WO2022209391A1 - 非水液の精製方法および精製装置、ならびにイオン交換樹脂の製造方法および前処理装置 - Google Patents

非水液の精製方法および精製装置、ならびにイオン交換樹脂の製造方法および前処理装置 Download PDF

Info

Publication number
WO2022209391A1
WO2022209391A1 PCT/JP2022/006401 JP2022006401W WO2022209391A1 WO 2022209391 A1 WO2022209391 A1 WO 2022209391A1 JP 2022006401 W JP2022006401 W JP 2022006401W WO 2022209391 A1 WO2022209391 A1 WO 2022209391A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous liquid
exchange resin
pretreatment
ion
ion exchange
Prior art date
Application number
PCT/JP2022/006401
Other languages
English (en)
French (fr)
Inventor
智子 ▲高▼田
郁 貫井
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to CN202280026518.5A priority Critical patent/CN117098604A/zh
Priority to KR1020237037468A priority patent/KR20230163544A/ko
Priority to JP2023510630A priority patent/JPWO2022209391A1/ja
Publication of WO2022209391A1 publication Critical patent/WO2022209391A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/07Processes using organic exchangers in the weakly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/011Ion-exchange processes in general; Apparatus therefor using batch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/016Modification or after-treatment of ion-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/60Cleaning or rinsing ion-exchange beds

