WO2023100441A1 - 有機溶媒の不純物除去材及び有機溶媒の不純物除去方法 - Google Patents

有機溶媒の不純物除去材及び有機溶媒の不純物除去方法 Download PDF

Info

Publication number
WO2023100441A1
WO2023100441A1 PCT/JP2022/034392 JP2022034392W WO2023100441A1 WO 2023100441 A1 WO2023100441 A1 WO 2023100441A1 JP 2022034392 W JP2022034392 W JP 2022034392W WO 2023100441 A1 WO2023100441 A1 WO 2023100441A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
removing impurities
ion exchange
ppm
impurities
Prior art date
Application number
PCT/JP2022/034392
Other languages
English (en)
French (fr)
Inventor
孝博 川勝
侑 藤村
高明 中馬
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=85726025&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2023100441(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2023100441A1 publication Critical patent/WO2023100441A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/014Ion-exchange processes in general; Apparatus therefor in which the adsorbent properties of the ion-exchanger are involved, e.g. recovery of proteins or other high-molecular compounds

Definitions

  • the present invention relates to an organic solvent impurity removal material and an organic solvent impurity removal method for removing impurities in an organic solvent used for manufacturing and washing processes of mechanical parts and electronic parts, or for chemical synthesis.
  • the ultrapure water production and supply system used in the semiconductor manufacturing process etc. has a cross-flow type ultrafiltration membrane (UF membrane) device for removing fine particles at the end of the subsystem, and the water recovery rate is 90 to 99. %, removing nanometer-sized fine particles.
  • UF membrane cross-flow type ultrafiltration membrane
  • a mini subsystem is installed as a point-of-use polisher just before the cleaning machine for cleaning semiconductors and electronic materials, and a UF membrane device for removing fine particles is installed at the final stage. It is also being considered to install a UF membrane for removal to remove fine particles of smaller size to a high degree.
  • membrane separation means is provided in any of the pretreatment device, primary pure water device, secondary pure water device (subsystem), or recovery device that constitutes the ultrapure water supply device, and amine elution is performed at the subsequent stage. It describes placing a reverse osmosis membrane that has undergone a treatment to reduce the . Although it is possible to remove fine particles with a reverse osmosis membrane, it is not preferable to provide a reverse osmosis membrane for the following reasons. That is, the pressure must be increased to operate the reverse osmosis membrane, and the amount of permeated water is as small as about 1 m 3 /m 2 /day at a pressure of 0.75 MPa.
  • the current system using UF membranes has a water volume of 7 m 3 /m 2 /day, which is more than 50 times higher at a pressure of 0.1 MPa. requires a huge film area.
  • driving the booster pump raises the risk of generation of new fine particles and metals.
  • Patent Document 2 describes that a functional material having an anion functional group or a reverse osmosis membrane is arranged after the UF membrane in the ultrapure water line.
  • the purpose of the permeable membrane is to reduce amines, and it is not suitable for removing fine particles having a particle size of 10 nm or less, which is the object of the present invention.
  • Patent Document 3 also describes that a reverse osmosis membrane device is provided in front of the UF membrane device at the final stage in the subsystem, but it has the same problem as Patent Document 1 above.
  • Patent Document 4 describes removing particles by incorporating a prefilter in a membrane module used in an ultrapure water production line, but the smaller the particle size to be separated, the smaller the water permeability. There is a problem.
  • treated water of an electrodeionization device is filtered with a UF membrane filtration device having a filtration membrane not modified with ion exchange groups, and then a membrane with an MF membrane modified with ion exchange groups.
  • ion-exchange groups are only cation-exchange groups such as sulfonic acid groups and iminodiacetic acid groups.
  • the definition of ion-exchange groups includes anion-exchange groups, there is no description of their types or objects to be removed.
  • Patent Document 6 it is described that an anion adsorption membrane device is arranged in the latter stage of the UF membrane device in the subsystem, and experimental results with silica as the removal target are reported. No mention of size. It is generally known that a strong anion exchange group is required when removing ionic silica (Diaion 1 ion exchange resin/synthetic adsorbent manual, Mitsubishi Chemical Corporation, p15), so the patent It is believed that Document 5 also uses a membrane having strong anion exchange groups.
  • Patent Document 7 it contains one or more functional groups selected from the group consisting of primary amino groups, secondary amino groups, tertiary amino groups, and quaternary ammonium salts, and has an anion exchange capacity of 0.5.
  • 01 to 10 meq/g is described, and this polyketone porous membrane is used in the manufacturing processes of semiconductor/electronic parts manufacturing, biopharmaceutical fields, chemical fields, and food industry fields, and is used for microparticles, gels, and viruses. It is described that impurities such as can be efficiently removed. There is also a description suggesting that it is possible to remove 10 nm fine particles and anion particles smaller than the pore size of the porous membrane.
  • Patent Document 7 does not describe the application of this polyketone porous membrane to an ultrapure water production process.
  • Patent Document 8 describes the application of such a polyketone porous membrane to an ultrapure water production process, but does not mention the removal of impurities such as fine particles, metals and ions in organic solvents.
  • impurities contained in organic solvents are used for the purpose of improving product yields and eliminating the effects of impurities. In particular, it is required to remove fine particles to a high degree.
  • the present invention provides an organic solvent impurity removing material and an organic solvent impurity removal material that can highly remove impurities in organic solvents used for manufacturing and cleaning processes of mechanical parts and electronic parts, or for chemical synthesis.
  • An object of the present invention is to provide a method for removing impurities from an organic solvent.
  • a porous ion exchange resin exhibits high impurity removal performance for organic solvents with a water content of 1,000 ppm or less.
  • the present invention was achieved based on such knowledge, and the gist is as follows.
  • a removal material for removing impurities from an organic solvent having a water content of 1,000 ppm or less which is characterized by comprising a porous ion exchange resin.
  • the porous ion exchange resin has one or more ion exchange groups selected from the group consisting of primary amino groups, secondary amino groups, tertiary amino groups, and quaternary ammonium groups.
  • a method for removing impurities from an organic solvent which comprises bringing an organic solvent having a water content of 1,000 ppm or less into contact with the material for removing impurities from an organic solvent according to any one of [1] to [4].
  • impurities such as fine particles, metals, and ions can be highly and efficiently removed from organic solvents used for manufacturing and washing processes of mechanical parts and electronic parts, or for chemical synthesis. .
  • the organic solvent impurity removing material of the present invention comprises a porous ion exchange resin.
  • Porous ion exchange resins have a large specific surface area and are excellent in removing impurities from organic solvents.
  • the ion exchange groups of the porous type ion exchange resin include primary amino groups, secondary amino groups, tertiary amino groups, quaternary ammonium groups, carboxyl groups, sulfonic acid groups, phosphoric acid groups, phosphonic acid groups, phosphinic acid groups. group, hydroxyl group, phenol group, pyridine group, amide group, etc., but not limited thereto. These functional groups may be not only H-type and OH-type but also salt-type such as Cl and Na.
  • an ion-exchange resin into which at least one or more of these functional groups are introduced may be used, or a plurality of ion-exchange resins into which different ion-exchange groups are introduced may be used to obtain different ion-exchange groups.
  • It may be a mixed ion exchange resin having Among these ion-exchange groups, primary amino groups, secondary amino groups, tertiary amino groups, and quaternary ammonium groups are preferred, and quaternary ammonium groups are particularly preferred, from the viewpoint of impurity removal ability.
  • the specific surface area of the porous ion-exchange resin is preferably as large as possible from the viewpoint of impurity removal ability, and is preferably 1 m 2 /g or more, particularly 7 m 2 /g or more as a specific surface area measured by mercury porosimetry.
  • the specific surface area of the porous ion exchange resin is usually 30 m 2 /g or less from the viewpoint of maintaining strength.
  • Types of ion exchange resins include, for example, poly(styrene-divinylbenzene), poly(styrene-ethylstyrene-divinylbenzene), poly((meth)acrylic acid-divinylbenzene), polystyrene having a skeleton of polydivinylbenzene, etc.
  • Ion-exchange resins Poly(2,3-dihydroxypropyl methacrylate-ethylene dimethacrylate), poly(hydroxyethyl methacrylate-trimethylolpropane trimethacrylate), poly(meth)acrylic acid ester, etc.
  • Ion-exchange resins acrylic ion-exchange resins with a skeleton of polyacrylic ester, etc., acrylic ion-exchange resins with a skeleton of polyacrylamide, etc.; polyvinyl alcohol-based resins with a skeleton of poly(vinyl alcohol-triallyl isocyanurate), etc.
  • Ion-exchange resins Polyvinyl ether-based ion-exchange resins having a skeleton of poly(2-hydroxyethyl vinyl ether-diethylene glycol vinyl ether), poly(chloroethyl vinyl ether-triethylene glycol vinyl ether), etc. can be mentioned.
  • polystyrene-based ion-exchange resins and acrylic-based ion-exchange resins are preferred, and polystyrene-based ion-exchange resins are particularly preferred, since they are often used industrially.
  • Impurities in an organic solvent to be removed by the impurity removing material of the present invention include various inorganic fine particles, organic fine particles, metal fine particles, ions, gels, and viruses. It is effective for removing fine particles, especially silica fine particles.
  • the impurity concentration in the organic solvent is not particularly limited, but is usually about 1 to 1,000 ppm.
  • the impurity-removing material In order to bring the impurity-removing material into contact with the organic solvent, the impurity-removing material is placed in a container containing the organic solvent and immersed in the container, or the organic solvent is passed through a column containing the impurity-removing material.
  • the impurity-removing material include, but are not limited to.
  • the organic solvent to be treated in the present invention is not particularly limited, but representative ones include the following.
  • Alcohols such as methanol, ethanol, and isopropyl alcohol; Halogenated hydrocarbons such as dichlorobenzene, o-, m-, p-dichlorobenzene, o-, m-, p-chlorotoluene; ethers such as ethyl ether; epoxies such as PO and BO; Hydrocarbons such as cyclohexane, benzene, toluene and xylene; Ketones such as acetone, MEK and MIBK; Esters such as ethyl acetate, n-propyl, iso-propyl, n-butyl, sec-butyl and tert-butyl; N-methyl-2-pyrrolidone (NMP); a mixed solvent of two or more of the above organic solvents.
  • Halogenated hydrocarbons such as dichlorobenzene, o-, m-, p-dichlorobenzen
  • the present invention is particularly suitable for treating organic solvents used in semiconductor manufacturing processes, such as isopropyl alcohol (IPA) and N-methyl-2-pyrrolidone (NMP).
  • organic solvents used in semiconductor manufacturing processes such as isopropyl alcohol (IPA) and N-methyl-2-pyrrolidone (NMP).
  • the present invention is characterized in that such an organic solvent having a water content of 1,000 ppm or less is brought into contact with the impurity removing material.
  • the effect of removing impurities according to the present invention cannot be obtained if the water content of the organic solvent to be treated exceeds 1,000 ppm.
  • the water content of the organic solvent may be 1,000 ppm or less, but may be 500 ppm or less.
  • the lower limit of the water content of the organic solvent is about 50 ppm.
  • HPA512L "Diaion (registered trademark) HPA512L” manufactured by Mitsubishi Chemical Corporation
  • Highly porous anion exchange resin Skeleton Poly(styrene-ethylstyrene-divinylbenzene) Ion exchange group: trimethylammonium group Specific surface area: 15 m 2 /g (measured by mercury porosimetry)
  • KR-FA "KR-FA” manufactured by Kurita Water Industries Ltd.
  • Organic solvent isopropyl alcohol (EL grade IPA for the electronics industry manufactured by Kanto Chemical Co., Ltd.)
  • Organic solvent water content 50,000 to 70,000 ppm, 1,000 ppm or less (measured by Karl Fischer method)
  • Model fine particles Silica fine particles "sicastar” manufactured by Core Front (particle diameter 30 nm)
  • Water for adjusting moisture content ultrapure water (specific resistance of 18.2 M ⁇ cm or more)
  • Example 1 Comparative Examples 1 to 3
  • IPA adjusted to the water content shown in Table 1 was treated with the impurity removing material shown in Table 1, and the silica fine particle removal rate was determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

含水率1,000ppm以下の有機溶媒から不純物を除去するための除去材であって、ポーラス型のイオン交換樹脂よりなる有機溶媒の不純物除去材。このポーラス型のイオン交換樹脂は、イオン交換基として、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基からなる群から選ばれる1つ以上の官能基を有することが好ましい。この有機溶媒の不純物除去材に、含水率1,000ppm以下の有機溶媒を接触させる有機溶媒の不純物除去方法。

Description

有機溶媒の不純物除去材及び有機溶媒の不純物除去方法
 本発明は、機械部品、電子部品の製造及び洗浄工程、あるいは化学合成のためなどに用いられる有機溶媒中の不純物を除去する有機溶媒の不純物除去材と有機溶媒の不純物除去方法に関する。
 半導体製造プロセス等において使用される超純水の製造・供給システムは、サブシステムの末端に微粒子除去用のクロスフロー型の限外濾過膜(UF膜)装置を設置し、水回収率90~99%で運転することで、ナノメートルサイズの微粒子の除去を行っている。また、半導体・電子材料洗浄用の洗浄機直前に、ユースポイントポリッシャーとして、ミニサブシステムを設置し、最終段に微粒子除去用のUF膜装置を設置したり、ユースポイントにおける洗浄機内のノズル直前に微粒子除去用のUF膜を設置し、より小さいサイズの微粒子を高度に除去することも検討されている。
 近年、半導体製造プロセスの発展により、水中の微粒子管理が益々厳しくなってきており、例えば、国際半導体技術ロードマップ(ITRS:International Technology Roadmap for Semiconductors)では、2019年には、粒子径>11.9nmの保証値として、<1000個/Lとすることが求められている。
 一方で、有機溶媒中の微粒子除去については、上記超純水のように、明確な微粒子管理は設定されていない。しかし、半導体構造の微細化に伴って、パターン倒壊を防ぐために、表面張力の小さな有機溶媒がウエハ洗浄時に用いられるようになってきており、その結果として、有機溶媒中の微粒子等の除去ニーズは高まってきている。
 従来、超純水製造装置において、水中の微粒子などの不純物を高度に除去して純度を高めるための技術として、次のような提案がなされている。
 特許文献1には、超純水供給装置を構成する前処理装置、一次純水装置、二次純水装置(サブシステム)または回収装置のいずれかに膜分離手段を設け、その後段にアミン溶出の低減処理を施した逆浸透膜を配置することが記載されている。逆浸透膜により微粒子を除去することも可能であるが、以下のことから、逆浸透膜を設けるのは好ましくない。即ち、逆浸透膜を運転するために昇圧しなければならず、透過水量も0.75MPaの圧力で、1m/m/day程度と少ない。ところが、UF膜を使用している現行システムでは、0.1MPaの圧力で、7m/m/dayと50倍以上の水量があり、逆浸透膜でUF膜に匹敵する水量をまかなうためには膨大な膜面積が必要となる。また、昇圧ポンプを駆動することにより、新たな微粒子や金属類が発生する等のリスクが生じる。
 特許文献2には、超純水ラインのUF膜の後段にアニオン官能基を有する機能性材料または逆浸透膜を配置することが記載されているが、このアニオン官能基を有する機能性材料または逆浸透膜は、アミン類の低減が目的であり、本発明で除去対象とする粒子径10nm以下の微粒子の除去には適さない。また、逆浸透膜を配置することは、上記特許文献1におけるのと同様に好ましくない。
 特許文献3にも、サブシステムにおいて、最終段のUF膜装置の前に逆浸透膜装置を設けることが記載されているが、上記特許文献1と同様の問題がある。
 特許文献4には、超純水製造ラインに使用する膜モジュールにプレフィルターを内蔵させて粒子を除去することが記載されているが、分離対象となる粒子径が小さくなるほど、透水性が小さくなるという課題がある。
 特許文献5には、電気脱イオン装置の処理水を、イオン交換基で修飾していない濾過膜を有したUF膜濾過装置で濾過処理した後、イオン交換基で修飾したMF膜を有した膜濾過装置処理することが記載されているが、イオン交換基としては、スルホン酸基やイミノジ酢酸基といったカチオン交換基が例示されているのみである。イオン交換基の定義には、アニオン交換基も含まれるがその種別や除去対象に関する記載はない。
