WO2023098387A1 - 具备过滤回收功能的储液装置以及具有其的冰箱 - Google Patents

具备过滤回收功能的储液装置以及具有其的冰箱 Download PDF

Info

Publication number
WO2023098387A1
WO2023098387A1 PCT/CN2022/129569 CN2022129569W WO2023098387A1 WO 2023098387 A1 WO2023098387 A1 WO 2023098387A1 CN 2022129569 W CN2022129569 W CN 2022129569W WO 2023098387 A1 WO2023098387 A1 WO 2023098387A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid storage
storage container
filter housing
liquid
storage device
Prior art date
Application number
PCT/CN2022/129569
Other languages
English (en)
French (fr)
Inventor
黄璐璐
费斌
苗建林
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023098387A1 publication Critical patent/WO2023098387A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/31Self-supporting filtering elements
    • B01D29/33Self-supporting filtering elements arranged for inward flow filtration
    • B01D29/336Self-supporting filtering elements arranged for inward flow filtration open-ended, the arrival of the mixture to be filtered and the discharge of the concentrated mixture are situated on both opposite sides of the filtering element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/31Self-supporting filtering elements
    • B01D29/35Self-supporting filtering elements arranged for outward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/31Self-supporting filtering elements
    • B01D29/35Self-supporting filtering elements arranged for outward flow filtration
    • B01D29/356Self-supporting filtering elements arranged for outward flow filtration open-ended, the arrival of the mixture to be filtered and the discharge of the concentrated mixture are situated on both opposite sides of the filtering element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • B01D36/001Filters in combination with devices for the removal of gas, air purge systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove

Definitions

  • the invention relates to fresh-keeping equipment, in particular to a liquid storage device with a filtration recovery function and a refrigerator with the same.
  • reaction devices such as the electrolytic deoxygenation device used to reduce the oxygen inside the refrigerator through electrochemical reaction
  • the process of electrochemical reaction requires the participation of electrolyte, and the reaction process will generate gas, which needs to be released to the external environment emission.
  • the electrolyte During the reaction process, due to the generation of a large amount of heat, the electrolyte will be heated and evaporated, which may cause a small amount of electrolyte vapor to be carried in the gas discharged from the reaction device. Most electrolytes are acidic or alkaline solutions, which are corrosive. If the gas generated by the reaction device is directly discharged to the air without treatment, it may cause air pollution and endanger life and health.
  • An object of the present invention is to overcome at least one technical defect in the prior art, and provide a liquid storage device with a filtration recovery function and a refrigerator having the same.
  • a further object of the present invention is to provide a liquid storage device with the function of filtration and recovery, so that the specific substance components in the gas can be separated and recycled, thereby reducing or avoiding the pollution caused by gas discharge, and at the same time improving resource utilization efficiency.
  • Yet another further object of the present invention is to improve the filtration efficiency and recovery efficiency of the liquid storage device.
  • Another further object of the present invention is to make it easy for the user to observe the filtration recovery process of the liquid storage device.
  • a liquid storage device with the function of filtration and recovery, comprising: a first liquid storage part, which has a first filter housing and a first filter element; An air intake hole and a first air outlet hole; the first filter element is arranged in the first filter housing, and is used to dissolve specific material components in the gas passing through the first air intake hole in the first filter housing to achieve filtration recovery; the first air outlet is used to discharge the filtered gas; and the second liquid storage part has a second filter housing and a second filter element; the second filter housing is provided with a second air inlet and a second Air outlet; the second air inlet communicates with the first air outlet, and the second filter element is arranged in the second filter housing, and is used to dissolve specific substance components in the gas passing from the first air outlet into the second air inlet In the second filter housing, to achieve re-filtration recovery; the second air outlet is used to discharge the re-filtered gas.
  • the first liquid storage part also has a first liquid storage container, and the first filter housing communicates with the first liquid storage container, so as to allow specific substance components dissolved in the first filter housing to enter the first liquid storage container;
  • the second liquid storage part also has a second liquid storage container, and the second filter housing communicates with the second liquid storage container, so as to allow specific substance components dissolved in the second filter housing to enter the second liquid storage container.
  • the second liquid storage container communicates with the first liquid storage container; and the first liquid storage container is provided with a liquid supply port connected to the external environment for replenishing liquid to the external environment.
  • the second liquid storage container and the first liquid storage container have a common wall, and a part of the bottom wall of the second liquid storage container is concaved to form a common first wall and a second wall; wherein the first wall serves as the first wall A side wall of the liquid storage container, the second wall serves as a part of the top wall of the first liquid storage container; and an opening is opened on the second wall to communicate with the second liquid storage container and the first liquid storage container.
  • the liquid storage device further includes: a liquid level switch disposed in the first liquid storage container and having a switch body for opening and closing the opening according to the movement of the liquid level in the first liquid storage container to allow or The liquid in the second liquid storage container is prevented from flowing into the first liquid storage container through the opening.
  • a liquid level switch disposed in the first liquid storage container and having a switch body for opening and closing the opening according to the movement of the liquid level in the first liquid storage container to allow or The liquid in the second liquid storage container is prevented from flowing into the first liquid storage container through the opening.
  • the first air inlet hole and the first air outlet hole are respectively located on the third wall of the first liquid storage container, and the third wall is another part of the top wall of the first liquid storage container, facing away from the second wall from the second wall.
  • the direction of the liquid storage container extends horizontally outward; and the second air inlet and the second air outlet are respectively located on the top wall of the second liquid storage container;
  • the first air inlet and the second air inlet extend downward to a bottom section in the first filter housing and a bottom section in the second filter housing.