Definitions

  • non-aqueous liquids from which impurities have been removed to a high degree and have been purified have come to be used as chemicals in the semiconductor manufacturing process and electrolytes in lithium-ion batteries.
  • a distillation method for removing impurities by distillation is known.
  • the distillation method requires a large equipment cost, requires a large amount of energy for the distillation process, and has technical problems such as difficulty in performing advanced purification. Therefore, a method of purifying a non-aqueous liquid by an ion exchange method using an ion exchange resin or an ion exchange filter has been proposed. According to the ion exchange method, it is possible to purify and remove impurities to a high degree with a small facility cost burden and energy saving.
  • Patent Documents 1 to 3 a method of drying the ion exchange resin under reduced pressure (Patent Documents 1 to 3) and a method of passing a non-aqueous liquid through the ion exchange resin in addition to drying under reduced pressure are known.
  • Patent Document 4 Also known is a method in which zeolite and an ion exchange resin are circulated to reduce water content (Patent Document 5).
  • the method using only vacuum drying cannot sufficiently reduce the moisture content of the ion exchange resin. It was also found that when a method of passing a non-aqueous liquid in addition to drying under reduced pressure is used, a large amount of the non-aqueous liquid, tens to hundreds of times the amount of the ion-exchange resin, is required. Furthermore, when drying under reduced pressure is used, the strongly basic anion exchange resin with low heat resistance is decomposed by the heat during drying, and there is a problem that the functional groups are degraded. In the method using zeolite, metal ions are eluted from the zeolite itself, so there is concern about contamination of the purified solution.
  • the present invention provides a method for producing an ion-exchange resin and a pretreatment apparatus capable of obtaining an ion-exchange resin having a reduced water content simply and economically without requiring a large amount of non-aqueous liquid, and
  • An object of the present invention is to provide a method and apparatus for purifying a non-aqueous liquid using the ion exchange resin.
  • the moisture in the resin is replaced with a pretreatment non-aqueous liquid having a dielectric constant of 20 or more, such as methanol, which has a high affinity for water.
  • the present invention is a method for purifying a non-aqueous liquid using an ion-exchange resin, comprising a pretreatment step of contacting the ion-exchange resin with a pretreatment non-aqueous liquid having a dielectric constant of 20 or more at 25°C. and a refining step of contacting the ion exchange resin after the pretreatment step with the non-aqueous liquid to be purified, wherein the dielectric constant at 25 ° C. of the non-aqueous liquid to be purified is equal to that of the non-aqueous liquid to be purified at 25° C., and the concentration of the metal to be reduced in the pretreatment non-aqueous liquid is 5 ⁇ g/L or less.
  • the present invention also provides a non-aqueous liquid purifying apparatus using an ion exchange resin, wherein the ion exchange resin is brought into contact with a pretreatment non-aqueous liquid having a dielectric constant of 20 or more at 25°C. and a purification device comprising purification means for bringing the ion-exchange resin in contact with the pretreatment non-aqueous liquid into contact with the non-aqueous liquid to be purified, wherein the pretreatment non-aqueous liquid
  • the dielectric constant at 25°C is higher than the dielectric constant at 25°C of the non-aqueous liquid to be purified, and the metal concentration to be reduced in the non-aqueous liquid for pretreatment is 5 ⁇ g/L or less. It is a purification device for non-aqueous liquids.
  • FIG. 1 is a schematic diagram showing the configuration of a refining device according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram showing the configuration of a refining device according to an embodiment of the present invention
  • FIG. 4 is a graph showing the results of Reference Example 1.
  • FIG. 4 is a graph showing the results of Reference Example 2.
  • FIG. 4 is a graph showing the results of Comparative Example 1 and Example 1.
  • FIG. 4 is a graph showing the results of Comparative Example 2 and Example 2.
  • a method for purifying a non-aqueous liquid according to the present invention is a method for purifying a non-aqueous liquid using an ion-exchange resin, wherein the ion-exchange resin is used as a pretreatment non-aqueous liquid having a dielectric constant of 20 or more at 25 ° C. and a purification step of contacting the ion exchange resin after the pretreatment step with a non-aqueous liquid to be purified.
  • the relative dielectric constant of the pretreatment non-aqueous liquid at 25 ° C.
  • the ion exchange resin used in the present invention may be either a cation exchange resin or an anion exchange resin, or may be a chelate resin.
  • the ion exchange resin is obtained, for example, by introducing a functional group into a copolymer having a three-dimensional network structure obtained by copolymerizing styrene and divinylbenzene (DVB) in the presence of a catalyst and a dispersant.
  • the ion exchange resin is a transparent gel type resin with small pores and a macrolithicular (MR type) or macroporous type (also called porous type or high porous type) having macropores with large pore diameters. may be either.
  • the cation exchange resins used in the present invention include strongly acidic cation exchange resins having sulfonic acid groups and weakly acidic cation exchange resins having carboxylic acid groups.
  • the ion form of the cation exchange resin is not limited, the hydrogen ion form (H form) is preferable from the viewpoint of removing impurities such as metals.
  • the ion exchange resin contains a cation exchange resin, even if the pretreatment non-aqueous liquid contains some metal impurities, they can be removed by the cation exchange resin. Therefore, the ion exchange resin preferably contains at least a cation exchange resin.
  • the chelate resin used in the present invention is not particularly limited, but for example, Orlite (registered trademark) DS-21 and DS-22 (macroporous chelate resin, trade name, manufactured by Organo Co., Ltd.), etc. is mentioned.
  • the removal performance of impurities in various ion exchange resins is higher in strongly acidic resins than in weakly acidic resins, and in strongly basic resins than in weakly basic resins.
  • the present inventors found that when replacing the water contained in various resins with solvents, strongly acidic cation exchange resins are more effective than weakly acidic cation exchange resins and chelate resins. It was confirmed that the strongly basic anion exchange resin requires a larger amount of solvent for solvent replacement than the basic anion exchange resin, that is, the moisture in the resin is less likely to be replaced with the solvent.
  • a strongly acidic cation exchange resin or a strongly basic anion exchange resin may be combined with other resins such as a weakly acidic cation exchange resin, a weakly basic anion exchange resin, and a chelate resin.
  • strongly basic anion exchange resins are known to have low heat resistance. It is possible to solve the problem of lowering the functional group in the case of using.
  • the purification method according to the present invention can further exhibit the above-mentioned effects when a highly crosslinked gel-type strongly acidic cation exchange resin is used among the strongly acidic cation exchange resins.
  • the highly crosslinked gel-type strongly acidic cation exchange resin may be combined with other resins such as weakly acidic cation exchange resins, weakly basic anion exchange resins, and chelate resins.
  • the highly crosslinked gel-type strongly acidic cation exchange resin is specifically a gel-type strongly acidic cation exchange resin having a degree of crosslinking of 16% to 24%.
  • Non-aqueous liquid for pretreatment As the pretreatment non-aqueous liquid, one having a dielectric constant of 20 or more at 25° C. is used.
  • the dielectric constant at 25° C. of the pretreatment non-aqueous liquid is preferably 25 or higher.
  • a liquid having a dielectric constant at 25° C. higher than that of the non-aqueous liquid to be purified is used.
  • examples of the pretreatment non-aqueous liquid include alcohols such as methanol and ethanol, glycols such as ethylene glycol and propylene glycol, and acetonitrile.
  • the water concentration in the pretreatment non-aqueous liquid is preferably 100 ppm or less, more preferably 60 ppm or less. If the water concentration in the pretreatment non-aqueous liquid is 100 ppm or less, it is possible to prevent the resin from being contaminated with water by the pretreatment non-aqueous liquid in the pretreatment step.
  • Examples of the pretreatment non-aqueous liquid having a water concentration of 100 ppm or less include an electronic industry (EL) grade pretreatment non-aqueous liquid.
  • the water concentration (ppm) is a value measured by the Karl Fischer method using, for example, a Karl Fischer volumetric moisture meter (trade name: Aquacounter AQ-2200, manufactured by Hiranuma Sangyo Co., Ltd.).
  • the pretreatment non-aqueous liquid in order not to reduce the amount of functional groups of the ion exchange resin that is effective in the purification of the non-aqueous liquid to be purified, and to suppress the metal contamination and the influence of the pretreatment non-aqueous liquid on the purification, the pretreatment non-aqueous liquid
  • the concentration of the target metal to be reduced in the medium must be 5 ⁇ g/L or less.
  • Main metals contained in the non-aqueous liquid for pretreatment and the non-aqueous liquid to be purified include, for example, Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na , Ni, Pb, Sr, Zn, and the like.
  • metals to be reduced include Na, K, Ca, Fe and Al.
  • the concentration of metals to be reduced means the total concentration of these metals to be reduced.
  • Metal impurities in the pretreatment non-aqueous liquid can also be removed by contact with an ion exchange resin for solvent replacement if it is on the order of several ⁇ g/L, but the metal content should be as small as possible.
  • the method of contacting the ion exchange resin with the pretreatment non-aqueous liquid is not particularly limited, but includes a batch treatment method and a continuous liquid flow treatment method using a column. Among them, the continuous liquid flow treatment method is preferable from the viewpoint of operability and efficiency.
  • an ion exchange resin is charged into a reactor equipped with a stirrer.
  • the reactor is filled with a pretreatment non-aqueous liquid.
  • the volume ratio is not particularly limited, but 2 to 200 parts of the non-aqueous liquid is suitable for 1 part of the resin.
  • the stirrer is operated to uniformly mix the resin and the non-aqueous liquid.
  • the stirring speed and stirring time may be appropriately determined according to the size of the reaction vessel, throughput, and the like.
  • filtration or the like is performed to separate the resin from the pretreatment non-aqueous liquid, thereby obtaining the resin from which water has been removed.
  • the ion-exchange resin that has been subjected to the pretreatment process can be stored while being immersed in the pretreatment non-aqueous liquid used in the pretreatment process until it is used to purify the non-aqueous liquid to be purified. is.
  • the resin and the pretreatment non-aqueous liquid may be separated and used to purify the non-aqueous liquid to be purified when used for actual purification.
  • the purification step is a step of bringing the ion-exchange resin with reduced water content after the pretreatment step into contact with the non-aqueous liquid to be purified.
  • the method of contacting the ion-exchange resin after the pretreatment step with the non-aqueous liquid to be purified includes the same method as the method of contacting the ion-exchange resin with the pretreatment non-aqueous liquid described above.
  • the height of the resin-filled bed in the refining column and the amount of non-aqueous liquid relative to the amount of resin (flow rate multiple) are as described above, but can be adjusted as appropriate.
  • the pretreatment non-aqueous liquid may be replaced with the non-aqueous liquid to be purified as necessary.
  • the pretreatment non-aqueous liquid can be replaced with the non-aqueous liquid to be purified by passing the non-aqueous liquid to be purified generally at 1 to 20 BV. Since the non-aqueous liquid for pretreatment and the non-aqueous liquid to be purified are easily mixed, most of the non-aqueous liquid for pretreatment is extruded and removed by solvent replacement with the non-aqueous liquid to be purified by this treatment.
  • the concentration of the pre-treatment non-aqueous liquid in the non-aqueous liquid to be purified is analyzed as appropriate, and the pretreatment non-aqueous liquid is analyzed. It is desirable to pass the non-aqueous liquid to be purified until the aqueous liquid concentration is reduced to the target concentration or less.
  • the resin when a highly crosslinked strongly acidic cation exchange resin is used as the ion exchange resin, the resin has small pores and is the least solvent-replaceable resin, as described above.
  • PGMEA which is preferably used as a non-aqueous liquid to be purified, is known to produce acetic acid by reacting with water and being hydrolyzed during purification.
  • An ion-exchange resin pretreatment apparatus is an ion-exchange resin pretreatment apparatus used for purification of a non-aqueous liquid, wherein the ion-exchange resin has a dielectric constant of 20 or more at 25 ° C. It has pretreatment means for contacting with a non-aqueous liquid for treatment.
  • the details of the pretreatment means are the same as those described above for the pretreatment step, and it is preferable to use methanol having a water concentration of preferably 100 ppm or less, more preferably 60 ppm or less, as the pretreatment non-aqueous liquid. be.
  • the pretreatment means 1 BV or more, preferably 1 to 20 BV, more preferably 2 to 15 BV of the pretreatment non-aqueous liquid is passed through the ion exchange resin.
  • the ion-exchange resin pretreatment apparatus according to the present invention may be used in combination with a purification apparatus having purification means for bringing the ion-exchange resin in contact with the pretreatment non-aqueous liquid into contact with the non-aqueous liquid to be purified, which will be described later. good.
  • a common one or a different one may be used as the purification tower filled with the ion exchange resin.
  • a non-aqueous liquid purifying apparatus is a non-aqueous liquid purifying apparatus using an ion exchange resin. and a purification device comprising a purification means for bringing the ion-exchange resin in contact with the pretreatment non-aqueous liquid into contact with the non-aqueous liquid to be purified.
  • the relative dielectric constant of the pretreatment non-aqueous liquid at 25 ° C. is greater than the relative dielectric constant of the non-aqueous liquid to be purified at 25 ° C.
  • the concentration of the metal to be reduced in the pretreatment non-aqueous liquid is 5 ⁇ g. /L or less.
  • the details of the pretreatment means and the purification means are the same as those described above for the pretreatment step and the purification step, respectively.
  • FIG. 1 is a schematic diagram showing the configuration of a non-aqueous liquid purification apparatus according to one embodiment of the present invention.
  • FIG. 1 shows an example of a purification apparatus having the same ion-exchange resin column as a pretreatment apparatus having pretreatment means and a purification apparatus having purification means.
  • the pretreatment non-aqueous liquid is passed through the ion-exchange resin packed in the ion-exchange resin column 1 from the storage tank 2 by using the pump P in a downward flow.
  • the pretreatment non-aqueous liquid waste containing water contained in the ion exchange resin is stored in the storage tank 3 .
  • the non-aqueous liquid to be purified in the storage tank 4 is passed downward from the top of the ion exchange resin tower 1 by using the pump P to be purified.
  • the waste liquid of the mixed liquid containing the non-aqueous liquid to be purified and the non-aqueous liquid for pretreatment at the initial stage of liquid passage is stored in the storage tank 3 .
  • the non-aqueous liquid to be purified is recovered in the storage tank 5 .
  • the mixed liquid stored in the storage tank 3 may be recovered, subjected to distillation or the like, and reused, or may be discarded.
  • the lower part of the ion exchange resin tower 1 is equipped with a batten and a mesh 6 .
  • the ion exchange resin may be washed with an acid-alkaline aqueous solution (not shown), pure water or ultrapure water (ultrapure water line 7) before the pretreatment. After washing with an acid-alkali aqueous solution or the like, washing with pure water is performed. and control so that the acid-alkaline aqueous solution does not mix with the pretreatment non-aqueous liquid. As shown in FIG. 1, the non-aqueous liquid may be fed for each non-aqueous liquid using a pump P, or may be fed using a single pump by switching with a valve.
  • FIG. 2 shows an example of a non-aqueous liquid purification apparatus in which (a) a pretreatment apparatus having pretreatment means and (b) a purification apparatus having purification means are provided separately.
  • the non-aqueous liquid for pretreatment is poured downward from the storage tank 12 into the ion exchange resin packed in the ion exchange resin tower 11 using the pump P. Permeate.
  • the waste liquid of the pretreatment non-aqueous liquid containing water contained in the ion exchange resin is stored in the storage tank 13 .
  • a grid plate and a mesh 14 are provided in the lower part of the ion exchange resin column 11 .
  • the ion-exchange resin may be washed with an acid-alkali aqueous solution (not shown), pure water or ultrapure water (ultrapure water line 15) before the pretreatment. After washing with an acid-alkali aqueous solution or the like, washing with pure water is performed. and control so that the acid-alkaline aqueous solution does not mix with the pretreatment non-aqueous liquid.
  • the pretreated ion-exchange resin is filled into the ion-exchange resin column 17 provided in the refiner shown in FIG. 2(b). Subsequently, the non-aqueous liquid to be purified is passed from the storage tank 18 to the ion exchange resin tower 17 using the pump P to perform purification.
  • the waste liquid of the mixed liquid containing the non-aqueous liquid to be purified and the non-aqueous liquid for pretreatment at the initial stage of passing the liquid is stored in the storage tank 19 .
  • the purified non-aqueous liquid eluted from the outlet of the ion exchange resin tower 17 is collected in the storage tank 20 .
  • a conductivity meter or a resistivity meter 23 is installed at the outlet of the ion exchange resin tower 17 .
  • the pretreatment of the ion exchange resin and the purification of the non-aqueous liquid to be purified do not necessarily have to be performed continuously. If pretreatment and purification of the non-aqueous liquid to be purified are not performed continuously, the ion exchange resin after pretreatment should be stored so as not to come into contact with moisture or metal impurities.
  • the non-aqueous liquid is first washed away, and then the acid or alkaline aqueous solution is used. Playback by At that time, from the viewpoint of replacement efficiency, it is preferable to wash away the non-aqueous liquid, for example, by washing with methanol, and then wash away the methanol by washing with pure water.
  • the ion-exchange resin regenerated with the regenerant is reused for refining the non-aqueous liquid by removing the regenerant with pure water and then performing pretreatment with methanol or the like again.
  • the methods for measuring water concentration, metal concentration, and acetic acid concentration are as follows.
  • the water concentration (mass ppm) in the non-aqueous liquid was measured by the Karl Fischer method using a Karl Fischer volumetric moisture meter (trade name: Aquacounter AQ-2200, manufactured by Hiranuma Sangyo Co., Ltd.).
  • ppm represents the mass ratio of water to the target non-aqueous liquid.
  • the same solvent may have different water concentrations, but this is due to lot differences.
  • Metal concentration Metal concentrations were measured using an Agilent 8900 triple quadrupole ICP-MS (trade name, manufactured by Agilent).
  • acetic acid concentration The acetic acid concentration (mass ppm) in PGMEA was measured using a capillary electrophoresis system (trade name: Agilent 7100, manufactured by Otsuka Electronics Co., Ltd.).
  • DS-2 which is a strongly basic anion exchange resin
  • DS-1 which is a strongly acidic cation exchange resin
  • DS-21 which is a chelate resin having weakly acidic cationic groups
  • AMBERJET 1060H a highly crosslinked gel-type strongly acidic cation exchange resin
  • the highly crosslinked gel-type strongly acidic cation exchange resin has small pores, and in addition to being affected by hydration, it is difficult for the exchange of water and solvent to occur. Furthermore, it is considered that solvent substitution is difficult to occur.
  • Example 1 Methanol-PGMEA replacement of highly crosslinked strongly acidic cation exchange resin
  • a PFA column (inner diameter: 16 mm, height: 300 mm) was packed with 50 ml of water-wet IRN99H.
  • methanol EL grade, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.
  • SV 5h -1 . supplied.
  • the supply of methanol was continued until the BV reached 12, and the water concentration in the methanol at the column outlet at each BV was analyzed.
  • PGMEA trade name: PM thinner, manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • a total non-aqueous liquid amount total amount of methanol and PGMEA
  • a water concentration of 45 ppm a metal concentration to be reduced of 1 ⁇ g / L or less.
  • the moisture concentration in the PGMEA at the column outlet in each BV was analyzed after supplying (the range surrounded by the dotted line in the graph shown in FIG. 5). Results are shown in Table 5 and FIG.
  • Example 1 As shown in Table 5 and FIG. 5, in Example 1, when 12 BV of methanol was passed as the pretreatment non-aqueous liquid, the water concentration was already reduced to a level equivalent to that of PGMEA to be purified. Thereafter, PGMEA was passed through to replace the methanol inside the resin with the PGMEA to be purified. The flow rate of PGMEA was 4 BV, but when 3 BV was passed through, most of the methanol was considered to have been removed. As described above, in Example 1, the water inside the resin could be replaced with the non-aqueous liquid with a significantly smaller amount of non-aqueous liquid than in Comparative Example 1.
  • methanol and PGMEA were substituted by passing 3BV of PGMEA as described above. Since PGMEA and methanol mix easily, most of the methanol is considered to be extruded and removed by solvent replacement with PGMEA. However, if a small amount of remaining methanol poses a problem as an impurity, it is desirable to analyze the methanol concentration in PGMEA as appropriate and pass PGMEA through until the methanol concentration is reduced to the target concentration or less.
  • Example 2 Methanol-IPA replacement of strongly basic anion exchange resin
  • a PFA column (inner diameter: 16 mm, height: 300 mm) was packed with 50 ml of water-wet DS-2.
  • methanol EL grade, manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.
  • SV 5h -1 . supplied.
  • the supply of methanol was continued until the BV reached 5, and the water concentration in the methanol at the column outlet was analyzed.
  • IPA trade name: Tokuso IPA (registered trademark) SE grade, Co., Ltd.) having a water concentration of 21 ppm and a metal concentration to be reduced of 1 ⁇ g / L or less ) manufactured by Tokuyama
  • IPA trade name: Tokuso IPA (registered trademark) SE grade, Co., Ltd.
  • Example 2 when the total amount of non-aqueous liquid was about 15 BV, the water concentration at the column outlet could be reduced to a level equivalent to that of the IPA used. As described above, by passing methanol as a pretreatment step, the moisture inside the resin could be replaced with the non-aqueous liquid with a significantly smaller amount of the non-aqueous liquid than in Comparative Example 2.
  • Example 3 Acetic acid production
  • a PFA column (inner diameter: 16 mm, height: 300 mm) packed with 36 mL of AMBERJET 1060H, which is a highly crosslinked gel-type strongly acidic cation exchange resin, was subjected to the same procedure as in Example 1 (however, PGMEA was further passed through 4 BV).
  • the water concentration in the PGMEA at the column outlet when the total non-aqueous liquid amount of 20 BV was passed through was 58 ppm, which was the same level as the PGMEA used. After the passage of the solution, the treated solution was stored overnight, and the supernatant was analyzed for acetic acid concentration. It was confirmed.
  • the highly crosslinked gel-type strongly acidic cation exchange resin has smaller pores than the MR type resin even though it has the same high crosslinkage. Therefore, it is considered that acetic acid formation due to hydrolysis of PGMEA is less likely to occur than non-highly crosslinked gel-type resins, MR-type, porous-type, and high-porous-type resins.
  • the highly crosslinked gel-type strongly acidic cation exchange resin is a resin that is difficult to replace the solvent. It was possible to replace water with a non-aqueous liquid depending on the amount of liquid, and furthermore, it was possible to perform purification while suppressing hydrolysis of PGMEA.
  • Ion exchange resin tower 2 Storage tank (non-aqueous liquid for pretreatment) 3: Storage tank (waste liquid) 4: Storage tank (non-aqueous liquid to be purified before purification) 5: Storage tank (non-aqueous liquid to be purified after purification) 6: batten and mesh 7: ultrapure water line 8: conductivity meter or resistivity meter P: pump 11: ion exchange resin tower 12: storage tank (pretreatment non-aqueous liquid) 13: Storage tank (waste liquid) 14: batten and mesh 15: ultrapure water line 16: conductivity meter or resistivity meter 17: ion exchange resin tower 18: storage tank (non-aqueous liquid to be purified before purification) 19: Storage tank (waste liquid) 20: Storage tank (non-aqueous liquid to be purified after purification) 21: battens and meshes 22: ultrapure water line 23: conductivity meter or resistivity meter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

