WO2023098474A1 - 电解除氧装置以及具有其的冰箱 - Google Patents

电解除氧装置以及具有其的冰箱 Download PDF

Info

Publication number
WO2023098474A1
WO2023098474A1 PCT/CN2022/132084 CN2022132084W WO2023098474A1 WO 2023098474 A1 WO2023098474 A1 WO 2023098474A1 CN 2022132084 W CN2022132084 W CN 2022132084W WO 2023098474 A1 WO2023098474 A1 WO 2023098474A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
electrolytic
separation chamber
separation
Prior art date
Application number
PCT/CN2022/132084
Other languages
English (en)
French (fr)
Inventor
张育宁
费斌
黄璐璐
苗建林
刘浩泉
姬立胜
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023098474A1 publication Critical patent/WO2023098474A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/102Oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to fresh-keeping technology, in particular to an electrolytic deoxidizer and a refrigerator with the same.
  • An electro-deoxidizer is an electrochemical reaction device used to reduce oxygen inside a refrigerator through an electrochemical reaction.
  • the process of processing oxygen requires the participation of electrolyte, and at the same time generates gas, and the generated gas needs to be discharged to the external environment.
  • the electrolyte During the reaction process, due to the generation of a large amount of heat, the electrolyte will be heated and evaporated, which may cause the electrolyte vapor to be carried in the gas discharged from the electrolytic deoxygenation device. Most electrolytes are acidic or alkaline solutions, which are corrosive. If the gas generated during the treatment process is discharged directly into the air without treatment, it may cause air pollution and endanger life and health.
  • An object of the present invention is to overcome at least one technical defect in the prior art, and provide an electrolytic deoxygenation device and a refrigerator having the same.
  • a further object of the present invention is to make the shell of the electrolytic deoxygenation device have a gas-liquid separation function, so as to reduce or prevent the discharged gas from carrying liquid.
  • a further object of the present invention is to improve the gas-liquid separation effect of the electrolytic deoxygenation device.
  • a still further object of the present invention is to ensure the gas discharge rate of the electrolytic deoxygenation device.
  • Another further object of the present invention is to improve the resource utilization rate of the electrolytic deoxygenation device.
  • a further object of the present invention is to improve the safety of the electrolytic deoxygenation device and prevent the occurrence of liquid leakage.
  • an electrolytic oxygen removal device comprising: an oxygen removal component, which is used to perform an electrochemical reaction under the action of an electrolytic voltage, and consume oxygen in the working environment where the electrolytic oxygen removal device is located; and a housing , a reaction chamber and a separation chamber are formed inside; the reaction chamber is used to assemble the oxygen removal components, and serves as a place for the electrochemical reaction of the oxygen removal components; gas for gas-liquid separation.
  • a partition in the casing which extends in the horizontal direction and separates the inside of the casing into the separation chamber and the reaction chamber arranged up and down; and an exhaust port is opened on the partition to communicate with the separation chamber and the reaction chamber.
  • an air outlet is provided on the separation chamber to allow the gas after gas-liquid separation to be discharged;
  • the interior of the separation chamber defines an air flow channel extending from the exhaust port to the gas outlet; and the interior of the separation chamber is provided with a plurality of The liquid blocking ribs are arranged at intervals along the air flow channel, and are used to block the flow of gas in the air flow channel from different angles, thereby separating the liquid carried by the gas.
  • the airflow channel has a horizontal section extending horizontally, and the liquid-blocking ribs are distributed in the horizontal section; and among the adjacent liquid-blocking ribs, a liquid-blocking rib extends forward from the rear wall of the separation chamber and is connected to the separation chamber
  • the front wall has a gap, and the other liquid blocking rib extends backward from the front wall of the separation chamber and has a gap with the rear wall of the separation chamber.
  • liquid blocking ribs extending forward and the liquid blocking ribs extending backward are respectively arranged obliquely toward the flow direction of the gas flowing through the horizontal section.
  • the end of the forwardly extending liquid blocking rib is located at the front side of the end of the adjacent backward extending liquid blocking rib; and the end of the backward extending liquid blocking rib is located at the adjacent forward side The rear side of the end of the extended rib.
  • a plurality of micropores are formed on each liquid retaining rib for allowing the passing gas to pass through and preventing the liquid carried by the gas from passing through.
  • the air outlet is located on the top wall of the separation chamber; the top wall of the separation chamber is also provided with an air collection port and an air return port, which are arranged on both lateral sides of the air outlet, and are respectively arranged downstream and upstream of the air outlet; and
  • the electrolytic deoxygenation device also includes a gas return pipe extending from the gas collection port to the gas return port and forming a U-shaped bend.
  • the electrolytic deoxygenation device further includes: a liquid stop valve, arranged at the gas outlet, for preventing the passage of the liquid carried by the passing gas; and the upper surface of the separator protrudes upward to form a horizontally
  • the slope with increasing or decreasing distance makes the separated liquid flow along the upper surface of the partition to the end of the slope; and a liquid return port is also opened on the partition, which is located at the end of the slope for making the liquid flow along the upper surface of the partition. The flowing liquid returns to the reaction chamber.
  • a refrigerator including the electrolytic deoxygenation device according to any one of the above.
  • the shell of the electrolytic deoxygenation device since the shell of the electrolytic deoxygenation device is formed with a separation chamber, the separation chamber communicates with the reaction chamber and is used to carry out the gas generated during the electrochemical reaction of the deoxygenation component. Gas-liquid separation, therefore, the shell of the electrolytic deoxygenation device of the present invention has the function of gas-liquid separation, which is beneficial to reduce or avoid the discharged gas carrying liquid, and reduce the pollution caused by the gas discharge process. Since the housing is integrated with a reaction chamber and a separation chamber, the gas-liquid separation process does not need to be carried out outside the housing. Therefore, the electrolytic oxygen removal device has the advantages of compact structure and high degree of integration.
  • the electrolytic deoxygenation device of the present invention since a gas collection port and a gas return port are provided on the separation chamber, and a gas return pipe is connected between the gas collection port and the gas return port, the gas return pipe can transfer the gas flowing out of the gas collection port The gas is guided to the gas return port, and the gas is separated into gas and liquid again. Therefore, the electrolytic deoxygenation device of the present invention has a better gas-liquid separation effect.
  • the separation chamber is provided with a plurality of liquid-retaining ribs arranged at intervals along the airflow passage, and each liquid-repelling rib is formed with a plurality of micropores, Therefore, the plurality of liquid retaining ribs will not have a significant impact on the gas flow rate while performing gas-liquid separation, which is beneficial to ensure the gas discharge rate of the electrolytic deoxygenation device.
  • the separator since the upper surface of the separator forms a slope, and the separator is provided with a liquid return port, the liquid flowing downward along the upper surface of the separator can pass through the return liquid.
  • the outlet returns to the reaction chamber, therefore, the liquid carried by the gas flowing out from the exhaust port can be recycled and reused, which is beneficial to improve the resource utilization rate of the electrolytic deoxygenation device.
  • the liquid stop valve is arranged at the gas outlet, and a gas return pipe is connected between the gas collection port and the gas return port, the liquid in the reaction chamber and the separation chamber is not easily Leakage to the outside of the shell, which is beneficial to improve the safety of the electrolytic deoxygenation device and prevent the occurrence of liquid leakage.
  • Fig. 1 is a schematic structural diagram of an electrolytic oxygen removal device according to one embodiment of the present invention.
  • Fig. 2 is a schematic front view of the electrolytic oxygen removal device shown in Fig. 1;
  • Fig. 3 is another schematic front view of the electrolytic oxygen removal device shown in Fig. 2;
  • Fig. 4 is a schematic front view of the housing of the electrolytic deoxygenation device shown in Fig. 3;
  • Fig. 5 is a schematic top view of the housing of the electrolytic deoxygenation device shown in Fig. 3;
  • Fig. 6 is a schematic structural diagram of a liquid level switch of an electrolytic deoxygenation device according to an embodiment of the present invention.
  • Fig. 7 is a schematic exploded view of the liquid level switch of the electrolytic deoxygenation device shown in Fig. 6;
  • Fig. 8 is a schematic perspective view of a liquid level switch of the electrolytic deoxygenation device shown in Fig. 6;
  • Fig. 9 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of an electrolytic deoxygenation device 10 according to an embodiment of the present invention.
  • the electrolytic deoxygenation device 10 of this embodiment is used to be installed on the refrigerator 1 to treat the oxygen in the storage space of the refrigerator 1 .
  • the electrolytic oxygen removal device 10 can use the oxygen removal component 100 to perform an electrochemical reaction to reduce the oxygen content in the storage space.