  • the first filter housing is inserted into the first liquid storage container, and the bottom of the first filter housing is opened with a first liquid outlet hole communicating with the first liquid storage container, so as to allow the liquid in the first filter housing to flow into the first liquid storage container; and the second filter housing is inserted into the second liquid storage container, and the bottom of the second filter housing is opened with a second liquid outlet hole communicating with the second liquid storage container to allow the second filter The liquid in the casing flows into the second liquid storage container.
  • the first liquid storage container and the first filter housing are respectively made of transparent materials; and/or the second liquid storage container and the second filter housing are respectively made of transparent materials.
  • a reaction system including: a reaction device, which has a reaction vessel, the inside of the reaction vessel is used as a place for chemical reactions, and the reaction vessel is provided with an exhaust port for discharging A gas generated by a chemical reaction; and the liquid storage device according to any one of the above, wherein the first air inlet communicates with the exhaust port.
  • a refrigerator including: the above-mentioned reaction system; wherein, an electrochemical reaction element is arranged in the reaction vessel of the reaction system, and is used for consuming oxygen in the refrigerator through an electrochemical reaction.
  • the present invention provides a liquid storage device with the function of filtration and recovery, which can separate specific components in the gas and be recycled, thereby reducing or avoiding gas emissions The resulting pollution, while improving resource utilization efficiency.
  • the liquid storage device with the function of filtration and recovery and the refrigerator with it of the present invention use the organic combination of the first liquid storage part and the second liquid storage part to filter the specific substances in the gas passing through the first air inlet hole.
  • the components are filtered and recovered multiple times, which is beneficial to improve the filtration efficiency and recovery efficiency of the liquid storage device, and can further reduce exhaust pollution and waste of resources.
  • the first liquid storage container and the first filter casing are made of transparent materials respectively, and/or the second liquid storage container and the second liquid storage container
  • the two filter housings are respectively made of transparent materials, and the transparent materials have an external display function, which makes it easy for the user to observe the filtration and recovery process of the liquid storage device, so as to determine the working state of the liquid storage device.
  • Fig. 1 is a schematic structural diagram of a liquid storage device according to an embodiment of the present invention.
  • Fig. 2 is a schematic top view of the liquid storage device shown in Fig. 1;
  • Fig. 3 is a schematic front view of the liquid storage device shown in Fig. 1;
  • Fig. 4 is a schematic side view of a partial structure of the liquid storage device shown in Fig. 2;
  • Fig. 5 is a schematic structural diagram of a partial structure of the liquid storage device shown in Fig. 2;
  • Fig. 6 is a schematic structural diagram of a first filter mechanism of the liquid storage device shown in Fig. 2;
  • Fig. 7 is a schematic exploded view of the first filter mechanism of the liquid storage device shown in Fig. 6;
  • Fig. 8 is a schematic structural diagram of a second compartment cover of a second liquid storage container of the liquid storage device shown in Fig. 3;
  • Fig. 9 is a schematic structural diagram of a liquid level switch of the liquid storage device shown in Fig. 2;
  • Fig. 10 is a schematic exploded view of the liquid level switch of the liquid storage device shown in Fig. 9;
  • Fig. 11 is a schematic perspective view of a liquid level switch of the liquid storage device shown in Fig. 9;
  • Figure 12 is a schematic structural diagram of a reaction system according to an embodiment of the present invention.
  • Fig. 13 is a schematic structural view of a refrigerator according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a liquid storage device 10 according to an embodiment of the present invention.
  • FIG. 2 is a schematic top view of the liquid storage device 10 shown in FIG. 1 .
  • FIG. 3 is a schematic front view of the liquid storage device 10 shown in FIG. 1 .
  • Fig. 3 is a perspective view.
  • the liquid storage device 10 of this embodiment has the function of filtration and recovery, which can separate and recover specific components in the gas for utilization.
  • the liquid storage device 10 may generally include a first liquid storage part 100 and a second liquid storage part 200 .
  • the first liquid storage part 100 has a first filter housing 120 and a first filter element 130 .
  • the first filter housing 120 and the first filter element 130 form a first filter mechanism.
  • a first air inlet 121 and a first air outlet 122 are opened on the first filter housing 120 .
  • the first filter element 130 is disposed in the first filter housing 120 and is used for dissolving specific substance components in the gas passing through the first air inlet 121 in the first filter housing 120 to achieve filtration recovery.
  • the first air outlet 122 is used to discharge filtered air.
  • the inside of the first filter housing 120 can also be used to store liquid, such as electrolyte or water containing specific components.
  • liquid such as electrolyte or water containing specific components.
  • the specific substance components in the gas from the external environment of the liquid storage device 10 are dissolved in the first filter housing 120 , which means dissolved in the liquid stored in the first filter housing 120 .
  • the second liquid storage part 200 has a second filter housing 220 and a second filter element 230 .
  • the second filter housing 220 and the second filter element 230 form a second filter mechanism.
  • a second air inlet 221 and a second air outlet 222 are opened on the second filter housing 220 .
  • the second air inlet 221 communicates with the first air outlet 122, and the second filter 230 is arranged in the second filter housing 220, and is used to make the air from the first air outlet 122 pass into the second air inlet 221 Specific material components are dissolved in the second filter housing 220 to achieve filtration and recovery again.
  • the second air outlet 222 is used to discharge the re-filtered gas.