多量の非水液を必要とすることなく、簡便かつ経済的に、含有水分量を低減したイオン交換樹脂を用いた非水液の精製方法を提供する。イオン交換樹脂を用いた非水液の精製方法であって、イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる前処理工程と、該前処理工程後のイオン交換樹脂を精製対象非水液に接触させる精製工程と、を有し、前記前処理用非水液の25℃における比誘電率は、前記精製対象非水液の25℃における比誘電率よりも大きく、かつ、前記前処理用非水液中の低減対象金属濃度が5μg/L以下であることを特徴とする非水液の精製方法を用いる。

Description

非水液の精製方法および精製装置、ならびにイオン交換樹脂の製造方法および前処理装置
 本発明は、水分含有量を低減したイオン交換樹脂を用いた非水液の精製方法および精製装置ならびにイオン交換樹脂の製造方法および前処理装置に関する。
 近年、半導体製造工程における薬液やリチウムイオン電池の電解液等として、不純物が高度に除去され、精製された非水液が用いられるようになってきている。非水液の精製方法としては、不純物を蒸留除去する蒸留法が知られている。しかしながら、蒸留法は、設備費用負担が大きく、また、蒸留処理に多大なエネルギーを要するだけでなく、高度な精製を行い難い等の技術課題が存在していた。そこで、イオン交換樹脂やイオン交換フィルターを用いたイオン交換法によって非水液を精製する方法が提案されている。イオン交換法によれば、設備費用負担が小さく、省エネルギーで、不純物を高度に精製除去し得る。
 イオン交換樹脂は、その重量の約50%が水であり、非水液精製時にイオン交換樹脂から溶出する水分は、非水液においては不純物となる。したがって、イオン交換樹脂を非水液精製に用いる前に、該イオン交換樹脂に含まれる水分を低減する必要がある。イオン交換樹脂の含有水分を低減する方法としては、イオン交換樹脂を減圧乾燥する方法(特許文献1~3)や、減圧乾燥に加えてイオン交換樹脂に非水液を通液する方法が知られている(特許文献4)。また、ゼオライトとイオン交換樹脂を循環通液して水分を低減する方法も知られている(特許文献5)。
特開2004-181351号公報 特開2004-181352号公報 特開2004-249238号公報 特表2000-505042号公報 特開2020-121261号公報
 しかしながら、減圧乾燥のみによる方法では、イオン交換樹脂の含有水分を十分に低減することができない。また、減圧乾燥に加えて非水液を通液する方法を用いた場合、イオン交換樹脂に対して数十倍~百倍量もの多量の非水液が必要になることが判明した。さらに、減圧乾燥を使用した場合、耐熱性が低い強塩基性陰イオン交換樹脂は、乾燥時の熱により分解し、官能基が低級化するという課題がある。そして、ゼオライトを用いた方法では、ゼオライト自体から金属イオンが溶出するため、精製液を汚染することが懸念される。
 したがって、本発明は、多量の非水液を必要とすることなく、簡便かつ経済的に、含有水分量を低減したイオン交換樹脂を得ることができるイオン交換樹脂の製造方法および前処理装置、ならびに該イオン交換樹脂を用いた非水液の精製方法および精製装置を提供することを目的とする。
 上記問題に鑑みて、本発明者らが鋭意検討した結果、水との親和性が高い、メタノール等の比誘電率20以上の前処理用非水液を用いて樹脂中の水分を置換し、その後、樹脂を精製対象非水液と接触させることにより、該前処理用非水液を用いない場合と比べて、非水液の使用量を大幅に抑えることができることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、イオン交換樹脂を用いた非水液の精製方法であって、イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる前処理工程と、該前処理工程後のイオン交換樹脂を精製対象非水液に接触させる精製工程と、を有し、前記前処理用非水液の25℃における比誘電率は、前記精製対象非水液の25℃における比誘電率よりも大きく、かつ、前記前処理用非水液中の低減対象金属濃度が5μg/L以下であることを特徴とする非水液の精製方法である。
 また、本発明は、イオン交換樹脂を用いた非水液の精製装置であって、イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる前処理手段を備える前処理装置と、前記前処理用非水液に接触させたイオン交換樹脂を精製対象非水液に接触させる精製手段を備える精製装置と、を有し、前記前処理用非水液の25℃における比誘電率は、前記精製対象非水液の25℃における比誘電率よりも大きく、かつ、前記前処理用非水液中の低減対象金属濃度が5μg/L以下であることを特徴とする非水液の精製装置である。
 また、本発明は、非水液の精製に使用されるイオン交換樹脂の前処理装置であって、イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる前処理手段を有し、該前処理手段において、前記前処理用非水液を前記イオン交換樹脂に対して1BV以上通液することを特徴とするイオン交換樹脂の前処理装置である。
 さらに、本発明は、非水液の精製に使用されるイオン交換樹脂の製造方法であって、イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる前処理工程を有し、前記前処理用非水液の25℃における比誘電率は、精製対象非水液の25℃における比誘電率よりも大きく、かつ、前記前処理用非水液中の低減対象金属濃度が5μg/L以下であることを特徴とするイオン交換樹脂の製造方法である。
 本発明によれば、多量の非水液を必要とすることなく、簡便かつ経済的に、含有水分量を低減したイオン交換樹脂を得ることができるイオン交換樹脂の製造方法および前処理装置、ならびに該イオン交換樹脂を用いた非水液の精製方法および精製装置を提供することができる。
本発明の一実施形態に係る精製装置の構成を示す概略図である。 本発明の一実施形態に係る精製装置の構成を示す概略図である。 参考例1の結果を示すグラフである。 参考例2の結果を示すグラフである。 比較例1および実施例1の結果を示すグラフである。 比較例2および実施例2の結果を示すグラフである。
 <非水液の精製方法、イオン交換樹脂の製造方法>
 本発明に係る非水液の精製方法は、イオン交換樹脂を用いた非水液の精製方法であって、イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる前処理工程と、該前処理工程後のイオン交換樹脂を精製対象非水液に接触させる精製工程と、を有する。また、前処理用非水液の25℃における比誘電率は、精製対象非水液の25℃における比誘電率よりも大きく、かつ、前処理用非水液中の低減対象金属濃度は、5μg/L以下である。
 また、本発明に係るイオン交換樹脂の製造方法は、非水液の精製に使用されるイオン交換樹脂の製造方法であって、上記前処理工程を有する。
 以下、本発明について詳細に説明する。
 [前処理工程]
 前処理工程は、イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる工程である。この前処理工程を行うことにより、イオン交換樹脂中に含まれる水分を効率よく低減することができる。その結果、該イオン交換樹脂を精製対象非水液の精製に用いた場合の、樹脂からの水分溶出を抑制することができる。また、精製対象非水液よりも水と馴染みやすい前処理用非水液を用いて予め樹脂の水分を前処理用非水液と置換することにより、全体の非水液の使用量を削減することができる。なお、イオン交換樹脂は、前処理工程に用いる前に、減圧乾燥等によって乾燥したものであってもよい。
 (イオン交換樹脂)
 本発明において用いるイオン交換樹脂は、陽イオン交換樹脂および陰イオン交換樹脂のいずれであってもよく、キレート樹脂であってもよい。イオン交換樹脂は、例えば、スチレンとジビニルベンゼン(DVB)を、触媒と分散剤との共存下において共重合させて得られる三次元網目構造を有する共重合体に、官能基を導入して得られる。イオン交換樹脂は、樹脂の有する細孔の径が小さく透明なゲル型および細孔の径が大きいマクロポアを有するマクロリテキュラー型(MR型)またはマクロポーラス型(ポーラス型、ハイポーラス型とも呼ばれる)のいずれであってもよい。
 本発明で用いる陽イオン交換樹脂としては、スルホン酸基を有する強酸性陽イオン交換樹脂およびカルボン酸基を有する弱酸性陽イオン交換樹脂が挙げられる。陽イオン交換樹脂のイオン形は限定されないが、金属等の不純物除去の観点から水素イオン形(H形)が好ましい。イオン交換樹脂が陽イオン交換樹脂を含む場合、前処理用非水液に金属不純物が多少含まれていても、陽イオン交換樹脂によって除去することができる。そのため、イオン交換樹脂は、少なくとも陽イオン交換樹脂を含むことが好ましい。陽イオン交換樹脂としては、例えば、アンバーライト(登録商標) IRN99H(ゲル型の強酸性陽イオン交換樹脂、商品名、デュポン社製)、アンバージェット(登録商標) 1060H(ゲル型の強酸性陽イオン交換樹脂、商品名、オルガノ(株)製)、オルライト(登録商標) DS-1(ゲル型の強酸性陽イオン交換樹脂、商品名、オルガノ(株)製)、オルライト(登録商標) DS-4(マクロポーラス型の強酸性陽イオン交換樹脂、商品名、オルガノ(株)製)、アンバーライト(登録商標)IRC76(マクロポーラス型の弱酸性陽イオン交換樹脂、デュポン社製)、アンバーライト(登録商標)FPC3500(マクロポーラス型の弱酸性陽イオン交換樹脂、デュポン社製)等が挙げられるが、これらに限定されるものではない。
 本発明で用いる陰イオン交換樹脂としては、第4級アンモニウム塩基を有する強塩基性陰イオン交換樹脂および第1級~第3級アミノ基を有する弱塩基性陰イオン交換樹脂が挙げられる。陰イオン交換樹脂のイオン形は限定されないが、金属等の不純物除去の観点から、水酸化物イオン形(OH形)、炭酸形または重炭酸形が一般的に用いられる。陰イオン交換樹脂としては、例えば、オルライト(登録商標) DS-2(ゲル型の強塩基性陰イオン交換樹脂、商品名、オルガノ(株)製)、DS-6(MR型の弱塩基性陰イオン交換樹脂、商品名、オルガノ(株)製)、アンバーライト(登録商標)IRA743(マクロポーラス型のホウ素選択樹脂、デュポン社製)等が挙げられるが、これらに限定されるものではない。
 本発明で用いるキレート樹脂としては、特に限定されるものではないが、例えば、オルライト(登録商標) DS-21およびDS-22(マクロポーラス型のキレート樹脂、商品名、オルガノ(株)製)等が挙げられる。