  • the electro-deoxygenation device 10 can also use the electrochemical reaction of the deoxygenation component 100 to increase the oxygen content in the storage space, so as to adjust the oxygen atmosphere in the storage space.
  • FIG. 2 is a schematic front view of the electrolytic deoxygenation device 10 shown in FIG. 1 , in which the protective cover 600 is hidden.
  • the electrolytic oxygen removal device 10 may generally include an oxygen removal assembly 100 and a housing 200 .
  • the oxygen removal component 100 performs an electrochemical reaction under the action of the electrolysis voltage, and consumes oxygen in the working environment where the electrolysis oxygen removal device 10 is located.
  • the working environment where the electrolytic deoxygenation device 10 is located may refer to the storage space of the refrigerator 1 .
  • a reaction chamber 210 and a separation chamber 220 are formed inside the casing 200 .
  • the reaction chamber 210 is used for assembling the oxygen removal component 100 and serves as a place where the oxygen removal component 100 performs an electrochemical reaction. That is, the deoxygenation component 100 is assembled to the reaction chamber 210, so that the reaction chamber 210 serves as a place where the electrochemical reaction occurs.
  • the separation chamber 220 communicates with the reaction chamber 210 and is used for gas-liquid separation of the gas generated by the electrochemical reaction of the deaeration module 100 . That is, the gas flowing out of the reaction chamber 210 may flow through the separation chamber 220 and undergo gas-liquid separation in the separation chamber 220 . The separated liquid will stay in the separation chamber 220 , and the separated gas will be discharged out of the separation chamber 220 .
  • the electrolytic deoxygenation device 10 of the present embodiment since the housing 200 of the electrolytic deoxygenation device 10 is provided with a separation chamber 220, the separation chamber 220 communicates with the reaction chamber 210 and is used for deoxidizing the oxygen assembly 100.
  • the gas produced by the electrochemical reaction undergoes gas-liquid separation. Therefore, the electrolytic deoxygenation device 10 of the present embodiment has a gas-liquid separation function, which is beneficial to reduce or avoid the discharged gas carrying liquid, and reduce the pollution caused by the gas discharge process. . Since the reaction chamber 210 and the separation chamber 220 are integrated in the housing 200, the gas-liquid separation process does not need to be carried out outside the housing 200. Therefore, the electrolytic deoxygenation device 10 has the advantages of compact structure and high degree of integration.
  • reaction chamber 210 and the separation chamber 220 are integrated in the housing 200, an integrated gas production-separation structure is formed, which greatly simplifies the structure of the entire device and reduces the number of necessary parts, for example, the communication reaction chamber can be omitted 210 and the pipeline structure and sealing connection structure of the separation chamber 220. And since the gas-liquid separation process can be carried out inside the housing 200, it is beneficial to reduce the difficulty of the liquid recovery process.
  • the shell 200 with a specific spatial layout structure can be obtained through the molding process, and the process is simple. Compared with the split-type separation structure, the Complicated assembly process, and ensure the sealed communication between the reaction chamber 210 and the separation chamber 220.
  • FIG. 3 is another schematic front view of the electrolytic deoxygenation device 10 shown in FIG. 2
  • FIG. 4 is a schematic front view of the housing 200 of the electrolytic deoxygenation device 10 shown in FIG. 3
  • Fig. 3 and Fig. 4 are both perspective views.
  • there is a partition 230 inside the casing 200 which extends along the horizontal direction and separates the interior of the casing 200 into the separation chamber 220 and the reaction chamber 210 arranged up and down.
  • the partition 230 may be a partition.
  • the partition may be formed inside the housing 200 through a molding process.
  • An exhaust port 231 is opened on the partition 230 to communicate with the separation chamber 220 and the reaction chamber 210 .
  • the gas generated in the reaction chamber 210 can flow into the separation chamber 220 through the exhaust port 231 .
  • the electrolytic deoxygenation device 10 of this embodiment can communicate with the reaction chamber 210 and the separation chamber 220 by opening an exhaust port 231 on the separator 230 , and has the characteristics of a compact structure.
  • the partition 230 is arranged horizontally so that the separation chamber 220 is located above the partition 230 and the reaction chamber 210 is located below the partition 230.
  • the gas generated in the reaction chamber 210 can flow out of the exhaust port 231 smoothly by relying on the upward movement, and Enter the separation chamber 220.
  • the exhaust port 231 can be in any shape such as circle, ellipse, square, cone or fan, and its size can be any value between 1-1000mm 2 .
  • the separation bin 220 is provided with a gas outlet 221 for allowing gas after gas-liquid separation to be discharged.
  • the gas after gas-liquid separation refers to the gas after flowing through the separation chamber 220 and the liquid is removed, and the gas hardly carries the liquid any more.
  • the interior of the separation chamber 220 defines an air flow channel 222 extending from the exhaust port 231 to the air outlet 221 .
  • the airflow path 222 is formed by the airflow path from the air outlet 231 to the air outlet 221 .
  • the interior of the separation chamber 220 is provided with a plurality of liquid-blocking ribs 224 , which are arranged at intervals along the gas flow channel 222 , and are used to block the flow of gas in the gas flow channel 222 from different angles, thereby separating the liquid carried by the gas.
  • the liquid-blocking ribs 224 are arranged in dislocation at intervals, the liquid-blocking ribs 224 arranged in the airflow channel 222 form a certain liquid-blocking shape, and provide a smooth passage for the circulation of gas, so that the gas flowing through can be discharged smoothly.
  • the gas flowing through the gas flow channel 222 will be blocked by the liquid blocking ribs 224 to reduce the flow velocity, and thus stagnate on the surface of the liquid blocking ribs 224 , so that the separation chamber 220 realizes gas-liquid separation.
  • the air outlet 221 may be located on the top wall of the separation chamber 220 .
  • There may be one exhaust port 231 which may be spaced apart from the air outlet 221 in the horizontal direction, so that the airflow channel 222 between the exhaust port 231 and the air outlet 221 has a horizontal section extending horizontally.
  • there may be a plurality of exhaust ports 231 which are distributed at intervals on the partition 230 , which is beneficial to increase the exhaust rate of the reaction chamber 210 .
  • there may be multiple oxygen removal components 100 and each oxygen removal component 100 is correspondingly provided with an exhaust port 231 .
  • FIG. 5 is a schematic top view of the casing 200 of the electrolytic deoxygenation device 10 shown in FIG. 3 .
  • Figure 5 is also a perspective view.
  • one liquid retaining rib 224 extends forward from the rear wall 229 of the separation chamber 220 and has a gap with the front wall 228 of the separation chamber 220
  • the other liquid retaining rib 224 extends from the front wall of the separation chamber 220.
  • 228 extends rearward and has a gap with the rear wall 229 of the separation bin 220 .
  • Such an arrangement can prevent the liquid blocking rib 224 from completely covering the airflow channel 222 and ensure that the airflow channel 222 remains unblocked.
  • the liquid blocking ribs 224 extending forward and the liquid blocking ribs 224 extending backward are respectively arranged obliquely toward the flow direction of the gas flowing through the horizontal section. That is to say, the plane where the liquid blocking rib 224 in this embodiment is located is not parallel to the front-rear extension direction of the separation chamber 220 .
  • the ends of the forwardly extending liquid blocking ribs 224 are located in front of the ends of the rearwardly extending liquid blocking ribs 224 adjacent thereto.
  • the ends of the rearwardly extending liquid blocking ribs 224 are located behind the ends of the forwardly extending liquid blocking ribs 224 adjacent thereto.
  • the airflow flowing out from the gap between the liquid blocking rib 224 extending forward and the front wall 228 of the separation chamber 220 will flow to the adjacent liquid blocking rib 224 extending backward, and from the rearward
  • the air flow flowing out from the gap between the extended liquid blocking rib 224 and the rear wall 229 of the separation chamber 220 will flow to the forward extending liquid blocking rib 224 adjacent thereto, which makes the gas flowing through the air flow channel 222 compatible with
  • the liquid blocking ribs 224 are fully in contact, which is beneficial to improve the gas-liquid separation effect.
  • each liquid barrier rib 224 is formed with a plurality of micropores for allowing the passing gas to pass through and preventing the gas-carried liquid from passing through.
  • the pore size of the micropores should easily set according to actual needs, for example, when the liquid carried by the gas is an aqueous solution, as long as the pore size is smaller than the diameter of steam water molecules.
  • the separation chamber 220 is provided with a plurality of liquid-retaining ribs 224 arranged at intervals along the airflow passage 222, and each liquid-retaining rib 224 is formed with a plurality of micropores, therefore, the plurality of liquid-retaining ribs 224 perform gas-liquid At the same time of separation, the flow rate of the gas will not be significantly affected, which is beneficial to ensure the gas discharge rate of the electrolytic deoxygenation device 10 .