  • the second filter housing 220 can also be used to store liquid, such as electrolyte or water containing specific components.
  • liquid such as electrolyte or water containing specific components.
  • the specific substance components in the gas from the external environment of the liquid storage device 10 are dissolved in the second filter housing 220 , which means dissolved in the liquid stored in the second filter housing 220 .
  • the above-mentioned specific material components are water-soluble substances.
  • the liquid components stored in the first filter housing 120 and the second filter housing 220 can be adjusted according to the physical and chemical properties of the specific material components to be separated.
  • the liquid storage device 10 of this embodiment can utilize the first filter element 130 and the first filter housing 120 to dissolve the specific substance components in the gas passing into the first air inlet 121 in the first filter housing 120,
  • the second filter element 230 and the second filter housing 220 can be used to dissolve the specific substance components in the gas passing from the first air outlet 122 into the second air inlet 221 in the second filter housing 220
  • this embodiment provides a liquid storage device 10 with the function of filtration recovery, the liquid storage device 10 can separate specific components in the gas and be recycled, thereby reducing or Avoid pollution caused by gas emissions while improving resource utilization efficiency.
  • the specific substance components in the gas passing through the first air inlet 121 are filtered and recovered multiple times, which is beneficial to improve the filtration of the liquid storage device 10
  • Efficiency and recycling efficiency can further reduce exhaust pollution and waste of resources.
  • the number of second filtering parts can be set to one or more according to actual needs, so as to adjust the times of filtering and recycling.
  • This embodiment is only an example for the case where there is one second filter unit, but it should not be regarded as limiting the number of second filter units.
  • the first liquid storage part 100 also has a first liquid storage container 110, and the first filter housing 120 communicates with the first liquid storage container 110 to allow the liquid to be dissolved in the first filter housing 120.
  • the specified substance components enter the first liquid storage container 110 .
  • the second liquid storage part 200 also has a second liquid storage container 210, and the second filter housing 220 communicates with the second liquid storage container 210 to allow specific substance components dissolved in the second filter housing 220 to enter the second liquid storage Container 210.
  • each filter housing has a corresponding liquid storage container communicated with it, the specific material components retained in each filter housing can flow into the corresponding liquid storage container for reuse.
  • each filter housing can be inserted into the corresponding liquid storage container.
  • Each liquid storage container may be roughly in the shape of a cuboid, and each filter housing may be inserted into the corresponding liquid storage container as an inner sleeve.
  • the first filter housing 120 is inserted into the first liquid storage container 110, and the bottom of the first filter housing 120 is provided with a first liquid outlet hole 123 communicating with the first liquid storage container 110, so as to allow the first filter housing to The liquid in the body 120 flows into the first liquid storage container 110 .
  • the second filter housing 220 is inserted into the second liquid storage container 210, and the bottom of the second filter housing 220 is provided with a second liquid outlet hole 223 communicating with the second liquid storage container 210 to allow the second filter housing 220 to The liquid flows into the second liquid storage container 210 .
  • each filter housing communicates with the corresponding liquid storage container through the liquid outlet hole at the bottom, the liquid in each filter housing can pass through the liquid outlet hole and return to the liquid storage container by its own gravity, which makes the liquid storage
  • the recycling process of the device 10 is simple and effective.
  • connection manners are only illustrative, and those skilled in the art should easily expand them, and will not enumerate them one by one here.
  • the second liquid storage container 210 communicates with the first liquid storage container 110 .
  • the first liquid storage container 110 is provided with a liquid supply port 114 communicating with the external environment for supplying liquid to the external environment. That is, the liquid storage device 10 of this embodiment not only has the function of filtration and recovery but also has the function of replenishing liquid while storing the liquid, which facilitates the reuse of the specific substance components obtained by filtration and recovery.
  • the specific material components in the first liquid storage container 110 can be reused by certain devices in the external environment after flowing out from the liquid supply port 114 .
  • Specific material components entering the second liquid storage container 210 can enter the first liquid storage container 110 first, and then flow out through the liquid supply port 114 to be reused by certain devices in the external environment.
  • FIG. 4 is a schematic side view of a partial structure of the liquid storage device 10 shown in FIG. 2 .
  • FIG. 5 is a schematic structural diagram of a partial structure of the liquid storage device 10 shown in FIG. 2 .
  • Both Fig. 4 and Fig. 5 are perspective views, and Fig. 5 shows the perspective part with dotted lines.
  • the second liquid storage container 210 and the first liquid storage container 110 have a common wall, and a part of the bottom wall 211 of the second liquid storage container 210 forms a common wall through an upward recess (that is, an upward depression).
  • the first wall 111 and the second wall 112. That is, the shared walls include the first wall 111 and the second wall 112 .
  • the first wall 111 serves as a side wall of the first liquid storage container 110 , which can extend along a vertical plane.
  • the second wall 112 serves as a part of the top wall of the first liquid storage container 110 and can extend along a horizontal plane.
  • the second liquid storage container 210 is approximately in the shape of a cuboid.
  • a part of the first liquid storage container 110 can be positioned below the second liquid storage container 210 by making a portion of the bottom wall 211 of the second liquid storage container 210 concave upwards to form a shared first wall 111 and a second wall 112 .
  • An opening 112 a is opened on the second wall 112 to communicate with the second liquid storage container 210 and the first liquid storage container 110 . This can prompt the liquid in the second liquid storage container 210 to flow down into the first liquid storage container 110 through the opening 112 a by its own gravity.
