WO2023100354A1 - 部品実装機及び基板の製造方法 - Google Patents

部品実装機及び基板の製造方法 Download PDF

Info

Publication number
WO2023100354A1
WO2023100354A1 PCT/JP2021/044488 JP2021044488W WO2023100354A1 WO 2023100354 A1 WO2023100354 A1 WO 2023100354A1 JP 2021044488 W JP2021044488 W JP 2021044488W WO 2023100354 A1 WO2023100354 A1 WO 2023100354A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
power
motor
power supply
housing
Prior art date
Application number
PCT/JP2021/044488
Other languages
English (en)
French (fr)
Inventor
晋吾 藤村
俊宏 児玉
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/044488 priority Critical patent/WO2023100354A1/ja
Publication of WO2023100354A1 publication Critical patent/WO2023100354A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/54Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting two or more dynamo-electric motors
    • H02P1/58Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting two or more dynamo-electric motors sequentially
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components

Definitions

  • the present disclosure relates to technology for controlling driving of a plurality of motor-driven fans provided in a component mounter.
  • Patent Document 1 when starting to energize a plurality of DC motors from a single DC power supply, the energization is sequentially started with a time difference, so that the large current energization operation at the time of starting does not occur repeatedly. Apparatus is described for doing so.
  • An object of the present disclosure is to provide a technique that enables start-up while suppressing the amount of current supplied to a plurality of motor-driven fans provided in a component mounter.
  • the component mounter of the present disclosure includes a housing, a plurality of motor-driven fans provided in the housing for discharging heat inside the housing to the outside, and a plurality of motor-driven fans. a power supply for supplying power to the fan, and a control section for controlling the power supply so that the power is supplied while shifting the start timing by a predetermined time when starting power supply from the power supply to the plurality of motor-driven fans.
  • FIG. 1 is a perspective view of a component mounter of this embodiment
  • FIG. 1 is a top view of a component mounter of this embodiment
  • FIG. It is an external appearance perspective view of a beam member.
  • 4 is an external perspective view of a head and a beam member
  • FIG. 3 is an external perspective view of a Y-axis moving device and a Y-axis cooling device
  • FIG. 2 is a connection electric circuit diagram of a plurality of exhaust fans provided in the component mounter of FIG. 1
  • FIG. 2 is a block diagram simply showing a control configuration of the component mounter of FIG. 1
  • FIG. FIG. 8 is a flow chart showing the procedure of exhaust fan control processing executed by the control device of FIG. 7, particularly by the CPU
  • FIG. FIG. 4 is a diagram showing changes in current flowing through a DC motor of an exhaust fan when the exhaust fan is started.
  • FIG. 1 is a perspective view of a component mounter 10 of this embodiment
  • FIG. 2 is a top view of the component mounter 10 of this embodiment.
  • the horizontal direction is the X-axis (second axis) direction
  • the front-rear direction is the Y-axis (first axis) direction
  • the vertical direction is the Z-axis direction.
  • the directions in the other figures are oriented similarly to the directions shown in FIG.
  • the component mounter 10 of this embodiment picks up components supplied from the feeder F and mounts them on the board S, as shown in FIGS.
  • This component mounter 10 includes a base 12, a substrate transfer device 70 (see FIG. 7), first and second heads 20a and 20b, first and second beam members 21a and 21b, first and second It comprises two X-axis moving devices 30a, 30b and first and second Y-axis moving devices 50a, 50b. These are housed in the housing 11 .
  • Belt-shaped support bases 13 extending in the front-rear direction are provided on both the left and right sides of the upper stage of the base 12 . Further, the housing 11 also accommodates a control device 90 (see FIG. 7) that controls the entire mounter 10 .
  • An operation panel 14 that can be operated by an operator and can display various information is installed on the front surface of the housing 11 .
  • the first head 20a and the second head 20b may be simply referred to as the head 20 in some cases.
  • the first beam member 21a and the second beam member 21b may be simply referred to as beam members 21 in some cases.
  • the first X-axis moving device 30 a and the second X-axis moving device 30 b may be simply referred to as the X-axis moving device 30 .
  • the first Y-axis moving device 50 a and the second Y-axis moving device 50 b may be simply referred to as the Y-axis moving device 50 .
  • the substrate transport device 70 has a pair of front and rear conveyor belts, and a motor that circulates the conveyor belts.
  • the substrate conveying device 70 conveys the substrate S on the conveyor belt from left to right by driving the conveyor belt with a motor.
  • the first and second heads 20a and 20b have nozzles for picking up components. As shown in FIGS. 1 and 2, the first head 20a is supported by a first beam member 21a so as to be movable left and right (X-axis). The second head 20b is supported by the second beam member 21b so as to be movable left and right (X-axis).
  • the first and second beam members 21a and 21b are long members extending left and right (X-axis), and are arranged parallel to each other and shared by a pair of left and right Y-axis linear guides 51. (Guide rails) and can move back and forth (Y-axis) along the pair of Y-axis linear guides 51 .
  • the first and second beam members 21a and 21b are formed in the shape of a square cylinder, and on the side surfaces facing each other, a pair of upper and lower X-axis linear guides extending in parallel to each other in the left and right direction are provided. 31 (guide rail) is joined.
  • the pair of upper and lower X-axis linear guides 31 are joined to the beam member 21 by, for example, a combination of adhesion and screw joint or pin joint.
  • Y-axis block members 22 are fixed to both ends of the beam member 21, and the beam member 21 moves on Y-axis linear guides 51 corresponding to the respective Y-axis block members 22 at both ends of the beam member 21. , move forward and backward (Y-axis).
  • the first X-axis moving device 30a moves the first head 20a left and right (X-axis).
  • the second X-axis moving device 30b moves the second head 20b left and right (X-axis).
  • the first and second X-axis moving devices 30a and 30b include the above-described pair of upper and lower X-axis linear guides 31, the X-axis linear motor 32, and a plurality of It has four (four) X-axis guide nuts 36 , an X-axis linear scale 38 , and an X-axis cooling device 40 .
  • the X-axis linear motor 32 of the first X-axis moving device 30a is supplied with power through a first X-axis power cable supported by a first X-axis cableveyor (cableveyor is a registered trademark) 16a.
  • first X-axis cableveyor (cableveyor is a registered trademark) 16a.