  • the liquid blocking rib 224 can be in the shape of a flat plate or a sheet with a certain thickness, standing upright in the separation chamber 220 , and the top and bottom ends of the liquid blocking rib 224 are respectively connected with the top wall and the bottom wall of the separation chamber 220 .
  • the micropores can be evenly distributed along the surface of each liquid blocking rib 224 , so that the liquid blocking rib 224 has a honeycomb shape.
  • the distance between adjacent liquid blocking ribs 224 may be 10-50 mm.
  • the projection of the liquid blocking rib 224 on the horizontal plane may also be a trapezoidal structure.
  • the air outlet 221 is disposed on the top wall of the separation chamber 220 , for example, may be disposed on a middle section of the top wall of the separation chamber 220 .
  • the separation bin 220 is also provided with an air collection port 225 and an air return port 226 , which are arranged on both lateral sides of the air outlet 221 , and are respectively arranged downstream and upstream of the air outlet 221 .
  • the electrolytic deoxygenation device 10 also includes a gas return pipe 400 extending from the gas collection port 225 to the gas return port 226 and forming a U-shaped bend.
  • Both “upstream” and “downstream” are relative to the flow path of the gas.
  • the gas collection port 225 and the gas return port 226 are respectively arranged downstream and upstream of the gas outlet 221. It means that the gas flowing into the airflow channel 222 from the gas return port 226 After flowing through the gas flow channel 222, it flows to the gas outlet 221. The gas that is not discharged from the gas outlet 221 can continue to flow and flow to the gas collection port 225, and after flowing through the gas return pipe 400 and the gas return port 226, it flows into the gas flow channel 222 again.
  • the gas collection port 225 may be disposed at the right end of the top wall of the separation chamber 220
  • the air return port 226 may be disposed at the left end of the top wall of the separation chamber 220
  • the air return pipe 400 can be roughly an upright U-shaped bent pipe, extending downward from the gas collecting port 225 to the bottom right side of the housing 200, then extending horizontally to the left to the bottom left side of the housing 200, and then extending upward to the back. Air port 226.
  • the U-shaped bending pipe can be made of rubber or other materials resistant to acid and alkali corrosion.
  • the electrolytic deoxygenation device 10 may further include a liquid stop valve 500 disposed at the gas outlet 221 for preventing the liquid carried by the flowing gas from passing through.
  • the liquid stop valve 500 can only allow pure gas to pass through, and the liquid carried by the gas will be blocked at the liquid stop valve 500 and flow back into the separation chamber 220 by its own gravity.
  • the liquid stop valve 500 may be a manual type, or may be an electric type.
  • the liquid stop valve 500 is arranged at the gas outlet 221, and the gas return pipe 400 is connected between the gas collection port 225 and the gas return port 226, the liquid in the reaction chamber 210 and the separation chamber 220 is not easy to leak to the outside of the housing 200, which has the advantages of It is beneficial to improve the safety of the electrolytic deoxygenation device 10 and prevent the occurrence of liquid leakage.
  • the upper surface of the separator 230 forms a slope 235 that protrudes gradually or decreases gradually along the horizontal direction by protruding upwards, so that the separated liquid flows along the upper surface of the separator 230 to the end of the slope 235; and on the separator 230 There is also a liquid return port 232 located at the end of the slope 235 for returning the liquid flowing along the upper surface of the partition 230 to the reaction chamber 210 .
  • the upper surface of the separator 230 is formed into a slope 235 shape, so that the liquid dripping from the liquid blocking rib 224 can flow downward along the trend, and play the role of gathering and converging.
  • the liquid flowing downward along the upper surface of the partition 230 can return to the reaction chamber 210 through the liquid return port 232. Therefore, the gas carried by the gas flowing out from the exhaust port 231 The liquid can be recycled and reused, which is beneficial to improve the resource utilization rate of the electrolytic deoxygenation device 10 .
  • the angle between the upper surface of the partition 230 and the horizontal direction can be any value within 0-60°, for example, it can be 15°, 30° or 45°.
  • the exhaust port 231 can be arranged obliquely, and the included angle with the horizontal direction can be any value within 0-90°, for example, it can be 15°, 30°, 45° or 60°.
  • the upper surface of the partition 230 forms a continuous slope 235
  • the upper surface of the partition 230 may form a rightward and downward slope 235
  • the liquid return port 232 may be located at the right end of the partition 230 .
  • the upper surface of the partition 230 can form two sections of slopes 235, one of which slopes 235 slopes to the right and downwards, and the other slope 235 slopes to the left and downwards, and the liquid return port 232 can be Located at the junction of two slopes 235.
  • the casing 200 further defines a liquid storage chamber 250 for containing liquid, and communicates with the reaction chamber 210 to supply liquid to the reaction chamber 210 .
  • the casing 200 is further provided with a partition 230 extending longitudinally, and the inside of the casing 200 separates a liquid storage chamber 250 located on one lateral side of the reaction chamber 210 and the separation chamber 220 .
  • the longitudinally extending partition 230 may be provided with a communication port for connecting the reaction chamber 210 and the liquid storage chamber 250 .
  • the top of the liquid storage bin 250 is provided with a liquid replenishment port 251 communicating with the external environment of the housing 200 to allow liquid replenishment.
  • the liquid replenishment port 251 can communicate with a water tank.
  • FIG. 6 is a schematic structural view of the liquid level switch 300 of the electrolytic deoxygenation device 10 according to an embodiment of the present invention
  • Fig. 7 is a schematic exploded view of the liquid level switch 300 of the electrolytic deoxygenation device 10 shown in Fig. 6
  • FIG. 8 is a schematic perspective view of the liquid level switch 300 of the electrolytic deoxygenation device 10 shown in FIG. 6 .
  • the electrolytic deoxygenation device 10 may further include a liquid level switch 300, which has a switch body 320, is arranged in the liquid storage chamber 250, and is arranged corresponding to the liquid replenishment port 251, for The liquid level in the liquid tank 250 moves, thereby opening or closing the liquid replenishing port 251 .
  • a liquid level switch 300 which has a switch body 320, is arranged in the liquid storage chamber 250, and is arranged corresponding to the liquid replenishment port 251, for The liquid level in the liquid tank 250 moves, thereby opening or closing the liquid replenishing port 251 .
  • the switch body 320 can open the liquid replenishment port 251 when the liquid level in the liquid storage bin 250 drops below a preset liquid level value, so that the liquid in the liquid storage bin 250 can flow through the liquid replenishment port 251 and flow to the reaction chamber 210 .
  • the switch body 320 can also close the liquid replenishment port 251 when the liquid level in the liquid storage bin 250 rises above a preset liquid level value, so that the liquid in the liquid storage bin 250 cannot flow through the liquid replenishment port 251 .
  • the preset liquid level value can be set according to the safe liquid level value in the reaction chamber 210 .
  • the liquid storage chamber 250 and the reaction chamber 210 form a communication device, and the preset liquid level value is equal to the safe liquid level value.
  • the liquid level switch 300 also includes a float 320 , which is fixedly connected with the switch body 310 or integrated with the switch body 310 , and is used to drive the switch body 310 to move by floating or sinking around an axis in the liquid storage chamber 250 . That is to say, the switch body 310 is “driven” by the float 320 , and the power required for the movement of the float 320 is determined by the buoyancy it experiences in the liquid storage bin 250 .
  • a part of the float 320 is immersed in the liquid, so that the float 320 is buoyed by the liquid.
  • the buoyancy force on the float 320 will also change, so that the resultant force of the buoyancy force on the float 320 and the gravity will change.
  • the buoyancy force on the float 320 will decrease, and if the resultant force of the buoyancy force on the float 320 and gravity is downward, the float 320 will move downward. On the contrary, it will cause the float 320 to move upward.
  • the float 320 may rise or fall in a vertical direction, or may rise or fall in a curve.
  • the float 320 is rotatably arranged around an axis. That is, the float 320 of the present embodiment does not move up and down in a straight line, but rises or falls in a manner of rotating around an axis. In such a design, it is only necessary to pivotally connect the float 320 to a certain fixed shaft, and there is no need to The installation of guide components with high dimensional accuracy has the advantages of compact structure, simple assembly process and good device reliability.
  • the movement trajectory is clear and definite, which makes the float 320 and the switch body 310 of this embodiment easy to move along a clear and definite movement trajectory, thereby improving the reliability of the liquid level switch 300 and reducing or avoiding the Due to the free movement of the float 320, problems such as poor sealing are caused.
  • the liquid level switch 300 may further include a rotating shaft 340 and a connecting piece 330 .
  • the rotating shaft 340 is fixed to the liquid storage bin.
  • the rotating shaft 340 may be fixedly connected with the container inner wall of the liquid storage bin.