  • the first air inlet 121 and the first air outlet 122 are located on the third wall 113 of the first liquid storage container 110 respectively, and the third wall 113 is another part of the first liquid storage container 110
  • the top wall extends horizontally outward from the second wall 112 toward a direction away from the second liquid storage container 210 .
  • the second wall 112 and the third wall 113 are connected to form a horizontal plane, serving as the top wall of the first liquid storage container 110 .
  • the third wall 113 is a non-shared wall, and the second liquid storage container 210 is not arranged above it, which facilitates opening the first air inlet hole 121 and the first air outlet hole 122 .
  • the second air inlet 221 and the second air outlet 222 are respectively located on the top wall of the second liquid storage container 210 .
  • the liquid level in the second liquid storage container 210 is higher than the liquid level in the first liquid storage container 110 .
  • the second liquid storage container 210 and the first liquid storage container 110 can be changed from the above-mentioned integral arrangement to separate and independent arrangements.
  • a liquid discharge port 216 is provided on the second liquid storage container 210
  • a liquid input port 116 is provided on the first liquid storage container 110.
  • FIG. 6 is a schematic structural view of the first filter mechanism of the liquid storage device 10 shown in FIG. 2 .
  • FIG. 7 is a schematic exploded view of the first filter mechanism of the liquid storage device 10 shown in FIG. 6 .
  • the first filter element 130 and the second filter element 230 are air ducts respectively, and extend downward from the first air inlet 121 and the second air inlet 221 to the bottom section and the second air inlet in the first filter housing 120 respectively.
  • the bottom section within the filter housing 220 may be named a first airway
  • the second filter element 230 may be named a second airway.
  • the first air duct is inserted downward into the first filter housing 120 from the first air inlet 121 , and extends to the bottom section of the first filter housing 120 .
  • the second air duct is inserted downward into the second filter housing 220 from the second air inlet 221 , and extends to the bottom section of the second filter housing 220 .
  • the two air guide tubes are respectively extended to the bottom section in the corresponding filter housing, so that the gas flowing through the air guide tube can be guided to the bottom section in the corresponding filter housing, thereby prolonging the flow path of the gas in the filter housing, and flowing out of the guide tube.
  • the gas in the trachea can fully contact with the liquid in the filter housing during the ascending process, so that specific material components in the gas can be more fully dissolved in the filter housing, which enables the liquid storage device 1020 to obtain better performance with a delicate and simple structure. Filter purification effect.
  • the air guiding tube in this embodiment can be a straight tube with openings 112a at both ends to facilitate the inflow or outflow of gas.
  • the structure is simple and has a better air guiding effect.
  • the shape of the airway tube can be transformed into a vertical hook-shaped tube, which has a straight tube section and an bent tube section extending upward from the end of the straight tube section.
  • the ends of the bent sections are slightly higher than the ends of the straight sections to direct the gas flowing through them upwards.
  • the air duct in this embodiment can be in the shape of a vertical hook
  • the straight tube section is similar to an umbrella shaft
  • the curved tube section is similar to an umbrella handle connected to the end of the umbrella shaft.
  • the curved pipe end is bent and extended upward from the end of the straight pipe section, which can guide the gas flowing out of the airway to flow upward, so that the direction of movement of the gas is more definite.
  • the fact that the end of the bent pipe section is slightly higher than the end of the straight pipe section means that the end of the bent pipe section remains in the bottom section of the filter housing, which does not significantly shorten the flow path of the gas during the dissolution process.
  • the air duct and the filter housing cooperate with each other to realize gas filtration by using water, which can avoid the use of consumable filter materials, and does not need to replace filter materials, which is beneficial to save costs.
  • each filter housing can be integrally formed. In other optional embodiments, the filter housing can be formed by connecting multiple different components.
  • each filter housing may respectively include a first compartment body 501 having a top opening 112 a and a first compartment cover 502 closing the top opening 112 a of the first compartment body 501 . And the air inlet hole and the air outlet hole are located on the first cover 502 at intervals.
  • the first chamber body 501 may be in the shape of a straight tube with a diameter greater than that of the airway.
  • the top end of the first compartment body 501 is in the shape of an opening 112 a, and is in sealing connection with the first compartment cover 502 .
  • the bottom end of the first chamber body 501 is closed, and the above-mentioned liquid outlet hole is opened thereon. There may be at least one liquid outlet.
  • the air inlet hole together with the air guide tube and the air outlet hole are covered by the first chamber body 501 to form a sleeve structure.
  • the bottom end of the air guide tube is higher than the bottom end of the first compartment body 501 , preventing the gas flowing out of the air guide tube from escaping the first compartment body 501 .
  • the first liquid storage container 110 and the second liquid storage container 210 can be integrally formed respectively, which is beneficial to improve the sealing effect of the liquid storage container and prevent liquid leakage.
  • the second liquid storage container 210 can be changed to be formed by connecting multiple different components.
  • the second liquid storage container 210 may include a second compartment body 601 having a top opening 112 a and a second compartment cover 602 closing the top opening 112 a of the second compartment body 601 .
  • the second bin body 601 may be in the shape of a cuboid tank without a cover, and its volume is greater than that of the first bin body 501 .
  • FIG. 8 is a schematic structural view of the second compartment cover 602 of the second liquid storage container 210 of the liquid storage device 10 shown in FIG. 3 .
  • Fig. 8(a) is a perspective view
  • Fig. 8(b) is a front view
  • Fig. 8(c) is a top view.
  • An installation opening 602 a is opened on the second cover 602 .