 特許文献6には、サブシステムにおけるUF膜装置の後段にアニオン吸着膜装置を配置することが記載され、除去対象をシリカとした実験結果が報告されているが、アニオン交換基の種類や微粒子のサイズに関しては記載がない。イオン状シリカを除去する場合には強アニオン交換基が必要であることが一般的に知られている(ダイヤイオン1イオン交換樹脂・合成吸着材マニュアル、三菱化学株式会社、p15)ことから、特許文献5でも強アニオン交換基を有する膜が使用されていると考えられる。
 特許文献7には、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム塩からなる群から選ばれる1つ以上の官能基を含み、かつ、陰イオン交換容量が0.01~10ミリ当量/gであるポリケトン多孔膜が記載されており、このポリケトン多孔膜は、半導体・電子部品製造、バイオ医薬品分野、ケミカル分野、食品工業分野の製造プロセスにおいて、微粒子、ゲル、ウイルスなどの不純物を効率的に除去することができることが記載されている。また、10nm微粒子や多孔膜の孔径未満のアニオン粒子の除去が可能であることを示唆する記載もある。
 しかし、特許文献7には、このポリケトン多孔膜を超純水製造プロセスに適用することは記載されていない。
 特許文献8には、このようなポリケトン多孔膜を超純水製造プロセスに適用することが記載されているが、有機溶媒中の微粒子、金属、イオン等の不純物の除去については言及していない。
 上記のとおり、従来、電子部品の製造又は洗浄等に用いられる超純水の製造システムにおいて、水中の不純物の除去についての提案はなされているが、このような用途における有機溶媒中の不純物(微粒子、金属、イオン)を超純水の要求レベルまで除去する材料ないしは装置についての提案はなされていない。
 また、電子部品の製造及び洗浄用途以外においても、例えば、機械部品の製造及び洗浄工程、あるいは化学合成においても、製品の歩留まり向上や不純物の影響の排除を目的として、有機溶媒中に含まれる不純物、特に微粒子を高度に除去することが求められている。
特許第3906684号公報 特許第4508469号公報 特開平5-138167号公報 特許第3059238号公報 特開2004-283710号公報 特開平10-216721号公報 特開2014-173013号公報 特開2016-155052号公報
 本発明は、上記従来技術に鑑み、機械部品、電子部品の製造及び洗浄工程、あるいは化学合成のためなどに用いられる有機溶媒中の不純物を高度に除去することができる有機溶媒の不純物除去材及び有機溶媒の不純物除去方法を提供することを目的とする。
 本発明者らは、含水率1,000ppm以下の有機溶媒に対して、ポーラス型のイオン交換樹脂が、高度な不純物除去性能を発揮することを見出した。
 即ち、本発明者らは、本発明に到る過程で、以下のような検討を行った。
 従来の水中の不純物除去は、不純物とは逆の荷電を有するイオン交換基で吸着除去することが基本であった。そこで、本発明者らは、有機溶媒に対しても同様の考えで、逆荷電基での除去を実施したが、不純物除去率は低かった。このため、基材となる高分子材料について種々検討を重ね、ポーラス型のイオン交換樹脂の不純物除去能がゲル型のイオン交換樹脂よりも優れていることを見出した。ポーラス型のイオン交換樹脂を用いても、必ずしも十分な結果は得られなかったが、有機溶媒の含水率を1,000ppm以下にすることにより、これまで20%以下であった不純物除去率を40%以上に向上させることができることを見出した。
 本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
[1] 含水率1,000ppm以下の有機溶媒から不純物を除去するための除去材であって、ポーラス型のイオン交換樹脂よりなることを特徴とする有機溶媒の不純物除去材。
[2] [1]において、前記ポーラス型のイオン交換樹脂がイオン交換基として、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基からなる群から選ばれる1つ以上の官能基を有することを特徴とする有機溶媒の不純物除去材。
[3] [1]又は[2]において、前記ポーラス型のイオン交換樹脂の比表面積が1m/g以上であることを特徴とする有機溶媒の不純物除去材。
[4] [1]ないし[3]のいずれかにおいて、前記不純物が、粒子径30nm以下のシリカ微粒子であることを特徴とする有機溶媒の不純物除去材。
[5] [1]ないし[4]のいずれかに記載の有機溶媒の不純物除去材に、含水率1,000ppm以下の有機溶媒を接触させることを特徴とする有機溶媒の不純物除去方法。
[6] 含水率が1,000ppmを超える有機溶媒を脱水処理して含水率1,000ppm以下とする脱水工程と、脱水された有機溶媒を[1]ないし[4]のいずれかに記載の有機溶媒の不純物除去材に接触させる不純物除去工程とを有する有機溶媒の不純物除去方法。
 本発明によれば、機械部品、電子部品の製造及び洗浄工程、あるいは化学合成のためなどに用いられる有機溶媒から、微粒子、金属、イオンなどの不純物を高度にかつ効率的に除去することができる。
 以下、本発明について詳細に説明する。
 本発明の有機溶媒の不純物除去材は、ポーラス型のイオン交換樹脂よりなるものである。
 ポーラス型のイオン交換樹脂は比表面積が大きく、有機溶媒の不純物除去能に優れる。
 ポーラス型のイオン交換樹脂のイオン交換基としては、1級アミノ基、2級アミノ基、3級アミノ基、4級アンモニウム基、カルボキシル基、スルホン酸基、リン酸基、ホスホン酸基、ホスフィン酸基、水酸基、フェノール基、ピリジン基、アミド基などがあるがこの限りではない。これらの官能基はH型、OH型だけでなく、Cl、Naなどの塩型であってもよい。本発明では、これらの官能基が少なくとも一種類以上導入されたイオン交換樹脂を使用してもよいし、それぞれ異なったイオン交換基が導入されたイオン交換樹脂を複数種用いて、異なるイオン交換基をもつ混合イオン交換樹脂としてもよい。
 これらのイオン交換基のうち、不純物除去能の観点から、1級アミノ基、2級アミノ基、3級アミノ基、4級アンモニウム基が好ましく、4級アンモニウム基が特に好ましい。
 ポーラス型のイオン交換樹脂の比表面積は、不純物除去能の観点から大きい方が好ましく、水銀圧入法で測定される比表面積として1m/g以上、特に7m/g以上であることが好ましい。なおポーラス型のイオン交換樹脂の比表面積は、強度維持の観点から通常30m/g以下である。
 イオン交換樹脂の種類としては、例えば、ポリ(スチレン-ジビニルベンゼン)、ポリ(スチレン-エチルスチレン-ジビニルベンゼン)、ポリ((メタ)アクリル酸-ジビニルベンゼン)、ポリジビニルベンゼン等を骨格とするポリスチレン系イオン交換樹脂;ポリ(メタクリル酸2,3-ジヒドロキシプロピル-二メタクリル酸エチレン)、ポリ(メタクリル酸ヒドロキシエチル-トリメチロールプロパントリメタクリレート)、ポリ(メタ)アクリル酸エステル等を骨格とするアクリル系イオン交換樹脂、ポリアクリル酸エステル等を骨格とするアクリル系イオン交換樹脂、ポリアクリルアミド等を骨格とするアクリル系イオン交換樹脂;ポリ(ビニルアルコール-トリアリルイソシアヌレート)等を骨格とするポリビニルアルコール系イオン交換樹脂;ポリ(2-ヒドロキシエチルビニルエーテル-ジエチレングリコールビニルエーテル)、ポリ(クロロエチルビニルエーテル-トリエチレングリコールビニルエーテル)等を骨格とするポリビニルエーテル系イオン交換樹脂等が挙げられる。
 これらのイオン交換樹脂の中でも、工業的に多用されることから、ポリスチレン系イオン交換樹脂、アクリル系イオン交換樹脂が好ましく、ポリスチレン系イオン交換樹脂が特に好ましい。
 このような本発明の不純物除去材で除去する有機溶媒中の不純物としては、各種の無機微粒子、有機微粒子や金属微粒子、イオン、ゲル、ウイルスなどが挙げられるが、本発明は特に粒子径30nm以下の微粒子、とりわけシリカ微粒子の除去に有効である。なお、有機溶媒中の不純物濃度については特に制限はないが、通常1~1,000ppm程度である。
 不純物除去材と有機溶媒とを接触させるには、有機溶媒を収容した容器内に不純物除去材を投入し、浸漬させる方法のほか、不純物除去材を収容したカラムに有機溶媒を通液する方法などが挙げられるが、これらに限定されない。
 本発明の処理対象とする有機溶媒としては、特に限定はないが、その代表的なものを挙げれば次のものがある。