  • the first X-axis cable bearer 16a extends to the left and right (X-axis) and has one end fixed to the first beam member 21a so as to follow the left and right movement of the first head 20a, and the other end to the first head 20a.
  • the X-axis linear motor 32 of the second X-axis moving device 30b operates by being supplied with power through the second X-axis power cable supported by the second X-axis cable bear 16b.
  • the second X-axis cable bearer 16b extends to the left and right (X-axis) and has one end fixed to the second beam member 21b so as to follow the left and right movement of the second head 20b, and the other end to the second head 20b. fixed to
  • the X-axis linear motor 32 is arranged so as to face the X-axis stator 33 attached to the side surface of the beam member 21 with a predetermined gap in the front-rear direction. It is configured as a flat linear motor having an X-axis mover 34 .
  • the X-axis stator 33 is arranged between a pair of upper and lower X-axis linear guides 31 on the side surface of the beam member 21 so that the polarities of the N pole and S pole are alternately different along the X-axis linear guide 31. It has multiple permanent magnets.
  • the X-axis mover 34 includes 3 ⁇ n (n is a natural number, for example, 3) cores formed by laminating electromagnetic steel sheets, and 3 ⁇ n coils wound around the corresponding cores. , have The X-axis mover 34 is supported by X-axis guide nuts 36 arranged on a pair of upper and lower X-axis linear guides 31, respectively. axis). As shown in FIG. 3, in this embodiment, two X-axis guide nuts 36 are arranged on each of the pair of upper and lower X-axis linear guides 31, and the X-axis mover 34 has four X-axis guide nuts 36 in total. supported by
  • an X-axis cooling device 40 is interposed, as shown in FIG.
  • the X-axis cooling device 40 dissipates the heat generated by energizing the coil of the X-axis mover 34 by heat exchange with air.
  • the first Y-axis moving device 50a moves the first beam member 21a forward and backward (Y-axis).
  • the second Y-axis moving device 50b moves the second beam member 21b back and forth (Y-axis).
  • the first and second Y-axis moving devices 50a and 50b include a pair of left and right Y-axis linear guides 51, Y-axis linear motors 52 provided on each side, A plurality of Y-axis guide nuts 56 are slidably attached to a pair of left and right Y-axis linear guides 51 and support the Y-axis block member 22 , and a Y-axis cooling device 60 .
  • the left and right Y-axis linear motors 52 of the first Y-axis moving device 50a operate by being supplied with power via the first Y-axis power cable supported by the first Y-axis cable bear 17a.
  • the first Y-axis cable bearer 17 a is installed above the right Y-axis linear guide 51 of the pair of left and right Y-axis linear guides 51 .
  • the first Y-axis cable bear 17a extends in the front-rear direction and has one end arranged substantially in the center in the front-rear direction so as to follow the front-rear movement of the first beam member 21a, and is connected to the first Y-axis power cable.
  • the other end is fixed to the Y-axis block member 22 on the right side of the first beam member 21a.
  • the first Y-axis power cable extends from the right Y-axis block member 22 through the inside of the first beam member 21 a to the left Y-axis block member 22 , and is fixed to the right Y-axis block member 22 .
  • Electric power is supplied to the Y-axis linear motor 52 (Y-axis mover 54) and the left Y-axis linear motor 52 (Y-axis mover 54) fixed to the left Y-axis block member 22, respectively.
  • the left and right Y-axis linear motors 52 of the second Y-axis moving device 50b operate by being supplied with power via the second Y-axis power cable supported by the second Y-axis cable bear 17b.
  • the second Y-axis cable bearer 17 b is installed above the left Y-axis linear guide 51 of the pair of left and right Y-axis linear guides 51 .
  • the second Y-axis cable bear 17b extends in the front-rear direction and has one end disposed substantially in the front-rear direction so as to follow the front-rear movement of the second beam member 21b, and is connected to the second Y-axis power cable.
  • the other end is fixed to the Y-axis block member 22 on the left side of the second beam member 21b.
  • the second Y-axis power cable extends from the left Y-axis block member 22 through the inside of the second beam member 21b to the right Y-axis block member 22, and is fixed to the left Y-axis block member 22.
  • Power is supplied to the Y-axis linear motor 52 (Y-axis mover 54) and the right Y-axis linear motor 52 (Y-axis mover 54) fixed to the right Y-axis block member 22, respectively.
  • the first Y-axis cable bearer 17a is arranged on the left side
  • the second Y-axis cable bearer 17b is arranged on the right side.
  • a pair of left and right Y-axis linear guides 51 are arranged to extend forward and backward on the upper surfaces of the left and right support bases 13, as shown in FIG.
  • the Y-axis linear motor 52 is opposed to a Y-axis stator 53 fixed to the support base 13 so as to extend forward and backward, with a predetermined space therebetween. and a Y-axis mover 54 fixed to the Y-axis block member 22 so as to form a flat linear motor.
  • the Y-axis stator 53 has a plurality of permanent magnets arranged horizontally along the Y-axis linear guide 51 on the same plane as the Y-axis linear guide 51 so that the polarities of N poles and S poles are alternately different. .
  • the permanent magnets of the Y-axis stator 53 and the permanent magnets of the X-axis stator 33 are used in common.
  • the Y-axis mover 54 includes 3 ⁇ m (m is a natural number, for example, value 5) cores formed by laminating electromagnetic steel sheets, and 3 ⁇ m coils wound around the corresponding cores. , have The Y-axis mover 54 moves back and forth (Y-axis) by applying a three-phase alternating current to 3 ⁇ m coils.
  • exhaust fans 15i to 15k are installed at the upper four corners of the housing 11, respectively.
  • Each of the exhaust fans 15i to 15k discharges the air inside the machine including the air discharged from each X-axis cooling device 40 and each Y-axis cooling device 60 to the outside of the machine.
  • seven exhaust fans 15a to 15g are installed on both the left and right sides of the upper stage of the base 12. Each of the exhaust fans 15a to 15g discharges the air inside the machine to the outside of the machine.
  • FIG. 6 shows a connection electric circuit diagram of the exhaust fans 15a to 15k.
  • the eleven exhaust fans 15a to 15k are divided into three groups of first to third groups G1 to G3 in this embodiment.
  • Four exhaust fans 15a to 15d belong to the first group G1
  • three exhaust fans 15e to 15g belong to the second group G2
  • four exhaust fans 15e to 15g belong to the third group G3.
  • Exhaust fans 15h to 15k belong.
  • a power supply voltage of 24 V is supplied from the AC/DC power supply 80 via SW1 to the exhaust fans 15a to 15d belonging to the first group G1.
  • the exhaust fans 15e to 15g belonging to the second group G2 are supplied with a power supply voltage of 24V from the AC/DC power supply 81 via SW2.