 なお、イオン交換樹脂の代わりに、モノリス状有機多孔質イオン交換体を用いてもよい。モノリス状有機多孔質イオン交換体としては、モノリス状の有機多孔質体にイオン交換基が導入されているものであれば、特に制限されない。
 モノリス状有機多孔質イオン交換体としては、例えば、連続骨格相と連続空孔相からなり、連続骨格の厚みが1~100μm、連続空孔の平均直径が1~1000μm、全細孔容積が0.5~50mL/gであり、カチオン交換基や、アニオン交換基、キレート基が導入されており、乾燥状態での質量当たりのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しているモノリス状有機多孔質イオン交換体(以下、「第一の形態のモノリス状有機多孔質イオン交換体」とも称する)が挙げられる。
 また、第一の形態のモノリス状有機多孔質イオン交換体としては、気泡状のマクロポア同士が重なり合い、この重なり合う部分が平均直径30~300μmの開口となる連続マクロポア構造体であり、全細孔容積が0.5~10mL/gであり、カチオン交換基またはアニオン交換基が導入されており、乾燥状態での質量当たりのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しており、かつ、連続マクロポア構造体(乾燥体)の切断面のSEM画像において、切断面に表れる骨格部面積が、該画像領域中25~50%であるモノリス状有機多孔質イオン交換体が挙げられる。
 また、第一の形態のモノリス状有機多孔質イオン交換体としては、イオン交換基が導入された全構成単位中、架橋構造単位を0.1~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが1~60μmの三次元的に連続した骨格と、その骨格間に平均直径が10~200μmの三次元的に連続した空孔とからなる共連続構造体であり、全細孔容積が0.5~10mL/gであり、カチオン交換基またはアニオン交換基が導入されており、乾燥状態での質量当たりのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しているモノリス状有機多孔質イオン交換体が挙げられる。
 ここで、各種イオン交換樹脂における不純物の除去性能は、弱酸性よりも強酸性の樹脂が、弱塩基性よりも強塩基性の樹脂が高いことが一般的に知られている。本発明者らは、検討の中で、各種の樹脂内に含まれる水分の溶媒置換を行うにあたり、弱酸性陽イオン交換樹脂やキレート樹脂よりも強酸性陽イオン交換樹脂の方が、また、弱塩基性陰イオン交換樹脂よりも強塩基性陰イオン交換樹脂の方が、溶媒置換に必要とする溶媒量が多いこと、すなわち、樹脂中の水分が溶媒と置換され難いことを確認した。しかしながら、本発明に係る前処理工程によれば、そのような溶媒置換され難い強酸性陽イオン交換樹脂や強塩基性陰イオン交換樹脂を用いた場合であっても、必要な溶媒量を大幅に低減する効果が得られることが明らかとなった。このように、本発明に係る精製方法は、弱酸性陽イオン交換樹脂、キレート樹脂および弱塩基性陰イオン交換樹脂に対して効果を発揮することはもちろんであるが、特に強酸性陽イオン交換樹脂や強塩基性陰イオン交換樹脂を用いた場合に、上記効果をより発揮することができる。すなわち、イオン交換樹脂が、少なくとも強酸性陽イオン交換樹脂および強塩基性陰イオン交換樹脂のいずれかを含む場合、本発明の効果がより発揮される。もちろん、強酸性陽イオン交換樹脂または強塩基性陰イオン交換樹脂に、弱酸性陽イオン交換樹脂、弱塩基性陰イオン交換樹脂、キレート樹脂等のその他の樹脂を組み合わせてもよい。なお、上述したように、強塩基性陰イオン交換樹脂は、耐熱性が低いことが知られているが、本発明によれば、樹脂を乾燥する必要がないため、強塩基性陰イオン交換樹脂を用いた場合における官能基の低級化という課題も解決することができる。
 また、樹脂内に含まれる水分を溶媒置換するためには、水が樹脂内部から出ると同時に、溶媒が樹脂内部を満たす必要がある。そのため、樹脂の細孔が大きい方が溶媒置換に有利である。細孔径は、ゲル型よりMR型、ポーラス型またはハイポーラス型が大きいため、MR型、ポーラス型およびハイポーラス型の樹脂は、ゲル型の樹脂に比べて溶媒置換に有利である。一方で、架橋度が高い樹脂は細孔が小さくなるため、高架橋のゲル型樹脂が最も溶媒置換され難いといえる。しかしながら、本発明に係る前処理工程によれば、そのような溶媒置換されにくい高架橋のゲル型強酸性陽イオン交換樹脂を用いた場合であっても、必要な溶媒量を大幅に低減することができることが明らかとなった。すなわち、本発明に係る精製方法は、強酸性陽イオン交換樹脂の中でも、特に、高架橋のゲル型強酸性陽イオン交換樹脂を用いた場合に、上記効果をさらに発揮することができる。もちろん、高架橋のゲル型強酸性陽イオン交換樹脂に、弱酸性陽イオン交換樹脂、弱塩基性陰イオン交換樹脂、キレート樹脂等のその他の樹脂を組み合わせてもよい。なお、高架橋のゲル型強酸性陽イオン交換樹脂とは、具体的には、16%~24%の架橋度を有するゲル型強酸性陽イオン交換樹脂である。
 なお、本発明において用いるイオン交換樹脂としては、精製対象非水液への金属不純物のコンタミネーションを防ぐ観点から、前処理工程の前に、予め含有する金属不純物量を低減したイオン交換樹脂を用いることが好ましい。イオン交換樹脂の含有金属不純物量を低減する方法としては、公知の方法を用いることができ、例えば、塩酸、硫酸等の鉱酸を用いて、陽イオン交換樹脂のイオン形をH形にする方法が挙げられる。この方法によれば、イオン交換基の変換と同時に、樹脂中の金属不純物量の低減が可能である。また、予め含有する金属不純物量を低減した、上記例示したような市販のイオン交換樹脂(例えばオルライト(登録商標) DSシリーズ、オルガノ(株)製)を用いる場合には、該イオン交換樹脂に対して、そのまま前処理工程を実施することができる。
 (前処理用非水液)
 前処理用非水液としては、25℃における比誘電率が20以上であるものを用いる。前処理用非水液の25℃における比誘電率は、25以上であることが好ましい。また、前処理用非水液としては、25℃における比誘電率が精製対象非水液よりも大きいものを用いる。具体的に、前処理用非水液としては、メタノール、エタノール等のアルコールや、エチレングリコール、プロピレングリコール等のグリコール、アセトニトリル等が挙げられる。
 前処理用非水液中の水分濃度は、100ppm以下であることが好ましく、60ppm以下であることがより好ましい。前処理用非水液中の水分濃度が100ppm以下であれば、前処理工程における前処理用非水液による樹脂への水分のコンタミネーションを防ぐことができる。水分濃度が100ppm以下である前処理用非水液としては、例えば電子工業用(EL)グレードの前処理用非水液が挙げられる。なお、水分濃度(ppm)は、例えば、カールフィッシャー容量法水分計(商品名:Aquacounter AQ-2200、平沼産業(株)製)を用いて、カールフィッシャー法により測定した値である。ppmは、対象非水液に対する水の質量比を表す。電子工業用グレードの入手のしやすさの観点から、前処理用非水液としては、水分濃度が100ppm以下のアルコールが好ましく、水分濃度が100ppm以下のメタノールが特に好ましい。
 また、前処理用非水液中の低減対象金属濃度は、5μg/L以下である。すなわち、本発明において、前処理用非水液中の低減対象金属不純物は、精製対象非水液に影響しない。例えば、前処理用非水液中の低減対象金属濃度が10μg/Lと高い場合、前処理工程の段階で、イオン交換樹脂のH形交換基が前処理用非水液中の金属除去のために消費される。また、非水液はイオン交換樹脂内部への拡散性が低いため、イオン交換樹脂の金属除去性能を発揮させるには、水中の場合よりも流速を下げる必要がある。それ故に、前処理用非水液由来の金属不純物が樹脂や配管内に残存しやすく、その後の非水液の精製に影響を与える可能性がある。したがって、精製対象非水液の精製において有効なイオン交換樹脂の官能基量を減らさず、かつ、前処理用非水液による金属コンタミネーションや精製への影響を抑えるため、前処理用非水液中の低減対象金属濃度は、5μg/L以下であることが必要である。
 前処理用非水液および精製対象非水液に含まれる主な金属としては、例えば、Ag、Al、Ba、Ca、Cd、Co、Cr、Cu、Fe、K、Li、Mg、Mn、Na、Ni、Pb、Sr、Zn等が挙げられる。これらの中でも、低減対象金属としては、Na、K、Ca、FeおよびAlを挙げることができる。本明細書において、低減対象金属濃度とは、これら各低減対象金属の濃度の合計の濃度を意味する。前処理用非水液中の金属不純物も、数μg/L程度であれば溶媒置換を行うイオン交換樹脂との接触により除去することができるが、含有金属量は少ない方がよい。前処理用非水液中の低減対象金属濃度は、例えば0.005~5μg/Lであることができ、好ましくは2μg/L以下である。なお、精製前の精製対象非水液中の低減対象金属濃度は、例えば、0.01~100μg/Lであることができる。ここで、非水液中の金属濃度は、例えば、Agilent 8900 トリプル四重極ICP-MS(商品名、アジレント・テクノロジー(株)製)を用いて測定することができる。
 前処理用非水液としては、上記で例示したような市販の試薬を用いてもよい。また、前処理用非水液として使用する前に、必要に応じて、水分を低減したイオン交換樹脂やイオン吸着膜により、低減対象金属濃度を5μg/L以下に低減する処理を行ってもよい。
 イオン交換樹脂を前処理用非水液に接触させる方法は、特に制限されないが、バッチ処理方法およびカラムによる連続通液処理方法が挙げられる。このうち、操作性や効率の観点から、連続通液処理方法が好ましい。
 連続通液処理方法において、イオン交換樹脂は、カラム等の精製塔に充填される。精製塔の樹脂充填層高は特に限定されず、例えば300mm以上、好ましくは600~1500mmとすることができる。なお、後述する実施例においては、簡易的に小スケールでの精製を行っているため、精製塔の樹脂充填層高は、この限りではない。次いで、前処理用非水液を、例えばSV(空間速度、h-1)0.5~50にて、例えば1BV以上、好ましくは1~20BV、より好ましくは2~15BV通液する。ここで、BV(Bed volume)は、樹脂量に対して通液する非水液の流量倍数を表す。通液の方向は、下向流または上向流のいずれであってもよい。このように通液することにより、イオン交換樹脂中に含まれる水分が順次、前処理用非水液と置換され、除去される。
