WO2023101327A1 - 위치 선택적으로 이온교환된 유리 및 이의 제조방법 - Google Patents

위치 선택적으로 이온교환된 유리 및 이의 제조방법 Download PDF

Info

Publication number
WO2023101327A1
WO2023101327A1 PCT/KR2022/018796 KR2022018796W WO2023101327A1 WO 2023101327 A1 WO2023101327 A1 WO 2023101327A1 KR 2022018796 W KR2022018796 W KR 2022018796W WO 2023101327 A1 WO2023101327 A1 WO 2023101327A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
region
glass
concentration
boundary line
Prior art date
Application number
PCT/KR2022/018796
Other languages
English (en)
French (fr)
Inventor
최용규
고세영
이지인
Original Assignee
한국항공대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공대학교산학협력단 filed Critical 한국항공대학교산학협력단
Publication of WO2023101327A1 publication Critical patent/WO2023101327A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface

Definitions

  • the present invention relates to chemically strengthened glass, and more particularly, to a regioselectively ion-exchanged chemically strengthened glass and a method for manufacturing the same.
  • the chemical strengthening method applies compressive stress to the surface by replacing sodium ions or lithium ions present inside the glass with other alkali ions of larger size, such as potassium ions, and is applied to glass with a thinner thickness than physical strengthening methods. It can be done, and recently, demand has diversified, and it is applied to more expanded fields such as automobile window glass in relatively limited application fields such as cover glass of existing mobile electronic devices. In the future, it is expected that the application field will continue to expand, such as applying chemical strengthening to thin glass and applying it to flexible displays such as foldable types.
  • An object of the present invention is to provide a method for manufacturing chemically strengthened glass in which a boundary line between a region in which chemical strengthening is performed and a region in which chemical strengthening is not performed is invisible to the user's eyes, and the chemically strengthened glass manufactured thereby.
  • An embodiment of the present invention includes a first region and a second region in which chemical ion exchange between a first ion inside the glass and a second ion corresponding to the first ion occurs differently from each other, but the first region and the second region A chemically strengthened glass manufacturing method in which the boundary of the two regions is not visible to the naked eye, wherein the slurry or paste forms a coating film containing a salt of the second ion; and heat-treating the glass on which the coating film is formed.
  • the absolute value of the change in atomic concentration of the second ion in a direction perpendicular to the boundary line is controlled to 20% or less within each 0.1 mm section, or
  • the concentration change of the second ion is expressed in the form of a sigmoid series function
  • the function is controlled to have a coefficient of determination (R 2 ) of 0.97 or more, or the average concentration value of the second ion and
  • the average value difference of the sigmoid series function is controlled to 1.5 wt% or less.
  • the coating film is prepared by preparing a slurry and / or paste containing a solution containing the salt of the second ion and a support, and applying the prepared slurry and / or paste on the glass surface can be formed by Alternatively, the coating film is prepared by preparing a slurry and/or paste including a support, applying the prepared slurry and/or paste on a glass surface, and then applying the second ions on the coated slurry and/or paste. It can be formed by adding a solution containing a salt.
  • the change in the concentration of the second ion is determined by the content ratio of the solution containing the salt of the second ion and the support, the type of the support, the heat treatment temperature, and the slurry and/or paste. It can be controlled by changing at least one or more of the thicknesses.
  • the content ratio (mol%) of the solution containing the salt of the second ion and the support may be 60:40 to 95:5.
  • the support may be a metal oxide particle, for example, TiO 2 It may be a particle.
  • the heat treatment temperature may be 250 °C or more and about 550 °C or less.
  • the average value of the second ion concentration measured in an arbitrary range within the extended region and the sigmoid may be at least one section in which the series function value difference has a value of more than 1.5 wt%.
  • the sigmoid series function may be continuous around the boundary line, and the function may be one of the following expressions 1 to 3.
  • a 1 , A 2 , and a are either the maximum or minimum values of the function
  • x 0 , logx 0 , and x c are values that are 0.5 times the maximum value
  • dx, p, and k are at the median value. corresponds to the slope.
  • One embodiment of the present invention provides a chemically strengthened glass by the above-described method.
  • a chemically strengthened glass in which a boundary line between a chemically strengthened region and an unstrengthened region is visually invisible is provided.
  • Figure 1 is a photograph showing the shape of the specimen according to the heat treatment time of Table 2.
  • Figure 2a is photographs showing the front and rear surfaces of glass specimens subjected to 20 minutes heat treatment
  • Figure 2b is photographs showing the front surfaces of glass specimens subjected to 30 minutes, 45 minutes, and 60 minutes heat treatment, respectively.
  • FIG. 7 is a view showing a heat treatment method of a specimen.
  • 9a and 9b are graphs showing SEM-EDS results for the concentration distribution of transverse alkali ions (K, Na) according to the type of support.
  • 10A and 10B are graphs showing SEM-EDS results for the concentration distribution of transverse alkali ions (K, Na) according to the ion exchange temperature.
  • 11A to 11C are concentration distribution data in the transverse direction used for fitting, showing concentration distributions by distance according to each heat treatment condition and support composition.
  • FIGS. 14a to 14c, and FIGS. 15a to 15c are views showing fitting results obtained by fitting with functions A, B, and C in Table 7 together with coefficients of determination, respectively.
  • 13c and FIGS. 14a to 14c are fitted with respect to Na and K concentrations
  • FIGS. 15a to 15c are fitted with respect to K concentrations.
  • 16 is a diagram showing the average of the measured value of each section of K according to the distance and the fitting value.
  • 17 is a view showing the result of measuring the difference between the measured value of K for each section and the fitting value according to the type of support at each point.
  • 18a to 18c are EDS results measured by varying the concentration unit for specimens 4 to 6 in 1-A.
  • FIG. 19A is a diagram showing transverse K concentration (at%) of specimens 1 to 6, and FIG. 19B is a normalized concentration distribution diagram of FIG. 19A.
  • FIGS. 24a, 24b, and 24c are photographs of actual specimens according to pattern shapes and two-dimensional graphs showing hardness according to distance, respectively. , It is a three-dimensional graph showing the longitude according to the distance.
  • the present invention relates to regioselectively chemically strengthened glass and a method for manufacturing the same, and more particularly, to a method for manufacturing chemically strengthened glass comprising at least two or more regions having different ion concentrations by chemical ion exchange and thereby It relates to manufactured chemically strengthened glass.
  • An embodiment of the present invention is characterized in that, when chemical ion exchange of different degrees occurs in two adjacent regions, the degree of chemical ion exchange is controlled so that the boundary line dividing the two adjacent regions is not visually recognized. For example, between one area where chemical ion exchange is performed and another area where chemical ion exchange is not performed, and/or between one area where chemical ion exchange is performed and another area where ion exchange is performed at a higher concentration than the predetermined area. It is characterized in that the degree of chemical ion exchange is controlled so that the boundary line dividing two adjacent regions is not visually recognized.
  • one embodiment of the present invention is not limited thereto, and between one area in which chemical ion exchange is performed and another area in which ion exchange is performed at a higher concentration than the predetermined area, a reinforced area and Of course, it can be applied in substantially the same form to correspond to the unreinforced region.
  • a reinforced area In the case of glass that is position-selectively chemically strengthened through dry chemical strengthening, etc., there may be a problem in visually identifying the portion corresponding to the boundary between the strengthened portion and the non-reinforced portion.
  • the boundary line recognized by the naked eye is largely caused by two causes.
  • the first is the physical step of the boundary between the reinforced and unreinforced regions, and the second is the difference in refractive index distribution between the reinforced and unreinforced regions.
  • the surface step difference is at a level of about 500 nm or less and is difficult to grasp with general eye resolution. Accordingly, it is estimated that the phenomenon in which the boundary line between the reinforced region and the unreinforced region is visually recognized is due to a difference in surface refractive index occurring after ion exchange.
  • the boundary line between the reinforced region and the unreinforced region is invisible by controlling conditions during chemical strengthening to minimize the difference in surface refractive index on the boundary between the reinforced region and the unreinforced region.
  • the difference in surface refractive index is due to a concentration difference according to the flow of ions in the strengthened region and the unreinforced region, and the flow of the ions is controlled in the present invention.
  • a heat treatment step is performed. Since the flow of the slurry and / or paste occurs in the heat treatment step, the eventually applied The area and the non-coated area, and finally the reinforced area and the unreinforced area do not coincide.
  • the slurry and/or paste melts in the heat treatment step and expands to the uncoated area, and the actual strengthened area may be wider than the applied area of the slurry and/or paste.
  • the application area the area where the slurry and / or paste is initially applied is called the application area
  • the extended area the area in which the slurry and / paste flows in the heat treatment step and then the reinforcement is performed is called the extended area
  • the remaining area is called the uncoated area.
  • the area where the second ions are diffused/exchanged corresponds to the coated area and the extended area
  • the area where the second ions are not diffused/exchanged and the original glass has the first ions as it is corresponds to the uncoated area. do.
  • the extended area is disposed between the applied area and the uncoated area.
  • the concentration of the first ions is highest in the uncoated region and lowest in the coated region.
  • the concentration of the first ions increases in the direction from the applied area to the uncoated area in the extended area.
  • the concentration of the second ions is highest in the applied area and lowest in the non-coated area.
  • the concentration of the second ions decreases from the applied area to the non-coated area in the extended area.
  • the concentrations of the first ions and the second ions in each region are along the first direction. have different shapes.
  • the first ions and the second ions have a slight difference in the applied area and the uncoated area, they have a constant concentration when viewed as a whole, and the concentration decreases or increases in the extended area. Accordingly, in the case of the first ions, the concentration of the first ions is constantly maintained at a lower concentration in the applied region than in other regions, the concentration increases in the extended region, and the concentration in the uncoated region is constantly maintained at a higher concentration than in other regions.
  • the concentration is constantly maintained in the applied area at a higher concentration than in other areas, the concentration decreases in the extended area, and the concentration in the non-coated area is maintained at a constant lower concentration than in other areas.
  • the meaning that the concentration is kept constant does not mean that the concentration is completely the same, but rather that the concentration can be partially changed, but it is within a certain range (for example, within +/- 15% of the average concentration, or +/- 10 % or within +/-5%).
  • the concentration of the second ions between the applied area, the extended area and the uncoated area has at least one or more of the following conditions in order to be impossible to identify with the naked eye.
  • the glass according to one embodiment of the present invention has a value of 20% or less per 0.1 mm section of the glass surface, eg, a change in atomic concentration in the first direction in the extended region. That is, when the atomic concentration is measured at intervals of 0.1 mm in the first direction, a difference between the atomic concentration of the second ion at one point and the atomic concentration of the second ion at another point adjacent thereto is 20% or less.
  • the function is a coefficient of determination. ; R 2 ) may have a sigmoid function remodeling of 0.97 or more.
  • the difference between the average concentration value of the second ion and the average value of the sigmoid function measured in an arbitrary range of 0.2 mm or less in the extended area may be 1.5 wt% or less. there is.
  • the concentration change of the first ions and the second ions in the extended region is controlled within a specific range, and as a result, the boundary line is not visually recognized.
  • the extended region may be formed by intentionally controlling the exchanged region distribution of the salt during chemical ion exchange and thus the concentration distribution.
  • the glass having the above-described extended region can be formed by controlling process conditions such that salts to be exchanged have different concentrations during ion exchange depending on positions in the ion exchange step.
  • a slurry and / or paste containing a salt of the second ion including the second ion to be ion exchanged with the first ion inside the glass is prepared, and the slurry and / or paste is applied to the surface of the glass to form a film, and after drying the film made of the slurry and / or paste on the surface of the glass, the glass formed with the film is heat-treated, but by changing the conditions, the embodiment according to the present invention make glass
  • the slurry and/or paste is applied to a region to be strengthened among a region to be strengthened and an unreinforced region.
  • a region to be strengthened among a region to be strengthened and an unreinforced region.
  • the area to which the slurry and / or paste is applied is referred to as a first area
  • the area to which the slurry and / or paste is not applied is referred to as a second area
  • the first area to which the slurry and / or paste is applied is then a strengthening area do.
  • an alkali such as a salt of a second ion (salt of an alkali ion, eg KNO 3 ) exchanged with a first ion (alkali ion, eg Na ion) inside the glass.
  • a coating film containing salt is formed.
  • a coating film containing the salt of the second ion (hereinafter, referred to as a salt or alkali salt of the second ion), it may be formed by a general spray-based coating method or a paste-based coating method, respectively.
  • the coating film is formed by preparing a slurry and / or paste containing a solution containing the salt of the second ion and a support, and applying the prepared slurry and / or paste on a glass surface, or while including a support
  • a slurry and/or paste that does not contain, or even contains, a small amount of a salt of 2 ions is first prepared, and the prepared slurry and/or paste is applied on a glass surface to form a primary coating film, and then the coated It may be formed by adding a solution containing a salt of the second ion to a slurry and/or paste.
  • a solution containing the salt of the second ion may be spray-coated, brushed, or immersed on the applied slurry and/or paste.
  • an alkali salt present in a molten or semi-melted state under heat treatment conditions for ion exchange is uniformly contacted and distributed on the surface of the glass and further aids in ion exchange
  • a composition and process can be provided.
  • a slurry or paste containing no alkali salt or containing a relatively small amount after making a slurry or paste containing no alkali salt or containing a relatively small amount, forming a film on the glass surface by a general spray-based coating method or a paste-based coating method, respectively, spraying an alkali salt (aqueous) solution
  • an alkali salt aqueous
  • the alkali salt existing in a molten or semi-melted state under heat treatment conditions for ion exchange uniformly contacts and distributes the surface of the glass.
  • compositions and processes that aid in ion exchange may be provided.
  • the slurry and/or paste may further include metal oxide particles in addition to the alkali salt.
  • the content of the alkali salt and the metal oxide particles may be a factor in controlling the distribution of the precipitated phase of the alkali salt.
  • a film formed by a conventional spray-based process in a slurry state with metal oxide particles may be dried under a predetermined relative humidity for a predetermined time.
  • humidity conditions during drying, drying time, and drying temperature may also be other factors that control the distribution of the precipitated phase of the alkali salt thereafter.
  • the coating film applied in the slurry / paste state when drying the coating film applied in the slurry / paste state, it may be dried for 5 seconds to 12 hours at 0 °C to 200 °C. At this time, the humidity condition may be 10% to 90% relative humidity.
  • the composition of the slurry or paste (eg, the content of the salt of the second ion in the slurry or paste), the coating film thickness of the slurry or paste, the drying temperature of the slurry or paste , at least one of the drying humidity of the slurry or paste, the drying time of the slurry or paste, the heat treatment temperature, and the heat treatment time may be adjusted, through which diffusion of the second ions is controlled.
  • a paste support when preparing the paste, may be included.
  • the support may be metal oxide particles.
  • the alkali salt-mixable support that is, the metal oxide particles, may have at least one composition of TiO 2 , ZnO, ZrO 2 , CuO and NiO.
  • the metal oxide particles mainly have a composition of TiO 2 , ZnO, ZrO 2 , CuO or NiO, and the TiO 2 , ZnO, ZrO 2 , CuO or NiO particles alone or jointly mixed with an aqueous salt solution form a slurry/paste state. can form
  • the metal oxide particles may be Cr 2 O 3 , MnO 2 , MnO, Fe 2 O 3 , FeO, Co 2 O 3 , Y 2 O 3 , TeO 2 , CeO 2 , La 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 and Er 2 O 3
  • a plurality of particles having a composition of at least one of can include
  • metal oxide particles are Cr 2 O 3 , MnO 2 , MnO, Fe 2 O 3 , FeO, Co 2 O 3 , Y 2 O 3 , TeO 2 , CeO 2 , La 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 or Er 2 O 3 , mainly having
  • TiO 2 particles may be used as a support.
  • TiO 2 particles may be nano-sized particles.
  • a relative molar ratio of TiO 2 may be 40 mol% or less.
  • the mixing ratio (mol%) of the salt of the second ion and the TiO 2 particles may be 60:40 to 95:5, in one embodiment, 60:40 to 90:10, and another embodiment may be 80:20 in
  • the mixing ratio (mol %) of the salt of 2 ions and the TiO 2 particles may be 65:35 to 80:20, and may be 68:32 to 75:25 in another embodiment.
  • the slurry / paste mixture is applied on a glass surface, and when the relative molar ratio of TiO 2 is 35 mol% or more, the thickness of the slurry / paste at the time of application is formed to exceed 300 ⁇ m It can be, and when it is less than 35%, it can be formed to 300 ⁇ m or less. Depending on the coating thickness, the visibility of the boundary line may decrease as the thickness increases for a specific heat treatment temperature or time or a specific slurry composition.
  • it may be formed with a thickness of 40 ⁇ m or more and 1200 ⁇ m or less, and if the coating thickness is too thick, it may be formed with a thickness of 1200 ⁇ m or less because the flow may occur during heat treatment.
  • the boundary line is visible, a non-removable film is formed on the surface, or the film is peeled off. It is not used because it makes surface hardening impossible.
  • the glass on which the coating film is formed may be heat treated in a predetermined temperature range (eg, about 100 to about 600 °C). Through heat treatment, the film-formed glass is heat-treated in a temperature range in which all or part of the salt in the coating film becomes liquid, so that alkali ions (for example, sodium ions, etc.) ion exchange can occur.
  • the heat treatment step may be performed, for example, at about 250 °C or more and about 550 °C or less.
  • the salt eg, KNO 3
  • alkali ions such as sodium ions in the glass and ion exchange inside the membrane Ion exchange occurs between the second ions (eg, alkali ions such as potassium ions, silver ions, copper ions, or gold ions) via the liquid phase or via the surface of the particles.
  • the heat treatment may be performed by laying the glass on which the coating film is formed horizontally or standing up in an inclined direction (including a vertical direction).
  • the slurry/paste may flow down in the direction of gravity.
  • the heat treatment may be performed by laying horizontally rather than in an inclined direction, and when the glass on which the coated film is formed is laid horizontally, transverse flow across the boundary line of the salt of the second ion may be facilitated.
  • the salt solution may be a silver salt solution, a gold salt solution or a copper salt solution.
  • silver ions, gold ions, or copper ions inside the coating film may be ion exchanged with alkali ions (eg, sodium ions) inside the glass as secondary ion exchange ions.
  • silver ions When silver ions enter the glass through ion exchange, they may exist as Ag + ions or as metallic clusters or metal nanoparticles in the form of Ag 0 under the influence of other components included in the glass. That is, in order to reduce the Ag + state to the Ag 0 state, a small amount of elements such as Fe, V, Mn, Co, Ce, Eu, and Cr should basically be included in the glass. The characteristics of the corresponding elements are multi-valent with two or more oxidation values. For example, through a redox reaction in the form of Fe 2+ + Ag + ⁇ Fe 3+ + Ag 0 , Ag + ions are reduced to metal particles in the Ag 0 state.
  • surface plasmon resonance absorption formed by the silver nanoparticles can occur, and the color of the glass can be changed by other ions that have undergone a change in oxidation value. It can be used as a biosensor.
  • the multi-valent ion does not exist inside the glass, the Ag + ion entering the inside of the glass maintains its state, so it can additionally exhibit an antibacterial effect as well as a surface strengthening effect.
  • Silver ions can also be replaced with gold ions or copper ions.
  • silver ions have a higher mutual diffusion coefficient than potassium ions in sodium-containing glass, ion exchange may occur more quickly.
  • the metal oxide particles are a salt solution (an alkali salt solution such as potassium salt, a silver salt solution, a gold salt solution, or a copper salt solution) to form a film on the surface of the glass by a paste-based coating method, and It may be a particle that satisfies the conditions for forming a paste state by mixing with the viscosity control additive.
  • a salt solution an alkali salt solution such as potassium salt, a silver salt solution, a gold salt solution, or a copper salt solution
  • the viscosity control additive may be an industrial or edible composition commonly used in preparing a general paste.
  • an industrial or edible composition commonly used in preparing a general paste may be used as a viscosity control additive.
  • the viscosity adjusting additive may include one or more of glycerin, terpinol, glucose and xanthan gum.
  • the viscosity control additive is an additive added to increase the viscosity of a mixed solution (slurry) in which an aqueous salt solution and metal oxide particles are mixed to form a paste state, and may include one or more of glycerin, terpinol, glucose, and xanthan gum.
  • the viscosity control additive may include one or more of alcohol, polyvinyl alcohol, polyethylene glycol, methylcellulose, polyvinylpyridone, hydroxypropyl cellulose, hydroxypropyl methylcellulose, and the like.
  • the film coated with the slurry and/or paste is dried and then subjected to heat treatment.
  • the glass is chemically strengthened as the second ions included in the slurry and/or the paste are exchanged with the first ions in the glass.
  • the slurry and / or paste partially flows into the second region where the slurry and / or paste is not provided through the process of heat treatment, in particular, the slurry and / or paste provided near the boundary between the first region and the second region is flowed in the direction of the second region.
  • an area in which ion exchange is performed by the slurry and/or paste partially flowing from the first area toward the second area during the heat treatment process is referred to as an extended area
  • the first area, the expanded area, and the second area are arranged in order do.
  • the concentration of the second ions in the slurry and/or paste in the extended region is lower than that in the first region and becomes lower toward the second region.
  • the flow of the second ion (eg, KNO 3 molten salt) at the boundary between the first region and the second region controls the composition and heat treatment conditions of the slurry and / or paste, thereby performing ion exchange during regioselective ion exchange.
  • the visibility of the boundary line can be lowered.
  • the concentration distribution of the second ion must continuously change near the boundary line.
  • the boundary line is easily visible to the naked eye, or a step is rapidly generated in the boundary region, or the shape of the ion exchange region is randomly changed. problems can arise.
  • the method for manufacturing tempered glass according to the present embodiment includes a process of controlling the flow of the second ions on the surface of the glass, and the tempered glass manufactured according to this is formed in the final product according to the control of the flow of the second ions. It has a specific amount of change in concentration and/or a specific function.
  • the composition of the slurry and / or paste eg, the content of the salt of the second ion in the slurry and / or paste
  • the thickness of the film made of the slurry and / or paste Drying temperature of the film made of the slurry and/or paste, drying humidity of the film made of the slurry and/or paste, ion exchange heat treatment time of the film made of the slurry and/or paste, ion exchange heat treatment of the film made of the slurry and/or paste
  • At least one of the temperatures may be adjusted, whereby the flow of the second ions is controlled.
  • the flow of the second ions in the expansion area is controlled to satisfy at least one or more of the following conditions in order to be impossible to identify with the naked eye.
  • the change in atomic concentration in the first direction on the glass surface corresponding to the extended region has a value of 20% or less per 0.1 mm section within the extended region. That is, when the atomic concentration is measured at intervals of 0.1 mm in the first direction within the extended region, the difference between the atomic concentration of the second ion at one point and the atomic concentration of the second ion at another adjacent point is 20 less than %
  • the coefficient of determination (R 2 ) of the function is 0.97 It can have a sigmoid function remodeling that is greater than or equal to
  • the difference between the average concentration value of the second ion and the average value of the sigmoid function measured in an arbitrary range of 0.2 mm or less in the extended area may be 1.5 wt% or less. there is.
  • the salt of the second ion generated on the glass surface after drying is different from each other by location on the glass surface.
  • concentration of the second ions it is possible to reduce the visibility of the boundary line due to the different refractive indices occurring after heat treatment.
  • the second ion is K + and the salt of the second ion is KNO 3 , and the experiment was performed, and the paste among slurries and/or pastes was used as an example.
  • the present invention is not limited thereto, and may be performed otherwise within the limits of the concept of the present invention.
  • Experimental Example 1 Boundary visibility experiment according to support type and heat treatment conditions
  • a sodium alumino silicate glass specimen having a size of 40 mm X 40 mm X 0.4 mm was prepared. At this time, the glass composition was as follows.
  • Sodium alumino silicate glass composition 65.5 wt% SiO 2 , 16.5 wt% Al 2 O 3 , 13.5 wt% Na 2 O, 3.8 wt% MgO, 0.2 wt% CaO
  • a paste was prepared by mixing 5 kinds of supports (clay and oxide nanoparticles) in KNO 3 aqueous solution in the following mixing ratio. At this time, the stirring conditions were 55 ° C., 1 hour and 30 minutes, and 500 rpm, and a screw was used during stirring.
  • a sodium alumino silicate glass specimen having a size of 40 mm X 40 mm X 0.4 mm was prepared. At this time, the glass composition was as follows.
  • Sodium alumino silicate glass composition 65.5 wt% SiO 2 , 16.5 wt% Al 2 O 3 , 13.5 wt% Na 2 O, 3.8 wt% MgO, 0.2 wt% CaO
  • a paste was prepared by mixing TiO 2 nanoparticles with KNO 3 aqueous solution. At this time, the mixing ratio and stirring conditions were as follows.
  • Figure 1 is a photograph showing the shape of the specimen according to the heat treatment time of Table 2.
  • Figure 2a is photographs showing the front and rear surfaces of glass specimens subjected to heat treatment for 20 minutes
  • Figure 2b is photographs showing the front surfaces of glass specimens subjected to heat treatment for 30 minutes, 45 minutes, and 60 minutes, respectively.
  • Figure 3 is a transverse flow photograph of liquid potassium nitrate versus heat treatment time at a heat treatment temperature of 495 ° C., (a) heat treatment time 5 minutes, (b) heat treatment time 7 minutes 30 seconds, (c) heat treatment time 10 minutes, (d ) heat treatment time 12 minutes 30 seconds, (e) heat treatment time 15 minutes, (f) heat treatment time 17 minutes 30 seconds, (g) heat treatment time 20 minutes, (h) heat treatment time 30 minutes, (i) heat treatment time 45 minutes, (j) These are pictures corresponding to the heat treatment time of 60 minutes.
  • the flow distance according to the heat treatment temperature in Table 3 has a shape corresponding to a specific function, and the time-transverse direction KNO 3 flow distance graph corresponding to the values in Table 3 is shown in FIG. 4 .
  • the graph of FIG. 4 is based on the flow distance at the middle position of the paste, and fitting was performed with a sigmoidal logistic function.
  • a is the maximum value of the function
  • x c is a value that is 0.5 times the maximum value
  • k corresponds to the slope at the median value.
  • the KNO 3 flow distance increases as time increases, but does not increase linearly, and shows a shape in which the flow distance increases with a steep slope within a specific heat treatment time.
  • a sodium alumino silicate glass specimen having a size of 40 mm X 40 mm X 0.4 mm was prepared. At this time, the glass composition was as follows.
  • Sodium alumino silicate glass composition 65.5 wt% SiO 2 , 16.5 wt% Al 2 O 3 , 13.5 wt% Na 2 O, 3.8 wt% MgO, 0.2 wt% CaO
  • a paste was prepared by mixing two kinds of supports (TiO 2 , ZrO 2 nanoparticles) in KNO 3 aqueous solution. At this time, the mixing ratio and stirring conditions were as follows.
  • the glass surface was coated on both sides in a blade method at thicknesses of 180, 300, 600, 900, and 1200 ⁇ m, respectively.
  • the boundary line was visible only in the 300 ⁇ m-thick specimen with a 60:40 ratio, and the boundary line was not visible in the other specimens.
  • the visibility of the boundary line was determined according to the thickness at a specific KNO 3 : support ratio.
  • the ZrO 2 transverse “nip* flow” was mixed at a ratio of 70:30 and occurred at a thickness of 300 ⁇ m or more. This is a decrease in the flow distance compared to the case where TiO 2 was used as a support.
  • heat treatment Flowing down occurred at the coating film thickness of 1200 ⁇ m, and the boundary line was confirmed in all specimens.
  • the transverse flow occurred more as the coating film thickness and the KNO 3 ratio in the paste increased on the same support, and it occurred more in TiO 2 than in ZrO 2 .
  • the boundary line was recognized in the ZrO 2 paste, and the boundary line was recognized in the TiO 2 paste when a specific KNO 3 ratio and coating film thickness were satisfied.
  • a sodium alumino silicate glass specimen having a size of 40 mm X 40 mm X 0.4 mm was prepared. At this time, the glass composition was as follows.
  • Sodium alumino silicate glass composition 65.5 wt% SiO 2 , 16.5 wt% Al 2 O 3 , 13.5 wt% Na 2 O, 3.8 wt% MgO, 0.2 wt% CaO
  • a paste was prepared by mixing TiO 2 nanoparticles with KNO 3 aqueous solution. At this time, the mixing ratio and stirring conditions were as follows.
  • the specimen was either a) erected or b) laid down, and heat treatment was performed at 425 ° C for 45 minutes for ion exchange.
  • the composition of the paste and the coating film were set as shown in Tables 5 and 6, respectively.
  • the KNO 3 : TiO 2 ratio was adjusted by fixing the content of TiO 2 nanoparticles and changing the KNO 3 content.
  • the specimen was heat treated by standing up or lying down as shown in FIG. 7 .
  • KNO 3 change of support: change in the amount of KNO 3 (vertical, horizontal heat treatment)
  • KNO 3 change of support: Whether to recognize the boundary line according to the change in the amount of KNO 3 (horizontal heat treatment)
  • KNO 3 Change of support: Whether or not the boundary line was recognized according to the change in the amount of KNO 3 was shown in Table 7 below. Referring to Table 7, the visibility of the boundary line was mainly determined by the ratio of KNO 3 : TiO- 2 .
  • the flow of the KNO 3 molten salt was relatively large in the case of heat treatment in a lying position compared to the case in which the heat treatment was performed standing up, and the KNO 3 : TiO 2 ratio was confirmed as the most important factor in boundary visibility.
  • Visibility was determined (based on TiO 2 ) at around 550 ° C. for 45 minutes, and the visibility of the boundary line increased due to the increase in the amount of ion exchange when the heat treatment time and temperature increased.
  • the visibility of the boundary line was determined when the thickness of the coating film was above a certain level.
  • Transverse SEM-EDS scanning electron microscopy-energy dispersive X-ray spectrometer
  • SEM-EDS scanning electron microscopy-energy dispersive X-ray spectrometer
  • the concentration distribution in the transverse direction was also measured for the specimens (three pieces) subjected to transverse SEM-EDS analysis and the additional three specimens, and the concentration distribution was continuous through the slope of the transverse concentration distribution (visually the boundary line was The criterion for determining the continuity of the concentration distribution was set by confirming the criterion of the regioselective ion exchange glass (not visible), and as a result, the concentration gradient in the transverse direction was derived as the difference between the normalized concentration values per 0.1 mm distance.
  • the criterion for determining the continuity of the concentration distribution is that the absolute value of the difference in the atomic concentration of alkali ions measured on the glass surface after ion exchange across the boundary line is 0.2 (20%) or less per 0.1 mm interval in the vicinity of the boundary line. confirmed to be
  • a sodium alumino silicate glass specimen having a size of 40 X 40 X 0.4 mm 3 was prepared. At this time, the glass composition was as follows.
  • Sodium alumino silicate glass composition 65.5 wt% SiO 2 , 16.5 wt% Al 2 O 3 , 13.5 wt% Na 2 O, 3.8 wt% MgO, 0.2 wt% CaO
  • a paste was prepared by mixing TiO 2 nanoparticles and kaolinite in KNO 3 aqueous solution. At this time, the mixing ratio and stirring conditions were as follows.
  • Paste was applied to a thickness of 300 ⁇ m by attaching five sheets of 60 ⁇ m thick 3M tape to both sides of the glass.
  • the boundary line was not visually confirmed in the case of the specimen to which TiO 2 was applied, but the boundary line was visually confirmed in the case of the specimen to which kaolinite was applied.
  • a sodium alumino silicate glass specimen having a size of 40 X 40 X 0.4 mm 3 was prepared. At this time, the glass composition was as follows.
  • Sodium alumino silicate glass composition 65.5 wt% SiO 2 , 16.5 wt% Al 2 O 3 , 13.5 wt% Na 2 O, 3.8 wt% MgO, 0.2 wt% CaO
  • a paste was prepared by mixing TiO 2 nanoparticles with KNO 3 aqueous solution. At this time, the mixing ratio and stirring conditions were as follows.
  • Paste was applied to a thickness of 300 ⁇ m by attaching five sheets of 60 ⁇ m thick 3M tape to both sides of the glass.
  • SEM-EDS was performed by measuring the surface concentration distribution at a position crossing the boundary between the paste-applied area and the un-coated area. 1140 ⁇ m line scan was performed per point, and the interval per point was set to 800 ⁇ m. About 17000 ⁇ m was measured in the longitudinal direction including the interval between scan points.
  • 9a and 9b are graphs showing SEM-EDS results for the concentration distribution of transverse alkali ions (K, Na) according to the type of support.
  • 10A and 10B are graphs showing SEM-EDS results for the concentration distribution of transverse alkali ions (K, Na) according to the ion exchange temperature.
  • the A and B functions have 4 parameters and the maximum/minimum value of the function can be specified, and the C function has 3 parameters and the minimum value is fixed at 0.
  • both Na and K distributions could be fitted, and in the C function, only the K concentration could be fitted.
  • the parameter dx determined the slope
  • the parameter p determined the slope
  • the parameter k determined the slope.
  • the slope decreased as the absolute value of the slope-related parameter of each function increased, and the expansion area decreased as the slope decreased.
  • FIGS. 14a to 14c, and FIGS. 15a to 15c are views showing fitting results obtained by fitting with functions A, B, and C in Table 7 together with coefficients of determination, respectively.
  • 13c and FIGS. 14a to 14c are fitted with respect to Na and K concentrations
  • FIGS. 15a to 15c are fitted with respect to K concentrations.
  • both the Boltzmann function and the DoseResp function had the same R 2 values for K and Na within the same specimen, and the actual fitted values between the two functions were also very similar with a difference of less than 10 -4 .
  • the same value was calculated when calculating the extended distance based on the point where the K concentration was 0 wt% and the point where the Na concentration was maximum (13.5 wt%).
  • 16 is a diagram showing the average of the measured value of each section of K according to the distance and the fitting value. Here, each value is shown by comparing the average value for each section with the fitting result after dividing the slurry-uncoated area at intervals of 0.2 mm from the boundary line standard (0 mm).
  • FIG. 17 is a view showing the result of measuring the difference between the measured value of K for each section and the fitting value according to the type of support at each point.
  • the difference in concentration between the fitting value and the measured value for each data is shown at intervals of 0.2 mm.
  • Selective ion exchange glass having a continuous/discontinuous distribution can be determined using the value of the fitting function and the concentration distribution in the lateral direction, and through this, it is possible to determine whether the boundary line near the boundary line is visible to the naked eye. In particular, as a result of checking through the horizontal concentration distribution, it was confirmed that the boundary line visibility was affected by the local concentration gradient (density difference in a specific distance range) rather than the distance of the extended area.
  • Specimens were prepared and experiments were conducted to determine whether the boundary line was visible or not according to whether the concentration distribution was continuous or discontinuous.
  • Specimens 1 to 3 were prepared in the following manner. Specimens 4 to 5 were the specimens prepared in Example 1-A described above.
  • a sodium alumino silicate glass specimen having a size of 40 X 40 X 0.4 mm 3 was prepared. At this time, the glass composition was as follows.
  • Sodium alumino silicate glass composition 65.5 wt% SiO 2 , 16.5 wt% Al 2 O 3 , 13.5 wt% Na 2 O, 3.8 wt% MgO, 0.2 wt% CaO
  • a paste was prepared by mixing TiO 2 nanoparticles with KNO 3 aqueous solution.
  • Paste was applied to a thickness of 300 ⁇ m by attaching five sheets of 60 ⁇ m thick 3M tape to both sides of the glass.
  • specimens 1 and 2 measured the concentration distribution in the transverse direction in the direction crossing the boundary line, and point-EDS was measured at 0.1 mm intervals in the area near the boundary line (-1 ⁇ 1 mm). Areas other than the vicinity of the boundary were measured by point-EDS at 1 mm intervals.
  • specimen 3 the transverse concentration distribution was measured in the direction crossing the boundary line, and point-EDS was measured at 1 mm intervals over the entire area.
  • the surface concentration distribution in the transverse direction was measured at a position crossing the boundary line, and a 1400 ⁇ m line scan was performed per point. At this time, the interval per point was set to 2000 ⁇ m, and about 7400 ⁇ m was measured in the longitudinal direction including the interval.
  • the surface concentration distribution in the transverse direction was measured at a position crossing the boundary line, and a 1140 ⁇ m line scan was performed per point.
  • the interval per point was set to 800 ⁇ m, and about 17000 ⁇ m was measured in the longitudinal direction including the interval.
  • 18a to 18c are EDS results measured by varying the concentration unit for specimens 4 to 6 in 1-A.
  • FIG. 19A is a diagram showing transverse K concentration (at%) of specimens 1 to 6, and FIG. 19B is a normalized concentration distribution diagram of FIG. 19A.
  • specimens 1 and 2 measure data at 0.1 mm intervals near the boundary and at 1 mm intervals in other areas
  • specimen 3 measures the concentration distribution at 1 mm intervals over the entire range
  • specimens 4 and 5 , 6 show the calculation of the average value for each section after dividing the slurry-uncoated area into 0.1 mm intervals from the boundary line standard (0 mm) and -1 to 5 mm area.
  • the corresponding graph shows the normalized concentration difference ( ⁇ C) at a transverse position for a distance of 0.1 mm.
  • the concentration change per 0.1 mm at a specific position in the transverse direction was less than -0.2 (-20%). That is, if there is one or more points where the difference in concentration ( ⁇ C) per 0.1 mm of the lateral distance in the borderline extension area (i.e., within the extension area) is less than -0.2 (-20%) ( ⁇ C min ⁇ -0.2)
  • the boundary line was recognized, and the boundary line was not recognized when the difference in concentration ( ⁇ C) per 0.1 mm of transverse distance within the boundary extension area was more than -0.2 (-20%) ( ⁇ C min ⁇ -0.2).
  • Figure 21 plots the absolute value of the difference in normalized concentration (
  • Specimens for measuring hardness were prepared as follows.
  • a sodium alumino silicate glass specimen having a size of 40 mm X 40 mm X 0.4 mm was prepared. At this time, the glass composition was as follows.
  • Sodium alumino silicate glass composition 65.5 wt% SiO 2 , 16.5 wt% Al 2 O 3 , 13.5 wt% Na 2 O, 3.8 wt% MgO, 0.2 wt% CaO
  • a paste was prepared by mixing TiO 2 nanoparticles with KNO 3 aqueous solution. At this time, the mixing ratio and stirring conditions were as follows.
  • the glass surface was patterned in a 300 ⁇ m-thick equilateral triangle shape, a stripe shape, a rectangle shape, and a square shape, respectively, and then the paste was coated on both sides in a blade method.
  • Hardness was measured at intervals of 0.2 mm in the area near the boundary line and at intervals of 2 mm in other areas. Hardness was measured 5 times at the same location under a load of 100 gf and the average value was taken.
  • FIGS. 24a, 24b, and 24c are photographs of actual specimens according to pattern shapes and two-dimensional graphs showing hardness according to distance, respectively. , It is a three-dimensional graph showing the longitude according to the distance.
  • specimens were prepared in the same shape as the specimens for which EDS was measured and hardness was measured.
  • FIG. 25a is a view showing the shape of a specimen manufactured to measure hardness
  • FIG. 25b is a photograph showing a drawing actually manufactured and a measurement position.
  • 26A and 26B are graphs showing concentration distribution and hardness in the lateral direction and concentration distribution and hardness in the depth direction, respectively.
  • the indentation depth at the time of hardness measurement was 3.4 ⁇ m / 3.7 ⁇ m.
  • the hardness enhancement region expanded by about 2 mm in the transverse direction, which was smaller than the expansion of the ion exchange region (ie, the expanded region). It was confirmed through hardness measurement that glass having a position-selective strengthening effect could be produced without the boundary line being visually recognized after chemical strengthening.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