  • the exhaust fans 15h to 15k belonging to the third group G3 are supplied with a power supply voltage of 24V from the AC/DC power supply 81 via SW3. Therefore, the AC/DC power supply 81 supplies a power supply voltage of 24 V to each of the exhaust fans 15e to 15g and the exhaust fans 15h to 15k belonging to the second group G2 and the third group G3.
  • An AC voltage of 200 to 230V ⁇ 10V (commercial AC voltage) is supplied to the AC/DC power supply 80, converted to a DC voltage of 24V, and output.
  • an AC voltage of 200 to 230V ⁇ 10V is also supplied to the AC/DC power supply 81, converted to a DC voltage of 24V, and output to two systems.
  • SW1 to SW3 are configured so that switching from OFF to ON and switching from ON to OFF can be performed independently. This switching control is performed by the SW controller 85 shown in FIG. 7, which will be described next.
  • the control device 90 is configured as a microprocessor centered around a CPU 91, and in addition to the CPU 91, it also includes a ROM 92, an HDD 93, a RAM 94, an input/output interface 95, and the like. These are connected via a bus 96 .
  • the control device 90 is connected to the substrate transfer device 70, the head 20, the X-axis moving device 30, the Y-axis moving device 50 and the SW controller 85 via an input/output interface 95, and exchanges various signals.
  • the SW controller 85 performs ON/OFF control of each of the SW1 to SW3 in accordance with instructions from the CPU 91 .
  • FIG. 8 shows the procedure of exhaust fan control processing executed by the control device 90, particularly the CPU 91.
  • the exhaust fan control process is started when a power switch (not shown) of the mounter 10 is turned on. Henceforth, in description of the procedure of each process, a step is described with "S".
  • the CPU 91 first instructs the SW controller 85 to switch SW1 from OFF to ON (S10). In response to this, the SW controller 85 switches SW1 from off to on. When the switch SW1 is turned on, the exhaust fans 15a to 15d belonging to the first group G1 are supplied with the power supply voltage of 24V from the AC/DC power supply 80 substantially at the same time.
  • the CPU 91 instructs the SW controller 85 to switch SW2 from OFF to ON (S12).
  • the SW controller 85 switches SW2 from off to on.
  • the power supply voltage of 24V is supplied from the AC/DC power supply 81 to the exhaust fans 15e to 15g belonging to the second group G2 at substantially the same time.
  • FIG. 9 shows changes in the current flowing through the DC motor (not shown) of the exhaust fan 15e when one of the exhaust fans 15a to 15k, for example, the exhaust fan 15e, is started by supplying a voltage of 24V. shows an example.
  • the exhaust fans 15a to 15k have the same characteristics. will show a current transition similar to the current transition of .
  • time Tb is the time between time Ta and time Tc, as shown in FIG. That is, the time Tb is the time before the peak current is exceeded and the steady current is reached.
  • the CPU 91 waits until the time Tb has elapsed (S14). is switched from off to on (S16). In response to this, the SW controller 85 switches SW3 from OFF to ON.
  • SW3 When SW3 is turned on, the power supply voltage of 24V is supplied from the AC/DC power supply 81 to the exhaust fans 15h to 15k belonging to the third group G3 substantially at the same time. Therefore, when the current flowing through the DC motors of the exhaust fans 15e to 15g belonging to the second group G2 starts to decay from the peak current, 24V is applied to the DC motors of the exhaust fans 15h to 15k belonging to the third group G3. Power supply voltage is supplied.
  • the time Tb differs depending on the model adopted as the exhaust fans 15a to 15k, and cannot be fixedly determined, so it is determined by experiments or the like. Also, the closer the time Tb is to the time Ta, the shorter the startup time of the exhaust fans 15h to 15k belonging to the third group G3, but the DC motors of the exhaust fans 15e to 15g belonging to the second group G2. Since the exhaust fans 15h to 15k belonging to the third group G3 are activated when the current flowing through is closer to the peak current, it is necessary to use an AC/DC power supply 81 with a larger capacity.
  • the AC/DC power supply 80 supplies the power supply voltage only to the exhaust fans belonging to one group.
  • the AC/DC power supply 80 employs a power supply with a capacity that allows this.
  • the component mounter 10 of the present embodiment includes a housing 11, a plurality of exhaust fans 15e to 15k provided in the housing 11 for discharging heat inside the housing 11 to the outside, An AC/DC power supply 81 that supplies power to each of the plurality of exhaust fans 15e to 15k, and when starting power supply from the AC/DC power supply 81 to the plurality of exhaust fans 15e to 15k, the start timing is set for a predetermined time. and a CPU 91 that controls to supply power while shifting.
  • the component mounter 10 of the present embodiment when power supply from the AC/DC power supply 81 to the plurality of exhaust fans 15e to 15k is started, power is supplied while shifting the start timing by a predetermined time. Therefore, it is possible to start up while suppressing the amount of electric current supplied to the plurality of exhaust fans 15e to 15k provided in the component mounter 10. FIG. As a result, the capacity of the AC/DC power supply 81 can be suppressed, so that it is possible to reduce the cost and save the installation space.
  • the exhaust fans 15e to 15k are examples of “motor driven fans”.
  • the AC/DC power supply 81 is an example of "power supply”.
  • CPU91 is an example of a "control part.”
  • the predetermined time is a time Tb including an elapsed time Ta from the start of power supply to the exhaust fan 15e to which power is to be supplied among the plurality of exhaust fans 15e to 15k until the peak current is generated.
  • the plurality of exhaust fans 15e to 15k are divided into a plurality of groups G2 and G3, and the CPU 91 controls the supply while shifting the start timing by a predetermined time for each of the divided groups G2 and G3.
  • the CPU 91 controls the supply while shifting the start timing by a predetermined time for each of the divided groups G2 and G3.
  • Each of the plurality of exhaust fans 15e to 15k has a DC motor and drives the fan by the DC motor, and the AC/DC power supply 81 converts commercial AC voltage into DC voltage and supplies power. DC converter.
  • the AC/DC power supply 80 adopts one system output, and the AC/DC power supply 81 adopts two system output, but the AC/DC power supply is not limited to this. 80 may also adopt one that outputs two systems. Also, the number of output signals is not limited to two, and three or more outputs may be employed.
  • the power supply voltage is supplied to the exhaust fans in the group substantially at the same time.
  • the predetermined time to be shifted for each group may be different from the predetermined time to be shifted within the group.
  • the predetermined time to be shifted within the group is made shorter than the predetermined time to be shifted for each group.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