  • the hole wall of the installation port 602a extends upward to form a hollow cylindrical external thread interface 602e. Since the externally threaded interface 602e extends upward from the hole wall of the installation port 602a, the upper edge of the externally threaded interface 602e is higher than the upper surface of the second compartment cover 602 and at the same time higher than the upper edge of the liquid filling tank 602c described below. This can control the maximum liquid level in the liquid filling process below the upper edge of the external thread interface 602e.
  • the first compartment cover 502 has a closing cover plate 502a located above the first compartment body 501 and an annular internal thread interface 502b extending downward from the outer peripheral edge of the closing cover plate 502a.
  • the closing cover plate 502a is used to cover the top opening 112a of the first warehouse body 501 .
  • the ring-shaped inner threaded interface 502b is screwed to the outer threaded interface 602e, so that the first compartment cover 502 and the second compartment cover 602 are detachably connected. That is, the annular internal threaded interface 502 b is used to connect the first compartment cover 502 to the second compartment cover 602 .
  • the first chamber body 501 extends downward from the lower surface of the closed cover plate 502a, and is inserted into the liquid storage container after passing through the external threaded interface 602e.
  • the installation opening 602a is closed by screwing the first compartment cover 502 and the second compartment cover 602, which can simplify the installation and fixing process of the second filter mechanism, and realize one-step installation in place.
  • a liquid filling opening 602b may be opened on the second compartment cover 602, and the opening wall thereof extends downward to form a liquid filling groove 602c. Since the liquid filling groove 602c extends downward from the upper surface of the second warehouse cover 602, and the external thread interface 602e extends upward from the upper surface of the second warehouse cover 602, therefore, when the liquid filling port 602b is extended to the second warehouse body 601 When liquid is added, even if the second chamber body 601 overflows due to the process of adding liquid, the liquid level during overflow will not exceed the external threaded interface 602e.
  • a part of the tank wall of the liquid filling tank 602c extends obliquely downwards, so that a tapered opening 112a is formed at the bottom of the liquid adding tank 602c. That is to say, the water filling tank is an inclined through hole with a certain depth, which is convenient for the user to observe the liquid level when adding liquid.
  • There is a liquid level mark on the tank wall extending downwards to indicate the liquid level during the liquid filling process.
  • the liquid level mark can be designed as a "maximum liquid level scale line", which is used to remind the user that the liquid has been filled.
  • the edge of the second compartment cover 602 has a protrusion 602d protruding outward for applying force.
  • the user can apply force to the second compartment cover 602 by grabbing or other actions, so as to realize the disassembly process between the second compartment cover 602 and the second compartment body 601 .
  • the periphery of the closure between the second compartment cover 602 and the second compartment body 601 can be provided with an elastic sealing ring, which is convenient to realize sealing by pressing between the second compartment cover 602 and the second compartment body 601, so as to prevent the second Storehouse body 601 leaks.
  • the first liquid storage container 110 is integrally formed.
  • the third wall 113 of the first liquid storage container 110 is also provided with an installation port 602a, and the shape of the installation port 602a is the same as that of the installation port 602a on the second compartment cover 602.
  • the assembly method of the first filter mechanism relative to the installation port 602a is also the same as that of the second filter mechanism relative to the installation port 602a, and will not be repeated here.
  • FIG. 9 is a schematic structural diagram of the liquid level switch 300 of the liquid storage device 10 shown in FIG. 2 .
  • FIG. 10 is a schematic exploded view of the liquid level switch 300 of the liquid storage device 10 shown in FIG. 9 .
  • the liquid storage device 10 may further include a liquid level switch 300 disposed in the first liquid storage container 110 and having a switch body 310 for The liquid level moves to open and close the opening 112a, so as to allow or prevent the liquid in the second liquid storage container 210 from flowing into the first liquid storage container 110 through the opening 112a. That is to say, the liquid level switch 300 is used to control the opening and closing of the opening 112a. That is, the liquid level switch 300 acts as a gate of the infusion channel between the second liquid storage container 210 and the first liquid storage container 110 , and plays a role of opening and closing the infusion channel.
  • the switch body 310 of the liquid level switch 300 moves according to the liquid level of the first liquid storage container 110 to close or open the opening 112a, and the opening and closing process of the opening 112a does not need electric control.
  • Fig. 9(a) shows the state when the switch body 310 closes the opening 112a
  • Fig. 9(b) shows the state when the switch body 310 opens the opening 112a
  • the direction of the arrow in the figure shows the rotation direction of the float 320.
  • the switch body 310 When the liquid level in the first liquid storage container 110 rises, the switch body 310 can rise and press against the lower peripheral edge of the opening 112a to close the opening 112a, so that the liquid in the second liquid storage container 210 cannot pass through the opening 112a, It can also descend when the liquid level in the first liquid storage container 110 decreases to deviate and open the opening 112a, so that the liquid in the second liquid storage container 210 can flow down into the first liquid storage container 110 by gravity. Under the action of the liquid level switch 300, the liquid in the first liquid storage container 110 and the liquid in the second liquid storage container 210 cannot be in direct contact, and a certain height distance can be maintained to prevent the migration of solution substances due to the confluence of liquids. Avoid contamination.
  • the liquid level switch 300 also includes a float 320 , which is fixedly connected with the switch body 310 or integrated with the switch body 310 , and is used to drive the switch body 310 to move by floating or sinking in the first liquid storage container 110 . That is to say, the switch body 310 is “driven” by the float 320 , and the power required for the movement of the float 320 is determined by the buoyancy it experiences in the first liquid storage container 110 .