  • the connecting member 330 is fixedly connected with the float 320 or integrally formed with the float 320 , and has a shaft hole 341 formed therein for the rotation shaft 340 to be inserted into and rotatably matched to realize the rotatable connection. That is to say, the connecting member 330 assembles the rotating shaft 340 and the float 320 into an organic whole, so that the float 320 can rotate around the rotating shaft 340 .
  • the float 320 By opening the shaft hole 341 on the connecting piece 330 and rotatably fitting the shaft hole 340 with the shaft hole 341, the float 320 can be rotatably assembled to the shaft 340.
  • the structure is extraordinar and the process is simple.
  • the switch body 310 is rod-shaped.
  • a mounting hole 342 is also formed on the connecting member 330 for a part of the switch body 310 to be inserted thereinto achieve fixed assembly. That is to say, a part of the switch body 310 is indirectly fixedly connected with the float 320 by being fixedly assembled with the connecting piece 330 .
  • a part of the above-mentioned switch body 310 can be assembled with the mounting hole 342 of the connecting piece 330 through an interference fit.
  • the switch body 310 and the float 320 are located on the same side of the rotation shaft 340 . That is, the switch body 310 is located between the rotating shaft 340 and the float 320, which is the key to make the switch body 310 "move in the same direction" with the float 320 according to the liquid level in the inner space of the liquid storage tank, and a larger "movement” can be obtained.
  • Moment Arm Ratio
  • the central axis of the rotating shaft 340 extends along the horizontal direction and is perpendicular to the central longitudinal vertical symmetry plane of the float 320 .
  • the central longitudinal vertical symmetrical plane of the float 320 is the longitudinal center section of the float 320 extending along the vertical direction.
  • the central axis of the mounting hole 342 extends in the vertical direction and is parallel to the central longitudinal vertical centerline of the float 320, wherein the central longitudinal vertical centerline of the float 320 is The longitudinal centerline of the longitudinal center section of the float 320 extending in the vertical direction.
  • Orientation words such as “horizontal” and “longitudinal” are relative to the actual use state of the liquid level switch 300, and the longitudinal direction is roughly the vertical direction.
  • the float 320 is in the shape of a hollow column.
  • the cylinder of the float 320 in this embodiment is a cavity structure, which can further enhance the buoyancy (the overall density is lower than that of the liquid).
  • the central axis of the float 320 is parallel to the central axis of the shaft hole 341 . Wherein, the central axis of the float 320 is collinear with the centers of the two bottom surfaces 321 respectively. Since the central axis of the shaft hole 341 extends along the horizontal direction, the central axis of the float 320 also extends along the horizontal direction, and the two bottom surfaces 321 of the float 320 are disposed opposite to each other along the horizontal direction.
  • the connecting member 330 is a cantilever formed by extending obliquely outward and upward from the upper side section of the column side 322 of the float 320 .
  • “outward” means radially outward along the side surface 322 of the cylinder.
  • the switch body 310 is a rod-shaped plug having an assembly portion 311 and a blocking portion 312 .
  • the assembly part 311 is a rod, and is fixedly assembled in the installation hole 342 .
  • the blocking part 312 is a plug cap connected to the top of the assembly part 311 for opening or closing the liquid replenishment port 251 .
  • the plug cover can be cylindrical, and its upper surface is planar. Compared with the matching structure of the traditional tapered head plug and the faucet, the matching mechanism of the plug cover and the lower annular flange of this embodiment has the advantage of high position error tolerance, and the plug cover does not need to be connected with the liquid outlet of the lower annular flange. Precise alignment, as long as the upper surface of the plug cover can cover the mouth of the tapered spout.
  • the plug cover and the rod in this embodiment are one piece.
  • a central section of the inner wall of the mounting hole 342 extends radially inward to form a central annular flange 342a.
  • the main body rod 311c of the fitting part 311 has the same rod diameter as the hole diameter of the middle annular flange 342a so as to be inserted into the hole defined by the middle annular flange 342a.
  • the assembly part 311 also has an upper annular boss 311a and a lower annular boss 311b extending radially outward from its main body rod 311c, respectively positioned above and below the middle annular flange 342a to limit the switch body 310 relative to the mounting hole. 342 degrees of freedom of movement.
  • the structural stability of the overall structure obtained through fixed assembly between the switch body 310 and the mounting hole 342 can be improved.
  • the switch body 310 is made of acid-resistant and alkali-resistant elastic material, such as EPDM rubber or fluororubber, etc., relying on its own elastic deformation to squeeze the liquid replenishing port 251 that is sealed with it, so as to realize seal.
  • the rotating shaft 340 is made of acid and alkali resistant materials, such as chrome-plated metal materials, ceramic materials or plastic materials.
  • the float 320 can be made of acid and alkali resistant materials such as polytetrafluoroethylene or polybutylene adipamide.
  • Oxygen scavenging assembly 100 may generally include an anode portion and a cathode portion.
  • the cathode portion serves to consume oxygen through an electrochemical reaction.
  • oxygen in the air can undergo a reduction reaction at the cathode, namely: O 2 +2H 2 O+4e ⁇ ⁇ 4OH ⁇ .
  • the OH - generated at the cathode part can undergo oxidation reaction at the anode part, and generate oxygen, namely: 4OH - ⁇ O 2 +2H 2 O+4e - .
  • the oxygen after the liquid is separated can be discharged through the gas outlet 221 on the casing 200 . Since the electrochemical reaction in this embodiment consumes water, the liquid contained in the liquid storage bin 250 is water.
  • the anode part can be an anode electrode, such as nickel mesh or titanium mesh
  • the cathode part can be a cathode electrode, such as a catalytic membrane containing silver and manganese dioxide.
  • the housing 200 has an installation opening on the front wall of the reaction chamber 210, and the cathode part can be arranged at the installation opening to define a reaction space for containing the electrolyte together with the reaction chamber 210. .
  • the anode part and the cathode part may be disposed in the reaction space at a distance from each other.
  • the electrolytic deoxygenation device 10 may further include a protective cover plate 600, which is provided on the front surface of the reaction compartment 210 and the separation compartment 220 of the housing 200 to protect the cathode part from damage by external force. Vent holes may be opened on the protective cover 600 to allow gas exchange.
  • An upper eaves structure may be formed on the hole wall of the ventilation hole.
  • the protective cover 600 can be made of strong materials such as plastic or metal.
  • the protective cover can be packaged into the casing 200 by using techniques such as inserts (encapsulation), or packaged by ultrasonic friction welding, and then sealed again with resin glue to ensure that there will be no leakage after the entire device is filled with liquid. Leakage.
  • Fig. 9 is a schematic structural diagram of a refrigerator 1 according to an embodiment of the present invention.
  • the refrigerator 1 may generally include a box body 20 and the electrolytic deoxygenation device 10 as in any of the above embodiments.
  • the interior of the box body 20 defines a storage space.
  • the electrolytic deoxygenation device 10 is installed in the box body 20, and is used for consuming oxygen in the storage space, or for supplying oxygen to the storage space.
  • the cathode part can be in airflow communication with a certain storage space to reduce the oxygen content in the storage space, and the anode part can be in airflow communication with another storage space to increase the storage space. Oxygen content in the space.
  • the refrigerator 1 of this embodiment is an electrical device with a low-temperature storage function, including not only a refrigerator 1 in a narrow sense, but also a freezer, a storage cabinet, and other refrigerating and freezing devices.
  • the refrigerator 1 of this embodiment can quickly create a low-oxygen fresh-keeping environment, inhibit the respiration of ingredients such as fruits and vegetables, slow down physiological metabolism, and prolong the fresh-keeping time. It can also quickly create a high-oxygen fresh-keeping environment to provide meat, mushrooms and other ingredients. High oxygen adjusts the fresh-keeping atmosphere.
  • the housing 200 of the electrolytic deoxygenation device 10 of the present invention since the housing 200 of the electrolytic deoxygenation device 10 is provided with a separation chamber 220, the separation chamber 220 communicates with the reaction chamber 210 and is used to carry out the deoxygenation assembly 100.