部品実装機10は、筐体11と、筐体11内に設けられ、筐体11内の熱を外部に排出する複数個の排気ファン15e~15kと、複数個の排気ファン15e~15kのそれぞれに電力供給するAC/DC電源81と、AC/DC電源81から複数個の排気ファン15e~15kに電力供給を開始するときに、その開始タイミングを所定時間ずらしながら電力供給して行くように制御するCPU91と、を備えている。

Description

部品実装機及び基板の製造方法
 本開示は、部品実装機に設けられた複数個のモータ駆動ファンの駆動を制御する技術に関するものである。
 特許文献1には、単一の直流電源から複数個の直流モータに通電を開始するときに、時間差を設けて順次通電を開始するようにし、起動時の大電流通電動作が重複して生じないようにした装置が記載されている。
特開昭58-218881号公報
 しかし、特許文献1に記載の装置では、時間差が明確に特定されていないので、どの位の時間差で順次通電を開始するかは不明である。また、特許文献1の実施例には、複数個の直流モータをコンピュータの空冷用ファンモータ群に適用した例が記載されているが、部品実装機のモータ駆動ファンに適用した例は記載されていない。
 本開示は、部品実装機に設けられた複数個のモータ駆動ファンへの電流供給量を抑制しつつ起動を開始させることが可能となる技術を提供することを目的とする。
 上記目的を達成するため、本開示の部品実装機は、筐体と、筐体内に設けられ、筐体内の熱を外部に排出する複数個のモータ駆動ファンと、複数個のモータ駆動ファンのそれぞれに電力供給する電源と、電源から複数個のモータ駆動ファンに電力供給を開始するときに、その開始タイミングを所定時間ずらしながら電力供給して行くように制御する制御部と、を備えている。
 本開示によれば、部品実装機に設けられた複数個のモータ駆動ファンへの電流供給量を抑制しつつ起動を開始させることが可能となる。
本実施形態の部品実装機の斜視図である。 本実施形態の部品実装機の上面図である。 ビーム部材の外観斜視図である。 ヘッド及びビーム部材の外観斜視図である。 Y軸移動装置およびY軸冷却装置の外観斜視図である。 図1の部品実装機に設けられた複数の排気ファンの接続電気回路図である。 図1の部品実装機の制御構成を簡易的に示したブロック図である。 図7の制御装置、特にCPUが実行する排気ファン制御処理の手順を示すフローチャートである。 排気ファンの起動時に排気ファンの直流モータに流れる電流の推移を示す図である。
 以下、本開示の実施の形態を図面に基づいて詳細に説明する。図1は、本実施形態の部品実装機10の斜視図であり、図2は、本実施形態の部品実装機10の上面図である。なお、図1中、左右方向をX軸(第2軸)方向とし、前後方向をY軸(第1軸)方向とし、上下方向をZ軸方向とした。他の図の方向も、図1に示す方向と同様に方向付けられている。
 本実施形態の部品実装機10は、図1,図2に示すように、フィーダFから供給される部品をピックアップして基板S上に実装するものである。この部品実装機10は、基台12と、基板搬送装置70(図7参照)と、第1及び第2ヘッド20a,20bと、第1及び第2ビーム部材21a、21bと、第1及び第2X軸移動装置30a,30bと、第1及び第2Y軸移動装置50a,50bと、を備える。これらは、筐体11内に収容されている。基台12上段における左右両側には、前後に延在する帯状の支持台13が設けられている。さらに筐体11内には、部品実装機10全体を制御する制御装置90(図7参照)も収容されている。また、筐体11の前面には、作業者によって操作されると共に各種情報の表示が可能な操作パネル14が設置されている。なお、第1ヘッド20aと第2ヘッド20bとは、単にヘッド20と呼ぶ場合がある。第1ビーム部材21aと第2ビーム部材21bは、単にビーム部材21と呼ぶ場合がある。第1X軸移動装置30aと第2X軸移動装置30bは、単にX軸移動装置30と呼ぶ場合がある。第1Y軸移動装置50aと第2Y軸移動装置50bは、単にY軸移動装置50と呼ぶ場合がある。
 基板搬送装置70は、前後一対のコンベアベルトと、コンベアベルトを周回駆動するモータと、を有する。基板搬送装置70は、モータによりコンベアベルトを駆動することで、コンベアベルト上の基板Sを左から右へと搬送する。
 第1及び第2ヘッド20a,20bは、部品を吸着するノズルを有する。図1及び図2に示すように、第1ヘッド20aは、左右(X軸)に移動可能に第1ビーム部材21aに支持される。第2ヘッド20bは、左右(X軸)に移動可能に第2ビーム部材21bに支持される。
 第1及び第2ビーム部材21a,21b(ビーム部材21)は、左右(X軸)に延在する長尺部材であり、互いに平行に配置されると共に互いに共用する左右一対のY軸リニアガイド51(ガイドレール)に架け渡されて当該一対のY軸リニアガイド51に沿って前後(Y軸)に移動可能である。第1及び第2ビーム部材21a,21bは、図2~図4に示すように、四角筒状に形成され、互いに向かい合う側面には、左右に互いに平行に延在する上下一対のX軸リニアガイド31(ガイドレール)が接合されている。上下一対のX軸リニアガイド31は、例えば、接着とねじ接合やピン接合との併用によりビーム部材21に接合されている。また、ビーム部材21の両端部には、それぞれY軸ブロック部材22が固定され、ビーム部材21は、両端部において各Y軸ブロック部材22がそれぞれ対応するY軸リニアガイド51上を移動することにより、前後(Y軸)に移動する。
 第1X軸移動装置30aは、第1ヘッド20aを左右(X軸)に移動させるものである。第2X軸移動装置30bは、第2ヘッド20bを左右(X軸)に移動させるものである。第1及び第2X軸移動装置30a,30b(X軸移動装置30)は、図3及び図4に示すように、上述した上下一対のX軸リニアガイド31と、X軸リニアモータ32と、複数個(4個)のX軸ガイドナット36と、X軸リニアスケール38と、X軸冷却装置40と、を有する。
 図1に示すように、第1X軸移動装置30aのX軸リニアモータ32は、第1X軸ケーブルベア(ケーブルベアは登録商標)16aに支持された第1X軸電源ケーブルを介して電力の供給を受けて動作する。第1X軸ケーブルベア16aは、左右(X軸)に延在すると共に第1ヘッド20aの左右の移動に追従するように、一端が第1ビーム部材21aに固定され、他端が第1ヘッド20aに固定される。また、第2X軸移動装置30bのX軸リニアモータ32は、第2X軸ケーブルベア16bに支持された第2X軸電源ケーブルを介して電力の供給を受けて動作する。第2X軸ケーブルベア16bは、左右(X軸)に延在すると共に第2ヘッド20bの左右の移動に追従するように、一端が第2ビーム部材21bに固定され、他端が第2ヘッド20bに固定される。
 X軸リニアモータ32は、本実施形態では、ビーム部材21の側面に貼り付けられたX軸固定子33と、X軸固定子33と前後に所定の間隔をおいて対向するように配置されるX軸可動子34とを有するフラット形リニアモータとして構成される。X軸固定子33は、ビーム部材21の側面における上下一対のX軸リニアガイド31の間に、当該X軸リニアガイド31に沿ってN極、S極の極性が交互に異なるように配列された複数の永久磁石を有する。X軸可動子34は、それぞれ電磁鋼板を積層してなる3×n個(nは自然数であり、例えば値3)のコアと、対応するコアにそれぞれ巻回された3×n個のコイルと、を有する。X軸可動子34は、上下一対のX軸リニアガイド31にそれぞれ配置されたX軸ガイドナット36により支持されており、3×n個のコイルに三相交流電流を印加することにより左右(X軸)に移動する。図3に示すように、本実施形態では、X軸ガイドナット36は、上下一対のX軸リニアガイド31に2個ずつ配置され、X軸可動子34は、計4個のX軸ガイドナット36に支持される。
 また、ヘッド20とX軸可動子34との間には、図4に示すように、X軸冷却装置40が介在する。X軸冷却装置40は、X軸可動子34のコイルへの通電により発生した熱をエアとの熱交換により放熱するものである。
 第1Y軸移動装置50aは、第1ビーム部材21aを前後(Y軸)に移動させるものである。第2Y軸移動装置50bは、第2ビーム部材21bを前後(Y軸)に移動させるものである。第1及び第2Y軸移動装置50a,50b(Y軸移動装置50)は、図2に示すように、左右一対のY軸リニアガイド51と、左右にそれぞれ設けられたY軸リニアモータ52と、左右一対のY軸リニアガイド51にそれぞれ複数個ずつ摺動可能に装着されると共にY軸ブロック部材22を支持するY軸ガイドナット56と、Y軸冷却装置60と、を有する。
 図1に示すように、第1Y軸移動装置50aの左右のY軸リニアモータ52は、第1Y軸ケーブルベア17aに支持された第1Y軸電源ケーブルを介して電力の供給を受けて動作する。第1Y軸ケーブルベア17aは、左右一対のY軸リニアガイド51のうち右側のY軸リニアガイド51の上方に設置される。そして、第1Y軸ケーブルベア17aは、前後に延在すると共に第1ビーム部材21aの前後の移動に追従するように、一端が前後方向における略中央に配置されると共に第1Y軸電源ケーブルが接続される図示しない右側の電源ボックスに固定され、他端が第1ビーム部材21aの右側のY軸ブロック部材22に固定される。第1Y軸電源ケーブルは、右側のY軸ブロック部材22から第1ビーム部材21aの内部を通って左側のY軸ブロック部材22まで延びており、右側のY軸ブロック部材22に固定される右側のY軸リニアモータ52(Y軸可動子54)と左側のY軸ブロック部材22に固定される左側のY軸リニアモータ52(Y軸可動子54)とにそれぞれ電力を供給する。
 また、第2Y軸移動装置50bの左右のY軸リニアモータ52は、第2Y軸ケーブルベア17bに支持された第2Y軸電源ケーブルを介して電力の供給を受けて動作する。第2Y軸ケーブルベア17bは、左右一対のY軸リニアガイド51のうち左側のY軸リニアガイド51の上方に設置される。そして、第2Y軸ケーブルベア17bは、前後に延在すると共に第2ビーム部材21bの前後の移動に追従するように、一端が前後方向における略中央に配置されると共に第2Y軸電源ケーブルが接続される図示しない左側の電源ボックスに固定され、他端が第2ビーム部材21bの左側のY軸ブロック部材22に固定される。第2Y軸電源ケーブルは、左側のY軸ブロック部材22から第2ビーム部材21bの内部を通って右側のY軸ブロック部材22まで延びており、左側のY軸ブロック部材22に固定される左側のY軸リニアモータ52(Y軸可動子54)と右側のY軸ブロック部材22に固定される右側のY軸リニアモータ52(Y軸可動子54)とにそれぞれ電力を供給する。
 このように、本実施形態では、第1Y軸ケーブルベア17aを左側に、第2Y軸ケーブルベア17bを右側にそれぞれ配置しているため、左右一対のY軸リニアガイド51を共用する第1及び第2ヘッド20a,20bの移動に際して、第1Y軸ケーブルベア17aと第2Y軸ケーブルベア17bとが互いに干渉するのを防止することができる。
 左右一対のY軸リニアガイド51は、図2に示すように、左右の支持台13の上面に前後に延在するように配置されている。
 Y軸リニアモータ52は、図5に示すように、前後に延在するように支持台13に固定されるY軸固定子53と、Y軸固定子53と上下に所定の間隔をおいて対向するようにY軸ブロック部材22に固定されるY軸可動子54と、を有するフラット形リニアモータとして構成される。Y軸固定子53は、Y軸リニアガイド51と同一平面上に当該Y軸リニアガイド51に沿ってN極、S極の極性が交互に異なるように平置き配置された複数の永久磁石を有する。本実施形態では、Y軸固定子53の永久磁石は、X軸固定子33の永久磁石と共通のものが用いられている。部品の共通化によりコストを低減することができる。Y軸可動子54は、それぞれ電磁鋼板を積層してなる3×m個(mは自然数であり、例えば値5)のコアと、対応するコアにそれぞれ巻回された3×m個のコイルと、を有する。Y軸可動子54は、3×m個のコイルに三相交流電流を印加することにより前後(Y軸)に移動する。
 また、図1に示すように、筐体11の上部四隅には、それぞれ排気ファン15i~15kが設置されている。各排気ファン15i~15kは、各X軸冷却装置40や各Y軸冷却装置60から排出されたエアを含む機内のエアを機外へ排出する。
 さらに、基台12上段における左右両側には、7個の排気ファン15a~15gが設置されている。各排気ファン15a~15gは、機内のエアを機外へ排出する。
 図6は、排気ファン15a~15kの接続電気回路図を示している。図6に示すように、11個の排気ファン15a~15kは、本実施例では、第1~第3グループG1~G3の3つのグループに分けられている。そして、第1グループG1には、4個の排気ファン15a~15dが所属し、第2グループG2には、3個の排気ファン15e~15gが所属し、第3グループG3には、4個の排気ファン15h~15kが所属する。
 第1グループG1に所属する排気ファン15a~15dには、SW1を介してAC/DC電源80から24Vの電源電圧が供給される。第2グループG2に所属する排気ファン15e~15gには、SW2を介してAC/DC電源81から24Vの電源電圧が供給される。第3グループG3に所属する排気ファン15h~15kには、SW3を介してAC/DC電源81から24Vの電源電圧が供給される。したがって、AC/DC電源81は、第2グループG2と第3グループG3のそれぞれに所属する排気ファン15e~15gと排気ファン15h~15kに24Vずつ電源電圧を供給する。
 AC/DC電源80には、交流電圧200~230V±10V(商用交流電圧)が供給され、24Vの直流電圧に変換して出力する。同様に、AC/DC電源81にも、交流電圧200~230V±10Vが供給され、24Vの直流電圧に変換して2系統出力する。
 SW1~SW3は、それぞれ独立してオフからオンへの切替とオンからオフへの切替ができるように構成されている。この切替制御は、次に説明する図7のSWコントローラ85によってなされる。
 制御装置90は、図7に示すように、CPU91を中心とするマイクロプロセッサとして構成されており、CPU91の他に、ROM92やHDD93、RAM94、入出力インタフェース95などを備える。これらはバス96を介して接続されている。制御装置90は、入出力インタフェース95を介して、基板搬送装置70、ヘッド20、X軸移動装置30、Y軸移動装置50及びSWコントローラ85と接続され、各種信号のやりとりがなされる。SWコントローラ85は、CPU91からの指示に応じて、上記SW1~SW3それぞれのオン/オフ制御を行う。
 図8は、制御装置90、特にCPU91が実行する排気ファン制御処理の手順を示している。排気ファン制御処理は、部品実装機10の電源スイッチ(図示せず)がオンされたことを契機に開始される。以降、各処理の手順の説明において、ステップを「S」と表記する。
 図8において、まずCPU91は、SWコントローラ85に対して、SW1をオフからオンに切り替えるように指示する(S10)。これに応じてSWコントローラ85は、SW1をオフからオンに切り替える。SW1がオンされると、第1グループG1に所属する排気ファン15a~15dには、略同時にAC/DC電源80から24Vの電源電圧が供給される。
 次にCPU91は、SWコントローラ85に対して、SW2をオフからオンに切り替えるように指示する(S12)。これに応じてSWコントローラ85は、SW2をオフからオンに切り替える。SW2がオンされると、第2グループG2に所属する排気ファン15e~15gには、略同時にAC/DC電源81から24Vの電源電圧が供給される。
 図9は、排気ファン15a~15kのうちのいずれか1つ、例えば排気ファン15eに24Vの電圧を供給して起動させたときの排気ファン15eの直流モータ(図示せず)に流れる電流の推移の一例を示している。なお、本実施形態では、排気ファン15a~15kとして同じ特性のものを用いているので、他の排気ファン15a~15d,15f~15kも、排気ファン15eと同じ条件で起動させれば、図9の電流推移と同様の電流推移を示すことになる。
 図9において、時間“0”で排気ファン15eに24Vの電圧を供給すると、排気ファン15eの直流モータには、時間Ta(図示例では、略0.5s)でピーク電流(図示例では、略1.14A)が流れた後減衰し、時間Tc(図示例では、略1.5s)で定常電流(図示例では、略0.6A)となる。
 図8に戻り、次にCPU91は、時間Tb経過したか否かを判断する(S14)。ここで、時間Tbは、図9に示すように、時間Taと時間Tcとの間の時間である。つまり、時間Tbは、ピーク電流を超えかつ定常電流になる前の時間である。
 S14の判断において、時間Tb経過しない場合には(S14:NO)、時間Tb経過するまで待機し(S14)、時間Tb経過すると(S14:YES)、CPU91は、SWコントローラ85に対して、SW3をオフからオンに切り替えるように指示する(S16)。これに応じてSWコントローラ85は、SW3をオフからオンに切り替える。SW3がオンされると、第3グループG3に所属する排気ファン15h~15kには、略同時にAC/DC電源81から24Vの電源電圧が供給される。したがって、第2グループG2に所属する排気ファン15e~15gの各直流モータに流れる電流がピーク電流から減衰に向かうときに、第3グループG3に所属する排気ファン15h~15kの各直流モータに24Vの電源電圧が供給される。これにより、第2グループG2に所属する排気ファン15e~15gの各直流モータに流れる電流のピークと、第3グループG3に所属する排気ファン15h~15kの各直流モータに流れる電流のピークとが重ならないので、AC/DC電源81として、両電流のピークが重なる場合と比較して、容量の小さい電源を用いることができる。容量の小さい電源を用いると、容量の大きい電源を用いるときより、コストダウンと設置場所の省スペース化を図ることができる。
 なお、時間Tbは、排気ファン15a~15kとして採用した機種によって異なり、固定的には決められないので、実験等により決めることになる。また、時間Tbを時間Taに近づければ近づけるほど、第3グループG3に所属する排気ファン15h~15kの起動時間は短くなるが、第2グループG2に所属する排気ファン15e~15gの各直流モータに流れる電流がピーク電流により近い状態で、第3グループG3に所属する排気ファン15h~15kが起動するので、AC/DC電源81としてより容量の大きいものを用いる必要がある。これに対して、時間Tbを時間Tcに近づければ近づけるほど、第3グループG3に所属する排気ファン15h~15kの起動時間は長くなるが、第2グループG2に所属する排気ファン15e~15gの各直流モータに流れる電流が定常電流により近い状態で、第3グループG3に所属する排気ファン15h~15kが起動するので、AC/DC電源81としてより容量の小さいものを用いることができる。つまり、起動時間とAC/DC電源81の容量とは、トレードオフの関係となる。
 なお、本実施の形態では、AC/DC電源80は、1つのグループに所属する排気ファンについてのみ電源電圧を供給しているので、グループ内の排気ファン15a~15d同士では、ピーク電流は重なるものの、AC/DC電源80としては、それを許容する容量の電源を採用している。
 以上説明したように、本実施形態の部品実装機10は、筐体11と、筐体11内に設けられ、筐体11内の熱を外部に排出する複数個の排気ファン15e~15kと、複数個の排気ファン15e~15kのそれぞれに電力供給するAC/DC電源81と、AC/DC電源81から複数個の排気ファン15e~15kに電力供給を開始するときに、その開始タイミングを所定時間ずらしながら電力供給して行くように制御するCPU91と、を備えている。
 このように、本実施形態の部品実装機10では、AC/DC電源81から複数個の排気ファン15e~15kに電力供給を開始するときに、その開始タイミングを所定時間ずらしながら電力供給して行くので、部品実装機10に設けられた複数個の排気ファン15e~15kへの電流供給量を抑制しつつ起動を開始させることが可能となる。これにより、AC/DC電源81の容量を抑えることができるので、コストダウンと設置場所の省スペース化を図ることが可能となる。
 ちなみに、本実施形態において、排気ファン15e~15kは、「モータ駆動ファン」の一例である。AC/DC電源81は、「電源」の一例である。CPU91は、「制御部」の一例である。
 また、所定時間は、複数の排気ファン15e~15kのうち、電力供給対象の排気ファン15eに電力供給を開始してからピーク電流が発生するまでの経過時間Taを含む時間Tbである。これにより、時間Tbとして、ピーク電流から減衰に向かう時間をとることができるので、AC/DC電源81の容量を抑えつつ、後続する排気ファンの起動時間を短縮化することが可能になる。
 また、複数個の排気ファン15e~15kは、複数個のグループG2,G3に分割され、CPU91は、開始タイミングを所定時間ずらしながら供給して行く制御を、分割されたグループG2,G3毎に行い、1つのグループに属する排気ファン15e~15g,15h~15kが複数個ある場合には、そのグループに属する複数個の排気ファン15e~15g,15h~15kに同時的に電力供給を行う。これにより、複数個の排気ファン15e~15kを1つずつ開始タイミングを所定時間ずらしながら電源供給して行くより、複数個の排気ファン15e~15k全体の起動時間を短縮化することが可能となる。
 また、複数個の排気ファン15e~15kのそれぞれは、直流モータを有し、直流モータによりファンを駆動し、AC/DC電源81は、商用交流電圧を直流電圧に変換して電力供給するAC-DCコンバータである。
 なお、本発明は上記実施形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 (1)上記実施形態では、AC/DC電源80として、1系統出力するものを採用し、AC/DC電源81として、2系統出力するものを採用したが、これに限らず、AC/DC電源80も2系統出力するものを採用してもよい。また、2系統に限らず、3系統以上出力するものを採用してもよい。
 (2)上記実施形態では、グループ内の排気ファンには略同時に電源電圧を供給するようにしたが、これに限らず、グループ内の排気ファンでも、所定時間ずらしながら電源電圧を供給するようにしてもよい。この場合、グループ毎にずらす所定時間と、グループ内でずらす所定時間とを異ならせてもよい。異ならせる態様としては、グループ内でずらす所定時間をグループ毎にずらす所定時間より短くすることが考えられる。
 (3)上記実施形態では、第2グループG2に所属する排気ファンを排気ファン15e~15gの3個とし、第3グループG3に所属する排気ファンを排気ファン15h~15kの4個としたが、この数に意味がある訳ではない。もちろん、排気ファンの、例えば電流特性が異なれば、グループ毎に所属する排気ファンの個数に意味はあり得る。
 (4)上記実施形態では、本発明を部品実装機10に適用した一例を説明したが、本実施形態の部品実装機10、印刷機、印刷検査機及び部品外観検査等を含む対基板作業機に本発明を適用してもよい。対基板作業機にも、多くの排気ファンが設けられており、これらの排気ファンへの電流供給量を抑制しつつ起動を開始させたいという課題は共通するからである。
 10…部品実装機、11…筐体、15a~15k…排気ファン、80,81…AC/DC電源、85…SWコントローラ、90…制御装置、91…CPU。