  • a part of the float 320 is immersed in the liquid, so that the float 320 is buoyed by the liquid.
  • the buoyancy force on the float 320 will also change, so that the resultant force of the buoyancy force on the float 320 and the gravity will change.
  • the buoyancy force on the float 320 will decrease. If the resultant force of the buoyancy force on the float 320 and gravity is downward, the float 320 will move downward. On the contrary, it will cause the float 320 to move upward.
  • the float 320 may rise or fall in a vertical direction, or may rise or fall in a curve.
  • the float 320 is rotatably arranged around an axis. That is, the float 320 of the present embodiment does not move up and down in a straight line, but rises or falls in a manner of rotating around an axis. In such a design, it is only necessary to pivotally connect the float 320 to a certain fixed shaft, and there is no need to The installation of guide components with high dimensional accuracy has the advantages of compact structure, simple assembly process and good device reliability.
  • the movement trajectory is clear and definite, which makes the float 320 and the switch body 310 of this embodiment easy to move along a clear and definite movement trajectory, thereby improving the reliability of the liquid level switch 300 and reducing or avoiding the Due to the free movement of the float 320, problems such as poor sealing are caused.
  • the liquid level switch 300 may further include a rotating shaft 340 and a connecting piece 330 .
  • the rotating shaft 340 is fixed to the first liquid storage container 110 .
  • the rotating shaft 340 may be fixed in the inner space of the first liquid storage container 110 and fixedly connected with the container inner wall of the first liquid storage container 110 .
  • the rotating shaft 340 can also be detachably fixed to the first liquid storage container 110, which can adjust the height of the rotating shaft 340 according to actual needs, so as to adjust the first liquid storage container 110 that starts to start rehydration. liquid level inside.
  • the connecting member 330 is fixedly connected with the float 320 or integrally formed with the float 320 , and has a shaft hole 341 formed therein for the rotation shaft 340 to be inserted into and rotatably matched to realize the rotatable connection. That is to say, the connecting member 330 assembles the rotating shaft 340 and the float 320 into an organic whole, so that the float 320 can rotate around the rotating shaft 340 .
  • the float 320 By opening the shaft hole 341 on the connecting piece 330 and rotatably fitting the shaft hole 340 with the shaft hole 341, the float 320 can be rotatably assembled to the shaft 340.
  • the structure is extraordinar and the process is simple.
  • the switch body 310 is rod-shaped.
  • An installation opening 602a is also formed on the connecting member 330 for inserting a part of the switch body 310 therein so as to achieve fixed assembly. That is to say, a part of the switch body 310 is indirectly fixedly connected with the float 320 by being fixedly assembled with the connecting piece 330 .
  • a part of the above-mentioned switch body 310 can be assembled with the installation opening 602 a of the connecting member 330 through an interference fit.
  • the rotating shaft 340 and the switch body 310 are respectively assembled to the connecting piece 330 fixedly connected with the float 320 or integrated with the float 320 to form the liquid level switch 300 with strong structural integrity.
  • the switch body 310 and the float 320 are located on the same side of the rotation shaft 340 .
  • the same side of the switch body 310 and the float 320 means that the switch body 310 is located between the rotating shaft 340 and the float 320, which is to make the switch body 310 the same side as the float 320 according to the liquid level height of the first liquid storage container 110.
  • the key to "momentum movement" can obtain a larger "moment arm ratio".
  • the central axis of the rotating shaft 340 extends along the horizontal direction and is perpendicular to the central longitudinal vertical symmetry plane of the float 320 .
  • the central longitudinal vertical symmetrical plane of the float 320 is the longitudinal center section of the float 320 extending along the vertical direction.
  • the central axis of the mounting hole 342 extends in the vertical direction and is parallel to the central longitudinal vertical centerline of the float 320, wherein the central longitudinal vertical centerline of the float 320 is The longitudinal centerline of the longitudinal center section of the float 320 extending in the vertical direction.
  • Orientation words such as “horizontal” and “longitudinal” are relative to the actual use state of the liquid level switch 300, and the longitudinal direction is roughly the vertical direction.
  • the float 320 is in the shape of a hollow column.
  • the cylinder of the float 320 in this embodiment is a cavity structure, which can further enhance the buoyancy (the overall density is lower than that of the liquid).
  • the central axis of the float 320 is parallel to the central axis of the shaft hole 341 . Wherein, the central axis of the float 320 is collinear with the centers of the two bottom surfaces 321 respectively. Since the central axis of the shaft hole 341 extends along the horizontal direction, the central axis of the float 320 also extends along the horizontal direction, and the two bottom surfaces 321 of the float 320 are disposed opposite to each other along the horizontal direction.
  • the connecting member 330 is a cantilever formed by extending obliquely outward and upward from the upper side section of the column side 322 of the float 320 .
  • “outward” means radially outward along the side surface 322 of the cylinder.
  • FIG. 11 is a schematic perspective view of the liquid level switch 300 of the liquid storage device 10 shown in FIG. 9 .
  • the switch body 310 is a rod-shaped plug having an assembly portion 311 and a blocking portion 312 .
  • the assembly part 311 is a rod, and is fixedly assembled in the installation hole 342 .
  • the blocking part 312 is a plug cap and is connected to the top of the assembly part 311 for opening or closing the liquid replenishment port 202 .