  • the gas produced during the electrochemical reaction undergoes gas-liquid separation. Therefore, the housing 200 of the electrolytic deoxygenation device 10 of the present invention has a gas-liquid separation function, which is beneficial to reduce or avoid the discharged gas carrying liquid, and reduce the gas discharge process. pollute. Since the reaction chamber 210 and the separation chamber 220 are integrated in the housing 200, the gas-liquid separation process does not need to be carried out outside the housing 200. Therefore, the electrolytic deoxygenation device 10 has the advantages of compact structure and high degree of integration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种电解除氧装置以及具有其的冰箱。电解除氧装置包括:除氧组件,用于在电解电压的作用下进行电化学反应,消耗电解除氧装置所在工作环境内的氧气;和壳体,其内部形成有反应仓和分离仓;反应仓用于装配除氧组件,并作为除氧组件进行电化学反应的场所;分离仓与反应仓相通,用于对除氧组件进行电化学反应产生的气体进行气液分离。该电解除氧装置的壳体具备气液分离功能,这有利于减少或避免排出的气体携带液体,降低气体排放过程造成的污染。由于壳体内集成设置有反应仓和分离仓,气液分离过程无需在壳体外部进行,因此,电解除氧装置具备结构紧凑、一体化程度高的优点。

Description

电解除氧装置以及具有其的冰箱 技术领域
本发明涉及保鲜技术,特别是涉及电解除氧装置以及具有其的冰箱。
背景技术
电解除氧装置是一种用于通过电化学反应降低冰箱内部氧气的电化学反应装置。处理氧气的过程需要电解液参与,且同时会产生气体,并且需要将产生的气体向外部环境排放。
在反应过程中,由于伴随着大量热量的产生,电解液会受热蒸发,这导致电解除氧装置所排放的气体中可能会携带有电解液蒸汽。大部分电解液为酸性溶液或者碱性溶液,具有腐蚀性。若不经处理直接将处理过程所产生的气体向空气排放,则可能会导致空气污染,危害生命健康。
此外,当电解除氧装置所产生的气体携带有电解液蒸汽时,电解液会缓慢流失,这会导致资源浪费,提高生产成本。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种电解除氧装置以及具有其的冰箱。
本发明的一个进一步的目的是要使电解除氧装置的壳体具备气液分离功能,减少或避免排出的气体携带液体。
本发明的再一个进一步的目的是提高电解除氧装置的气液分离效果。
本发明的又一个进一步的目的是要保证电解除氧装置的气体排放速率。
本发明的另一个进一步的目的是要提高电解除氧装置的资源利用率。
本发明的再一个进一步的目的要提高电解除氧装置的安全性,防止发生漏液问题。
根据本发明的一方面,提供了一种电解除氧装置,包括:除氧组件,用于在电解电压的作用下进行电化学反应,消耗电解除氧装置所在工作环境内的氧气;和壳体,其内部形成有反应仓和分离仓;反应仓用于装配除氧组件,并作为除氧组件进行电化学反应的场所;分离仓与反应仓相通,用于对除氧组件进行电化学反应产生的气体进行气液分离。
可选地,壳体内具有分隔件,沿水平方向延伸并将壳体的内部分隔出上 下布置的分离仓和反应仓;且分隔件上开设有排气口,以连通分离仓和反应仓。
可选地,分离仓上开设有出气口,用于允许经气液分离后的气体排出;分离仓的内部限定出自排气口延伸至出气口的气流通道;且分离仓的内部设置有多个挡液筋,沿气流通道间隔错位排布,用于从不同角度阻挡气体在气流通道中流动,从而分离出气体所携带的液体。
可选地,气流通道具有水平延伸的水平区段,挡液筋分布在水平区段内;且在相邻挡液筋中,一挡液筋自分离仓的后壁向前延伸且与分离仓的前壁具有间隙,另一挡液筋自分离仓的前壁向后延伸且与分离仓的后壁具有间隙。
可选地,向前延伸的挡液筋以及向后延伸的挡液筋分别朝流经水平区段的气体的流动方向倾斜设置。
可选地,向前延伸的挡液筋的末端位于与之相邻的向后延伸的挡液筋的末端的前侧;且向后延伸的挡液筋的末端位于与之相邻的向前延伸的挡液筋的末端的后侧。
可选地,每一挡液筋上形成有多个微孔,用于允许流经的气体通过且阻止气体携带的液体通过。
可选地,出气口位于分离仓的顶壁上;分离仓的顶壁上还开设有集气口和回气口,设置于出气口的横向两侧,并分别设置于出气口的下游和上游;且电解除氧装置还包括回气管,自集气口延伸至回气口,并形成U型折弯形状。
可选地,电解除氧装置,还包括:止液阀,设置于出气口处,用于阻止流经气体所携带的液体通过;且分隔件的上表面通过向上凸出形成沿水平方向凸出距离渐增或渐减的斜坡,使得分离出的液体沿分隔件的上表面向斜坡的末端流动;且分隔件上还开设有回液口,位于斜坡的末端,用于使沿分隔件上表面流动的液体回流至反应仓。
根据本发明的另一方面,还提供了一种冰箱,包括如上述任一项的电解除氧装置。
本发明的电解除氧装置以及具有其的冰箱,由于电解除氧装置的壳体内部形成有分离仓,该分离仓与反应仓相通,并用于对除氧组件进行电化学反应时产生的气体进行气液分离,因此,本发明的电解除氧装置的壳体具备气液分离功能,这有利于减少或避免排出的气体携带液体,降低气体排放过程 造成的污染。由于壳体内集成设置有反应仓和分离仓,气液分离过程无需在壳体外部进行,因此,电解除氧装置具备结构紧凑、一体化程度高的优点。
进一步地,本发明的电解除氧装置以及具有其的冰箱,由于分离仓上开设有集气口和回气口,且集气口和回气口之间连接有回气管,回气管可将流出集气口的气体导引至回气口,并使这些气体被再次气液分离,因此,本发明的电解除氧装置具备较优的气液分离效果。
进一步地,本发明的电解除氧装置以及具有其的冰箱,由于分离仓内设置有多个沿气流通道间隔错位排布的挡液筋,且每一挡液筋上形成有多个微孔,因此,多个挡液筋在进行气液分离的同时,并不会对气体的流动速率产生明显影响,这有利于保证电解除氧装置的气体排放速率。
进一步地,本发明的电解除氧装置以及具有其的冰箱,由于分隔件的上表面形成斜坡,且分隔件上开设有回液口,沿分隔件的上表面向下流动的液体可以通过回液口回流至反应仓,因此,从排气口流出的气体所携带的液体能够得到回收再利用,这有利于提高电解除氧装置的资源利用率。
更进一步地,本发明的电解除氧装置以及具有其的冰箱,由于出气口处设置有止液阀,集气口和回气口之间连接有回气管,因此,反应仓和分离仓内的液体不易泄漏至壳体的外部,这有利于提高电解除氧装置的安全性,防止发生漏液问题。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的电解除氧装置的示意性结构图;
图2是图1所示的电解除氧装置的示意性主视图;
图3是图2所示的电解除氧装置的另一示意性主视图;
图4是图3所示的电解除氧装置的壳体的示意性主视图;
图5是图3所示的电解除氧装置的壳体的示意性俯视图;
图6是根据本发明一个实施例的电解除氧装置的液位开关的示意性结构 图;
图7是图6所示的电解除氧装置的液位开关的示意性分解图;
图8是图6所示的电解除氧装置的液位开关的示意性透视图;
图9是根据本发明一个实施例的冰箱的示意性结构图。
具体实施方式
图1是根据本发明一个实施例的电解除氧装置10的示意性结构图。本实施例的电解除氧装置10用于安装在冰箱1上,并对冰箱1的储物空间内的氧气进行处理。例如,电解除氧装置10可以利用除氧组件100进行电化学反应,以降低储物空间内的氧气含量。在一些实施例中,电解除氧装置10也可以利用除氧组件100的电化学反应提高储物空间内的氧气含量,从而对储物空间的氧气气氛进行调节。
图2是图1所示的电解除氧装置10的示意性主视图,图中隐去了保护盖板600。电解除氧装置10一般性地可包括除氧组件100和壳体200。
其中,除氧组件100在电解电压的作用下进行电化学反应,消耗电解除氧装置10所在工作环境内的氧气。电解除氧装置10所在工作环境可以指冰箱1的储物空间。
壳体200的内部形成有反应仓210和分离仓220。反应仓210用于装配除氧组件100,并作为除氧组件100进行电化学反应的场所。即,除氧组件100装配至反应仓210,使得反应仓210作为电化学反应的发生场所。分离仓220与反应仓210相通,用于对除氧组件100进行电化学反应产生的气体进行气液分离。即,流出反应仓210的气体可以流经分离仓220,并在分离仓220内进行气液分离。分离出的液体会滞留在分离仓220内,分离出的气体则会排出至分离仓220外。