Claims (6)

  1.  筐体と、
     前記筐体内に設けられ、前記筐体内の熱を外部に排出する複数個のモータと、
     前記複数個のモータのそれぞれに電力供給する電源と、
     前記電源から前記複数個のモータに電力供給を開始するときに、その開始タイミングを所定時間ずらしながら電力供給して行くように制御する制御部と、
    を備えた対基板作業機。
  2.  請求項1に記載の対基板作業機は、
     筐体と、
     前記筐体内に設けられ、前記筐体内の熱を外部に排出する複数個のモータ駆動ファンと、
     前記複数個のモータ駆動ファンのそれぞれに電力供給する電源と、
     前記電源から前記複数個のモータ駆動ファンに電力供給を開始するときに、その開始タイミングを所定時間ずらしながら電力供給して行くように制御する制御部と、
    を備えた部品実装機
    を含む。
  3.  前記所定時間は、前記複数のモータ駆動ファンのうち、電力供給対象のモータ駆動ファンに電力供給を開始してからピーク電流が発生するまでの経過時間を含む時間である、
    請求項2に記載の部品実装機。
  4.  前記複数個のモータ駆動ファンは、複数個のグループに分割され、
     前記制御部は、前記開始タイミングを前記所定時間ずらしながら供給して行く制御を、前記分割されたグループ毎に行い、1つのグループに属するモータ駆動ファンが複数個ある場合には、そのグループに属する複数個のモータ駆動ファンに同時的に電力供給を行う、
    請求項2又は3に記載の部品実装機。
  5.  前記複数個のモータ駆動ファンのそれぞれは、直流モータを有し、前記直流モータによりファンを駆動し、
     前記電源は、商用交流電圧を直流電圧に変換して電力供給するAC-DCコンバータである、
    請求項2~4のいずれか1項に記載の部品実装機。
  6.  筐体と、前記筐体内に設けられ、前記筐体内の熱を外部に排出する複数個のモータと、前記複数個のモータのそれぞれに電力を供給する電源と、を備え、前記電源から前記複数個のモータに電力供給を開始するときに、その開始タイミングを所定時間ずらしながら電力供給して行くように制御する対基板作業機による基板の製造方法。
PCT/JP2021/044488 2021-12-03 2021-12-03 部品実装機及び基板の製造方法 WO2023100354A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044488 WO2023100354A1 (ja) 2021-12-03 2021-12-03 部品実装機及び基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/044488 WO2023100354A1 (ja) 2021-12-03 2021-12-03 部品実装機及び基板の製造方法

Publications (1)

Publication Number Publication Date
WO2023100354A1 true WO2023100354A1 (ja) 2023-06-08

Family

ID=86611697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044488 WO2023100354A1 (ja) 2021-12-03 2021-12-03 部品実装機及び基板の製造方法

Country Status (1)

Country Link
WO (1) WO2023100354A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157378A (ja) * 1982-03-11 1983-09-19 Toshiba Corp 電動機の始動制御方法
JPS58218881A (ja) * 1982-06-14 1983-12-20 Matsushita Electric Ind Co Ltd 複数個の直流モ−タを有する装置
JP2002016387A (ja) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd 部品実装機の冷却方法及び装置
JP2010206903A (ja) * 2009-03-02 2010-09-16 Fujifilm Corp ファン・モータ結線回路および液滴吐出装置
JP2018157003A (ja) * 2017-03-16 2018-10-04 ヤマハ発動機株式会社 基板処理装置、基板処理方法、基板処理プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157378A (ja) * 1982-03-11 1983-09-19 Toshiba Corp 電動機の始動制御方法
JPS58218881A (ja) * 1982-06-14 1983-12-20 Matsushita Electric Ind Co Ltd 複数個の直流モ−タを有する装置
JP2002016387A (ja) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd 部品実装機の冷却方法及び装置
JP2010206903A (ja) * 2009-03-02 2010-09-16 Fujifilm Corp ファン・モータ結線回路および液滴吐出装置
JP2018157003A (ja) * 2017-03-16 2018-10-04 ヤマハ発動機株式会社 基板処理装置、基板処理方法、基板処理プログラム

Similar Documents

Publication Publication Date Title
CA2343247A1 (en) Method for controlling a power drive system
KR20070056241A (ko) 복수의 테이블을 가진 리니어 가이드 장치
JP3678696B2 (ja) 表面実装装置及びその方法
EP2874482B1 (en) Contactless electrical power supply device
KR20140085587A (ko) 리니어 모터 및 리니어 반송 장치
JP5136875B2 (ja) リニアモータ用通電制御回路
WO2023100354A1 (ja) 部品実装機及び基板の製造方法
ATE294912T1 (de) Antrieb für eine tür
CA2557315A1 (en) Method and apparatus for reducing the energy consumption of elevators equipped with scr drives
JP5154425B2 (ja) 複数台交流リニアモータの制御方法、複数台交流リニアモータ駆動装置、及び複数台交流リニアモータシステム
ATE405018T1 (de) Energiesystem mit einem von einem motor angetriebenen generator
US5905624A (en) Electromagnet control system having printed circuit board variable voltage selection array
US20050127860A1 (en) Bridge for driving a direct-current or alternating current load
JP4176850B2 (ja) 電動機の直、並列混合転換駆動システム
CN102185557A (zh) 一种单相感应电机调速控制系统
JP2004168487A (ja) エレベータ
US20210067067A1 (en) System and method for controlling a linear motor having multiple sections with a single variable frequency drive
WO2022249229A1 (ja) 部品実装機
JPS6149620A (ja) 電源装置
JPH0699327A (ja) X−yテーブルの駆動装置
EP1440501B1 (en) Motor control circuit and associated full bridge switching arrangement
JP2858453B2 (ja) 電子部品実装装置
JP2509080B2 (ja) 電子部品供給装置
CN117691820B (zh) 一种线性电机系统
KR20090038725A (ko) Bldc 전동기 제어를 위한 pwm 스위칭 방법과 이를위한 시스템 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023564700

Country of ref document: JP