  • the plug cover can be cylindrical, and its upper surface is planar. Compared with the matching structure of the traditional tapered head plug and the faucet, the matching mechanism of the plug cover and the lower annular flange of this embodiment has the advantage of high position error tolerance, and the plug cover does not need to be connected with the liquid outlet of the lower annular flange. Precise alignment, as long as the upper surface of the plug cover can cover the mouth of the tapered spout.
  • the plug cover and the rod in this embodiment are one piece.
  • a central section of the inner wall of the mounting hole 342 extends radially inward to form a central annular flange 342a.
  • the main body rod 311c of the fitting part 311 has the same rod diameter as the hole diameter of the middle annular flange 342a so as to be inserted into the hole defined by the middle annular flange 342a.
  • the assembly part 311 also has an upper annular boss 311a and a lower annular boss 311b extending radially outward from its main body rod 311c, respectively positioned above and below the middle annular flange 342a to limit the switch body 310 relative to the mounting hole. 342 degrees of freedom of movement.
  • the structural stability of the overall structure obtained through fixed assembly between the switch body 310 and the mounting hole 342 can be improved.
  • the switch body 310 is made of acid-resistant and alkali-resistant elastic material, such as EPDM rubber or fluororubber, etc., relying on its own elastic deformation to squeeze the liquid replenishment port 202 that is sealed with it, so as to realize seal.
  • the rotating shaft 340 is made of acid and alkali resistant materials, such as chrome-plated metal materials, ceramic materials or plastic materials.
  • the float 320 can be made of acid and alkali resistant materials such as polytetrafluoroethylene or polybutylene adipamide.
  • first liquid storage container 110 and the first filter housing 120 are respectively made of transparent materials, and the second liquid storage container 210 and the second filter housing 220 are also respectively made of transparent materials . In other optional embodiments, the first liquid storage container 110 and the first filter housing 120 are respectively made of transparent materials, or the second liquid storage container 210 and the second filter housing 220 are respectively made of transparent materials .
  • the transparent material has an external display function, it is easy for the user to observe the filtration and recovery process of the liquid storage device 10 , so as to determine the working state of the liquid storage device 10 .
  • Whether the reaction device 20 connected to the liquid storage device 10 is in a working state can be determined by observing whether there is bubble rising in the first filter housing 120 or in the second filter housing 220 .
  • the gas discharged from the reaction device 20 may flow through the first filter element 130, the first filter housing 120, and the second filter element in sequence.
  • 230 and the second filter housing 220 by observing whether there is bubble rising in the first filter housing 120 or in the second filter housing 220, it can be determined whether the reaction device 20 is performing a reaction.
  • the liquid storage device 10 may install lighting lights on the top, bottom or side of the second liquid storage container 210 .
  • Fig. 12 is a schematic structural diagram of a reaction system 2 according to an embodiment of the present invention.
  • the reaction system 2 may generally include a reaction device 20 and the liquid storage device 10 of any of the above embodiments.
  • the reaction device 20 has a reaction container, and the inside of the reaction container is used as a place for chemical reaction, and an exhaust port 201 is opened on the reaction container for discharging the gas generated by the chemical reaction.
  • the first air inlet 121 communicates with the exhaust port 201 .
  • the reaction system 2 may further include a plurality of air delivery pipes 30 and a plurality of liquid delivery pipes 40, wherein one air delivery pipe 30 is connected between the first air outlet 122 and the second air inlet 221, and the other air delivery pipe 30 is connected to the second air inlet 221.
  • a liquid infusion tube 40 is connected between the liquid supply port 114 of the first liquid storage container 110 and the liquid replenishment port 202 of the reaction device 20, and the other infusion tube 40
  • the tube 40 is connected between the liquid discharge port 216 of the second liquid storage container 210 and the liquid input port 116 of the first liquid storage container 110 .
  • the reaction device 20 may be an electro-deoxidation device, which is used to consume the oxygen inside the refrigerator 1 through an electrochemical reaction, so as to reduce oxygen.
  • the reaction device 20 can be replaced with other devices according to actual needs, such as a reaction device 20 for deodorization, etc.
  • Electrochemical reaction elements (anode plate, cathode plate, etc.) can be arranged in the reaction container, and electrolyte solution, such as sodium hydroxide solution, etc., can also be stored. The anode plate and the cathode plate are immersed in the electrolyte respectively.
  • the cathode plate When the electrolytic deoxygenation device is installed in the refrigerator 1 , the cathode plate can be in airflow communication with the storage compartment of the refrigerator 1 . And in the case of electrification, the cathode plate is used to consume the oxygen in the storage compartment through an electrochemical reaction. For example, oxygen in the air can undergo a reduction reaction at the cathode plate, namely: O 2 +2H 2 O+4e - ⁇ 4OH - .
  • the anode plate and the cathode plate are disposed in the reaction vessel 500 at intervals. And when energized, the anode plate is used to provide reactants (eg, electrons) to the cathode through an electrochemical reaction and generate oxygen.
  • the OH- produced by the cathode plate can undergo oxidation reaction at the anode plate and generate oxygen, namely: 4OH - ⁇ O 2 +2H 2 O+4e - . Oxygen can be exhausted through the exhaust port 201 on the reaction vessel.
  • the oxygen generated in the reaction vessel enters the first air duct and is filtered and recovered in the first filter housing 120 , so that the electrolyte carried by the oxygen stays in the first filter housing 120 .
  • Oxygen flowing out of the first exhaust hole may still carry electrolytes.
  • the electrolytes carried by the oxygen can continue to dissolve, thereby improving Filtration recovery efficiency.