本实施例的电解除氧装置10以及具有其的冰箱1,由于电解除氧装置10的壳体200内部形成有分离仓220,该分离仓220与反应仓210相通,并用于对除氧组件100进行电化学反应所产生的气体进行气液分离,因此,本实施例的电解除氧装置10自身具备气液分离功能,这有利于减少或避免排出的气体携带液体,降低气体排放过程造成的污染。由于壳体200内集成设置有反应仓210和分离仓220,气液分离过程无需在壳体200外部进行,因此,电解除氧装置10具备结构紧凑、一体化程度高的优点。
由于反应仓210和分离仓220均集成在壳体200内,形成了一体式的产 气-分离结构,这极大地简化了整个装置的结构,减少了必要部件的数量,例如可以省略连通反应仓210与分离仓220的管路结构和密封连接结构。并且由于气液分离过程可以在壳体200的内部进行,这有利于降低液体回收过程的难度。
由于反应仓210和分离仓220形成一体式的产气-分离结构,因此可以通过成型工艺得到具有特定空间布局结构的壳体200,工序简单,相比于分体式的分离结构而言,省略了繁杂的组装过程,且保证了反应仓210和分离仓220之间的密封连通。
图3是图2所示的电解除氧装置10的另一示意性主视图,图4是图3所示的电解除氧装置10的壳体200的示意性主视图。为便于示出内部结构,图3和图4均为透视图。在一些可选的实施例中,壳体200内具有分隔件230,沿水平方向延伸并将壳体200的内部分隔出上下布置的分离仓220和反应仓210。例如,分隔件230可以为隔板。该隔板可以通过成型工艺形成在壳体200的内部。
分隔件230上开设有排气口231,以连通分离仓220和反应仓210。反应仓210内产生的气体可以通过排气口231流入分离仓220内。
本实施例的电解除氧装置10,通过在分隔件230上开设排气口231,即可连通反应仓210和分离仓220,具备结构精巧的特点。将分隔件230水平设置,使分离仓220位于分隔件230的上方,并使反应仓210位于分隔件230的下方,反应仓210内产生的气体可以依靠上浮运动顺利地流出排气口231,并进入分离仓220内。排气口231可以为圆形、椭圆形、方形、锥形或者扇形等任意形状,其大小可以为1~1000mm 2之间的任意值。
在一些可选的实施例中,分离仓220上开设有出气口221,用于允许经气液分离后的气体排出。其中,经气液分离后的气体是指流经分离仓220并被除去液体之后的气体,这些气体几乎不再携带液体。
分离仓220的内部限定出自排气口231延伸至出气口221的气流通道222。气流自排气口231向出气口221流动的路径形成气流通道222。
分离仓220的内部设置有多个挡液筋224,沿气流通道222间隔错位排布,用于从不同角度阻挡气体在气流通道222中流动,从而分离出气体所携带的液体。
由于挡液筋224间隔错位排布,因此,布置于气流通道222内的挡液筋 224形成一定的挡液形态,且为气体的流通提供一条顺畅的通路,使流经的气体能够顺利排出。流经气流通道222的气体会因被挡液筋224阻挡而导致流速降低,从而滞留在挡液筋224的表面,使得分离仓220实现气液分离。
例如,出气口221可以位于分离仓220的顶壁上。排气口231可以为一个,可以与出气口221在水平方向上间隔设置,使得排气口231与出气口221之间的气流通道222具有水平延伸的水平区段。在另一些实施例中,排气口231也可以为多个,并在分隔件230上间隔分布,这有利于提高反应仓210的排气速率。在又一些实施例中,除氧组件100可以为多个,每一除氧组件100对应设置有一排气口231。
图5是图3所示的电解除氧装置10的壳体200的示意性俯视图。图5也为透视图。在相邻挡液筋224中,一挡液筋224自分离仓220的后壁229向前延伸且与分离仓220的前壁228具有间隙,另一挡液筋224自分离仓220的前壁228向后延伸且与分离仓220的后壁229具有间隙。如此设置,可以避免挡液筋224完全地遮蔽气流通道222,确保气流通道222保持畅通状态。
需要说明的是,“前”“后”“顶”“底”“左”“右”等指示方向或位置关系的术语是基于使用状态下的壳体200的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所描述的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
向前延伸的挡液筋224以及向后延伸的挡液筋224分别朝流经水平区段的气体的流动方向倾斜设置。即,本实施例的挡液筋224所在平面并未平行于分离仓220的前后延伸方向。通过使挡液筋224朝流经水平区段的气体的流动方向倾斜设置,可以降低挡液筋224对气体流速的影响,同时降低气体流经挡液筋224时的噪声。
向前延伸的挡液筋224的末端位于与之相邻的向后延伸的挡液筋224的末端的前侧。向后延伸的挡液筋224的末端位于与之相邻的向前延伸的挡液筋224的末端的后侧。
也就是说,从向前延伸的挡液筋224与分离仓220的前壁228之间的间隙流出的气流会流至与之相邻的向后延伸的挡液筋224上,而从向后延伸的挡液筋224与分离仓220的后壁229之间的间隙流出的气流会流至与之相邻的向前延伸的挡液筋224上,这使得流经气流通道222的气体能够与挡液筋224进行充分地接触,从而有利于提高气液分离效果。
在一些可选的实施例中,每一挡液筋224上形成有多个微孔,用于允许流经的气体通过且阻止气体携带的液体通过。在了解本实施例的基础上,本领域技术人员应当易于根据实际需要设置微孔的孔径,例如,当气体所携带的液体为水溶液时,只要保证孔径大小小于蒸汽水分子直径即可。
由于分离仓220内设置有多个沿气流通道222间隔错位排布的挡液筋224,且每一挡液筋224上形成有多个微孔,因此,多个挡液筋224在进行气液分离的同时,并不会对气体的流动速率产生明显影响,这有利于保证电解除氧装置10的气体排放速率。
挡液筋224可以呈具有一定厚度的平板状或者薄片状,直立于分离仓220内,挡液筋224的顶端和底端分别与分离仓220的顶壁和底壁相接。微孔可以沿每一挡液筋224的板面间隔均匀分布,使得挡液筋224呈蜂窝状。相邻挡液筋224之间的间距可以为10~50mm。在一些实施例中,挡液筋224在水平面的投影也可以为梯形结构。
在一些可选的实施例中,出气口221设置于分离仓220的顶壁上,例如可以设置于分离仓220的顶壁的中间区段。分离仓220上还开设有集气口225和回气口226,设置于出气口221的横向两侧,并分别设置于出气口221的下游和上游。电解除氧装置10还包括回气管400,自集气口225延伸至回气口226,并形成U型折弯形状。
“上游”和“下游”均是相对于气体的流动路径而言的,集气口225和回气口226分别设置于出气口221的下游和上游是指,从回气口226流入气流通道222的气体会在流经气流通道222之后流向出气口221,未从出气口221排出的气体可以继续流动并流至集气口225,并在依次流经回气管400和回气口226之后,再次流入气流通道222。
在一些实施例中,集气口225可以设置于分离仓220的顶壁的右端,回气口226可以设置于分离仓220的顶壁的左端。回气管400大致可以为正立的U形折弯管,自集气口225向下延伸至壳体200的底部右侧,然后水平向左延伸至壳体200的底部左侧,再向上延伸至回气口226。U形折弯管可以由橡胶或者其他耐酸碱腐蚀的材料制成。
在一些可选的实施例中,电解除氧装置10还可以进一步地包括止液阀500,设置于出气口221处,用于阻止流经气体所携带的液体通过。止液阀500仅能允许纯气体通过,气体所携带的液体会被阻挡在止液阀500处,并 依靠自身重力回流至分离仓220内。止液阀500可以为手动式,或者可以为电动式。
由于出气口221处设置有止液阀500,集气口225和回气口226之间连接有回气管400,因此,反应仓210和分离仓220内的液体不易泄漏至壳体200的外部,这有利于提高电解除氧装置10的安全性,防止发生漏液问题。
分隔件230的上表面通过向上凸出形成沿水平方向凸出距离渐增或渐减的斜坡235,使得分离出的液体沿分隔件230的上表面向斜坡235的末端流动;且分隔件230上还开设有回液口232,位于斜坡235的末端,用于使沿分隔件230上表面流动的液体回流至反应仓210。使分隔件230的上表面形成斜坡235形状,可使自挡液筋224上滴落的液体顺势向下流动,起到聚集汇流的作用。
通过在分隔件230上开设有回液口232,沿分隔件230的上表面向下流动的液体可以通过回液口232回流至反应仓210,因此,从排气口231流出的气体所携带的液体能够得到回收再利用,这有利于提高电解除氧装置10的资源利用率。
在一些可选的实施例中,分隔件230的上表面与水平方向的夹角可以为0~60°内的任意值,例如可以为15°、30°或者45°。在另一些实施例中,排气口231可以倾斜设置,与水平方向的夹角可以为0~90°内的任意值,例如可以为15°、30°、45°或者60°,当气体流经排气口231时,排气口231的内壁会起到阻挡作用,使得气体与其携带的部分液体得到初步分离。