 メタノール、エタノール、イソプロピルアルコールなどのアルコール類;メチレンクロライド、クロロホルム、四塩化炭素、トリクロルエチレン、パクロルエチレン、1,1,1-トリクロルエタン、フロン113、クロルベンゼン、o-、m-、p-ジクロルベンゼン、o-、m-、p-ジクロルベンゼン、o-、m-、p-クロルトルエンなどのハロゲン化炭化水素;エチルエーテルなどのエーテル類;PO、BOなどのエポキシ類;ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレンなどの炭化水素類;アセトン、MEK、MIBKなどのケトン類;酢酸エチル、n-プロピル、iso-プロピル、n-ブチル、sec-ブチル、tert-ブチルなどのエステル類;N-メチル-2-ピロリドン(NMP);上記有機溶媒の2種以上の混合溶媒。
 本発明は、特に、イソプロピルアルコール(IPA)、N-メチル-2-ピロリドン(NMP)など、半導体製造プロセスで使用される有機溶媒の処理に好適である。
 本発明においては、このような有機溶媒を含水率1,000ppm以下として不純物除去材と接触させることを特徴とする。
 即ち、後掲の比較例1に示されるように、ポーラス型のイオン交換樹脂を用いても、処理する有機溶媒の含水率が1,000ppmを超えると本発明による不純物除去効果を得ることはできない。有機溶媒の含水率は、1,000ppm以下であればよいが、500ppm以下としてもよい。通常、有機溶媒の含水率の下限は50ppm程度である。
 有機溶媒の含水率を1,000ppm以下とするには、有機溶媒を無水硫酸ナトリウム等の脱水材で処理する方法、膜で脱水する方法、含水率の低い有機溶媒と混合する方法等が挙げられる。これらは2種以上組み合わせて用いてもよい。
 従って、本発明により有機溶媒中の不純物を除去する方法としては、本発明の不純物除去材と有機溶媒とを接触させるに先立ち、上記のような有機溶媒の脱水工程を行う方法が挙げられる。
 以下、実施例及び比較例を挙げて本発明の効果をより具体的に説明する。以下の実施例は本発明の一態様であり、処理対象の有機溶媒、不純物除去材、除去対象の微粒子等は、以下の実施例で用いたものに何ら限定されるものではない。
 以下の実施例及び比較例では、次の不純物除去材と試験液調製材料を用い、下記の試験方法で接触させた。
<不純物除去材>
 HPA512L:三菱ケミカル株式会社製
     「ダイヤイオン(登録商標)HPA512L」
     ハイポーラス型アニオン交換樹脂
     骨格:ポリ(スチレン-エチルスチレン-ジビニルベンゼン)
     イオン交換基:トリメチルアンモニウム基
     比表面積:15m/g(水銀圧入法で測定)
 KR-FA:栗田工業株式会社製
     「KR-FA」
     ゲル型アニオン交換樹脂
     骨格:ポリ(スチレン-エチルスチレン-ジビニルベンゼン)
     イオン交換基:トリメチルアンモニウム基
     比表面積:0.2m/g(水銀圧入法で測定)
<試験液調製材料>
 有機溶媒:イソプロピルアルコール(関東化学社製電子工業用ELグレードIPA)
 有機溶媒含水率:50,000~70,000ppm、1,000ppm以下(カールフィッシャー法により測定)
 モデル微粒子:コアフロント社製シリカ微粒子「sicastar」(粒子径30nm)
 含水率調整用水:超純水(比抵抗18.2MΩ・cm以上)
<試験方法>
 シリカ微粒子50ppmを含むイソプロピルアルコール100mLに不純物除去材10gを浸漬させ、30分間振盪撹拌し、除去操作を行った。その後、イソプロピルアルコールをサンプリングし、モリブデン青吸光光度法によってイソプロピルアルコール中のシリカ濃度を測定した。除去操作前後のイソプロピルアルコール中のシリカ濃度から、シリカ微粒子除去率を算出した。
[実施例1,比較例1~3]
 表1に示す含水率に調整したIPAを表1に示す不純物除去材で処理し、シリカ微粒子除去率を求め、結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1より、ポーラス型のイオン交換樹脂を用い、有機溶媒の含水率を1,000ppm以下とすることにより、シリカ微粒子の除去能が格段に向上することが分かる(実施例1)。
 これに対して、ポーラス型のイオン交換樹脂を用いても、有機溶媒の含水率が1,000ppmを超えると十分な除去能を得ることができない(比較例1)。
 また、ゲル型のイオン交換樹脂では、有機溶媒の含水率にかかわらず十分な除去能を得ることはできない(比較例2,3)。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年12月1日付で出願された日本特許出願2021-195467に基づいており、その全体が引用により援用される。

Claims (6)

  1.  含水率1,000ppm以下の有機溶媒から不純物を除去するための除去材であって、ポーラス型のイオン交換樹脂よりなることを特徴とする有機溶媒の不純物除去材。
  2.  請求項1において、前記ポーラス型のイオン交換樹脂が、イオン交換基として、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム基からなる群から選ばれる1つ以上の官能基を有することを特徴とする有機溶媒の不純物除去材。
  3.  請求項1又は2において、前記ポーラス型のイオン交換樹脂の比表面積が1m/g以上であることを特徴とする有機溶媒の不純物除去材。
  4.  請求項1ないし3のいずれか1項において、前記不純物が、粒子径30nm以下のシリカ微粒子であることを特徴とする有機溶媒の不純物除去材。
  5.  請求項1ないし4のいずれか1項に記載の有機溶媒の不純物除去材に、含水率1,000ppm以下の有機溶媒を接触させることを特徴とする有機溶媒の不純物除去方法。
  6.  含水率が1,000ppmを超える有機溶媒を脱水処理して含水率1,000ppm以下とする脱水工程と、脱水された有機溶媒を請求項1ないし4のいずれか1項に記載の有機溶媒の不純物除去材に接着させる不純物除去工程とを有する有機溶媒の不純物除去方法。
PCT/JP2022/034392 2021-12-01 2022-09-14 有機溶媒の不純物除去材及び有機溶媒の不純物除去方法 WO2023100441A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021195467A JP7248090B1 (ja) 2021-12-01 2021-12-01 有機溶媒の不純物除去方法
JP2021-195467 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023100441A1 true WO2023100441A1 (ja) 2023-06-08