본 발명의 일 실시예는 유리 내부의 제1 이온과 상기 제1 이온에 대응하는 제2 이온의 화학적 이온 교환이 서로 상이하게 발생한 제1 영역과 제2 영역을 포함하되 상기 제1 영역과 상기 제2 영역의 경계선이 육안으로 미시인되는 화학강화 유리 제조 방법에 관한 것으로, 상기 슬러리 또는 페이스트는 상기 제2 이온의 염을 갖는 용액을 포함하는 슬러리 및/또는 페이스트를 제조하는 단계; 상기 슬러리 및/또는 페이스트를 유리 표면 상에 도포하는 단계; 및 상기 슬러리 및/또는 페이스트가 도포된 유리를 열처리하는 단계를 포함한다. 여기서, 상기 제1 영역과 상기 제2 영역의 경계선을 기준으로 상기 경계선에 수직한 방향으로의 상기 제2 이온의 원자 농도 변화량의 절대값이 각 0.1 mm 구간 내에서 20 % 이하로 제어되거나, 상기 제2 이온의 농도 변화를 시그모이드 계열 함수의 형태로 나타낼 때, 상기 함수는 결정 계수(coefficient of determination; R2 )가 0.97 이상으로 제어되거나, 상기 제2 이온의 농도 평균 값과 상기 시그모이드 계열 함수의 평균 값 차이가 1.5 wt% 이하로 제어된다.

Description

위치 선택적으로 이온교환된 유리 및 이의 제조방법
본 발명은 화학 강화 유리에 관한 것으로, 좀더 상세하게는 위치 선택적으로 이온 교환된 화학 강화 유리 및 이의 제조방법에 관한 것이다.
유리의 표면부에 압축응력을 인가하여 표면을 강화하는 상용화된 방법은 크게 물리강화와 화학강화로 구분된다. 화학강화 방법은 유리 내부에 존재하는 나트륨 이온 또는 리튬 이온을 칼륨 이온과 같이 크기가 더 큰 여타 알칼리 이온으로 치환하여 표면부에 압축응력을 인가하는 방식으로, 물리강화 방법보다 얇은 두께의 유리에 적용할 수 있으며, 최근 들어 수요처가 다양해져서 기존 이동형 전자기기의 커버 유리 등의 비교적 제한된 응용분야에서 자동차 창유리 등의 보다 확장된 분야에도 적용되고 있다. 향후, 박판 유리를 대상으로 화학강화가 적용되어 폴더블 형태 등의 유연 디스플레이에도 적용되는 등, 지속적으로 응용분야가 확장될 것으로 판단된다.
그런데, 기존 발명에 따르면 특정 영역에 선택적으로 화학 강화를 시키는 경우, 유리 표면 상에서 화학 강화가 진행된 영역과 화학 강화가 진행되지 않은 영역의 경계선이 사용자의 눈에 시인되는 문제점이 있다.
본 발명의 목적은 화학 강화가 진행된 영역과 화학 강화가 진행되지 않은 영역의 경계선이 사용자의 눈에 시인되지 않는 화학 강화 유리의 제조 방법 및 이에 따라 제조된 화학 강화 유리를 제공하는 데 있다.
본 발명의 일 실시예는 유리 내부의 제1 이온과 상기 제1 이온에 대응하는 제2 이온의 화학적 이온 교환이 서로 상이하게 발생한 제1 영역과 제2 영역을 포함하되 상기 제1 영역과 상기 제2 영역의 경계선이 육안으로 미시인되는 화학강화 유리 제조 방법에 관한 것으로, 상기 슬러리 또는 페이스트는 상기 제2 이온의 염을 포함하는 도포막을 형성하는 단계; 및 상기 도포막이 형성된 유리를 열처리하는 단계를 포함한다. 여기서, 상기 제1 영역과 상기 제2 영역의 경계선을 기준으로 상기 경계선에 수직한 방향으로의 상기 제2 이온의 원자 농도 변화량의 절대값이 각 0.1mm 구간 내에서 20% 이하로 제어되거나, 상기 제2 이온의 농도 변화를 시그모이드(sigmoid) 계열 함수의 형태로 나타낼 때, 상기 함수는 결정 계수(coefficient of determination; R2 )가 0.97 이상으로 제어되거나, 상기 제2 이온의 농도 평균 값과 상기 시그모이드 계열 함수의 평균 값 차이가 1.5 wt% 이하로 제어된다.
본 발명의 일 실시예에 있어서, 상기 도포막은 상기 제2 이온의 염이 포함된 용액과 지지체를 포함하는 슬러리 및/또는 페이스트를 제조하고, 상기 제조된 슬러리 및/또는 페이스트를 유리 표면 상에 도포하여 형성될 수 있다. 또는, 상기 도포막은 지지체를 포함하는 슬러리 및/또는 페이스트를 제조하고, 상기 제조된 슬러리 및/또는 페이스트를 유리 표면상에 도포한 후, 상기 도포된 슬러리 및/또는 페이스트 상에 상기 제2 이온의 염이 포함된 용액을 첨가하여 형성될 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 이온의 농도 변화량은 상기 제2 이온의 염을 포함하는 용액 및 지지체의 함량비, 상기 지지체의 종류, 상기 열처리 온도, 및 상기 슬러리 및/또는 페이스트의 두께 중 적어도 하나 이상을 변경함으로써 제어될 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 이온의 염을 포함하는 용액 및 지지체의 함량비(mol%)는 60:40 내지 95:5일 수 있다.
본 발명의 일 실시예에 있어서, 상기 지지체는 금속 산화물 입자일 수 있으며, 예를 들어, TiO2 입자일 수 있다.
본 발명의 일 실시예에 있어서, 상기 열처리 온도는 250 ℃이상 약 550 ℃ 이하일 수 있다.
본 발명의 일 실시예에 있어서, 상기 확장 영역 내 상기 제2 이온의 농도 분포가 불연속적인 분포를 보일 때 상기 확장 영역 내 임의 구간 범위에서 측정된 상기 제2 이온 농도의 평균 값과 상기 시그모이드 계열 함수 값 차이가 1.5 wt% 초과의 값을 가지는 구간이 최소 1개 이상일 수 있다.
본 발명의 일 실시예에 있어서, 상기 시그모이드 계열 함수는 상기 경계선 부근에서 연속적일 수 있으며, 상기 함수는 하기 식 1 내지 3으로 표시된 것 중 하나일 수 있다.
Figure PCTKR2022018796-appb-img-000001
여기서, A1, A2, 및 a는 함수의 최대값 또는 최소값 중 하나이며, x0, logx0, 및 xc 는 최대값의 0.5배가 되는 값이며, dx, p, k 는 중간값에서의 기울기에 해당한다.
본 발명의 일 실시예는 상술한 방법으로 화학강화 유리를 제공한다.
본 발명의 일 실시예에 따르면 화학 강화 영역과 미강화 영역의 경계선이 육안으로 시인되지 않는 화학 강화 유리를 제공한다.
도 1은 표 2의 열처리 시간에 따른 시편의 형상을 도시한 사진들이다.
도 2a는 20 분 열처리한 유리 시편의 전면과 배면을 나타낸 사진들이며, 도 2b는 각각 30 분, 45 분, 및 60 분 열처리한 유리 시편의 전면을 나타낸 사진들이다.
도 3은 열처리 온도 495 ℃에서 열처리 시간에 대한 액상 질산칼륨의 횡 방향 유동 사진들이다.
도 4는 시간-횡방향 KNO3 유동 거리 그래프이다.
도 5는 지지체 입자 종류가 TiO2일 경우의 KNO3 : TiO2 비율 변경에 따른 결과 사진들이다.
도 6은 지지체 입자가 ZrO2일 경우의 KNO3 : ZrO2 비율 변경에 따른 결과 사진들이다.
도 7은 시편의 열처리 방법을 도시한 도면이다.
도 8은 시편을 열처리 시 세워서 수직으로 열처리한 결과와, 수평으로 눕혀서 열처리한 결과를 나타낸 사진들이다.
도 9a 및 도 9b는 지지체 종류에 따른 횡방향 알칼리 이온(K, Na)의 농도 분포에 대한 SEM-EDS 결과값을 도시한 그래프이다.
도 10a 및 도 10b는 이온 교환 온도에 따른 횡방향 알칼리 이온(K, Na)의 농도 분포에 대한 SEM-EDS 결과값을 도시한 그래프이다.
도 11a 내지 도 11c는 피팅 시 사용된 횡방향 농도 분포 데이터로서, 각 열처리 조건과 지지체 조성에 따라 거리별 농도 분포를 나타낸 것이다.
도 12a 내지 도 12c는 표 7에 있어서의 세가지 피팅함수의 기울기 특성을 나타낸 것이다.
도 13a 내지 도 13c, 도 14a 내지 도 14c, 및 도 15a 내지 도 15c 각각은 각각 표 7의 A, B, C 함수로 피팅하였을 때의 피팅 결과를 결정계수와 함께 나타낸 도면으로서, 도 13a 내지 도 13c, 도 14a 내지 도 14c는 Na와 K의 농도에 관하여 피팅된 것이며, 도 15a 내지 도 15c의 경우 K 농도에 관하여 피팅된 것이다.
도 16은 거리에 따른 K의 각 구간별 측정치와 피팅값의 평균을 나타낸 도면이다.
도 17은 지지체 종류에 따른 K의 각 구간별 측정치와 피팅값의 차이를 각 지점별로 측정한 결과를 나타낸 도면이다.
도 18a 내지 도 18c는 1-A에서의 시편 4 내지 6에 대해 농도단위를 달리하여 측정한 EDS 결과이다.
도 19a는 시편 1 내지 6의 횡방향 K 농도(at%)를 도시한 도면이며, 도 19b는 도 19a를 정규화한 농도분포 도면이다.
도 20 및 표 11은 각 시편의 횡방향 농도 구배를 나타낸 것이다.
도 21 및 표 12은 각 시편의 횡방향 농도 구배를 나타낸 것이다.
도 22a, 도 22b, 및 도 22c, 도 23a, 도 23b, 및 도 23c, 그리고 도 24a, 도 24b, 및 도 24c는 각각 패턴의 형상에 따른 실제 시편 사진, 거리에 따른 경도를 나타낸 2차원 그래프, 거리에 따른 경도를 나타낸 3차원 그래프이다.
하기의 용어가 당업자에 의해 잘 이해될 것으로 여겨지지만, 하기의 정의는 현재 개시된 발명 요지의 설명을 용이하게 하기 위해 기재된다.
달리 정의되지 않는 한, 본 명세서에 사용되는 모든 기술적 및 과학적 용어는 현재 개시된 발명 요지가 속하는 기술 분야의 당업자가 통상적으로 이해하는 바와 동일한 의미를 갖는다. 본 명세서에 기술된 것과 유사하거나 동등한 임의의 방법, 장치, 및 재료가 현재 개시된 발명 요지의 실시 또는 검사에 사용될 수 있지만, 이제 대표적인 방법, 장치, 및 재료가 기술된다.
달리 지시되지 않는 한, 본 명세서와 청구범위에 사용되는 성분의 양, 반응 조건 등을 표현하는 모든 수는 모든 경우에 용어 "약"에 의해 수식되는 것으로 이해되어야 한다. 따라서, 반대로 지시되지 않는 한, 본 명세서와 첨부 청구범위에 기재된 수치 파라미터는 현재 개시된 발명 요지에 의해 얻고자 하는 원하는 특성에 따라 달라질 수 있는 근사치이다. 본 명세서에 사용되는 바와 같이, 용어 "약"은 질량, 중량, 시간, 체적, 농도 또는 백분율의 값 또는 양을 지칭할 때 특정된 양으로부터 일부 실시예에서 ±20%, 일부 실시예에서 ±10%, 일부 실시예에서 ±5%, 일부 실시예에서 ±1%, 일부 실시예에서 ±0.5%, 및 일부 실시예에서 ±0.1%의 변동을 포함하되, 그러한 변동이 개시된 방법을 수행하기에 적합할 때 포함하도록 의도된다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
본 발명은 위치선택적으로 화학강화된 유리 및 이의 제조 방법에 관한 것으로, 좀더 상세하게는 화학적 이온 교환에 의해 서로 다른 이온 농도를 갖는 적어도 2개 이상의 영역을 포함하는 화학강화 유리의 제조 방법 및 이에 의해 제조된 화학강화 유리에 관한 것이다.
본 발명의 실시예는 특히, 서로 인접한 두 영역에서 서로 다른 정도의 화학적 이온 교환이 발생할 경우, 서로 인접한 두 영역 사이를 나누는 경계선이 육안으로 시인되지 않도록 화학적 이온 교환 정도를 제어하는 것을 특징으로 한다. 예를 들어, 화학적 이온 교환이 이루어진 일 영역과 화학적 이온 교환이 이루어지지 않은 다른 영역의 사이, 및/또는 화학적 이온 교환이 이루어진 일 영역과 상기 소정 영역보다 더 높은 농도로 이온 교환이 이루어진 다른 영역의 사이 등에서, 서로 인접한 두 영역을 나누는 경계선이 육안으로 시인되지 않도록 화학적 이온 교환 정도를 제어하는 것을 특징으로 한다.
이하에서는 설명의 편의를 위해, 화학적 이온 교환이 이루어진 일 영역(강화 영역)과 화학적 이온 교환이 이루어지지 않은 다른 영역(미강화 영역)의 사이를 일예로 설명한다. 그러나, 본 발명의 일 실시예는 이에 한정되는 것은 아니며, 화학적 이온 교환이 이루어진 일 영역과 상기 소정 영역보다 더 높은 농도로 이온 교환이 이루어진 다른 영역의 사이 또한, 경계선의 미시인을 위해 강화 영역과 미강화 영역에 대응하여 실질적으로 동일한 형태로 적용될 수 있음은 물론이다. 건식 화학강화 등을 통해 위치 선택적으로 화학강화시킨 유리의 경우, 강화된 부분과 강화되지 않는 부분과의 경계선에 해당되는 부분이 육안으로 식별되는 문제가 있을 수 있다. 이러한 육안으로 시인되는 경계선은 크게 두가지 원인에 의해 발생할 것으로 추정된다. 첫째는 강화 영역과 미강화 영역 간 경계선의 물리적 단차이며, 둘째는 강화 영역과 미강화 영역 간의 굴절률 분포 차이이다. 그런데, 유리 표면을 확인할 수 있는 표면 프로파일러(surface profiler)를 이용하여 단차를 측정한 결과, 표면 단차는 약 500 nm 이하 수준으로 일반적인 육안의 분해능으로 파악하기 힘들다는 것이 확인되었다. 이에, 강화 영역과 미강화 영역의 육안상 경계선이 시인되는 현상은 이온 교환 후 발생하는 표면 굴절률 차이에 의한 것으로 추정된다.
본 발명은 강화 영역과 미강화 영역 간 경계선 상에서의 표면 굴절률의 차이를 최소화하도록 화학강화 시의 조건을 제어함으로써 강화 영역과 미강화 영역 간 경계선이 미시인되도록 한다. 상기 표면 굴절률의 차이는 강화 영역과 미강화 영역에서의 이온의 유동에 따른 농도 차이에 의한 것으로서, 본 발명에서는 상기한 이온의 유동을 제어한다.
본 발명의 일 실시예에 따르면, 화학강화를 위해 슬러리 및/또는 페이스트를 유리 표면상에 도포한 후 열처리 단계를 거치는 데, 상기 열처리 단계에서 슬러리 및/또는 페이스트의 유동이 발생하기 때문에 결국 도포한 영역과 미도포한 영역과 최종적으로 강화 영역과 미강화 영역은 일치하지 않는다. 실제로 슬러리 및/또는 페이스트는 열처리 단계에서 녹아 미도포 영역으로 확장되며, 실제 강화 영역은 슬러리 및/또는 페이스트의 도포 영역보다 넓을 수 있다. 이에, 본 발명의 설명에서는 편의상, 최초 슬러리 및/또는 페이스트가 도포된 영역을 도포 영역, 열처리 단계에서 슬러리 및/페이스트가 유동하여 이후 강화가 진행되는 영역을 확장 영역, 나머지 영역을 미도포 영역이라 지칭하기로 한다.
즉, 상기 제2 이온이 확산/교환된 영역은 도포 영역과 확장 영역에 해당하며, 제2 이온이 확산/교환되지 않아 원 유리가 가지고 있는 제1 이온을 그대로 가지고 있는 영역은 미도포 영역에 해당한다. 확장 영역은 도포 영역과 미도포 영역 사이에 배치된다. 제1 이온의 농도는 미도포 영역에서는 가장 높으며 도포 영역에서 가장 낮다. 제1 이온의 농도는 확장 영역에서 도포 영역에서 미도포 영역으로 방향으로 갈수록 높아진다. 반대로 제2 이온의 농도는 도포 영역에서 가장 높으며 미도포 영역에서 가장 낮다. 제2 이온의 농도는 확장 영역에서 도포 영역에서 미도포 영역으로 갈수록 낮아진다.
상술한 바와 같이, 도포 영역, 확장 영역, 미도포 영역이 배치된 방향을 제1 방향(또는 횡방향)이라고 할 때, 각 영역에서의 제1 이온과 제2 이온의 농도는 제1 방향을 따라 서로 다른 양상을 갖는다. 제1 이온과 제2 이온은 도포 영역과 미도포 영역에서 미차는 있으나 전체적으로 볼 때 일정한 농도를 가지며, 확장 영역에서 농도가 낮아지거나 높아진다. 이에 따라, 제1 이온의 경우 도포 영역에서 다른 영역에서보다 낮은 농도로 일정하게 유지되다가 확장 영역에서 그 농도가 증가하며 미도포 영역에서 다른 영역에서보다 높은 농도로 일정하게 유지된다. 이와 달리, 제2 이온의 경우 도포 영역에서 다른 영역에서보다 높은 농도로 일정하게 유지되다가 확장 영역에서 그 농도가 감소하며 미도포 영역에서 다른 영역에서보다 낮은 농도로 일정하게 유지된다. 여기서 농도가 일정하게 유지된다는 뜻은 완전히 동일한 농도가 유지된다는 의미보다는 농도가 일부 변경될 수는 있으나 전체적으로 보아 특정 범위 내(예를 들어, 평균 농도에서 +/- 15% 이내, 또는 +/- 10% 이내, 또는 +/-5% 이내)의 변동폭을 가지는 정도를 의미할 수 있다.
여기서, 본 발명의 일 실시예에 따르면, 상기 도포 영역, 확장 영역과 미도포 영역 사이에서의 제2 이온의 농도는 육안으로의 식별이 불가능하기 위해 하기한 조건 중 적어도 하나 이상의 조건을 갖는다.
첫째, 본 발명의 일 실시예에 따른 유리는, 유리 표면, 예를 들어, 확장 영역에서의 제1 방향으로 원자 농도의 변화량이 확장 영역 내 0.1 mm 구간 당 20 % 이하의 값을 가진다. 즉, 제1 방향으로 0.1 mm 거리를 간격으로 원자 농도를 측정하였을 때, 일 지점에서의 제2 이온의 원자 농도와 이에 인접한 다른 지점에서의 제2 이온의 원자 농도 차이는 20% 이하이다.
둘째, 본 발명의 일 실시예에 따른 유리는, 유리 표면, 예를 들어, 확장 영역에서의 유리 표면의 제2 이온의 농도 변화를 함수의 형태로 나타내는 경우, 상기 함수는 결정 계수(coefficient of determination; R2 )가 0.97 이상인 시그모이드(sigmoid) 함수 개형을 가질 수 있다. 또한, 본 발명의 일 실시예에 따른 유리는, 상기 확장 영역 내 임의의 0.2 mm 이하 범위에서 측정된 상기 제 2 이온의 농도 평균 값과 상기 시그모이드 함수의 평균 값 차이가 1.5 wt% 이하일 수 있다.
상술한 구조를 갖는 화학강화 유리는 상기 확장 영역에서 상기 제1 이온과 제2 이온의 농도변화가 특정 범위 내로 조절되며, 그 결과 경계선이 시인되지 않게 된다. 다시 말해, 상기 확장 영역은 화학적 이온 교환 시의 염의 교환된 영역 분포 및 이에 따른 농도 분포를 의도적으로 제어함으로써 형성될 수 있다. 상기한 확장 영역을 갖는 유리는 이온 교환 단계에서 위치에 따라 이온 교환 시 교환하고자 하는 염이 상이한 정도로 농도를 가지도록 공정조건을 제어함으로써 형성될 수 있는 것이다.
이를 위해, 본 발명의 일 실시예에서는, 유리 내부의 제1 이온과의 이온 교환 대상이 되는 제2 이온을 포함하는 제2 이온의 염을 포함하는 슬러리 및/또는 페이스트를 제조하고, 상기 슬러리 및/또는 페이스트를 유리의 표면에 도포하여 막을 형성하고, 상기 유리 표면 상의 상기 슬러리 및/또는 페이스트로 이루어진 막을 건조한 후, 상기 막이 형성된 유리를 열처리하되, 그 조건을 변경함으로써, 본 발명에 따른 실시예의 유리를 제조한다.
상기 슬러리 및/또는 페이스트는 강화하고자 하는 영역과 미강화 영역 중 강화하고자 하는 영역에 도포된다. 여기서 슬러리 및/또는 페이스트가 도포되는 영역을 제1 영역, 상기 슬러리 및/또는 페이스트가 도포되지 않은 영역을 제2 영역이라 지칭하면, 슬러리 및/또는 페이스트가 도포되는 제1 영역이 이후 강화 영역이 된다.
이를 좀더 상세히 설명하면 다음과 같다.