本实施例中,分隔件230的上表面形成一段连续的斜坡235,分隔件230的上表面可以形成向右且向下倾斜的斜坡235,回液口232可以位于分隔件230的右端。在另一些可选的实施例中,分隔件230的上表面可以形成两段斜坡235,其中一斜坡235向右且向下倾斜,另一斜坡235向左且向下倾斜,回液口232可以位于两斜坡235的交界处。
在一些可选的实施例中,壳体200内还限定出储液仓250,用于盛装液体,并与反应仓210相通,以向反应仓210补液。例如,壳体200内还设置有沿纵向延伸设置的分隔件230,在壳体200的内部分隔出位于反应仓210和分离仓220横向一侧的储液仓250。该纵向延伸的分隔件230上可以开设有连通口,用于连通反应仓210和储液仓250。
由于反应仓210和储液仓250均集成在壳体200内,形成了一体式的补 液-耗液结构,这极大地简化了整个装置的结构,减少了必要部件的数量,例如可以省略连通储液仓250与反应仓210的管路结构。并且由于补液过程可以在壳体200的内部进行,这有利于提高补液过程的安全性。储液仓250的顶部开设有与壳体200的外部环境相连通的补液口251,以允许补液。例如,补液口251可以与一水箱相连通。
图6是根据本发明一个实施例的电解除氧装置10的液位开关300的示意性结构图,图7是图6所示的电解除氧装置10的液位开关300的示意性分解图,图8是图6所示的电解除氧装置10的液位开关300的示意性透视图。
在一些可选的实施例中,电解除氧装置10还可以进一步地包括液位开关300,其具有开关本体320,设置于储液仓250内,并与补液口251对应设置,用于根据储液仓250内的液位移动,从而打开或封闭补液口251。
例如,开关本体320可以在储液仓250内的液位降至预设液位值以下时打开补液口251,使得储液仓250内的液体可以流经补液口251,并流至反应仓210。又如,开关本体320还可以在储液仓250内的液位升至预设液位值以上时封闭补液口251,从而使得储液仓250内的液体无法流经补液口251。
预设液位值可以根据反应仓210内的安全液位值进行设置。本实施例中,储液仓250和反应仓210形成连通器,预设液位值等于安全液位值。
液位开关300还包括浮子320,与开关本体310固定连接或与开关本体310为一体件,用于在储液仓250内通过绕轴上浮或下沉从而带动开关本体310移动。也就是说,开关本体310由浮子320进行“驱动”,浮子320进行移动所需的动力由其在储液仓250内所受的浮力决定。
例如,浮子320的一部分通过浸于液体,从而使浮子320受到液体的浮力。当储液仓250内的液位发生变化时,浮子320所受的浮力也会发生变化,从而使得浮子320所受的浮力与重力的合力发生变化。例如,当储液仓250内的液位降低时,浮子320所受的浮力会减小,若浮子320所受的浮力与重力的合力方向向下,则会导致浮子320向下运动。反之,则会导致浮子320向上运动。浮子320可以沿竖直方向上升或下降,或者可以沿曲线上升或下降。
在一些可选的实施例中,浮子320可绕轴转动地设置。即,本实施例的 浮子320并非沿直线做升降运动,而是以绕轴转动的方式上升或下降,如此设计,仅需要使浮子320与某一固定轴进行可枢转地连接即可,无需安装尺寸精度较高的导向部件,具备结构精巧、装配过程简单、装置可靠性好的优点。
由于浮子320可绕轴转动地设置,运动轨迹清晰明确,这使得本实施例的浮子320和开关本体310易于沿清晰明确的运动轨迹移动,从而提高液位开关300的可靠性,减少或避免了因浮子320自由运动而带来密封不严等问题。
液位开关300还可以进一步地包括旋转轴340和连接件330。
其中,旋转轴340固定于储液仓。例如,旋转轴340可以与储液仓的容器内壁固定连接。
连接件330与浮子320固定连接或与浮子320为一体件,其上形成有轴孔341,以供旋转轴340插入其中且可转动地配合从而实现可转动地连接。也就是说,连接件330将旋转轴340与浮子320装配成一个有机的整体,使得浮子320可绕旋转轴340转动。
通过在连接件330上开设轴孔341,并使旋转轴340与轴孔341可转动地配合,即可将浮子320可绕轴转动地装配至旋转轴340,结构精妙,工序简单。
开关本体310呈杆状。连接件330上还形成有安装孔342,以供开关本体310的一部分插入其中从而实现固定装配。也就是说,开关本体310的一部分通过与连接件330固定装配,从而间接地与浮子320实现固定连接。例如,上述开关本体310的一部分可与连接件330的安装孔342通过过盈配合的方式进行装配。
开关本体310和浮子320位于旋转轴340的同侧。即,开关本体310位于旋转轴340与浮子320之间,这是使开关本体310根据储液仓内部空间的液位高度做出与浮子320“同向运动”的关键,可以获得更大的“力臂比值”。
本实施例中,旋转轴340的中心轴线沿水平方向延伸,且垂直于浮子320的中央纵向竖直对称面。例如,对于圆柱形浮子320而言,当浮子320的两个底面321沿水平方向相对设置时,浮子320的中央纵向竖直对称面即为浮子320的沿竖直方向延伸的纵向中心截面。在开关本体310封闭补液口251的情况下,安装孔342的中心轴线沿竖直方向延伸,且平行于浮子320的中 央纵向竖直中心线,其中,浮子320的中央纵向竖直中心线即为浮子320的沿竖直方向延伸的纵向中心截面的纵向中心线。“横”“纵”等方位性词语均是相对于液位开关300的实际使用状态而言的,纵向大致为竖直方向。
在一些可选的实施例中,浮子320呈空心柱状。本实施例的浮子320的圆柱体为空腔结构,可以进一步提升浮力(整体密度小于液体密度)。浮子320的中心轴线与轴孔341的中心轴线平行。其中,浮子320的中心轴线分别与两个底面321的中心共线。由于轴孔341的中心轴线沿水平方向延伸,因此,浮子320的中心轴线也沿水平方向延伸,且浮子320的两个底面321沿水平方向相对设置。
在一些可选的实施例中,连接件330为悬臂,自浮子320的柱体侧面322的上侧部区段倾斜向外且向上延伸形成。其中,“向外”是指沿柱体侧面322的径向向外。
开关本体310为杆状塞盖,其具有装配部311以及封堵部312。其中装配部311为杆,并固定装配于安装孔342。封堵部312为塞盖,并连接于装配部311的顶部,用于打开或封闭补液口251。塞盖可以为圆柱形,其上表面为平面状。与传统锥形头塞与水嘴的配合结构相比,本实施例的塞盖与下环形凸缘的配合机构具有位置容错率高的优点,塞盖无需与下环形凸缘的出液口进行精准对齐,只要塞盖的上表面能够覆盖锥形水嘴口即可。本实施例的塞盖与杆为一体件。
安装孔342的内壁的中部区段沿径向向内延伸形成有中部环形凸缘342a。装配部311的主体杆311c的杆径与中部环形凸缘342a的孔径相同,以便插入中部环形凸缘342a所限定的孔内。装配部311还具有从其主体杆311c沿径向向外延伸的上环形凸台311a和下环形凸台311b,分别位于中部环形凸缘342a的上方和下方,以限制开关本体310相对于安装孔342的运动自由度。
通过对安装孔342的孔结构和开关本体310的杆结构和塞结构进行设计,可以提高开关本体310与安装孔342之间通过固定装配所得到整体结构的结构稳定性。
在一些可选的实施例中,开关本体310由耐酸耐碱的弹性材料制成,例如三元乙丙橡胶或者氟橡胶等,依靠自身弹性变形挤压与之密封配合的补液口251,从而实现密封。旋转轴340由耐酸耐碱的材料制成,例如镀铬的金 属材料、陶瓷材料或者塑料材料等。浮子320可以由聚四氟乙烯或者聚己二酰丁二胺等耐酸耐碱材料制成。
除氧组件100一般性地可包括阳极部和阴极部。在通电情况下,阴极部用于通过电化学反应消耗氧气。例如,空气中的氧气可以在阴极部处发生还原反应,即:O 2+2H 2O+4e -→4OH -。阴极部产生的OH -可以在阳极部处发生氧化反应,并生成氧气,即:4OH -→O 2+2H 2O+4e -。分离出液体后的氧气可以通过壳体200上的出气口221排出。由于本实施例的电化学反应消耗水,因此,储液仓250内盛装的液体为水。阳极部可以为阳极电极,例如镍网或者钛网,阴极部可以为阴极电极,例如含有银和二氧化锰的催化膜。
在一些可选的实施例中,壳体200在反应仓210的前壁上开设有安装口,阴极部可以设置于安装口处,以与反应仓210共同限定出用于盛装电解液的反应空间。阳极部可以与阴极部相互间隔地设置于反应空间内。电解除氧装置10还可以进一步地包括保护盖板600,罩设在壳体200的反应仓210和分离仓220的前表面,起到保护阴极部不受外力破坏的作用。保护盖板600上可以开设有通气孔,以允许气体交换。通气孔的孔壁上可以形成有上檐结构。保护盖板600可以由塑料或金属等坚固材料制成。例如,可以采用嵌件(包胶)等工艺将保护盖板封装至壳体200,或者采用超声波摩擦焊等工艺进行封装,然后再采用树脂胶再次密封,保证整个装置灌液后不会有任何漏液。
图9是根据本发明一个实施例的冰箱1的示意性结构图。冰箱1一般性地可包括箱体20以及如以上任一实施例的电解除氧装置10。箱体20的内部限定出储物空间。电解除氧装置10安装于箱体20,并用于消耗储物空间内的氧气,或者用于向储物空间供应氧气。例如,储物空间可以为多个,阴极部可以与某一储物空间气流连通,以降低该储物空间内的氧气含量,阳极部可以与另一储物空间气流连通,以提高该储物空间内的氧气含量。