Family

ID=85726025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034392 WO2023100441A1 (ja) 2021-12-01 2022-09-14 有機溶媒の不純物除去材及び有機溶媒の不純物除去方法

Country Status (3)

Country Link
JP (1) JP7248090B1 (ja)
TW (1) TW202322892A (ja)
WO (1) WO2023100441A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186522A (ja) * 1984-03-07 1985-09-24 Sumitomo Bakelite Co Ltd エポキシ化合物の精製方法
JP2004181352A (ja) * 2002-12-03 2004-07-02 Japan Organo Co Ltd 非水液状物の精製方法
JP2010235653A (ja) * 2009-03-30 2010-10-21 Nippon Soda Co Ltd 重合体の製造方法
WO2019187580A1 (ja) * 2018-03-30 2019-10-03 栗田工業株式会社 微粒子除去膜、微粒子除去装置及び微粒子除去方法
JP2020157249A (ja) * 2019-03-27 2020-10-01 栗田工業株式会社 有機溶媒の処理方法及び処理材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186522A (ja) * 1984-03-07 1985-09-24 Sumitomo Bakelite Co Ltd エポキシ化合物の精製方法
JP2004181352A (ja) * 2002-12-03 2004-07-02 Japan Organo Co Ltd 非水液状物の精製方法
JP2010235653A (ja) * 2009-03-30 2010-10-21 Nippon Soda Co Ltd 重合体の製造方法
WO2019187580A1 (ja) * 2018-03-30 2019-10-03 栗田工業株式会社 微粒子除去膜、微粒子除去装置及び微粒子除去方法
JP2020157249A (ja) * 2019-03-27 2020-10-01 栗田工業株式会社 有機溶媒の処理方法及び処理材

Also Published As

Publication number Publication date
JP7248090B1 (ja) 2023-03-29
TW202322892A (zh) 2023-06-16
JP2023081615A (ja) 2023-06-13

Similar Documents

Publication Publication Date Title
US9339766B2 (en) Method and apparatus for purifying alcohol
JP3671644B2 (ja) フォトレジスト現像廃液の再生処理方法及び装置
JP3543915B2 (ja) フォトレジスト現像廃液の再生処理方法
WO2007024619A1 (en) Porous membranes containing exchange resin
JP6857184B2 (ja) 親水性有機溶媒のための精製プロセス
JP5555424B2 (ja) アルカリ水溶液の精製方法
JP7265867B2 (ja) 加水分解性有機溶媒のための精製プロセス
WO2018074127A1 (ja) 過酸化水素水溶液の精製方法および精製装置
WO2016136650A1 (ja) 水中微粒子の除去装置及び超純水製造・供給システム
JP5762863B2 (ja) アルコールの精製方法及び装置
JP7248090B1 (ja) 有機溶媒の不純物除去方法
US5874204A (en) Process for rejuvenation treatment of photoresist development waste
JP2004181351A (ja) 非水液状物の精製方法
WO2023100442A1 (ja) 有機溶媒の不純物除去材及び有機溶媒の不純物除去方法
JP6716992B2 (ja) ウェット洗浄装置及びウェット洗浄方法
JP2022545155A (ja) 有機溶媒を精製するためのプロセス
CN117202989A (zh) 用于纯化二醇醚的方法
WO2023210370A1 (ja) 有機溶媒の精製方法及び精製装置
JP7210931B2 (ja) 水中微粒子の除去方法
JPH11142380A (ja) フォトレジスト現像廃液の再生処理方法
WO2022209391A1 (ja) 非水液の精製方法および精製装置、ならびにイオン交換樹脂の製造方法および前処理装置
WO2022018906A1 (ja) 溶媒中の微粒子除去装置
KR20160023051A (ko) 과산화수소의 정제방법
KR20160023261A (ko) 과산화수소의 정제방법
CN114805814A (zh) 应用电子半导体领域有机硅材料提纯方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900876

Country of ref document: EP

Kind code of ref document: A1