본 발명의 일 실시예에 따르면, 유리 내부의 제1 이온(알칼리 이온, 예를 들어, Na 이온)과 교환되는 제2 이온의 염(알칼리 이온의 염, 예를 들어, KNO3)과 같은 알칼리염을 포함하는 도포막을 형성한다.
상기 제2 이온의 염(이하, 제2 이온의 염 또는 알칼리염이라고 지칭)을 포함하는 도포막을 형성할 시, 각각 일반적인 스프레이 기반 코팅 방법이나 페이스트 기반 코팅 방법으로 형성할 수 있다.
상기 도포막은 상기 제2 이온의 염이 포함된 용액과 지지체를 포함하는 슬러리 및/또는 페이스트를 제조하고, 상기 제조된 슬러리 및/또는 페이스트를 유리 표면 상에 도포함으로써 형성하거나, 지지체를 포함하면서 제2 이온의 염이 포함되지 않거나, 포함되더라도 미량 포함된 슬러리 및/또는 페이스트를 먼저 제조하고, 상기 제조된 슬러리 및/또는 페이스트를 유리 표면상에 도포하여 일차적인 도포막을 형성한 후, 상기 도포된 슬러리 및/또는 페이스트 상에 상기 제2 이온의 염이 포함된 용액을 추가함으로써 형성할 수 있다. 예를 들어, 상기 도포된 슬러리 및/또는 페이스트 상에 상기 제2 이온의 염이 포함된 용액을 스프레이 도포하거나, 붓질하거나, 침지하는 방식으로 형성할 수 있다.
좀더 상세하게는, 유리 표면에 막을 형성한 후에 이온 교환을 위한 열처리 조건에서 용융 또는 반용융 상태로 존재하는 알칼리염이 유리의 표면부와 균일하게 접촉하여 분포하고 나아가 이온 교환에 도움을 주는 조성물 및 공정이 제공될 수 있다. 또한, 본 발명에 의하면, 알칼리염을 함유하지 않거나 비교적 소량 함유하는 슬러리나 페이스트를 만들어 이를 각각 일반적인 스프레이 기반 코팅 방법이나 페이스트 기반 코팅 방법으로 유리 표면에 막을 형성한 후에 알칼리염 (수)용액을 스프레이 방식으로 도포하거나 알칼리염 (수)용액에 침지하는 방식으로 알칼리염을 추가한 이후에 이온 교환을 위한 열처리 조건에서 용융 또는 반용융 상태로 존재하는 알칼리염이 유리의 표면부와 균일하게 접촉하여 분포하고 나아가 이온 교환에 도움을 주는 조성물 및 공정이 제공될 수 있다. 상기 슬러리 및/또는 페이스트는 알칼리염 이외에 금속 산화물 입자를 더 포함할 수 있다. 상기 알칼리염과 금속 산화물 입자의 함량은 이후 알칼리염의 석출상의 분포를 제어하는 하나의 인자가 될 수 있다. 또한, 금속 산화물 입자는 염과 함께 슬러리 상태에서 통상의 스프레이 기반 공정으로 형성된 막을 소정 상대습도 하에서 소정 시간 건조할 수 있다. 여기서, 건조시의 습도 조건, 건조 시간, 건조 온도 또한 이후 알칼리염의 석출상의 분포를 제어하는 다른 인자가 될 수 있다.
본 발명의 일 실시예에 있어서, 상기 슬러리/페이스트 상태로 도포된 도포막을 건조할 때, 0 ℃내지 200 ℃로 5 초 내지 12 시간 동안 건조할 수 있다. 이때, 습도 조건은 상대습도 10 % 내지 90 %일 수 있다.
본 발명의 일 실시예에 있어서, 슬러리 또는 페이스트의 조성(예를 들어, 상기 슬러리 또는 페이스트의 내의 상기 제2 이온의 염의 함량), 상기 슬러리 또는 페이스트의 도포막 두께, 상기 슬러리 또는 페이스트의 건조 온도, 상기 슬러리 또는 페이스트의 건조 습도, 상기 슬러리 또는 페이스트의 건조 시간, 상기 열처리 온도, 열처리 시간 중 적어도 하나가 조절될 수 있으며, 이를 통해 제2 이온의 확산이 제어된다.
본 발명의 일 실시예에 있어서, 상기 페이스트 제조 시에는 페이스트의 지지체가 포함될 수 있다. 상기 지지체는 금속 산화물 입자일 수 있다. 상기 알칼리염과 혼합될 수 있는 지지체, 즉, 금속 산화물 입자는 TiO2, ZnO, ZrO2, CuO 및 NiO의 조성 중 적어도 하나의 조성을 가질 수 있다. 예를 들어, 금속 산화물 입자는 TiO2, ZnO, ZrO2, CuO 또는 NiO 조성을 주로 가지며, TiO2, ZnO, ZrO2, CuO 또는 NiO 입자는 단독으로 또는 공동으로 염 수용액과 혼합되어 슬러리/페이스트 상태를 형성할 수 있다.
또는, 금속 산화물 입자는 Cr2O3, MnO2, MnO, Fe2O3, FeO, Co2O3, Y2O3, TeO2, CeO2, La2O3, Nd2O3, Pr2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, Dy2O3, Ho2O3 및 Er2O3의 조성 중 적어도 하나의 조성을 갖는 복수의 입자를 포함할 수 있다. 예를 들어, 금속 산화물 입자는 Cr2O3, MnO2, MnO, Fe2O3, FeO, Co2O3, Y2O3, TeO2, CeO2, La2O3, Nd2O3, Pr2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, Dy2O3, Ho2O3 또는 Er2O3 조성을 주로 가지며, Cr2O3, MnO2, MnO, Fe2O3, FeO, Co2O3, Y2O3, TeO2, CeO2, La2O3, Nd2O3, Pr2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, Dy2O3, Ho2O3 또는 Er2O3 입자는 단독으로 또는 공동으로 염 수용액과 혼합되어 슬러리/페이스트 상태를 형성할 수 있다.
본 발명의 일 실시예에서는 상기 금속 산화물 입자 중 TiO2 입자가 지지체로 사용될 수 있다. TiO2 입자는 나노 크기의 입자일 수 있다. 지지체로서 TiO2 입자가 사용된 경우, 제2 이온 염과 TiO2 입자의 혼합 시, TiO2의 상대적인 몰비는 40 mol% 이하일 수 있다. 예를 들어, 제2 이온의 염과 TiO2 입자의 혼합비(mol%)는 60:40 내지 95:5일 수 있으며, 일 실시예에 있어서, 60:40 내지 90:10, 또 다른 일 실시예에 있어서 80:20일 수 있다. 예를 들어, 2 이온의 염과 TiO2 입자의 혼합비(mol%)는 65:35 내지 80:20일 수 있으며, 또 다른 실시예에서는 68:32 내지 75:25일 수도 있다.
본 발명의 일 실시예에 있어서, 상기 슬러리/페이스트 상태의 혼합물은 유리 표면 상에 도포되는 바, TiO2의 상대적인 몰비는 35 mol% 이상일 때 도포시의 슬러리/페이스트의 두께가 300 μm 초과되도록 형성될 수 있으며, 35% 미만일때는 300 μm 이하로 형성될 수 있다. 상기 도포 두께에 따라 특정한 열처리 온도나 시간 또는 특정한 슬러리 조성에 대해 두꺼울수록 경계선의 시인성이 감소할 수 있다. 본 발명의 일 실시예에서는 40 μm 이상 1200 μm이하의 두께로 형성될 수 있는 바, 도포 두께가 지나치게 두꺼운 경우 열처리 시 흘러내림 현상이 일을 수 있으므로 1200 μm 이하의 두께로 형성될 수 있다.
본 발명의 일 실시예에 있어서, 카올리나이트(kaolinite), 할로이사이트(halloysite), 하소 카올린(calcined kaolin) 등의 점토류는 지지체로 사용 시 경계선이 시인되거나, 표면에 제거 불가한 막이 형성되거나 막 박리로 인해 표면 강화가 불가능하기 때문에 사용되지 않는다.
상기 도포막이 형성된 유리는 소정 온도 범위(예를 들어, 약 100 ~ 약 600 ℃범위)에서 열처리될 수 있다. 열처리를 통해 도포막의 염의 전부 또는 일부가 액상이 되는 온도 범위에서 막이 형성된 유리를 열처리하여 막 내부에 퍼져 있는 염을 경유하여 알칼리 이온과 유리 내부의 알칼리 이온(예를 들어, 나트륨 이온 등) 사이에 이온 교환을 발생시킬 수 있다. 본 발명의 일 실시예에 있어서, 열처리 단계는, 예를 들어, 약 250 ℃이상 약 550 ℃이하에서 수행될 수 있다. 막이 통상 약 250 ℃이상 온도에서 열처리될 때, 염(이를 테면, KNO3)은 전부 또는 일부가 용융되어 (준)액상 상태가 되며, 유리 내부의 나트륨 이온 등의 알칼리 이온과 막 내부의 이온 교환 제2 이온(이를 테면, 칼륨 이온 등의 알칼리 이온, 은 이온, 구리 이온 또는 금 이온 등) 사이에서 액상을 경유하거나 입자의 표면을 경유하는 이온 교환이 발생한다.
본 발명의 일 실시예에 있어서, 열처리는 도포막이 형성된 유리를 수평으로 눕히거나 경사진 방향(수직방향 포함)으로 세워서 수행할 수 있다. 여기서, 도포막이 형성된 유리를 소정 각도를 가지도록 경사지게 세워서 또는 수직하게 처리하는 경우 중력방향으로의 슬러리/페이스트의 흘러내림이 있을 수 있다. 본 발명의 일 실시예에서는 경사진 방향보다는 수평으로 눕혀 열처리를 진행할 수 있으며, 도포막이 형성된 유리를 수평으로 눕히는 경우 제2 이온의 염의 경계선을 가로지르는 횡방향 유동이 용이할 수 있다.
이러한 열처리 단계를 거쳐, 도포막 내부에 퍼져 있는 액상 칼륨염 등의 알칼리염을 경유하여 칼륨 등의 알칼리 이온과 유리 내부의 나트륨 이온 등의 알칼리 이온 사이에 이온 교환을 발생시킬 수 있다. 본 발명의 다른 실시예에서는 상기 염용액은 은염 용액, 금염 용액 또는 구리염 용액일 수 있다. 이러한 경우, 도포막 내부의 은 이온, 금 이온 또는 구리 이온이 이온 교환 제2 이온으로서 유리 내부의 알칼리 이온(예를 들어, 나트륨 이온 등)과 이온 교환될 수 있다.
은 이온이 이온 교환을 통해 유리 내부로 들어가는 경우, 유리에 포함된 여타 성분의 영향을 받아 Ag+ 이온 상태로 존재하거나 Ag0 형태의 메탈릭 클러스터 또는 금속 나노입자로 존재할 수 있다. 즉, Ag+ 상태를 환원시켜서 Ag0 상태로 만들기 위해서는 기본적으로 유리 내부에 미량의 Fe, V, Mn, Co, Ce, Eu, Cr 등의 원소가 포함되어야 한다. 해당 원소들의 특징은 공히 두 개의 이상의 산화가를 가지는 multi-valent한 특징을 가진다. 예를 들어, Fe2+ + Ag+ ↔Fe3+ + Ag0 형태의 산화 환원 반응을 통하여 Ag+ 이온이 Ag0 상태의 금속 입자로 환원된다. 이에 따라 은 나노입자에 의하여 형성되는 표면 플라스몬 공명 흡수(surface plasmon resonance absorption)가 발생할 수 있고, 산화가의 변화를 겪은 여타 이온에 의하여 유리의 색이 바뀔 수 있으며, 표면 플라스몬 공명 현상을 이용한 바이오 센서 등으로 활용할 수 있을 것이다. 또한, 유리 내부에 상기 multi-valent 이온이 존재하지 않으면 유리 내부로 들어간 Ag+ 이온은 그 상태를 유지하기 때문에 표면강화 효과와 더불어 항균 효과 등을 추가로 나타낼 수 있다. 은 이온은 금 이온 또는 구리 이온으로도 대체될 수 있다. 한편, 나트륨 함유 유리에서 은 이온은 칼륨 이온보다 상호확산계수가 커서 이온 교환이 더 빨리 발생할 수 있다.
본 발명의 일 실시예에 있어서, 금속 산화물 입자는 페이스트 기반 코팅법으로 유리의 표면에 막을 형성할 수 있도록, 염 수용액(칼륨염 등의 알칼리염 용액, 은염 용액, 금염 용액 또는 구리염 용액) 및 점도 조절 첨가제와 혼합하여 페이스트 상태를 형성하는 조건을 만족하는 입자일 수 있다.
참고로, 점도 조절 첨가제는 일반적인 페이스트 제작 시 통상적으로 사용되는 공업용 또는 식용 조성물일 수 있다. 예를 들어, 일반적인 페이스트 제작 시 통상적으로 사용되는 공업용 또는 식용 조성물이 그대로 점도 조절 첨가제로 사용될 수 있다.
예를 들어, 점도 조절 첨가제는 글리세린, 터피놀, 글루코스 및 잔탄검 중 하나 이상을 포함할 수 있다. 다시 말해, 점도 조절 첨가제는 염 수용액과 금속 산화물 입자가 혼합된 혼합액(슬러리)의 점도를 높여 페이스트 상태로 만들기 위하여 추가되는 첨가제로서, 글리세린, 터피놀, 글루코스, 잔탄검을 하나 이상 포함할 수 있다. 이외에도, 점도 조절 첨가제는 알코올, 폴리바이닐 알코올, 폴리에틸렌 글리콜, 메틸셀룰로오스, 폴리비닐 피로리돈, 하이드록시프로필 셀룰로오스, 하이드록시 프로필 메틸셀룰로오스 등 중 하나 이상을 포함할 수 있다.
상술한 바와 같이, 상기 슬러리 및/또는 페이스트가 도포된 막은 건조된 후 열처리의 과정을 거치게 된다. 상기 열처리 시 상기 슬러리 및/또는 페이스트 내에 포함된 제2 이온이 유리 내의 제1 이온과 교환되면서 유리의 화학강화가 이루어진다. 여기서, 슬러리 및/또는 페이스트는 열처리의 과정을 통해 슬러리 및/또는 페이스트가 제공되지 않은 제2 영역으로 일부 유동하게 되는 바, 특히 제1 영역과 제2 영역의 경계선 부근에 제공된 슬러리 및/또는 페이스트는 제2 영역 방향으로 유동하게 된다. 이에 따라 열처리 과정에서 상기 제1 영역으로부터 제2 영역 방향으로 일부 유동된 슬러리 및/또는 페이스트에 의해서 이온 교환이 이루어지는 영역을 확장 영역이라고 하면, 제1 영역, 확장 영역, 및 제2 영역 순으로 배치된다.
확장 영역의 슬러리 및/또는 페이스트 내의 제2 이온의 농도는 제1 영역의 제2 이온의 농도보다 낮으며, 제2 영역 쪽으로 갈수록 더 낮아진다. 여기서, 제1 영역과 제2 영역의 경계선에서의 제2 이온(예를 들어, KNO3 용융염)의 유동은 슬러리 및/또는 페이스트의 조성 및 열처리 조건 등을 제어함으로써 위치 선택적 이온 교환 시 이온 교환 경계선의 시인성을 낮출 수 있다. 여기서, 경계선의 시인성 발생, 경계 영역에서의 급격한 부피 변화가 없는 위치선택적 이온 교환 유리를 제작하기 위해서 경계선 부근에서 제2 이온의 농도 분포가 연속적으로 변화해야 한다. 특히, KNO3 용융염과 같은 제2 이온을 포함하는 조성물의 횡방향 유동이 제어되지 않으면, 경계선이 육안으로 쉽게 보이거나 경계 영역에서 급격하게 단차가 생기거나 이온 교환 영역의 형상이 무작위로 변화하는 문제점이 발생할 수 있다.
이에, 본 실시예에 따른 강화 유리의 제조 방법은 상기 유리의 표면 상에서 상기 제2 이온의 유동을 제어하는 과정이 포함되며, 이에 따라 제조된 강화 유리는 제2 이온의 유동 제어에 따라 최종 결과물에서 특정 농도의 변화량 및/또는 특정 함수를 갖는다. 상기 제2 이온의 유동을 제어하기 위해서는 상기 슬러리 및/또는 페이스트의 조성 (예를 들어, 상기 슬러리 및/또는 페이스트 내의 상기 제2 이온의 염의 함량), 상기 슬러리 및/또는 페이스트로 이루어진 막의 두께, 상기 슬러리 및/또는 페이스트로 이루어진 막의 건조 온도, 상기 슬러리 및/또는 페이스트로 이루어진 막의 건조 습도, 상기 슬러리 및/또는 페이스트로 이루어진 막의 이온 교환 열처리 시간, 상기 슬러리 및/또는 페이스트로 이루어진 막의 이온 교환 열처리 온도 중 적어도 하나가 조절될 수 있으며, 이를 통해 제2 이온의 유동이 제어된다.
여기서, 본 발명의 일 실시예에 따르면, 상기 확장 영역에서의 제2 이온의 유동은 육안으로의 식별이 불가능하기 위해 하기한 조건 중 적어도 하나 이상의 조건을 만족하도록 제어된다.
첫째, 본 발명의 일 실시예에 따른 유리는, 확장 영역에 해당되는 유리 표면에서의 제1 방향으로 원자 농도의 변화량은 확장 영역 내 0.1 mm 구간 당 20 % 이하의 값을 가진다. 즉, 상기 확장 영역 내에서 제1 방향으로 0.1 mm 거리를 간격으로 원자 농도를 측정하였을 때, 일 지점에서의 제2 이온의 원자 농도와 이에 인접한 다른 지점에서의 제2 이온의 원자 농도 차이는 20% 이하이다.
둘째, 본 발명의 일 실시예에 따른 유리는, 상기 확장 영역 내에서 유리 표면의 제2 이온의 농도 변화를 함수의 형태로 나타내는 경우, 상기 함수의 결정 계수(coefficient of determination; R2 )는 0.97 이상인 시그모이드(sigmoid) 함수 개형을 가질 수 있다. 또한, 본 발명의 일 실시예에 따른 유리는, 상기 확장 영역 내 임의의 0.2 mm 이하 범위에서 측정된 상기 제2 이온의 농도 평균 값과 상기 시그모이드 함수의 평균 값 차이가 1.5 wt% 이하일 수 있다.
이와 같이, 본 발명은 제2 이온의 염과 금속산화물 입자를 혼합하여 슬러리를 제작하고 유리표면에 도포막을 형성함에 있어 건조 후 유리표면에 생성되는 제2 이온의 염을 유리표면 상의 위치별로 서로 상이하게 형성하되 제2 이온의 농도에 따른 여러가지 인자를 제어함으로써 열처리 후 발생하는 상이한 굴절률로 인한 경계선 시인 현상을 감소시킬 수 있다.
이하에서는 경계선 시인 현상을 감소시키는 인자 및 이를 제어함으로써 경계선 시인 현상을 감소시킨 실시예에 대해 설명한다. 이하의 실시예에 있어서, 설명의 편의를 위해 제2 이온은 K+이며 제2 이온의 염은 KNO3인 경우로 실험이 수행되었으며, 슬러리 및/또는 페이스트 중 페이스트를 예로서 실험하였다. 다만 본 발명은 이에 한정되는 것은 아니며, 본 발명의 개념의 한도 내에서 이와 달리 수행될 수 있다.
<실시예1>
본 발명에 따른 경계선 미시인 화학강화 유리에 대해서 다음과 같은 실험이 수행되었다.
0. 실험예 개요
실험예 1. 지지체 종류와 열처리 조건에 따른 경계선 시인 실험
실험예 2. 열처리 시간 변경에 따른 KNO3 용융염의 유동 범위 실험
실험예 3. 페이스트 조성(지지체의 종류 및 배합비) 및 도포막 두께에 따른 경계선 시인 실험
실험예 4. 페이스트 조성(배합비) 및 도포막 두께 변경 실험
1. 실험예 1: 지지체 종류와 열처리 조건에 따른 경계선 시인 실험
1-A. 실험 개요 및 시편 제작 조건
지지체 입자 종류 및 이온 교환을 위한 열처리 조건에 따른 경계선 시인 여부를 확인하기 위해 시편을 다음과 같이 제작하고 실험을 수행하였다.
1) 40 mm X 40 mm X 0.4 mm 규격의 소듐 알루미노 실리케이트 유리 시편을 준비하였다. 이때, 유리 조성은 다음과 같았다.
소듐 알루미노 실리케이트 유리 조성: 65.5 wt% SiO2, 16.5 wt% Al2O3, 13.5 wt% Na2O, 3.8 wt% MgO, 0.2 wt% CaO
2) KNO3 수용액에 5 종의 지지체 (점토류 및 산화물 나노입자)를 다음의 배합비로 혼합하여 페이스트를 제작하였다. 이때 교반 조건은 55 ℃, 1 시간 30 분, 500 rpm이며, 교반 시 스크류가 사용되었다.
- 배합비 1; KNO3 : Al2Si2O5(OH)4 (kaolinite) = 62 : 38 (mol%)
- 배합비 2; KNO3 : Al2Si2O5(OH)4·2H2O (halloysite) = 68: 32 (mol%)
- 배합비 3; KNO3 : Al2Si2O7 (calcined kaolin) = 59 : 41 (mol%)
- 베합비 4; KNO3 : TiO2 = 68 : 32 (mol%)
- 배합비 5; KNO3 : Al2O3 = 46 : 54 (mol%)
3) 60 μm 두께의 3M 테이프를 5장 이용하여 300 μm두께로 유리 표면에 블레이드 방식으로 양면 코팅하였다.
4) 100 ℃에서 30 분 동안 건조 후 각각 400 ℃, 450 ℃, 500 ℃, 550 ℃ 에서 45 분 이온 교환을 위한 열처리를 수행하였다.
1-B. 지지체 및 열처리 온도 변경에 따른 경계선 시인성 결과
하기 표 1에서 확인할 수 있는 바와 같이, 결과적으로 지지체 입자가 TiO2인 경우에서 경계선이 관측되지 않았으며, 온도 600 ℃ 미만에서 경계선이 관측되지 않았다. 좀더 상세하게는, TiO2를 제외한 모든 시편에서 이온 교환 후 경계선을 육안상으로 시인 가능하였는 바, TiO2의 경우 550 ℃온도까지 경계선이 육안상 시인되지 않았으며, 600 ℃열처리 조건 시 경계선이 육안상으로 시인되었다. 고온에서 경계선이 뚜렷하게 시인되는 이유는 이온 교환의 정도가 높아짐에 의해 강화/비강화층의 굴절률 차이가 증가함에 따라 발생하는 것으로 추정되었다. 이에 따라 지지체 입자가 TiO2인 경우와, 이온 교환 열처리 온도가 550 ℃이하인 경우 (45 분 기준) 육안상으로 경계선이 시인되지 않는 것을 확인할 수 있었다.
Figure PCTKR2022018796-appb-img-000002
2. 실험예 2: 열처리 시간 변경에 따른 KNO3 용융염의 유동 범위 실험
2-A. 실험 개요 및 시편 제작 조건
열처리 시간에 따른 액상 KNO3 용융염의 횡방향 유동 거리에 대한 변화를 확인하기 위해, 시편을 다음과 같이 제작하고 실험을 수행하였다.
1) 40 mm X 40 mm X 0.4 mm 규격의 소듐 알루미노 실리케이트 유리 시편을 준비하였다. 이때, 유리 조성은 다음과 같았다.
소듐 알루미노 실리케이트 유리 조성: 65.5 wt% SiO2, 16.5 wt% Al2O3, 13.5 wt% Na2O, 3.8 wt% MgO, 0.2 wt% CaO
2) KNO3 수용액에 TiO2 나노입자를 혼합하여 페이스트를 제작하였다. 이때, 배합비와 교반 조건은 다음과 같았다.
- 배합비: KNO3 : TiO2 = 68 : 32 mol%
- 교반 조건: 55 ℃, 1 시간 30 분, 500 rpm, 스크류 사용
3) 60 μm 두께의 3M 테이프를 5장 이용하여 300 μm두께로 유리 표면에 블레이드 방식으로 양면 코팅하였다.
4) 100 ℃ / 30 분 건조 후 각각 495 ℃ 에서 시간별로 이온 교환을 위한 열처리를 수행하였다. 열처리 시간은 하기 표 2에 개시된 바와 같다.
Figure PCTKR2022018796-appb-img-000003
2-B. 시간별 열처리 시 시편의 형상
도 1은 표 2의 열처리 시간에 따른 시편의 형상을 도시한 사진들이다. 도 2a는 20분 열처리한 유리 시편의 전면과 배면을 나타낸 사진들이며, 도 2b는 각각 30분, 45분, 60분 열처리한 유리 시편의 전면을 나타낸 사진들이다.
도 1, 도 2a 및 도 2b에서 확인할 수 있는 바와 같이, 열처리 시간 20 분 시편의 전면에서는 페이스트가 횡방향으로도 흘러내렸으며, 따라서 후면 기준으로 유동 속도를 확인하였다. 열처리 시간 30 분이 오히려 20 분 보다 유동 영역은 좁으나, 중간 위치에서 유동의 정도는 근소하게 더 높았다. 열처리 시간 45 분의 경우 페이스트가 흘러내려 유리 모서리를 타고 이동했기 때문에 가장 넓은 영역에서 KNO3가 관찰되었다. KNO3의 유동 영역은 열처리 시간 45 분이 열처리 시간 60 분 보다 넓었으나, 중앙부에서는 거의 동일하게 10 mm 정도 퍼진 것이 관찰되었다.
이에 따라, 페이스트의 흘러내린 정도에 따라 KNO3 유동 영역의 차이는 존재하나, 시간이 증가함에 따라, KNO3 이동 속도가 감소하는 경향을 확인할 수 있었다.
2-B. 시간별 열처리 시 KNO3 유동 범위
도 3은 열처리 온도 495 ℃에서 열처리 시간에 대한 액상 질산칼륨의 횡 방향 유동 사진들로써, (a) 열처리 시간 5 분, (b) 열처리 시간 7 분 30 초, (c) 열처리 시간 10 분, (d) 열처리 시간 12 분 30 초, (e) 열처리 시간 15 분, (f) 열처리 시간 17 분 30 초, (g) 열처리 시간 20 분, (h) 열처리 시간 30 분, (i) 열처리 시간 45 분, (j) 열처리 시간 60 분에 해당하는 사진들이다.
도 3의 열처리 온도에 따른 유동 거리를 측정한 결과는 하기 표 3과 같다.
Figure PCTKR2022018796-appb-img-000004
상기 표 3의 열처리 온도에 따른 유동 거리는 특정 함수에 대응하는 형상을 갖는 바, 상기 표 3의 값에 대응하는 시간-횡방향 KNO3 유동 거리 그래프는 도 4에 도시되었다.
도 4의 그래프는 페이스트의 중간부 위치에서의 유동 거리를 기준으로 한 것이며, 피팅(fitting)은 시그모이달 로지스틱(sigmoidal logistic) 함수로 실시하였다. 여기서, a 는 함수의 최대값이며, xc 는 최대값의 0.5 배가 되는 값이며, k 는 중간값에서의 기울기에 해당한다.
도 4에 도시된 바와 같이 시간의 증가에 따라 KNO3 유동 거리가 증가하기는 하나 선형적으로 증가하는 것은 아니며, 특정 열처리 시간 내에서 가파른 기울기를 보이며 유동 거리가 증가하는 형상을 나타내었다.
3. 실험예 3: 페이스트 조성(지지체의 종류 및 배합비) 및 도포막 두께에 따른 경계선 시인 실험
3-A. 실험 개요 및 시편 제작 조건
페이스트 내 지지체 입자의 종류, 배합비 및 도포막 두께에 따른 미도포 영역으로의 KNO3 유동 및 육안 상 경계선 시인성 여부에 대한 확인하기 위해 다음과 같이 시편을 제작하고 실험을 수행하였다.
1) 40 mm X 40 mm X 0.4 mm 규격의 소듐 알루미노 실리케이트 유리 시편을 준비하였다. 이때 유리 조성은 다음과 같았다.
소듐 알루미노 실리케이트 유리 조성: 65.5 wt% SiO2, 16.5 wt% Al2O3, 13.5 wt% Na2O, 3.8 wt% MgO, 0.2 wt% CaO
2) KNO3 수용액에 2 종의 지지체(TiO2, ZrO2 나노입자)를 혼합하여 페이스트를 제작하였다. 이때 배합비와 교반 조건은 다음과 같았다.
- 배합비 (KNO3 : TiO2): 60:40, 70:30, 80:20 (mol%)
- 교반 조건: 55 ℃, 1 시간 30 분, 500 rpm, 스크류 사용
3) 60 μm 두께의 3M 테이프를 이용하여 각각 180, 300, 600, 900, 1200 μm 두께로 유리 표면에 블레이드 방식으로 양면 코팅하였다.
4) 100 ℃ / 30 분 건조 후 시편을 세워서 425 ℃ 에서 45 분 동안 이온 교환을 위한 열처리를 수행하였다.
3-B. KNO3 : 지지체 비율 변경에 따른 경계선 시인 유무
실험 결과는 다음 표 4에 나타내었다. 여기서, 60:40 비율의 ZrO2 슬러리는 점도가 증가했으며, 점증제 첨가 후 점도가 과도히 높고 침강되는 현상이 발생하여 사용 불가하였다.
Figure PCTKR2022018796-appb-img-000005
3-C. 도포막 두께 및 KNO3 : TiO2 비율 변경에 따른 경계선 시인 유무
도 5는 지지체 입자 종류가 TiO2일 경우의 KNO3 : TiO2 비율 변경에 따른 결과 사진들이다.
도 5를 참조하면, 도포막의 두께가 두껍고, KNO3 비율이 상대적으로 높을수록 횡방향 및 막 내부 유동이 더 잘 발생함을 확인할 수 있다. 또한, 경계선은 60:40 비율의 300 μm 두께 시편에서만 보였으며, 나머지 시편에서는 경계선이 보이지 않았다. 여기서, 특정 KNO3 : 지지체 비율에서는 두께에 따라 경계선의 시인성 여부가 결정되었다.
3-D. KNO3 : ZrO2 비율 변경에 따른 경계선 시인 유무
도 6은 지지체 입자가 ZrO2일 경우의 KNO3 : ZrO2 비율 변경에 따른 결과 사진들이다.
도 6을 참조하면, ZrO2 횡"눰* 유동은 70:30의 비율로 배합되고, 300 μm 이상의 두께에서 발생하였다. 이는 TiO2를 지지체로 사용한 경우에 비해 유동 거리가 감소한 것이다. 또한, 열처리 시 흘러내림은 도포막 두께 1200 μm에서 발생하였으며, 경계선은 모든 시편에서 확인되었다.
3-E. 소결
횡방향 유동은 동일 지지체에서 도포막 두께, 페이스트 내 KNO3 비율이 높을수록 더 크게 발생하였으며, ZrO2에 비해 TiO2에서 더 크게 발생하였다. 경계선 시인 여부에 있어서, ZrO2 페이스트에서 경계선이 시인되며, TiO2 페이스트에서는 특정 KNO3 비율, 도포막 두께를 만족할 때 경계선이 시인되었다.
4. 실험예 4: 페이스트 조성(배합비) 및 도포막 두께 변경 실험
4-A. 실험 개요 및 시편 제작 조건
페이스트 내 KNO3와 TiO2 나노입자의 배합비, 도포막 두께 및 열처리 시 시편 배치(수직 or 수평)에 따른 경계선 시인성 여부에 대한 확인하기 위해 다음과 같이 시편을 제작하고 실험을 수행하였다.
1) 40 mm X 40 mm X 0.4 mm 규격의 소듐 알루미노 실리케이트 유리 시편을 준비하였다. 이때 유리 조성은 다음과 같았다.
소듐 알루미노 실리케이트 유리 조성: 65.5 wt% SiO2, 16.5 wt% Al2O3, 13.5 wt% Na2O, 3.8 wt% MgO, 0.2 wt% CaO
2) KNO3 수용액에 TiO2 나노입자를 혼합하여 페이스트를 제작하였다. 이때 배합비와 교반 조건은 다음과 같았다.
- 배합비: 30:70 56:44, 68:32, 75:25 (mol%)
- 교반 조건: 55 ℃, 1 시간 30 분, 500 rpm, 스크류 사용
3) 60 μm 두께의 3M 테이프를 이용하여 (180, 300, 600, 900, 1200 μm) 두께로 유리 표면에 블레이드 방식으로 양면 코팅하였다.
4) 100 ℃ / 30 분 건조 후 시편을 a)세우거나 혹은 b)눕혀서 425 ℃ 에서 45 분 이온 교환을 위한 열처리를 수행하였다.
상기 페이스트의 조성 및 도포막은 각각 표 5와 표 6과 같이 설정되었다. 여기서, KNO3 : TiO2 비율은 TiO2 나노입자의 함량을 고정하고 KNO3 함량을 변경하여 조절하였다. 시편은 도 7에 도시된 바와 같이 세우거나 눕혀서 열처리하였다.
Figure PCTKR2022018796-appb-img-000006
Figure PCTKR2022018796-appb-img-000007
4-B. KNO3 : 지지체 변경: KNO3 양 변화 (수직, 수평 열처리)
도 8은 시편을 열처리시 세워서 수직으로 열처리한 결과와, 수평으로 눕혀서 열처리한 결과를 나타낸 사진들이다.
도 8을 참조하면, 수직으로 세워서 열처리하는 방식은 막 내에서 중력 방향으로의 페이스트가 흘러내림으로써 KNO3 용융염의 유동을 확인하기 어려웠다. 세워서 열처리하는 방식의 경우 비강화층으로 KNO3 용융염의 유동만 발생하는 것으로 보이지만, 수평 열처리의 경우 비강화층으로 TiO2 입자 또한 유동이 발생한 것으로 판단되었다.
광범위한 유동의 발생 및 이온 교환으로 인해 편광기 상으로 경계선이 뚜렷하게 보이지 않으며 육안상으로 경계선을 확인하기 더 어려웠다.
4-C. KNO3 : 지지체 변경: KNO3 양 변화에 따른 경계선 시인 여부 (수평 열처리)
KNO3 : 지지체 변경: KNO3 양 변화에 따른 경계선 시인 여부는 하기 표 7과 같았다. 표 7을 참조하면, 경계선의 시인성은 KNO3 : TiO-2의 비율에 의해서 주로 결정되었다.
Figure PCTKR2022018796-appb-img-000008
4-D. 소결
상술한 바와 같이, KNO3 용융염의 유동은 세워서 열처리하는 경우 대비 눕혀서 열처리하는 경우에 상대적으로 크게 발생하였으며, KNO3: TiO2 비율이 경계선 시인성에 가장 주요한 인자로 확인되었다.
5. 실험예 1 결론
경계선의 시인 여부는 KNO3 용융염의 횡방향 유동이 특정 범위에서 연속적으로 발생하는 것에 기인하며, 용융염의 유동은 아래와 같은 인자에 의한 영향을 받음을 확인할 수 있었다.
1) 열처리 조건 (시간, 온도)
550 ℃, 45 분 부근에서 시인성 여부가 결정 (TiO2 기준)되었으며, 열처리 시간 및 온도 증가 시 이온 교환 양의 증가로 인하여 경계선의 시인성이 높아졌다.
2) 슬러리 조성
(KNO3 : 지지체) 비율에 있어서, KNO3 의 비율이 높을수록 유동이 용이하게 발생하였으며, 특정 비율 이상에서 경계선 시인성 여부가 확연하게 결정되었다.
3) 지지체 특성
지지체 입자 특성 (조성, 입도 등)에 따라 액상 KNO3 의 유동성이 결정되며, 지지체에 따라 KNO3 의 유동이 발생 가능한 (KNO3 : 지지체) 비율은 상이할 것으로 판단되었다.
4) 도포막 두께
특정 열처리/슬러리 조성에서 도포막의 두께가 일정 수준 이상에서 경계선의 시인성이 결정되었다.
5) 열처리 시편 배치
시편 배치가 수평에 가까울수록 액상 KNO3 횡방향 유동이 용이하였다.
<실시예 2>
이온 교환 후 도포막 경계 유동에 의해 발생하는 유리 표면의 알칼리 이온 농도의 횡방향 분포를 확인하기 위해 특정 조건에서 횡방향 SEM-EDS (scanning electron microscopy-energy dispersive X-ray spectrometer) 분석이 수행되었다. 이러한 분석을 통해 온도 및 지지체 종류에 따른 유동 영역의 차이를 확인할 수 있으며, 실험 결과 온도가 높을수록 유동 범위가 증가함을 확인하였다. 또한 상기 SEM-EDS 분석 결과 TiO2에 비해서 카올리나이트(kaolinite)의 유동이 작으며, 불연속적인 분포를 나타낸 것을 확인할 수 있었다. 본 실험예에서는 상기 데이터들을 대상으로 횡방향의 K, Na 농도 분포에 대해 다양한 시그모이드(sigmoid) 계열 함수로 피팅(fitting)을 실시하고, 피팅 값과 측정치를 비교하였다.
본 실시예에서는 또한 횡방향 SEM-EDS 분석을 실시한 시편 (3개) 및 추가적인 시편 3개에 대한 횡방향 농도 분포를 측정하고 횡방향 농도 분포의 기울기를 통해서 농도 분포가 연속적인 (육안상 경계선이 시인되지 않는) 위치선택적 이온 교환 유리의 기준을 확인함으로써 농도 분포의 연속성 판단 기준을 설정하였으며, 그 결과, 횡방향 농도 기울기는 거리 0.1 mm 당 정규화된 농도값의 차이로 도출하였다. 여기서, 농도 분포의 연속성 판단 기준은 경계선을 가로질러 이온 교환 후 유리표면에서 측정한 알칼리 이온의 원자 농도 차이의 절대값이 경계선 부근 모든 범위 내 0.1 mm 구간 당 0.2 (20 %) 이하의 값을 가지는 것으로 확인되었다.
이에 대해 본 실험예를 상세히 설명하면 다음과 같다.
1. 실험예 1 : 횡방향 SEM-EDS 분석
1-A. 시편 제작 과정 및 SEM-EDS 측정 조건
1-A-1. 횡방향 SEM-EDS 데이터 : 420 ℃시편 제작 방법
1) 40 X 40 X 0.4 mm3 규격의 소듐 알루미노 실리케이트 유리 시편 준비하였다. 이때, 유리 조성은 다음과 같았다.
소듐 알루미노 실리케이트 유리 조성: 65.5 wt% SiO2, 16.5 wt% Al2O3, 13.5 wt% Na2O, 3.8 wt% MgO, 0.2 wt% CaO
2) KNO3 수용액에 TiO2 나노입자 및 카올리나이트(kaolinite)를 혼합하여 페이스트를 제작하였다. 이때, 배합비와 교반 조건은 다음과 같았다.
- 배합비: 68:32 (TiO2), 62:38 (kaolinite) (mol%)
- 교반 조건: 55 ℃, 1 시간 30 분, 500 rpm, 스크류 사용
3) 유리의 양면에 60 μm 두께의 3M 테이프를 5 장 부착하여 300 μm 두께로 페이스트를 도포하였다.
4) 100 ℃분 건조처리 후 시편을 세운 상태로 420 ℃에서 60 분 동안 이온 교환을 위한 열처리를 수행하였다.
참고로, 본 방법으로 제조한 시편 중, TiO2를 적용한 시편의 경우는 육안상으로 경계선이 확인되지 않았으나, 카올리나이트를 적용한 시편의 경우 육안상으로 경계선이 확인되었다.
1-A-2. 횡방향 SEM-EDS 데이터 : 495 ℃시편 제작 방법
1) 40 X 40 X 0.4 mm3 규격의 소듐 알루미노 실리케이트 유리 시편 준비하였다. 이때, 유리 조성은 다음과 같았다.
소듐 알루미노 실리케이트 유리 조성: 65.5 wt% SiO2, 16.5 wt% Al2O3, 13.5 wt% Na2O, 3.8 wt% MgO, 0.2 wt% CaO
2) KNO3 수용액에 TiO2 나노입자를 혼합하여 페이스트를 제작하였다. 이때, 배합비와 교반 조건은 다음과 같았다.
- 배합비: 68:32 (mol%)
- 교반 조건: 55 ℃, 1 시간 30 분, 500 rpm, 스크류 사용
3) 유리의 양면에 60 μm 두께의 3M 테이프를 5 장 부착하여 300 μm 두께로 페이스트를 도포하였다.
4) 100 ℃분 건조처리 후 시편을 세운 상태로 495 ℃에서 45 분 동안 이온 교환을 위해 열처리를 수행하였다.
참고로, 본 방법으로 제조한 시편의 경우 육안상으로 경계선이 확인되지 않았다.
1-A-3. SEM-EDS 측정 조건
SEM-EDS는 페이스트 도포 영역과 미도포 영역의 경계선을 가로지르는 위치에서 표면 농도 분포를 측정하는 방식으로 진행되었다. 한 포인트당 1140 μm 라인 스캔으로 진행하였으며, 포인트 당 간격은 800 μm으로 설정하였다. 스캔 포인트 사이의 간격을 포함하여 길이 방향으로 약 17000 μm를 측정하였다.
1-B. 횡방향 SEM-EDS 데이터 : 지지체 종류에 따른 비교
도 9a 및 도 9b는 지지체 종류에 따른 횡방향 알칼리 이온(K, Na)의 농도 분포에 대한 SEM-EDS 결과값을 도시한 그래프이다.
도 9a 및 도 9b를 참조하면, TiO2를 적용한 경우 육안상으로 경계선 시인이 불가능하였으나 카올리나이트를 적용한 경우 육안상 경계선 시인이 가능하였다. 이를 통해, 점토류 기반 슬러리에서 농도 불균일과 불연속적 이온 교환 영역 형성됨을 확인할 수 있으며, 이러한 이온 교환의 불균일성, 표면 오염, 불연속 굴절률로 인해 육안으로 경계선이 확연히 구분됨 또한 확인할 수 있었다. 여기서, TiO2 기반 슬러리가 균일성 및 시인성 측면에서 점토류 대비 우수하였다.
1-C. 횡방향 SEM-EDS 데이터 : 열처리 온도에 따른 비교
도 10a 및 도 10b는 이온 교환 온도에 따른 횡방향 알칼리 이온(K, Na)의 농도 분포에 대한 SEM-EDS 결과값을 도시한 그래프이다.
도 10a 및 도 10b를 참조하면, 미도포 영역으로 KNO3 액상의 유동과 이온 교환이 발생하였으며, 이때, 열처리 온도에 따라 상이한 유동이 발생하였다. 이를 통해 이온 교환 영역 확장 정도가 온도 의존성을 갖는다는 것을 확인할 수 있었다. 여기서, 이온 교환은 액상 KNO3가 실제로 퍼진 범위보다 좁은 범위에서 발생하였다.
2. 실험예 2 : 횡방향 SEM-EDS 분석 결과를 이용한 피팅 함수 도출
2-A. 횡방향 농도 분포 - 피팅 개요
SEM-EDS 농도 분포 실측 결과를 대상으로, 경계선 부근에서 농도가 연속적인 분포에 대한 특정 분포함수를 찾았으며, 연속적 분포(TiO2 이온 교환 농도 분포), 불연속적 분포(카올리나이트 이온 교환 농도 분포)를 대상으로 피팅에 활용하였다. 오리진(Origin) 프로그램을 이용하여 시그모이드(sigmoid) 함수군을 이용하여 피팅 실시하였으며, 제2 이온 (K+) 대상으로, 그리고 제2 이온 (K+) / 제1 이온 (Na+) 이온 대상으로 피팅 실시하였다.
2-B. 피팅 시 사용된 횡방향 농도 분포 - 데이터 (Na, K)
도 11a 내지 도 11c는 피팅 시 사용된 횡방향 농도 분포 데이터로서, 각 열처리 조건과 지지체 조성에 따라 거리별 농도 분포를 나타낸 것이다. 각 데이터의 피팅은 도포 영역과 미도포 영역을 경계선 기준(x=0)으로 하여 ±10 mm의 범위에 데이터 도시 후 진행하였다. 이를 이용하여, 오리진 프로그램에서 시그모이드(sigmoid) 함수 군의 19 개 함수에 대해서 피팅을 시도하였으며, 결정계수 (R2) 값과 함수 개형을 통해 피팅에 적합한 함수 3 종을 선정하였다. 이때, R2 가 높으며, 매개변수가 4개 이하인 함수, 개형이 농도 분포와 부합하지 않을 시 제외하였다. 피팅 가능 여부로 연속적/ 불연속적 분포 구분은 불가하였으나, Na, K 농도에 대해서 피팅 시 2개의 함수에 대해서 피팅이 가능하였다. K 농도로만 한정하여 피팅할 경우 총 3개의 함수에서 피팅이 가능하였다.
2-C. 횡방향 농도 분포 - 피팅 함수 특성
2-B 단계에서 선택된 3가지 피팅 함수의 특성은 다음의 표 8과 같았다.
Figure PCTKR2022018796-appb-img-000009
상기 표 8에 있어서, 매개변수는 다음과 같다.
- 1 및 2 : 함수의 최대/최소값 결정 (A1, A2, a)
- 3: 중간값 (최대값의 0.5 배가 되는 위치) 결정 (x0, logx0, xc)
- 4: 중간값에서의 기울기 결정 (dx, p, k)
상기 A 및 B 함수는 매개변수가 4개로 함수의 최대/최소값을 지정 가능하였으며, C 함수는 매개변수가 3개로 최소값은 0으로 고정되었다. A 및 B 함수에서는 Na, K 분포를 모두 피팅 가능하며, C 함수에서는 K 농도만 피팅 가능하였다.
2-D. 횡방향 농도 분포 - 피팅 함수 기울기 특성
도 12a 내지 도 12c는 표 7에 있어서의 세가지 피팅함수의 기울기 특성을 나타낸 것으로서, A 피팅함수의 경우 매개변수 dx가 기울기를 결정하였으며, B 피팅함수의 경우 매개변수 p가 기울기를 결정하였으며, C 피팅함수의 경우 매개변수 k가 기울기를 결정하였다. 여기서, 각 함수의 기울기 관련 매개변수의 절대값이 클수록 기울기가 감소하였으며, 기울기가 작을수록 확장 영역 감소하였다.
2-E. 횡방향 농도 분포 - 피팅 후 매개변수
Na, K 농도에 대해서 피팅 시 각 함수의 매개변수는 다음과 같은 값으로 확인되었다.
Figure PCTKR2022018796-appb-img-000010
K 농도에 대해서 피팅 시 각 함수의 매개변수는 다음과 같은 값으로 확인되었다.
Figure PCTKR2022018796-appb-img-000011
각 함수를 확인한 결과, 피팅 시 결정계수값이 0.97 이상의 경우에만 연속분포를 보였다.
2-F. 횡방향 농도 분포 - 함수별 피팅 결과
도 13a 내지 도 13c, 도 14a 내지 도 14c, 및 도 15a 내지 도 15c 각각은 각각 표 7의 A, B, C 함수로 피팅하였을 때의 피팅 결과를 결정계수와 함께 나타낸 도면으로서, 도 13a 내지 도 13c, 도 14a 내지 도 14c는 Na와 K의 농도에 관하여 피팅된 것이며, 도 15a 내지 도 15c의 경우 K 농도에 관하여 피팅된 것이다.
여기서, Boltzmann 함수와 DoseResp 함수 모두 동일 시편 내에서 K와 Na에서 R2 값이 동일하였으며, 두 함수 간 실제 피팅된 값도 10-4 이하의 차이로 매우 유사하였다. 그리고 K 농도가0 wt% 이 되는 지점과 Na 농도가 최대 (13.5 wt%) 가 되는 지점을 기준으로 확장거리 계산 시 동일한 값으로 계산되었다.
2-G. 횡방향 농도 분포 - 피팅 결과 정리
연속적 분포 경향이 높을수록 결정계수(coefficient of determination; R2) 값이 상승하였으며, 연속적 농도 분포를 가질 시 R2 =0.97 이상이며, 불연속적인 농도 분포를 가지는 경우 R2 =0.97 이하임을 확인되었다.
2-H. 횡방향 농도 분포 - 피팅 결과 및 측정치 비교
실제 경계선 영역에서 SEM-EDS 농도 측정 값과 피팅 값의 차이를 비교해 보았다.
도 16은 거리에 따른 K의 각 구간별 측정치와 피팅값의 평균을 나타낸 도면이다. 여기서, 각 값은 경계선 기준 (0 mm)부터 슬러리 미도포 영역으로 0.2 mm 간격으로 분할 후 구간별 평균 값을 피팅 결과와 비교하여 나타내었다.
도 16에 도시된 바와 같이 농도 분포가 연속적일 때 측정치와 피팅 결과에 차이가 거의 없었다.
도 17은 지지체 종류에 따른 K의 각 구간별 측정치와 피팅값의 차이를 각 지점별로 측정한 결과를 나타낸 도면이다. 도 17에 있어서, 각 데이터별 피팅 값과 측정치 간 농도의 차이를 0.2 mm 간격으로 도시하였다.
도 17을 참조하면, 농도 분포가 불연속적인 분포를 보일 시 임의 구간 범위에서 측정된 농도의 평균 값과 피팅 값 차이가 1.5 wt% 초과의 값을 가지는 구간이 최소 1개 이상 존재하였다. 함수가 연속적인 분포를 보일 시 상기 확장 영역 내 임의 구간의 0.2 mm 이하 범위에서 측정된 농도의 평균 값과 상기 시그모이드 함수의 평균 값 차이가 1.5 wt% 초과가 되는 구간이 존재하지 않았다.
2-I. 농도 분포의 연속성 판단
상술한 피팅함수의 값과 횡방향 농도 분포를 이용하여 연속적/불연속적 분포를 가지는 선택적 이온 교환 유리를 판단할 수 있으며, 이를 통해 경계선 부근의 경계선의 육안 시인 여부를 확인할 수 있다. 특히, 횡방향 농도 분포를 통해 확인 결과 경계선 시인성은 확장 영역의 거리보다 국부적인 농도 구배의 영향 (특정 거리 범위에서의 농도 차이) 영향을 받는 것으로 확인되었다.
3. 실험예 3 : 농도 분포의 연속/불연속과 경계선 시인 여부와의 관계
농도 분포의 연속/불연속 여부에 따른 경계선 시인/미시인 여부에 대해 판단하기 위해 시편을 제조하고 실험을 수행하였다.
3-A. 시편 목록 및 경계선 시인 여부
Figure PCTKR2022018796-appb-img-000012
3-B. 시편 목록 및 경계선 시인 여부
시편 1 내지 3은 다음과 같은 방법으로 제조되었다. 시편 4 내지 5은 상술한 실시예 1-A에서 제조한 시편을 사용하였다.
1) 40 X 40 X 0.4 mm3 규격의 소듐 알루미노 실리케이트 유리 시편 준비하였다. 이때, 유리 조성은 다음과 같았다.
소듐 알루미노 실리케이트 유리 조성: 65.5 wt% SiO2, 16.5 wt% Al2O3, 13.5 wt% Na2O, 3.8 wt% MgO, 0.2 wt% CaO
2) KNO3 수용액에 TiO2 나노입자를 혼합하여 페이스트를 제작하였다.
- KNO3 : TiO2 배합비: 30:70, 68:32, 75:25 (mol%)
- 교반 조건: 55 ℃, 1 시간 30 분, 500 rpm, 스크류 사용
3) 유리의 양면에 60 μm 두께의 3M 테이프를 5 장 부착하여 300 μm 두께로 페이스트를 도포하였다.
4) 100 ℃분 건조처리 후 시편을 세운 상태로 425 ℃에서 45 분 동안 이온 교환을 위해 열처리를 수행하였다.
EDS 측정 시 시편 1, 2는 경계선을 가로지르는 방향으로 횡방향 농도 분포를 측정하였으며, 경계선 부근( -1 ~ 1 mm) 영역은 0.1 mm 간격으로 point-EDS를 측정하였다. 경계선 부근 이외 영역은 1 mm 간격으로 point-EDS 측정하였다. 시편 3은 경계선을 가로지르는 방향으로 횡방향 농도 분포를 측정하였으며, 전체 영역에 있어서 1 mm 간격으로 point-EDS를 측정하였다. 시편 4는 경계선을 가로지르는 위치에서 횡방향 표면 농도 분포를 측정하였으며, 한 포인트당 1400 μm 라인 스캔을 진행하였다. 이때, 포인트 당 간격은 2000 μm으로 설정하였으며, 간격을 포함하여 길이 방향으로 약 7400 μm을 측정하였다. 시편 5와 6은 경계선을 가로지르는 위치에서 횡방향 표면 농도 분포 측정하였으며, 한 포인트당 1140 μm 라인 스캔을 진행하였다. 여기서, 포인트 당 간격은 800 μm으로 설정되었으며, 간격을 포함하여 길이 방향으로 약 17000 μm을 측정하였다.
3-C. 시편 4 내지 6의 농도 분포
도 18a 내지 도 18c는 1-A에서의 시편 4 내지 6에 대해 농도단위를 달리하여 측정한 EDS 결과이다.
3-D. 시편 1 내지 6의 횡방향 농도 분포
도 19a는 시편 1 내지 6의 횡방향 K 농도(at%)를 도시한 도면이며, 도 19b는 도 19a를 정규화한 농도분포 도면이다.
도 19a에 있어서, 시편 1, 2은 경계선 부근에서 0.1 mm 간격, 이외 영역은 1 mm 간격으로 데이터 측정한 것이며, 시편 3은 전체 범위에서 1 mm 간격으로 농도 분포를를 측정한 것이며, 시편 4, 5, 6은 경계선 기준 (0 mm), -1 ~ 5 mm 영역에서 슬러리 미도포 영역으로 0.1 mm 간격으로 분할 후 구간별 평균 값을 산출한 것을 나타낸 것이다.
도 19b에 있어서, 각 시편의 횡방향 농도를 -1~5 mm 범위 내 최대값으로 나누어 정규화 실시하였다.
도 19b를 참조하면, 시편 5 (경계선 미시인) 와 시편 6 (경계선 시인)의 경우 농도 분포의 개형 측면에서 차이점이 존재하는 바, 시편 5의 경우 횡방향 거리에 대한 농도 구배가 연속적이고 점진적임을 알 수 있으나, 시편 6의 경우 농도 구배가 불연속적임(그래프 상 계단 형태로 보여짐)을 알 수 있었다. 따라서, 위치선택적 이온 교환 유리에서 농도 분포의 연속/불연속성은 특정 위치에서 농도 변화율과 관련이 있음을 확인할 수 있었다.
3-E. 횡방향 농도 구배
도 20 및 표 12는 각 시편의 횡방향 농도 구배를 나타낸 것이다.
Figure PCTKR2022018796-appb-img-000013
도 20에 있어서, 해당 그래프는 횡방향 위치에서 정규화된 농도의 차이 (ΔC) 를 0.1 mm의 거리에 대해 도시한 것이다.
도 20 및 표 11을 참조하면, 경계선이 시인되는 시편 (1, 2, 6)의 경우 횡방향 특정 위치에서 0.1 mm 당 농도 변화의 크기가 -0.2 (-20 %) 미만에 해당하였다. 즉, 경계선 확장 영역(즉, 확장 영역 내)에서 횡방향 거리 0.1 mm 당 농도의 차이 (ΔC) 가 -0.2 (-20%) 미만 차이가 발생하는 지점이 1 곳 이상 존재하는 경우 (ΔCmin< -0.2) 경계선이 시인되었으며, 경계선 확장 영역 내에서 횡방향 거리 0.1 mm 당 농도의 차이 (ΔC) 가 -0.2 (-20%) 이상인 경우 (ΔCmin≥ -0.2) 경계선이 시인되지 않았다.
3-F. 횡방향 농도 구배 (절대값)
도 21 및 표 13은 각 시편의 횡방향 농도 구배를 나타낸 것이다.
Figure PCTKR2022018796-appb-img-000014
도 21은 각 횡방향 위치에서 정규화된 농도의 차이의 절대값 (│ΔC│를 0.1 mm의 거리에 대해 도시한 것이다.
도 21 및 표 13을 참조하면, 경계선 확장 영역 내에서 횡방향 거리 0.1 mm 당 농도의 차이의 절대값 (│ΔC│이 0.2 (20%) 초과하여 차이가 발생하는 지점이 1 곳 이상 존재 (│ΔC│max> 0.2)하는 경우 경계선이 시인되었으며, 경계선 확장 영역 내에서 횡방향 거리 0.1 mm 당 농도의 차이의 절대값(│ΔC│이 0.2 (20%) 이하 (│ΔC│max 0.2)인 경우 시인되지 않았다. 이러한 값을 도입 시 측정 방향과 상관없이 연속적 이온 교환 여부에 대한 판단이 가능하였다.
<실시예 3>
위치선택적 이온 교환 시편에서 선택적 강화 효과를 확인하기 위해 경도값을 확인하는 실험을 수행하였다. 본 실험을 위해 이온 교환 영역의 모양을 다르게 하여 제작된 시편들의 경도를 측정하였다.
1. 경도 측정을 위한 시편 제작 조건
경도를 측정하기 위한 시편은 다음과 같이 제작되었다.
1) 40 mm X 40 mm X 0.4 mm 규격의 소듐 알루미노 실리케이트 유리 시편을 준비하였다. 이때, 유리 조성은 다음과 같았다.
소듐 알루미노 실리케이트 유리 조성: 65.5 wt% SiO2, 16.5 wt% Al2O3, 13.5 wt% Na2O, 3.8 wt% MgO, 0.2 wt% CaO
2) KNO3 수용액에 TiO2 나노입자를 혼합하여 페이스트를 제작하였다. 이때, 배합비와 교반 조건은 다음과 같았다.
- 배합비: KNO3 : TiO2 = 68 : 32 mol%
- 교반 조건: 55 ℃, 1 시간 30 분, 500 rpm, 스크류 사용
3) 60 μm 두께의 3M 테이프를 이용하여 300 μm 두께로 유리 표면에 각각 정삼각형, 스트라이프 (stripe), 직사각형, 정사각형 모양 패터닝 후 페이스트를 블레이드 방식으로 양면 코팅하였다.
4) 100 ℃ / 30 분 건조 후 시편을 세워서 495 ℃ 에서 45 분 동안 이온 교환을 위해 열처리를 수행하였다.
참고로, 본 방법으로 제조한 모든 시편의 경우 육안상으로 경계선이 확인되지 않았다.
2. 경도 측정 조건
경도는 경계선 부근 영역 0.2 mm 간격, 기타 영역 2 mm 간격으로 측정 측정되었다. 경도는 하중 100 gf, 동일 위치에서 5 회 측정 후 평균 값을 취하였다.
3. 경도 측정 결과
도 22a, 도 22b, 및 도 22c, 도 23a, 도 23b, 및 도 23c, 그리고 도 24a, 도 24b, 및 도 24c는 각각 패턴의 형상에 따른 실제 시편 사진, 거리에 따른 경도를 나타낸 2차원 그래프, 거리에 따른 경도를 나타낸 3차원 그래프이다.
4. 경도 데이터: 경도-농도 분포 비교
경도와 농도의 의존성을 확인하기 위해 EDS를 측정한 시편과 동일한 형태로 시편을 제작하고 경도를 측정하였다.
도 25a는 경도를 측정하기 위해 제조된 시편의 형상을 나타낸 도면이며, 도 25b는 실제 제조된 도면 및 측정 위치를 나타낸 사진이다.
도 26a 및 도 26b는 각각 횡방향 농도 분포와 경도, 및 깊이방향 농도 분포와 경도를 나타낸 그래프이다. 여기서, 경도 측정 시의 압흔 깊이는 3.4 μm / 3.7 μm 였다.
5. 소결
도시된 바와 같이, 경도는 횡 방향 농도 분포와 깊이 방향 농도분포에 따른 경도 의존성이 확인되었다. 다만 경도 향상 영역은 횡 방향으로 약 2 mm 정도 확장되었으며, 이는 이온 교환 영역의 확장(즉, 확장 영역)에 비해 작은 값을 나타내었다. 화학강화 이후 경계선이 육안으로 시인되지 않으면서, 위치 선택적 강화 효과를 가지는 유리를 제작할 수 있음을 경도 측정을 통해 확인하였다.
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.