本实施例的冰箱1为具备低温存储功能的电器设备,既包括狭义的冰箱1,也包括冷柜、储藏柜以及其他冷藏冷冻装置。本实施例的冰箱1,能够快速营造低氧保鲜环境,抑制果蔬等食材的呼吸作用,减缓生理代谢,延长保鲜时间,也能够快速营造高氧保鲜环境,给肉类、菌菇类等食材提供高氧气调保鲜气氛。
本发明的电解除氧装置10以及具有其的冰箱1,由于电解除氧装置10的壳体200内部形成有分离仓220,该分离仓220与反应仓210相通,并用 于对除氧组件100进行电化学反应时产生的气体进行气液分离,因此,本发明的电解除氧装置10的壳体200具备气液分离功能,这有利于减少或避免排出的气体携带液体,降低气体排放过程造成的污染。由于壳体200内集成设置有反应仓210和分离仓220,气液分离过程无需在壳体200外部进行,因此,电解除氧装置10具备结构紧凑、一体化程度高的优点。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种电解除氧装置,包括:
    除氧组件,用于在电解电压的作用下进行电化学反应,消耗所述电解除氧装置所在工作环境内的氧气;和
    壳体,其内部形成有反应仓和分离仓;所述反应仓用于装配所述除氧组件,并作为所述除氧组件进行电化学反应的场所;所述分离仓与所述反应仓相通,用于对所述除氧组件进行电化学反应产生的气体进行气液分离。
  2. 根据权利要求1所述的电解除氧装置,其中,
    所述壳体内具有分隔件,沿水平方向延伸并将所述壳体的内部分隔出上下布置的所述分离仓和所述反应仓;且
    所述分隔件上开设有排气口,以连通所述分离仓和所述反应仓。
  3. 根据权利要求2所述的电解除氧装置,其中,
    所述分离仓上开设有出气口,用于允许经气液分离后的气体排出;所述分离仓的内部限定出自所述排气口延伸至所述出气口的气流通道;且
    所述分离仓的内部设置有多个挡液筋,沿所述气流通道间隔错位排布,用于从不同角度阻挡气体在所述气流通道中流动,从而分离出气体所携带的液体。
  4. 根据权利要求3所述的电解除氧装置,其中,
    所述气流通道具有水平延伸的水平区段,所述挡液筋分布在所述水平区段内;且
    在相邻所述挡液筋中,一所述挡液筋自所述分离仓的后壁向前延伸且与所述分离仓的前壁具有间隙,另一所述挡液筋自所述分离仓的前壁向后延伸且与所述分离仓的后壁具有间隙。
  5. 根据权利要求4所述的电解除氧装置,其中,
    向前延伸的所述挡液筋以及向后延伸的所述挡液筋分别朝流经所述水平区段的气体的流动方向倾斜设置。
  6. 根据权利要求4所述的电解除氧装置,其中,
    向前延伸的所述挡液筋的末端位于与之相邻的向后延伸的所述挡液筋的末端的前侧;且
    向后延伸的所述挡液筋的末端位于与之相邻的向前延伸的所述挡液筋的末端的后侧。
  7. 根据权利要求3-6中任一项所述的电解除氧装置,其中,
    每一所述挡液筋上形成有多个微孔,用于允许流经的气体通过且阻止气体携带的液体通过。
  8. 根据权利要求3-6中任一项所述的电解除氧装置,其中,
    所述出气口位于所述分离仓的顶壁上;所述分离仓的顶壁上还开设有集气口和回气口,设置于所述出气口的横向两侧,并分别设置于所述出气口的下游和上游;且
    所述电解除氧装置还包括回气管,自所述集气口延伸至所述回气口,并形成U型折弯形状。
  9. 根据权利要求3-6中任一项所述的电解除氧装置,还包括:
    止液阀,设置于所述出气口处,用于阻止流经气体所携带的液体通过;且
    所述分隔件的上表面通过向上凸出形成沿水平方向凸出距离渐增或渐减的斜坡,使得分离出的液体沿所述分隔件的上表面向斜坡的末端流动;且所述分隔件上还开设有回液口,位于所述斜坡的末端,用于使沿所述分隔件上表面流动的液体回流至所述反应仓。
  10. 一种冰箱,包括:
    如权利要求1-9中任一项所述的电解除氧装置。
PCT/CN2022/132084 2021-12-03 2022-11-15 电解除氧装置以及具有其的冰箱 WO2023098474A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111467783.0A CN116222114A (zh) 2021-12-03 2021-12-03 电解除氧装置以及具有其的冰箱
CN202111467783.0 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023098474A1 true WO2023098474A1 (zh) 2023-06-08

Family

ID=86571795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132084 WO2023098474A1 (zh) 2021-12-03 2022-11-15 电解除氧装置以及具有其的冰箱

Country Status (2)

Country Link
CN (1) CN116222114A (zh)
WO (1) WO2023098474A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243072A (ja) * 2009-04-07 2010-10-28 Panasonic Corp 冷蔵庫
CN207741387U (zh) * 2017-12-08 2018-08-17 青岛开拓隆海制冷配件有限公司 一种异种材料连接回液管结构的气液分离器
CN211668097U (zh) * 2020-03-24 2020-10-13 合肥华凌股份有限公司 除氧模组、保鲜装置及冰箱
CN113446797A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN113446792A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243072A (ja) * 2009-04-07 2010-10-28 Panasonic Corp 冷蔵庫
CN207741387U (zh) * 2017-12-08 2018-08-17 青岛开拓隆海制冷配件有限公司 一种异种材料连接回液管结构的气液分离器
CN211668097U (zh) * 2020-03-24 2020-10-13 合肥华凌股份有限公司 除氧模组、保鲜装置及冰箱
CN113446797A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN113446792A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱

Also Published As

Publication number Publication date
CN116222114A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN210175579U (zh) 一种带除氧装置的储物箱
CN201954697U (zh) 防水箱提起漏水及防溢流加湿器
CN217654171U (zh) 电解除氧装置以及具有其的冰箱
CN113975911B (zh) 除氧模组、保鲜装置及冰箱
WO2023098474A1 (zh) 电解除氧装置以及具有其的冰箱
CN219385342U (zh) 一种水循环汽水分离氢氧发生器
WO2023098377A1 (zh) 电解除氧装置以及具有其的冰箱
CN212610915U (zh) 一种用于氢气电解槽的螺旋式气液分离罐
CN217876737U (zh) 液位开关以及具有其的储液装置和冰箱
CN212789839U (zh) 乙醛肟生产用羟胺二磺酸盐水解尾气回收装置
CN211898687U (zh) 一种自动补水装置
CN214389535U (zh) 一种氯化氢尾气吸收装置
CN201954698U (zh) 防泄漏加湿器
CN213266718U (zh) 一种臭氧电解装置
CN211575387U (zh) 无雾加湿器
WO2023098735A1 (zh) 氧气处理装置和具有其的冰箱
WO2023098749A1 (zh) 储液装置以及具有其的电解除氧系统和冰箱
WO2023098667A1 (zh) 液位开关以及具有其的储液装置和冰箱
WO2023098387A1 (zh) 具备过滤回收功能的储液装置以及具有其的冰箱
CN208909825U (zh) 水箱和饮水机
CN201954708U (zh) 防干烧加湿器
KR200322386Y1 (ko) 가스-전해액 분리 수단을 구비한 수산 가스 발생 장치
CN218972992U (zh) 气调装置及冷藏冷冻装置
CN215083858U (zh) 家用制氢机
CN212819015U (zh) 一种氢氧分离器洗涤装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE