  • Fig. 6 is a thermal simulation diagram of the chamber cover assembly and the tuning device provided by the present invention when they are in operation.
  • Icon 100-cavity cover assembly; 110-cavity; 111-first cavity; 1112-first cylinder; 1113-cover; 1114-first top plate; 112-second cavity; 1122-second cylinder 1124-second top plate; 113-third cavity; 1131-cooling channel; 114-sleeve; 115-sample stage; 116-secondary bias pin; 117-tuning device; Circular waveguide; 1173-door button; 1174-inner conductor; 1175-main body; 1176-ring bottom plate; 1177-ring channel; 118-cooling interlayer; 200-vacuum cavity base.
  • the first feature above or below the second feature may include that the first and second features are in direct contact, and may also include that the first and second features are not in direct contact but is through additional feature contacts between them.
  • the first feature on, above and above the second feature includes the first feature directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • the first feature being below, below and below the second feature includes the first feature being directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • This embodiment provides a microwave system, which includes a microwave source (not shown in the figure), a microwave transmission device (not shown in the figure) and microwave plasma chemical vapor deposition equipment. Plasma chemical vapor deposition equipment connection. After the microwave source generates microwaves, the microwaves are transmitted to the vacuum chamber of the above-mentioned deposition equipment through the microwave transmission device, and the diamond film is deposited and formed on the sample substrate through plasma discharge in the vacuum chamber.
  • the deposition equipment provided in this embodiment includes a vacuum chamber base 200 , which is a circular plate-shaped structure and is horizontally fixed on a frame (not shown in the figure).
  • the chamber cover assembly 100 is buckled on the vacuum chamber base 200 to form a vacuum chamber, and is detachably connected with the vacuum chamber base 200.
  • a sample stage 115 is arranged in the above-mentioned vacuum chamber, and the sample stage 115 is used for placing a sample substrate.
  • the microwave plasma discharge in the vacuum resonant cavity will generate a large amount of radiant heat, which will cause the overall temperature of the cavity cover assembly 100 to rise. In view of this, the temperature of the chamber cover assembly 100 in this embodiment is reduced by passing cooling water.
  • the chamber cover assembly 100 includes a chamber body 110 and a sleeve 114.
  • the chamber body 110 is integrally formed and divided into a three-layer tower structure. For the convenience of description, it is divided into a first chamber body 111 and a second chamber body 112 from bottom to top. and the third cavity 113 ; the sleeve 114 is sleeved on the second cavity 112 and forms a cooling interlayer 118 with the outer wall of the second cavity 112 .
  • the first cavity 111 includes a first top plate 1114, a first cylinder 1112 and an annular plate, wherein the first top plate 1114 is connected to the first cylinder 1112, and a through hole is opened in the middle of the first top plate 1114.
  • the annular plate is connected to the lower end of the first cylinder 1112 for mating connection with the vacuum chamber base 200 .
  • the second cavity 112 includes a second top plate 1124 and a second cylinder 1122 , the lower end of the second cylinder 1122 is connected to the through hole in the middle of the first top plate 1114 , and the upper end is connected to the second top plate 1124 .
  • the third cavity 113 includes a third cylinder and a third top plate. The lower end of the third cylinder is connected to the through hole in the middle of the second top plate 1124 , and the upper end is connected to the third top plate.
  • An annular cover plate 1113 is also disposed on the first top plate 1114 , and a cooling groove is disposed on the upper surface of the first top plate 1114 .
  • the cover plate 1113 is an annular plate, which is sleeved on the second cavity 112 and connected with the first top plate 1114 .
  • the cover plate 1113 covers the cooling tank to form a water flow channel, and the first top plate 1114 can be cooled down after passing cooling water into the water flow channel.
  • the through hole in the middle of the cover plate 1113 is larger than the outer diameter of the second cavity 112 , so that a gap is formed between the inner wall of the through hole in the middle of the cover plate 1113 and the outer wall of the second cavity 112 .
  • the inner diameter of the sleeve 114 is equal to the inner diameter of the through hole in the middle of the cover plate 1113, its lower end is sealed and connected with the first top plate 1114 through a flange, and its upper end is sealed and connected with the second top plate 1124; the inner wall of the sleeve 114 and the inner wall of the through hole of the cover plate 1113
  • a cooling interlayer 118 is formed between the outer wall of the second cavity 112 .
  • the sleeve 114 is provided with a water inlet and a water outlet, and the water inlet and the water outlet are respectively used for connecting with the water inlet pipe and the water outlet pipe. Since the cooling interlayer 118 is provided, the cooling water can take away the heat on the second cavity 112 in time, thereby preventing the temperature of the second cavity 112 from being too high.
  • a cooling channel 1131 is also provided on the third top plate, and the cooling channel 1131 extends along the radial direction of the third top plate and penetrates through it.
  • One end of the cooling channel 1131 is used for connecting the water inlet pipe, and the other end is used for connecting the water outlet pipe.
  • the first cavity 111 , the second cavity 112 and the third cavity 113 can all effectively dissipate heat, thereby preventing the temperature of the vacuum cavity from being too high, thereby ensuring the quality of the diamond film.
  • the bottom of the sample stage 115 is provided with an auxiliary bias pin 116 for connecting with an auxiliary bias power supply.
  • the casing is equivalent to the ground, and a pressure difference is formed between the casing and the sample stage 115, which can improve deposition efficiency and nucleation deposition density.
  • the material of the sample stage 115 is made of beryllium oxide, so that it is insulated from other metal parts and has better heat transfer performance, so as to ensure that the electric field applied by the negative bias voltage is only loaded on the sample where the diamond film grows. On stage 115.
  • FIG. 5 is a thermal simulation diagram of the chamber cover assembly and tuning device in the prior art
  • FIG. 6 is a thermal simulation diagram of the chamber cover assembly and tuning device provided by the present invention. From Fig. 5 and Fig. 6, it can be seen that the temperature of the cavity cover of the resonant cavity is significantly reduced after the improvement.
  • the bottom of the vacuum chamber base 200 is provided with a tuning device, which includes a rectangular waveguide 1171, a circular waveguide 1172, a door button 1173, and an inner conductor 1174; the middle part of the vacuum chamber base 200 is provided with an installation through hole, and the rectangular waveguide 1171 is arranged horizontally.
  • the upper plate is provided with an upper through hole, the circular waveguide 1172 is vertically arranged, its upper end is connected to the installation through hole, and its lower end is connected to the upper through hole.
  • the upper end of the inner conductor 1174 passes through the installation through hole, and the lower end is connected to the door button 1173;
  • the bottom of the sample substrate platform is provided with a middle through hole; the upper end of the inner conductor 1174 extends to the middle through hole. Since the overall structure of the tuning device 117 is not closely related to the invention of this application, in order to avoid redundant description, the working principle and structure of the tuning device 117 will not be described in detail.
  • the bottom of the door knob 1173 provided in this embodiment is provided with an annular channel 1177 for passing in cooling water.
  • the door button 1173 is a revolving body formed around a vertical axis, which includes a main body portion 1175 and an annular bottom plate 1176.
  • the lower surface of the main body portion 1175 is provided with an annular groove, and the annular bottom plate 1176 and the lower surface of the main body portion 1175 are detachable.
  • the ground is sealed and connected, thereby forming an annular passage 1177.
  • two vertical through holes are arranged on the annular bottom plate 1176 of the door knob 1173 .
  • two L-shaped channels are provided on the lower plate of the rectangular waveguide 1171.
  • One end of the above-mentioned L-shaped channel extends to the side of the lower plate, and the other end extends to the upper surface of the lower plate and connects with the two sides of the door button 1173.
  • the vertical through holes are connected.
  • One of the two L-shaped passages communicates with the water inlet pipe, and the other communicates with the water outlet pipe.
  • the above design not only makes the structure more compact, but also enables the water flow to dissipate heat for the door button 1173 and the lower plate of the rectangular waveguide 1171; the overall heat dissipation effect is better.

Abstract

本发明提供了一种微波等离子体化学气相沉积设备及微波系统,属于微波技术领域。上述微波等离子体化学气相沉积设备包括机架、真空腔基座及腔盖组件;上述真空腔基座与机架连接;腔盖组件包括腔体和套筒,上述腔体包括相互连接的第一腔体和第二腔体。套筒套设在第二腔体上,套筒的底部与第一顶板密封连接,套筒的上部与第二腔体的上部密封连接,套筒与第二腔体的外壁之间形成冷却夹层。使用时,冷却夹层与外部的进水管及出水管连通,通过给冷却夹层通入冷却水,使得冷却水将腔体上的热量带走,从而防止腔体温度过高;进而为超高微波功率下的长时稳定工作、高质量金刚石的制成提供了有利条件。

Description

一种微波等离子体化学气相沉积设备及微波系统 技术领域
本发明涉及化学气相沉积技术领域,具体而言,涉及一种微波等离子体化学气相沉积设备及微波系统。
背景技术
金刚石具有高硬度、高热导率、低膨胀系数、高透光性、高电阻率以及高载流迁移率等优异性能,促使其在军事、航天航空、生物工程、计算机芯片和电子信息工程等高新领域有着广阔的应用前景。
与直流、高频、热丝发射法比较,微波等离子体化学气相沉积法(MPCVD)被认为是当今国际上制备高质量金刚石膜的首选、最先进方法;而上述方法需要用到专用的微波等离子体化学气相沉积系统。上述系统的核心部件之一为真空谐振腔,而真空谐振腔是由腔盖扣在真空腔基座上并密封,然后抽真空形成的。真空谐振腔内微波等离子体放电会产生大量的辐射热,其直接导致腔盖温度过高,若不能有效降温,其会影响谐振腔在高微波功率下的长时、稳定工作。
发明内容
本发明的目的在于提供一种微波等离子体气相沉积设备,其通过设置冷却夹层能够对腔体进行有效降温。
本发明的另一目的在于提供一种微波系统,其采用了上述微波等离子体化学气相沉积设备。
本发明是这样实现的:
一种微波等离子体化学气相沉积设备,包括:
机架;
真空腔基座,所述真空腔基座与所述机架连接,所述真空腔基座的中部设置有样品台;
腔盖组件,所述腔盖组件包括腔体和套筒;
所述腔体包括第一腔体和第二腔体;所述第一腔体包括第一筒体及第一顶板,所述第一筒体的下部与所述真空腔基座连接,所述第一筒体的上部与所述第一顶板连接;所述第二腔体设置在所述第一顶板的中部,并与所述第一腔体连通;
所述套筒套设在所述第二腔体上,所述套筒的底部与所述第一顶板密封连接,所述套筒的上部与所述第二腔体的上部密封连接,所述套筒与所述第二腔体的外壁之间形成冷却夹层。
进一步,所述第一顶板上还设置有环形的盖板,所述第一顶板上设置有冷却槽,所述盖板套设在所述第二腔体上,并与所述第一顶板连接。
进一步,所述盖板的内壁与所述第二腔体的外壁间隙设置;所述套筒的底部与所述盖板的上表面密封连接。
进一步,还包括第三腔体,所述第三腔体的底部与所述第二腔体的上部连通;所述第三腔体的顶部设置有冷却通道。
进一步,所述冷却通道沿所述第三腔体的径向延伸。
进一步,所述样品台采用氧化铍制成。
进一步,所述样品台的底部设置有副偏压引脚,用于与副偏压电源连接。
进一步,还包括调谐装置,所述调谐装置包括矩形波导、圆形波导、门钮、内导体;
所述真空腔基座的中部设置有安装通孔,所述矩形波导的上板体上设置有上部通孔,所述圆形波导的上端连接于所述安装通孔处,下端连接于所述上部通孔处;所述内导体的上端穿过所述安装通孔,下端与所述门钮连接;
所述样品基片台的底部设置有中部通孔;所述内导体的上端延伸至所述中部通孔处;
所述门钮的底部设置有环形通道。
进一步,所述矩形波导的下板体上设置有L型流道,所述L型流道一端延伸至所述下板体的侧面,另一端延伸至所述下板体的上表面,并与所述环形通道连通。
一种微波系统,所述微波系统包括微波、微波传输装置及所述的微波等离子体化学气相沉积设备;所述微波源通过所述微波传输装置与所述微波等离子体化学气相沉积设备连接。
本发明的有益效果是:
本发明通过上述设计得到的微波等离子体化学气相沉积设备,使用时,冷却夹层与外部的进水管及出水管连通,通过给冷却夹层通入冷却水,使得冷却水将腔体上的热量带走,从而防止腔体温度过高;为超高微波功率、超高压强下的微波等离子体长时稳定放电,进而高质量金刚石的制成提供了有利条件。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明实施方式提供的腔盖组件及调谐装置的结构示意图;
图2是本发明实施方式提供的图1的剖视图;
图3是本发明实施方式提供的样品台的结构示意图;
图4是本发明实施方式提供的门钮结构示意图;
图5是现有技术中的腔盖组件及调谐装置工作时的热仿真图;
图6是本发明提供的腔盖组件及调谐装置工作时的热仿真图。
图标:100-腔盖组件;110-腔体;111-第一腔体;1112-第一筒体;1113-盖板;1114-第一顶板;112-第二腔体;1122-第二筒体;1124-第二顶板;113-第三腔体;1131-冷却通道;114-套筒;115-样品台;116-副偏压引脚;117-调谐装置;1171-矩形波导;1172-圆形波导;1173-门钮;1174-内导体;1175-主体部分;1176-环形底板;1177-环形通道;118-冷却夹层;200-真空腔基座。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理 解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之上或之下可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征之上、上方和上面包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征之下、下方和下面包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
实施例:
本实施例提供了一种微波系统,其包括微波源(图中未示出)、微波传输装置(图中未示出)及微波等离子体化学气相沉积设备,上述微波源通过微波传输装置与微波等离子体化学气相沉积设备连接。微波源产生微波后,微波通过微波传输装置传递到上述沉积设备的真空腔中,真空腔中通过等离子体放电从而在样品基片上沉积形成金刚石膜。
上述微波源及微波传输装置均可以直接采用相关技术中的结构,为避免赘述,不再对其进行描述。
请参考图1和图2,本实施例提供的沉积设备包括真空腔基座200,真空腔基座200为圆形板状结构,并水平固定在机架(图中未示出)上。腔 盖组件100扣在真空腔基座200上形成真空腔,并与真空腔基座200可分离连接。上述真空腔内设置有样品台115,样品台115用于放置样品基片。真空谐振腔内微波等离子体放电会产生大量的辐射热,导致腔盖组件100整体温度升高。鉴于此,本实施例中的腔盖组件100通过通入冷却水的方式来进行降温。
上述腔盖组件100包括腔体110及套筒114,腔体110整体一体成型,并分为三层塔状结构,为了便于描述,从下至上分为第一腔体111、第二腔体112和第三腔体113;套筒114套设在第二腔体112上,并与第二腔体112的外壁之间形成冷却夹层118。
具体地,上述第一腔体111包括第一顶板1114、第一筒体1112及环形板,其中,第一顶板1114连接于第一筒体1112上,第一顶板1114的中部开设有通孔,用于与第二腔体112连接。环形板连接于第一筒体1112的下端,用于与真空腔基座200配合连接。第二腔体112包括第二顶板1124和第二筒体1122,第二筒体1122的下端连接于第一顶板1114中部的通孔,上端与第二顶板1124连接。第三腔体113包括第三筒体及第三顶板,第三筒体的下端连接于第二顶板1124中部的通孔,上端与第三顶板连接。
第一顶板1114上还设置有环形的盖板1113,第一顶板1114的上表面设置有冷却槽。盖板1113为环形板,其套设在第二腔体112上,并与第一顶板1114连接。盖板1113将冷却槽覆盖后形成水流通道,给上述水流通道通入冷却水后,能够对第一顶板1114进行降温。
盖板1113中部的通孔大于第二腔体112的外径,使得盖板1113中部通孔内壁与第二腔体112的外壁之间形成间隙。套筒114的内径与盖板1113中部通孔的内径相等,其下端通过法兰盘与第一顶板1114密封连接,上端 与第二顶板1124密封连接;套筒114内壁、盖板1113通孔内壁与第二腔体112的外壁之间形成冷却夹层118。套筒114上设置有进水口和出水口,进水口和出水口分别用于与进水管和出水管连接。由于设置了冷却夹层118,冷却水能够及时把第二腔体112上的热量带走,从而防止第二腔体112温度过高。
进一步地,第三顶板上还设置有冷却通道1131,上述冷却通道1131沿第三顶板的径向延伸并贯穿,冷却通道1131的一端用于连接进水管,另一端用于连接出水管。
通过上述设计,第一腔体111、第二腔体112和第三腔体113均能够得到有效散热,从而能够防止真空腔温度过高,进而保证金刚石膜的质量。
请参考图3、图5和图6,样品台115的底部设置有副偏压引脚116,用于与副偏压电源连接。增加负偏压结构后,机壳相当于大地,机壳与样品台115间形成压差,可提高沉积效率和形核沉积密度。
另外,本实施例中,样品台115材质采用了氧化铍材质,使之与其他金属零件之间绝缘且具有更好的传热性能,保证负偏压施加的电场只加载在金刚石膜生长的样品台115上。
请参考图5和图6,图5是现有技术中的腔盖组件及调谐装置工作时的热仿真图;图6是本发明提供的腔盖组件及调谐装置工作时的热仿真图。由图5和图6可知,改进之后谐振腔腔盖的温度显著降低。
真空腔基座200的底部设置有调谐装置,其包括矩形波导1171、圆形波导1172、门钮1173及内导体1174;真空腔基座200的中部设置有安装通孔,矩形波导1171水平设置,其上板体上设置有上部通孔,圆形波导1172 竖直设置,其上端连接于安装通孔处,下端连接于上部通孔处。内导体1174的上端穿过安装通孔,下端与门钮1173连接;样品基片台的底部设置有中部通孔;内导体1174的上端延伸至中部通孔处。由于调谐装置117整体结构与本申请发明点关联不大,为避免赘述,不对上述调谐装置117进行的工作原理及结构进行详细描述。
请参考图2和图4,由于门钮1173处发热量比较大,因此,本实施例中提供的门钮1173,其底部设置有环形通道1177,用于通入冷却水。具体地,门钮1173为绕竖直轴线形成的回转体,其包括主体部分1175及环形底板1176,主体部分1175的下表面设置有环形槽,环形底板1176与主体部分1175的下表面可拆卸式地密封连接,从而形成环形通道1177。而为了使上述环形通道1177与外部进水管和出水管连接,门钮1173环形底板1176上设置有两个竖直通孔。对应的,矩形波导1171的下板体上设置有两个L型通道,上述L型通道一端延伸至下板体的侧面,另一端延伸至下板体的上表面并与门钮1173的两个竖直通孔连通。上述两个L型通道一个与进水管连通,另一个与出水管连通。
上述设计其不仅使得结构更加紧凑,还能够使得水流为门钮1173散热的同时为矩形波导1171的下板体散热;其整体散热效果更好。
请继续参考图5和图6,由图5和图6可知,改进之后门钮的温度显著降低。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种微波等离子体化学气相沉积设备,其特征在于,包括:
    机架;
    真空腔基座,所述真空腔基座与所述机架连接,所述真空腔基座的中部设置有样品台;
    腔盖组件,所述腔盖组件包括腔体和套筒;
    所述腔体包括第一腔体和第二腔体;所述第一腔体包括第一筒体及第一顶板,所述第一筒体的下部与所述真空腔基座连接,所述第一筒体的上部与所述第一顶板连接;所述第二腔体设置在所述第一顶板的中部,并与所述第一腔体连通;
    所述套筒套设在所述第二腔体上,所述套筒的底部与所述第一顶板密封连接,所述套筒的上部与所述第二腔体的上部密封连接,所述套筒与所述第二腔体的外壁之间形成冷却夹层。
  2. 根据权利要求1所述的微波等离子体化学气相沉积设备,其特征在于,所述第一顶板上还设置有环形的盖板,所述第一顶板上设置有冷却槽,所述盖板套设在所述第二腔体上,并与所述第一顶板连接。
  3. 根据权利要求2所述的微波等离子体化学气相沉积设备,其特征在于,所述盖板的内壁与所述第二腔体的外壁间隙设置;所述套筒的底部与所述盖板的上表面密封连接。
  4. 根据权利要求1所述的微波等离子体化学气相沉积设备,其特征在于,还包括第三腔体,所述第三腔体的底部与所述第二腔体的上部连通;所述第三腔体的顶部设置有冷却通道。
  5. 根据权利要求4所述的微波等离子体化学气相沉积设备,其特征在于,所述冷却通道沿所述第三腔体的径向延伸。
  6. 根据权利要求1所述的微波等离子体化学气相沉积设备,其特征在于,所述样品台采用氧化铍制成。
  7. 根据权利要求1所述的微波等离子体化学气相沉积设备,其特征在于,所述样品台的底部设置有副偏压引脚,用于与副偏压电源连接。
  8. 根据权利要求1所述的微波等离子体化学气相沉积设备,其特征在于,还包括调谐装置,所述调谐装置包括矩形波导、圆形波导、门钮、内导体;
    所述真空腔基座的中部设置有安装通孔,所述矩形波导的上板体上设置有上部通孔,所述圆形波导的上端连接于所述安装通孔处,下端连接于所述上部通孔处;所述内导体的上端穿过所述安装通孔,下端与所述门钮连接;
    所述样品基片台的底部设置有中部通孔;所述内导体的上端延伸至所述中部通孔处;
    所述门钮的底部设置有环形通道。
  9. 根据权利要求8所述的微波等离子体化学气相沉积设备,其特征在于,所述矩形波导的下板体上设置有L型流道,所述L型流道一端延伸至所述下板体的侧面,另一端延伸至所述下板体的上表面,并与所述环形通道连通。
  10. 一种微波系统,其特征在于,所述微波系统包括微波、微波传输装置及权利要求1-9任一项所述的微波等离子体化学气相沉积设备;所述微波源通过所述微波传输装置与所述微波等离子体化学气相沉积设备连接。
PCT/CN2021/136074 2021-12-07 2021-12-07 一种微波等离子体化学气相沉积设备及微波系统 WO2023102730A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/136074 WO2023102730A1 (zh) 2021-12-07 2021-12-07 一种微波等离子体化学气相沉积设备及微波系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/136074 WO2023102730A1 (zh) 2021-12-07 2021-12-07 一种微波等离子体化学气相沉积设备及微波系统

Publications (1)

Publication Number Publication Date
WO2023102730A1 true WO2023102730A1 (zh) 2023-06-15

Family

ID=86729474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136074 WO2023102730A1 (zh) 2021-12-07 2021-12-07 一种微波等离子体化学气相沉积设备及微波系统

Country Status (1)

Country Link
WO (1) WO2023102730A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192479A (ja) * 1995-11-17 1997-07-29 Toshio Goto プラズマ処理装置および方法
US20140174660A1 (en) * 2011-06-30 2014-06-26 Tokyo Electron Limited Plasma processing apparatus
CN208501097U (zh) * 2018-07-05 2019-02-15 成都纽曼和瑞微波技术有限公司 一种可调谐圆抛腔式高功率微波等离子体化学气相沉积装置
CN210657131U (zh) * 2019-06-17 2020-06-02 湖上产业发展集团有限公司 一种等离子体cvd装置
CN214099836U (zh) * 2020-12-31 2021-08-31 成都纽曼和瑞微波技术有限公司 一种内导体组件、微波模式转换器及气相沉积系统
CN113913780A (zh) * 2021-09-30 2022-01-11 新优势产业集团有限公司 等离子体cvd设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192479A (ja) * 1995-11-17 1997-07-29 Toshio Goto プラズマ処理装置および方法
US20140174660A1 (en) * 2011-06-30 2014-06-26 Tokyo Electron Limited Plasma processing apparatus
CN208501097U (zh) * 2018-07-05 2019-02-15 成都纽曼和瑞微波技术有限公司 一种可调谐圆抛腔式高功率微波等离子体化学气相沉积装置
CN210657131U (zh) * 2019-06-17 2020-06-02 湖上产业发展集团有限公司 一种等离子体cvd装置
CN214099836U (zh) * 2020-12-31 2021-08-31 成都纽曼和瑞微波技术有限公司 一种内导体组件、微波模式转换器及气相沉积系统
CN113913780A (zh) * 2021-09-30 2022-01-11 新优势产业集团有限公司 等离子体cvd设备

Similar Documents

Publication Publication Date Title
KR101258005B1 (ko) 플라즈마 처리 장치
KR0184677B1 (ko) 플라즈마 처리장치
TW502561B (en) Plasma treatment apparatus
KR101317018B1 (ko) 플라즈마 처리 장치
KR101107393B1 (ko) 용량 결합형 rf 플라즈마 반응기
JPH09213781A (ja) 載置台構造及びそれを用いた処理装置
US20080302761A1 (en) Plasma processing system and use thereof
JP5189999B2 (ja) マイクロ波プラズマ処理装置、及びマイクロ波プラズマ処理装置のマイクロ波給電方法
JP5411136B2 (ja) マイクロ波プラズマ処理装置、及び冷却ジャケットの製造方法
JPH11354504A (ja) ガラス基板処理装置
KR20090127219A (ko) 마이크로파 플라즈마 처리 장치
US20190237326A1 (en) Selective film forming method and film forming apparatus
KR101256850B1 (ko) 마이크로파 플라즈마 처리 장치
WO2023102730A1 (zh) 一种微波等离子体化学气相沉积设备及微波系统
CN108573847B (zh) 反应腔室及半导体加工设备
JP2012107329A (ja) プラズマ処理装置及びプラズマcvd装置
JP2007266595A (ja) プラズマ処理装置及びそれに用いる基板加熱機構
TW201119521A (en) Microwave plasma processing apparatus, dielectric board provided with slot board for microwave plasma processing apparatus, and method for manufacturing dielectric board
JPH1187320A (ja) プラズマ処理装置
JP2006319192A (ja) 電極および該電極を用いたプラズマプロセス装置
JP6883953B2 (ja) マイクロ波プラズマ処理装置およびマイクロ波プラズマ処理方法
JP2007059782A (ja) スペーサー部材およびプラズマ処理装置
JPH11339997A (ja) プラズマ処理装置
JP7005367B2 (ja) ボロン系膜の成膜方法および成膜装置
TW201031283A (en) Method of manufacturing dielectric material window, dielectric material window, and plasma processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966654

Country of ref document: EP

Kind code of ref document: A1