Claims (19)

  1. 유리 내부의 제1 이온과 상기 제1 이온에 대응하는 제2 이온의 화학적 이온 교환이 서로 상이하게 발생한 제1 영역과 제2 영역을 포함하되 상기 제1 영역과 상기 제2 영역의 경계선이 육안으로 미시인되는 화학강화 유리 제조 방법에 있어서,
    상기 제2 이온의 염을 포함하는 도포막을 형성하는 단계; 및
    상기 도포막이 형성된 유리를 열처리하는 단계를 포함하되,
    상기 제1 영역과 상기 제2 영역의 경계선을 기준으로 상기 경계선에 수직한 방향으로의 상기 제2 이온의 원자 농도 변화량의 절대값이 각 0.1 mm 구간 내에서 20 % 이하로 제어되거나,
    상기 제2 이온의 농도 변화를 시그모이드 계열 함수의 형태로 나타낼 때, 상기 함수는 결정 계수(coefficient of determination; R2 )가 0.97 이상으로 제어되거나, 상기 제2 이온의 농도 평균 값과 상기 시그모이드 계열 함수의 평균 값 차이가 1.5 wt% 이하로 제어되는 화학강화 유리 제조 방법.
  2. 제1 항에 있어서,
    상기 도포막은 상기 제2 이온의 염이 포함된 용액과 지지체를 포함하는 슬러리 및/또는 페이스트를 제조하고, 상기 제조된 슬러리 및/또는 페이스트를 유리 표면 상에 도포하여 형성되는 화학강화 유리 제조 방법.
  3. 제1 항에 있어서,
    상기 도포막은 지지체를 포함하는 슬러리 및/또는 페이스트를 제조하고, 상기 제조된 슬러리 및/또는 페이스트를 유리 표면상에 도포한 후, 상기 도포된 슬러리 및/또는 페이스트 상에 상기 제2 이온의 염이 포함된 용액을 첨가하여 형성되는 화학강화 유리 제조 방법.
  4. 제2 항 및 제3 항 중 어느 한 항에 있어서,
    상기 제2 이온의 농도 변화량은 상기 제2 이온의 염을 포함하는 용액 및 지지체의 함량비, 상기 지지체의 종류, 상기 열처리 온도, 및 상기 슬러리 및/또는 페이스트의 두께 중 적어도 하나 이상을 변경함으로써 제어되는 화학강화 유리 제조 방법.
  5. 제4 항에 있어서,
    상기 제2 이온의 염을 포함하는 용액 및 지지체의 함량비(mol%)는 60:40 내지 95:5인 화학강화 유리 제조 방법.
  6. 제5 항에 있어서,
    상기 지지체는 금속 산화물 입자인 화학강화 유리 제조 방법.
  7. 제6 항에 있어서,
    상기 금속 산화물 입자는 TiO2 입자인 화학강화 유리 제조 방법.
  8. 제4 항에 있어서,
    상기 열처리 온도는 250 ℃이상 약 550 ℃ 이하인 화학강화 유리 제조 방법.
  9. 제1 항에 있어서,
    상기 시그모이드 계열 함수는 하기 식 1 내지 3으로 표시된 것 중 하나인 화학강화 유리 제조 방법.
    Figure PCTKR2022018796-appb-img-000015
    여기서, A1, A2, 및 a는 함수의 최대값 또는 최소값 중 하나이며, x0, logx0, 및 xc 는 최대값의 0.5배가 되는 값이며, dx, p, k 는 중간값에서의 기울기에 해당한다.
  10. 제1 항 내지 제3 항, 및 제9 항 중 어느 한 항의 방법으로 제조한 화학강화 유리.
  11. 유리 내부의 제1 이온과 상기 제1 이온에 대응하는 제2 이온의 화학적 이온 교환이 서로 상이하게 발생한 제1 영역과 제2 영역을 포함하는 화학강화 유리 제조 방법에 있어서, 상기 제1 영역과 상기 제2 영역의 경계선을 기준으로 상기 경계선에 수직한 방향으로의 상기 제2 이온의 원자 농도 변화량의 절대값을 0.1 mm 구간 내에서 20 % 이하로 제어하는 단계를 포함하는 화학강화 유리 제조 방법.
  12. 제11 항에 있어서,
    상기 제2 이온의 농도 변화량은 상기 제2 이온의 염을 포함하는 용액 및 지지체의 함량비, 상기 지지체의 종류, 및 상기 열처리 온도 중 적어도 하나 이상을 변경함으로써 제어되는 화학강화 유리 제조 방법.
  13. 유리 내부의 제1 이온과 상기 제1 이온에 대응하는 제2 이온의 화학적 이온 교환이 서로 상이하게 발생한 제1 영역과 제2 영역을 포함하는 화학강화 유리 제조 방법에 있어서, 상기 제1 영역과 상기 제2 영역의 경계선을 기준으로 상기 경계선에 수직한 방향으로의 상기 제2 이온의 농도 변화를 시그모이드 함수의 형태로 나타낼 때 상기 함수는 결정 계수(coefficient of determination; R2 )가 0.97 이상으로 제어되는 화학강화 유리 제조 방법.
  14. 제13 항에 있어서,
    상기 제2 이온의 농도 변화량은 상기 제2 이온의 염을 포함하는 용액 및 지지체의 함량비, 상기 지지체의 종류, 및 상기 열처리 온도 중 적어도 하나 이상을 변경함으로써 제어되는 화학강화 유리 제조 방법.
  15. 유리 내부의 제1 이온과 상기 제1 이온에 대응하는 제2 이온의 화학적 이온 교환이 서로 상이하게 발생한 제1 영역과 제2 영역을 포함하는 화학강화 유리 제조 방법에 있어서, 상기 제1 영역과 상기 제2 영역의 경계선을 기준으로 상기 경계선에 수직한 방향으로의 상기 제2 이온의 농도 변화를 시그모이드 함수의 형태로 나타낼 때, 상기 제2 이온의 농도 평균 값과 상기 시그모이드 함수의 평균 값 차이가 1.5 wt% 이하로 제어되는 화학강화 유리 제조 방법.
  16. 제15 항에 있어서,
    상기 제2 이온의 농도 변화량은 상기 제2 이온의 염을 포함하는 용액 및 지지체의 함량비, 상기 지지체의 종류, 및 상기 열처리 온도 중 적어도 하나 이상을 변경함으로써 제어되는 화학강화 유리 제조 방법.
  17. 유리 내부의 제1 이온과 상기 제1 이온에 대응하는 제2 이온의 화학적 이온 교환이 서로 상이하게 발생한 제1 영역과 제2 영역;을 포함하는 화학강화 유리에 있어서, 상기 제1 영역과 상기 제2 영역의 경계선을 기준으로 상기 경계선에 수직한 방향으로의 상기 제2 이온의 원자 농도 변화량의 절대값이 0.1 mm 구간 내에서 20 % 이하인 화학강화 유리.
  18. 유리 내부의 제1 이온과 상기 제1 이온에 대응하는 제2 이온의 화학적 이온 교환이 서로 상이하게 발생한 제1 영역과 제2 영역을 포함하는 화학강화 유리에 있어서, 상기 제1 영역과 상기 제2 영역의 경계선을 기준으로 상기 경계선에 수직한 방향으로의 상기 제2 이온의 농도 변화를 시그모이드 함수의 형태로 나타낼 때 상기 함수는 결정 계수(coefficient of determination; R2 )가 0.97 이상인 화학강화 유리.
  19. 유리 내부의 제1 이온과 상기 제1 이온에 대응하는 제2 이온의 화학적 이온 교환이 서로 상이하게 발생한 제1 영역과 제2 영역을 포함하는 화학강화 유리에 있어서, 상기 제1 영역과 상기 제2 영역의 경계선을 기준으로 상기 경계선에 수직한 방향으로의 상기 제2 이온의 농도 변화를 시그모이드 함수의 형태로 나타낼 때, 상기 제2 이온의 농도 평균 값과 상기 시그모이드 함수의 평균 값 차이가 1.5 wt% 이하인 화학강화 유리.
PCT/KR2022/018796 2021-11-30 2022-11-25 위치 선택적으로 이온교환된 유리 및 이의 제조방법 WO2023101327A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0168852 2021-11-30
KR20210168852 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023101327A1 true WO2023101327A1 (ko) 2023-06-08

Family

ID=86612566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018796 WO2023101327A1 (ko) 2021-11-30 2022-11-25 위치 선택적으로 이온교환된 유리 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20230081650A (ko)
WO (1) WO2023101327A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070105068A (ko) * 2006-04-25 2007-10-30 삼성코닝 주식회사 이온 교환을 이용한 유리 강화 방법
KR20140074924A (ko) * 2011-09-29 2014-06-18 샌트랄 글래스 컴퍼니 리미티드 화학 강화 유리 및 그 제조 방법
KR20180136490A (ko) * 2016-04-20 2018-12-24 코닝 인코포레이티드 금속 산화물 농도 구배를 포함하는 유리-계 제품
KR102024630B1 (ko) * 2018-12-20 2019-09-24 한국세라믹기술원 무기물 입자가 포함된 슬러리를 이용한 유리의 강화방법
KR20210031450A (ko) * 2018-04-23 2021-03-19 한국항공대학교산학협력단 비침지 방식을 통한 유리의 이온교환 방법을 이용하여 제공되는 소성 변형 유리, 항균성 유리, 색 변화 유리 및 강화 유리

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070105068A (ko) * 2006-04-25 2007-10-30 삼성코닝 주식회사 이온 교환을 이용한 유리 강화 방법
KR20140074924A (ko) * 2011-09-29 2014-06-18 샌트랄 글래스 컴퍼니 리미티드 화학 강화 유리 및 그 제조 방법
KR20180136490A (ko) * 2016-04-20 2018-12-24 코닝 인코포레이티드 금속 산화물 농도 구배를 포함하는 유리-계 제품
KR20210031450A (ko) * 2018-04-23 2021-03-19 한국항공대학교산학협력단 비침지 방식을 통한 유리의 이온교환 방법을 이용하여 제공되는 소성 변형 유리, 항균성 유리, 색 변화 유리 및 강화 유리
KR102024630B1 (ko) * 2018-12-20 2019-09-24 한국세라믹기술원 무기물 입자가 포함된 슬러리를 이용한 유리의 강화방법

Also Published As

Publication number Publication date
KR20230081650A (ko) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2019209012A1 (ko) 비침지 방식을 통한 유리의 이온교환 방법
WO2017142231A1 (ko) 금속판, 증착용마스크 및 이의 제조방법
WO2010002182A9 (en) Plastic substrate and device including the same
WO2014137192A2 (ko) 금속 세선을 포함하는 투명 기판 및 그 제조 방법
WO2019135667A1 (ko) 장식 부재 및 이의 제조방법
WO2018147605A1 (ko) 폴리이미드 필름 및 이의 제조방법
WO2021154057A1 (ko) 플렉서블 디스플레이 표면을 보호하는 초 박막 글라스
WO2015126088A1 (en) Touch window and display with the same
WO2016043572A1 (ko) 커버글라스 및 이의 제조방법
WO2021162422A1 (ko) 세라믹 부품 및 세라믹 부품의 제조방법
WO2023101327A1 (ko) 위치 선택적으로 이온교환된 유리 및 이의 제조방법
WO2018043807A1 (ko) Pedot/pss 분산액, 상기 분산액으로 제조된 광경화형 대전 방지 코팅조성물, 및 상기 코팅조성물을 포함하는 집진통
WO2019235712A1 (ko) 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
WO2015099498A1 (ko) 발색 처리된 기재 및 이를 위한 기재의 발색 처리방법
WO2020218806A1 (ko) 실리콘계 점착성 보호 필름 및 이를 포함하는 광학 부재
WO2010027145A1 (ko) Mems 프로브용 카드 및 그의 제조 방법
WO2023167562A1 (ko) 광학 필름, 코팅층 형성용 조성물, 및 전자 기기
WO2021221376A1 (ko) 중적외광 투과 유리용 조성물 및 그의 제조방법
WO2018016916A1 (ko) 레인 센서
WO2021261848A1 (ko) 간섭 무늬가 개선된 다층 구조의 필름 및 이를 포함하는 표시장치
WO2014193165A1 (ko) 스페이서 형성용 감광성 수지 조성물 및 이로부터 제조되는 스페이서
WO2020218879A1 (ko) 실리콘계 점착성 보호 필름 및 이를 포함하는 광학 부재
WO2024072004A1 (ko) 오염 방지 물품
WO2021071152A1 (ko) 플렉서블 윈도우 필름 및 이를 포함하는 디스플레이 장치
WO2021246851A1 (ko) 폴리에스테르 이형 필름 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901685

Country of ref document: EP

Kind code of ref document: A1