 次に、バッチ処理方法について説明する。まず、イオン交換樹脂を、撹拌機を備えた反応槽内に充填する。次に、前処理用非水液を該反応槽内に充填する。容積比としては、特に限定はされないが、樹脂量1に対して非水液2~200が好適である。その後、例えば0.1~16時間程度放置することが、樹脂と非水液を馴染ませる点で好適である。放置後、撹拌機を作動させて樹脂と非水液を均一に混合する。撹拌速度および撹拌時間は、反応槽の大きさや処理量等により適宜決定すればよい。撹拌終了後、濾過等を行い、樹脂と前処理用非水液を分離することによって、水分が除去された樹脂を得ることができる。
 なお、前処理工程を実施したイオン交換樹脂は、精製対象非水液の精製に用いられるまで、前処理工程において使用した前処理用非水液中に浸漬した状態で保存しておくことも可能である。その場合は、実際の精製に使用する際に、樹脂と前処理用非水液を分離し、精製対象非水液の精製に用いればよい。
 [精製工程]
 精製工程は、前記前処理工程後の含有水分が低減されたイオン交換樹脂を、精製対象非水液に接触させる工程である。
 (精製対象非水液)
 精製対象非水液は、例えば電子工業で使用される薬液および溶媒等である。また、精製対象非水液は、前記前処理用非水液よりも小さい比誘電率(25℃)を有する。精製対象非水液として、具体的には、プロピレングリコール1-モノメチルエーテル2-アセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、イソプロピルアルコール(IPA)等が例示される。これらは1種を単独で用いてもよく、2種以上を組み合わせてもよい。これらの薬液や溶媒等に、各種添加剤や他の化学薬液を溶かし込んだものも使用できる。これらの中でも、本発明に係る精製方法は、PGME、PGMEA、PGMEとPGMEAの混合物およびIPAから選択されるいずれか、特には、PGMEAおよびIPAの精製に好ましく用いられる。
 前処理工程後のイオン交換樹脂を精製対象非水液に接触させる方法としては、上述したイオン交換樹脂を前処理用非水液に接触させる方法と同様の方法が挙げられる。精製塔の樹脂充填層高や、樹脂量に対する非水液の量(流量倍数)は上記のとおりであるが、適宜、調整することができる。
 なお、精製対象非水液をイオン交換樹脂に接触させて実際の精製を行う際に、必要に応じて、前処理用非水液を精製対象非水液と置換する処理を行ってもよい。その場合、精製対象非水液を、通常、1~20BV通液することにより、前処理用非水液と精製対象非水液を置換することができる。前処理用非水液と精製対象非水液は容易に混合するため、この処理を行うことにより、前処理用非水液の大部分は精製対象非水液による溶媒置換によって押し出され、除去されるものと考えられる。しかしながら、わずかに残存する前処理用非水液が精製対象非水液にとって不純物となる場合には、適宜、精製対象非水液中の前処理用非水液濃度を分析し、前処理用非水液濃度が目標濃度以下に低減するまで精製対象非水液を通液することが望ましい。
 本発明において、イオン交換樹脂として高架橋の強酸性陽イオン交換樹脂を用いる場合、該樹脂は、上述したように、細孔が小さく最も溶媒置換され難い樹脂である。しかし、本発明に係る前処理を行い、一旦、樹脂内部から水分を除去した場合には、その後の、樹脂の表面から内部への、精製対象非水液や水等の侵入は起こり難くなる。ここで、本発明において、精製対象非水液として好ましく用いられるPGMEAは、精製中に、水と反応して加水分解することにより、酢酸を生成することが知られている。しかしながら、本発明に係る前処理工程を行い、樹脂中の水分濃度を十分に低下させることによって、高架橋の強酸性陽イオン交換樹脂を用いてPGMEAを精製する際の通液中も酢酸の生成を抑制することができるという副次的な効果が得られることが明らかとなった。
 <イオン交換樹脂の前処理装置>
 本発明に係るイオン交換樹脂の前処理装置は、非水液の精製に使用されるイオン交換樹脂の前処理装置であって、イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる前処理手段を有する。前処理手段の詳細は、上述した前処理工程に係る説明と同様であり、前処理用非水液としては、水分濃度が好ましくは100ppm以下、より好ましくは60ppm以下のメタノールを用いることが好適である。また、前処理手段において、前処理用非水液をイオン交換樹脂に対して1BV以上、好ましくは1~20BV、より好ましくは2~15BV通液する。本発明に係るイオン交換樹脂の前処理装置は、後述する、前処理用非水液に接触させたイオン交換樹脂を精製対象非水液に接触させる精製手段を備える精製装置と組み合わせて用いてもよい。両者を組み合わせて用いる場合、イオン交換樹脂を充填する精製塔として、共通のものを用いてもよく、異なるものを用いてもよい。
 <非水液の精製装置>
 本発明に係る非水液の精製装置は、イオン交換樹脂を用いた非水液の精製装置であって、イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる前処理手段を備える前処理装置と、前処理用非水液に接触させたイオン交換樹脂を精製対象非水液に接触させる精製手段を備える精製装置と、を有する。また、前処理用非水液の25℃における比誘電率は、精製対象非水液の25℃における比誘電率よりも大きく、かつ、前処理用非水液中の低減対象金属濃度は、5μg/L以下である。前処理手段および精製手段の詳細は、それぞれ上述した前処理工程および精製工程に係る説明と同様である。
 図1は、本発明の一実施形態に係る非水液の精製装置の構成を示す概略図である。図1は、前処理手段を備える前処理装置および精製手段を備える精製装置として、同一のイオン交換樹脂塔を有する精製装置の例を示す。まず、イオン交換樹脂塔1に充填されたイオン交換樹脂に、貯留槽2から、ポンプPを用いて前処理用非水液を下向流にて通液する。イオン交換樹脂に含まれていた水分を含む前処理用非水液の廃液は、貯留槽3に保管する。その後、貯留槽4内の精製対象非水液を、ポンプPを用いてイオン交換樹脂塔1の上部から下向流で通液し、精製を行う。通液初期の、精製対象非水液と前処理用非水液を含む混合液の廃液は貯留槽3に保管する。そして、精製後の精製対象非水液は、貯留槽5にて回収する。なお、貯留槽3に保管された混合液は、回収し、蒸留等を行った後再利用してもよいし、廃棄してもよい。イオン交換樹脂塔1の下部には、目板およびメッシュ6が備えられている。イオン交換樹脂は、前処理を行う前に、酸アルカリ水溶液(不図示)や純水または超純水(超純水ライン7)により洗浄してもよい。なお、酸アルカリ水溶液等で洗浄した後は、純水洗浄を行い、純水洗浄中に、イオン交換樹脂塔1の出口に設けられた導電率計または比抵抗計8により導電率または比抵抗値を確認し、酸アルカリ水溶液等が前処理用非水液と混合しないように管理する。なお、非水液の送液は、図1に示すように、ポンプPを用いて非水液ごとに行ってもよく、弁で切り替えることにより1つのポンプを使用して行ってもよい。
 図2は、(a)前処理手段を備える前処理装置と(b)精製手段を備える精製装置とを別に設けた非水液の精製装置の例を示す。まず、図2(a)に示す前処理装置において、イオン交換樹脂塔11に充填されたイオン交換樹脂に、貯留槽12から、ポンプPを用いて前処理用非水液を下向流にて通液する。イオン交換樹脂に含まれていた水分を含む前処理用非水液の廃液は、貯留槽13に保管する。イオン交換樹脂塔11の下部には、目板およびメッシュ14が備えられている。イオン交換樹脂は、前処理を行う前に、酸アルカリ水溶液(不図示)や純水または超純水(超純水ライン15)により洗浄してもよい。なお、酸アルカリ水溶液等で洗浄した後は、純水洗浄を行い、純水洗浄中に、イオン交換樹脂塔11の出口に設けられた導電率計または比抵抗計16により導電率または比抵抗値を確認し、酸アルカリ水溶液等が前処理用非水液と混合しないように管理する。次に、図2(b)に示す精製装置に備えられたイオン交換樹脂塔17へ、前処理を行ったイオン交換樹脂を充填する。続いて、イオン交換樹脂塔17へ、貯留槽18から、ポンプPを用いて精製対象非水液を通液し、精製を行う。通液初期の、精製対象非水液と前処理用非水液を含む混合液の廃液は貯留槽19に保管する。そして、イオン交換樹脂塔17の出口から溶出する精製後の精製対象非水液を貯留槽20に回収する。イオン交換樹脂塔17の出口には、導電率計または比抵抗計23が設置されている。なお、イオン交換樹脂の前処理と精製対象非水液の精製は必ずしも連続して行う必要はない。前処理と精製対象非水液の精製を連続して行わない場合は、前処理後のイオン交換樹脂を、水分や金属不純物と接触しないように保管すればよい。
 非水液の精製に用いた後のイオン交換樹脂を、酸またはアルカリ水溶液等の再生剤によって再生形へ変換し、再生して使用する場合、まず非水液を洗い流してから、酸またはアルカリ水溶液による再生を実施する。その際、置換効率の点から、非水液を、例えばメタノール洗浄により洗い流し、次いでメタノールを純水洗浄により洗い流すことが好ましい。再生剤により再生したイオン交換樹脂は、前記再生剤を純水により除去した後、再度、メタノール等による前処理を行うことにより、非水液の精製に再利用される。
 以下、実施例により、本発明を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
 水分濃度、金属濃度および酢酸濃度の測定方法は、以下のとおりである。
 (水分濃度)
 非水液中の水分濃度(質量ppm)は、カールフィッシャー容量法水分計(商品名:Aquacounter AQ-2200、平沼産業(株)製)を用いて、カールフィッシャー法により測定した。なお、ppmは対象非水液に対する水の質量比を表す。以下の例においては、同じ溶媒であっても水分濃度が異なる場合があるが、これは、ロットの差によるものである。
 (金属濃度)
 Agilent 8900 トリプル四重極ICP-MS(商品名、Agilent社製)を用いて金属濃度を測定した。
 (酢酸濃度)
 PGMEA中の酢酸濃度(質量ppm)は、キャピラリ電気泳動システム(商品名:Agilent 7100、大塚電子(株)製)を用いて測定した。
 <イオン交換樹脂>
 以下の例において用いた各イオン交換樹脂の詳細は、次のとおりである。
 ・AMBERLITE(登録商標) IRN99H(商品名、デュポン社製):ゲル型の強酸性陽イオン交換樹脂、架橋度:16%、樹脂の材質:スチレン-ジビニルベンゼン共重合体、イオン交換基の種類:スルホン酸基
 ・AMBERJET(登録商標) 1060H(商品名、オルガノ(株)製):ゲル型の強酸性陽イオン交換樹脂、架橋度:16%
 ・オルライト(登録商標) DS-1(商品名、オルガノ(株)製):ゲル型の強酸性陽イオン交換樹脂、樹脂の材質:スチレン-ジビニルベンゼン共重合体、イオン交換基の種類:スルホン酸基
 ・オルライト(登録商標) DS-2(商品名、オルガノ(株)製):ゲル型の強塩基性陰イオン交換樹脂、樹脂の材質:スチレン-ジビニルベンゼン共重合体、イオン交換基の種類:4級アンモニウム基
 ・オルライト(登録商標) DS-21(商品名、オルガノ(株)製):マクロポーラス型の弱酸性キレート樹脂、樹脂の材質:スチレン-ジビニルベンゼン共重合体、イオン交換基の種類:アミノリン酸基
[参考例1:イオン交換樹脂の種類による溶媒置換量の比較]
 PFAカラム(内径:16mm、高さ:300mm)に、水湿潤状態のイオン交換樹脂:DS-2、DS-1およびDS-21をそれぞれ50ml充填し、水分濃度30ppmのIPA(商品名:トクソーIPA(登録商標) SEグレード、(株)トクヤマ製)をSV=5h-1で供給し、BVが30となるまで供給を続けた。各BVにおけるカラム出口のIPA中の水分濃度を分析し、溶媒置換の効果を確認した。結果を表1および図3に示す。なお、水湿潤状態のイオン交換樹脂は、イオン交換樹脂を、25℃で相対湿度100%の大気に30分以上接触させることにより得られる。
 表1および図3に示すように、強塩基性陰イオン交換樹脂であるDS-2は、30BVで60ppm程度、強酸性陽イオン交換樹脂であるDS-1は、30BVで250ppmの水分濃度を示し、いずれも原液と同等レベルまで水分濃度が低減しなかった。一方で、弱酸性の陽イオン基を有するキレート樹脂であるDS-21は、15BVで原液と同等レベルまで水分濃度が低減した。この結果から、強酸性陽イオン交換樹脂および強塩基性陰イオン交換樹脂においては、水分子が強酸性陽イオン交換基または強塩基性陰イオン交換基と水和しているため、溶媒置換され難い状態になっていると考えられる。
Figure JPOXMLDOC01-appb-T000001
[参考例2:架橋度の異なる強酸性陽イオン交換樹脂による溶媒置換量の比較]
 PFAカラム(内径:16mm、高さ:300mm)に、水湿潤状態のAMBERJET 1060H(架橋度:16%)およびDS-1(一般的な架橋度を有する)をそれぞれ50ml充填し、水分濃度30ppmのIPA(商品名:トクソーIPA(登録商標) SEグレード、(株)トクヤマ製)をSV=5h-1で供給し、BVが30となるまで供給を続けた。各BVにおけるカラム出口のIPA中の水分濃度を分析し、溶媒置換の効果を確認した。結果を表2および図4に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、高架橋のゲル型強酸性陽イオン交換樹脂であるAMBERJET 1060Hは、30BVで563ppmの水分濃度であり、高架橋ではない一般的な架橋度を有するDS-1よりもさらに高い水分濃度を示した。高架橋のゲル型強酸性陽イオン交換樹脂は細孔が小さく、水和による影響に加え、水分と溶媒の入れ替わりが起こり難いために、一般的な架橋度を有する強酸性陽イオン交換樹脂よりも、さらに溶媒置換され難いものと考えられる。
[参考例3:前処理用メタノール中の低減対象金属濃度]
 前処理用非水液として用いるメタノール(ELグレード、富士フイルム和光純薬(株)製)中の低減対象金属である5種類の元素の濃度を測定した。表3に示すように、低減対象金属濃度は1μg/L以下であった。
Figure JPOXMLDOC01-appb-T000003
[比較例1:高架橋の強酸性陽イオン交換樹脂のPGMEA置換]
 PFAカラム(内径:16mm、高さ:300mm)に水湿潤状態のIRN99H 50mlを充填し、加水分解性溶媒である水分濃度45ppm、低減対象金属濃度1μg/L以下のPGMEA(商品名:PMシンナー、東京応化工業(株)製)をSV=5h-1で供給した。BVが30となるまで供給を続けて、各BVにおけるカラム出口のPGMEA中の水分濃度を分析し、溶媒置換の効果を確認した。結果を表4および図5に示す。表4に示すように、前処理工程を行わず、PGMEAのみを用いて溶媒置換した場合、20BVにおける水分濃度は約450ppmであった。
Figure JPOXMLDOC01-appb-T000004
 [実施例1:高架橋の強酸性陽イオン交換樹脂のメタノール-PGMEA置換]
 PFAカラム(内径:16mm、高さ:300mm)に水湿潤状態のIRN99H 50mlを充填した。次いで、前処理用非水液として、参考例3記載の水分濃度33ppm、低減対象金属濃度1μg/L以下のメタノール(ELグレード、富士フイルム和光純薬(株)製)をSV=5h-1で供給した。BVが12となるまでメタノールの供給を続け、各BVにおけるカラム出口のメタノール中の水分濃度を分析した。次いで、全非水液量(メタノールおよびPGMEAの合計量)12BVから16BVまで、水分濃度45ppm、低減対象金属濃度1μg/L以下のPGMEA(商品名:PMシンナー、東京応化工業(株)製)を供給して(図5に示すグラフ中、点線で囲った範囲)、各BVにおけるカラム出口のPGMEA中の水分濃度を分析した。結果を表5および図5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5および図5に示すように、実施例1では、前処理用非水液としてメタノールを12BV通液した時点で、水分濃度は、すでに精製対象のPGMEAと同等レベルまで低減した。その後、樹脂内部のメタノールを精製対象のPGMEAと置換するため、PGMEAを通液した。PGMEAの通液量は4BVであったが、3BV通液した時点で、メタノールは、ほぼ除去されていたと考えられるため、必要な全非水液通液量は15BVであると考えられる。このように、実施例1では、比較例1と比べて明らかに少ない非水液量で、樹脂内部の水分を非水液と置換することができた。
 なお、本実施例では、上記のとおりPGMEAを3BV通液することにより、メタノールとPGMEAを置換した。PGMEAとメタノールは容易に混合するため、メタノールの大部分はPGMEAによる溶媒置換で押し出され、除去されていると考えられる。しかしながら、わずかに残存するメタノールが不純物として問題となる場合は、適宜PGMEA中のメタノール濃度を分析し、メタノール濃度が目標濃度以下に低減するまでPGMEAを通液することが望ましい。
[比較例2:強塩基性陰イオン交換樹脂のIPA置換]
 PFAカラム(内径:16mm、高さ:300mm)に水湿潤状態のDS-2 50mlを充填した。次いで、水分濃度18ppm、低減対象金属濃度1μg/L以下のIPA(商品名:トクソーIPA(登録商標) SEグレード、(株)トクヤマ製)をSV=5h-1で供給した。BVが30となるまで供給を続け、各BVにおけるカラム出口のIPA中の水分濃度を分析した。結果を表6および図6に示す。表6に示すように、30BV通液後のカラム出口のIPA中の水分濃度は約60ppmであった。
Figure JPOXMLDOC01-appb-T000006
[実施例2:強塩基性陰イオン交換樹脂のメタノール-IPA置換]
 PFAカラム(内径:16mm、高さ:300mm)に水湿潤状態のDS-2 50mlを充填した。次いで、前処理用非水液として、参考例3記載の水分濃度31ppm、低減対象金属濃度1μg/L以下のメタノール(ELグレード、富士フイルム和光純薬(株)製)をSV=5h-1で供給した。BVが5となるまでメタノールの供給を続け、カラム出口のメタノール中の水分濃度を分析した。次いで、全非水液量(メタノールおよびIPAの合計量)が20BVとなるまで、水分濃度21ppm、低減対象金属濃度1μg/L以下のIPA(商品名:トクソーIPA(登録商標) SEグレード、(株)トクヤマ製)を供給し(図6に示すグラフ中、点線で囲った範囲)、各BVにおけるカラム出口のIPA中の水分濃度を分析した。結果を表7および図6に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、実施例2では、全非水液量が約15BVの時点で、カラム出口の水分濃度を、用いたIPAと同等レベルまで低減することができた。このように、前処理工程としてメタノールを通液することにより、比較例2よりも明らかに少ない非水液量で、樹脂内部の水分を非水液と置換することができた。
[比較例3:酢酸生成]
 高架橋のゲル型強酸性陽イオン交換樹脂であるAMBERJET 1060H 36mLを充填したPFAカラム(内径:16mm、高さ:300mm)に、比較例1と同様の手順でPGMEAを20BV通液した。20BV通液した時点のカラム出口のPGMEA中の水分濃度を測定したところ、1005ppmであった。この通液後の処理液を一晩保管し、上澄み液の酢酸濃度を分析したところ、表8に示すように、原液の酢酸濃度を上回っており、加水分解による酢酸の生成が確認できた。
[実施例3:酢酸生成]
 高架橋のゲル型強酸性陽イオン交換樹脂であるAMBERJET 1060H 36mLを充填したPFAカラム(内径:16mm、高さ:300mm)に、実施例1と同様の手順(ただし、PGMEAをさらに4BV通液)でメタノール(低減対象金属濃度1μg/L以下)およびPGMEA(低減対象金属濃度1μg/L以下)を20BV(全非水液量)通液した。全非水液量20BVを通液した時点のカラム出口のPGMEA中の水分濃度は58ppmであり、用いたPGMEAと同等レベルであった。この通液後の処理液を一晩保管し、上澄み液の酢酸濃度を分析したところ、表8に示すように、原液と同等レベルの値を示し、溶媒置換後は、酢酸がほとんど発生しないことを確認した。
Figure JPOXMLDOC01-appb-T000008
 高架橋のゲル型強酸性陽イオン交換樹脂は、同じ高架橋でもMR型樹脂と比べると細孔が小さく、樹脂表面から内部へのPGMEAの出入りが少ないと考えられる。よって、高架橋でないゲル型樹脂や、MR型、ポーラス型、ハイポ―ラス型樹脂と比べてPGMEAの加水分解による酢酸生成が起こりにくいと考えられる。
 前記のとおり、高架橋のゲル型強酸性陽イオン交換樹脂は、溶媒置換が困難な樹脂であったが、本発明に係る前処理用非水液を用いた前処理を行うことにより、少ない非水液量で水分を非水液へ置換することができ、さらに、PGMEAの加水分解を抑制した精製を行うことができた。
1:イオン交換樹脂塔
2:貯留槽(前処理用非水液)
3:貯留槽(廃液)
4:貯留槽(精製前の精製対象非水液)
5:貯留槽(精製後の精製対象非水液)
6:目板およびメッシュ
7:超純水ライン
8:導電率計または比抵抗計
P:ポンプ
11:イオン交換樹脂塔
12:貯留槽(前処理用非水液)
13:貯留槽(廃液)
14:目板およびメッシュ
15:超純水ライン
16:導電率計または比抵抗計
17:イオン交換樹脂塔
18:貯留槽(精製前の精製対象非水液)
19:貯留槽(廃液)
20:貯留槽(精製後の精製対象非水液)
21:目板およびメッシュ
22:超純水ライン
23:導電率計または比抵抗計
 

Claims (10)

  1.  イオン交換樹脂を用いた非水液の精製方法であって、
     イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる前処理工程と、
     該前処理工程後のイオン交換樹脂を精製対象非水液に接触させる精製工程と、
    を有し、
     前記前処理用非水液の25℃における比誘電率は、前記精製対象非水液の25℃における比誘電率よりも大きく、かつ、前記前処理用非水液中の低減対象金属濃度が5μg/L以下であることを特徴とする非水液の精製方法。
  2.  前記前処理用非水液が、水分濃度が100ppm以下のメタノールである、請求項1に記載の非水液の精製方法。
  3.  前記イオン交換樹脂が、少なくとも陽イオン交換樹脂を含む、請求項1または2に記載の非水液の精製方法。
  4.  前記陽イオン交換樹脂が、16%~24%の架橋度を有するゲル型の強酸性陽イオン交換樹脂である、請求項3に記載の非水液の精製方法。
  5.  前記精製対象非水液が、PGME、PGMEA、PGMEとPGMEAの混合物およびIPAから選択される、請求項1から4のいずれか1項に記載の非水液の精製方法。
  6.  イオン交換樹脂を用いた非水液の精製装置であって、
     イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる前処理手段を備える前処理装置と、
     前記前処理用非水液に接触させたイオン交換樹脂を精製対象非水液に接触させる精製手段を備える精製装置と、
    を有し、
     前記前処理用非水液の25℃における比誘電率は、前記精製対象非水液の25℃における比誘電率よりも大きく、かつ、前記前処理用非水液中の低減対象金属濃度が5μg/L以下であることを特徴とする非水液の精製装置。
  7.  前記前処理用非水液が、水分濃度が100ppm以下のメタノールである、請求項6に記載の非水液の精製装置。
  8.  前記イオン交換樹脂が、少なくとも陽イオン交換樹脂を含む、請求項6または7に記載の非水液の精製装置。
  9.  非水液の精製に使用されるイオン交換樹脂の前処理装置であって、
     イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる前処理手段を有し、
     該前処理手段において、前記前処理用非水液を前記イオン交換樹脂に対して1BV以上通液することを特徴とするイオン交換樹脂の前処理装置。
  10.  非水液の精製に使用されるイオン交換樹脂の製造方法であって、
     イオン交換樹脂を、25℃における比誘電率が20以上である前処理用非水液に接触させる前処理工程を有し、
     前記前処理用非水液の25℃における比誘電率は、精製対象非水液の25℃における比誘電率よりも大きく、かつ、前記前処理用非水液中の低減対象金属濃度が5μg/L以下であることを特徴とするイオン交換樹脂の製造方法。
     
PCT/JP2022/006401 2021-03-31 2022-02-17 非水液の精製方法および精製装置、ならびにイオン交換樹脂の製造方法および前処理装置 WO2022209391A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280026518.5A CN117098604A (zh) 2021-03-31 2022-02-17 非水液体的精制方法和精制装置、以及离子交换树脂的制造方法和预处理装置
KR1020237037468A KR20230163544A (ko) 2021-03-31 2022-02-17 비수액의 정제방법 및 정제장치, 그리고 이온교환수지의 제조방법 및 전처리장치
JP2023510630A JPWO2022209391A1 (ja) 2021-03-31 2022-02-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061045 2021-03-31
JP2021061045 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209391A1 true WO2022209391A1 (ja) 2022-10-06

Family

ID=83458810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006401 WO2022209391A1 (ja) 2021-03-31 2022-02-17 非水液の精製方法および精製装置、ならびにイオン交換樹脂の製造方法および前処理装置

Country Status (5)

Country Link
JP (1) JPWO2022209391A1 (ja)
KR (1) KR20230163544A (ja)
CN (1) CN117098604A (ja)
TW (1) TW202306646A (ja)
WO (1) WO2022209391A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065725A (ja) * 2016-10-20 2018-04-26 栗田工業株式会社 過酸化水素水溶液の精製方法および精製装置
JP2020195946A (ja) * 2019-05-31 2020-12-10 オルガノ株式会社 イオン交換樹脂の前処理装置およびイオン交換樹脂の前処理方法
JP2021001124A (ja) * 2019-06-20 2021-01-07 オルガノ株式会社 非水溶媒の精製方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001325A (en) 1996-11-26 1999-12-14 Fmc Corporation Process for removing acids from lithium salt solutions
JP2004181352A (ja) 2002-12-03 2004-07-02 Japan Organo Co Ltd 非水液状物の精製方法
JP2004181351A (ja) 2002-12-03 2004-07-02 Japan Organo Co Ltd 非水液状物の精製方法
JP2004249238A (ja) 2003-02-21 2004-09-09 Japan Organo Co Ltd 乾燥強酸性陽イオン交換樹脂およびその製造方法
JP7153580B2 (ja) 2019-01-30 2022-10-14 オルガノ株式会社 イオン交換樹脂の前処理装置およびイオン交換樹脂の前処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065725A (ja) * 2016-10-20 2018-04-26 栗田工業株式会社 過酸化水素水溶液の精製方法および精製装置
JP2020195946A (ja) * 2019-05-31 2020-12-10 オルガノ株式会社 イオン交換樹脂の前処理装置およびイオン交換樹脂の前処理方法
JP2021001124A (ja) * 2019-06-20 2021-01-07 オルガノ株式会社 非水溶媒の精製方法

Also Published As

Publication number Publication date
TW202306646A (zh) 2023-02-16
KR20230163544A (ko) 2023-11-30
JPWO2022209391A1 (ja) 2022-10-06
CN117098604A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
US9339766B2 (en) Method and apparatus for purifying alcohol
JPH11190907A (ja) フォトレジスト現像廃液の再生処理方法
EP1337470B1 (en) Process for recovering onium hydroxides from solutions containing onium compounds
KR101806823B1 (ko) 테트라알킬암모늄염 수용액의 제조 방법
JP2001215294A (ja) 復水脱塩装置
JP4467488B2 (ja) 復水脱塩方法及び復水脱塩装置
WO2022209391A1 (ja) 非水液の精製方法および精製装置、ならびにイオン交換樹脂の製造方法および前処理装置
JP5762863B2 (ja) アルコールの精製方法及び装置
KR20190085936A (ko) 초순수 제조 시스템 및 초순수 제조 방법
US20220234037A1 (en) Method for purifying organic solvent and apparatus for purifying organic solvent
US5874204A (en) Process for rejuvenation treatment of photoresist development waste
US2962438A (en) Ion exchange process for water purification
CN2360392Y (zh) 三室床水精处理器
TW202311217A (zh) 用於純化二醇醚之方法
JP4511500B2 (ja) 水素イオン形強酸性陽イオン交換樹脂
CN114072232A (zh) 纯化有机溶剂的方法
JP2003315496A (ja) イオン交換樹脂の再生方法及びそれに用いる再生剤の精製方法
JP3248602B2 (ja) 超純水の製造方法
JP7248090B1 (ja) 有機溶媒の不純物除去方法
JP3902799B2 (ja) 水素イオン形強酸性陽イオン交換樹脂
WO2004107354A1 (ja) 復水脱塩方法及び装置
WO2023062925A1 (ja) 酸性溶液の精製方法
CN116621402B (zh) 一种含磷抛光废酸的近零排放回收方法及系统
WO2022209233A1 (ja) 乾燥イオン交換樹脂の製造方法および製造装置、ならびに被処理液の精製方法および精製装置
JP7259919B1 (ja) 有機溶媒の不純物除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510630

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18284356

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280026518.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237037468

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779618

Country of ref document: EP

Kind code of ref document: A1