  • the electrolyte content carried by the oxygen flowing out of the second exhaust hole is very small, which has dropped to the point that the user can touch, and the dissolved electrolyte content in the second filter housing 220 is also very small.
  • the second liquid storage container 210 or when bubbles are observed through the second liquid storage container 210 and the second filter housing 220, safety can be ensured, and it is convenient for non-professionals to perform the liquid addition process.
  • a liquid replenishment port 202 can be opened on the reaction container, and the liquid supply port 114 of the first liquid storage container 110 is connected with the liquid replenishment port 202 of the reaction container, so that the liquid in the first liquid storage container 110 flows through the liquid supply port 114 and the liquid replenishment port in sequence. Port 202 thus enters the reaction vessel.
  • Another liquid level switch 300 may be provided in the reaction vessel for automatically opening and closing the liquid replenishment port 202 according to the liquid level in the reaction vessel.
  • the structure of the liquid level switch 300 is similar to that of the liquid level switch 300 mentioned in the above embodiment The structure is the same, and will not be repeated here.
  • the liquid in the first liquid storage container 110 , the first filter housing 120 , the second liquid storage container 210 and the second filter housing 220 It can be directly water, or it can be changed to an electrolyte with a lower concentration.
  • the organic cooperation between the liquid storage device 10 and the electrolytic deoxygenation device can automatically replenish water to the electrolytic deoxygenation device, and at the same time remove the acidic or alkaline components in the waste gas generated by the electrolytic deoxygenation device, recover and reuse the original lost
  • the entire process does not require professionals to operate, nor does it need to use electronic components.
  • the entire system has the advantages of integration, modularization, and low cost, and can solve problems such as difficulty in rehydration and electrolyte loss during the oxygen removal process.
  • Fig. 13 is a schematic structural diagram of a refrigerator 1 according to an embodiment of the present invention.
  • the refrigerator 1 includes the reaction system 2 as in any of the above embodiments.
  • the reaction container of the reaction system 2 is provided with an electrochemical reaction element for consuming oxygen in the refrigerator 1 through an electrochemical reaction.
  • the electrochemical reaction element may include the anode plate and cathode plate mentioned in the above embodiments.
  • the cathode plate can be in airflow communication with the storage space 101 of the refrigerator 1 , so that the above oxidation reaction can take place using oxygen in the storage space 101 as a reactant.
  • the reaction device 20 is organically combined with the liquid storage device 10 to form a reaction system 2 for electrolytic deoxygenation, which can solve the difficulties in rehydration, high safety risks, waste gas pollution, electrolyte Problems such as loss can ensure the continuous deoxygenation process to a certain extent, which is conducive to promoting the promotion and application of electrolytic deoxygenation technology in the refrigerator 1 field and improving the freshness preservation performance of the refrigerator 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

提供一种具备过滤回收功能的储液装置(10)以及具有其的冰箱(1)。储液装置(10)包括:第一储液部(100),其具有第一过滤壳体(120)和第一过滤件(130);第一过滤壳体(120)上开设有第一进气孔(121)和第一出气孔(122);第一过滤件(130)设置于第一过滤壳体(120)内,并用于使通入第一进气孔(121)的气体中的特定物质成分溶解于第一过滤壳体(120)内,以实现过滤回收;和第二储液部(200),其具有第二过滤壳体(220)和第二过滤件(230);第二过滤壳体(220)上开设有第二进气孔(221)和第二出气孔(222);第二进气孔(221)与第一出气孔(122)相通,第二过滤件(230)设置于第二过滤壳体(220)内,并用于使自第一出气孔(122)通入第二进气孔(221)的气体中的特定物质成分溶解于第二过滤壳体(220)内,以实现再次过滤回收。该储液装置(10)具备过滤回收功能,可减少废气污染,提高资源利用效率。

Description

具备过滤回收功能的储液装置以及具有其的冰箱 技术领域
本发明涉及保鲜设备,特别是涉及具备过滤回收功能的储液装置以及具有其的冰箱。
背景技术
对于部分反应装置而言,例如用于通过电化学反应降低冰箱内部氧气的电解除氧装置,发生电化学反应的过程需要电解液参与,且反应过程会产生气体,需要将产生的气体向外部环境排放。
在反应过程中,由于伴随着大量热量的产生,电解液会受热蒸发,这导致反应装置所排放的气体中可能会携带有微量的电解液蒸汽。大部分电解液为酸性溶液或者碱性溶液,具有腐蚀性。若不经处理直接将反应装置所产生的气体向空气排放,则可能会导致空气污染,危害生命健康。
此外,当反应装置所产生的气体携带有电解液蒸汽时,电解液会缓慢流失,这会导致资源浪费,提高生产成本。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种具备过滤回收功能的储液装置以及具有其的冰箱。
本发明的一个进一步的目的是要提供一种具备过滤回收功能的储液装置,使得气体中的特定物质成分得到分离并被回收使用,从而减少或避免气体排放所导致的污染,同时提高资源利用效率。
本发明的又一个进一步的目的是要提高储液装置的过滤效率和回收效率。
本发明的另一个进一步的目的是要使用户易于观察储液装置的过滤回收过程。
根据本发明的一方面,提供了一种具备过滤回收功能的储液装置,包括:第一储液部,其具有第一过滤壳体和第一过滤件;第一过滤壳体上开设有第一进气孔和第一出气孔;第一过滤件设置于第一过滤壳体内,并用于使通入第一进气孔的气体中的特定物质成分溶解于第一过滤壳体内,以实现过滤回收;第一出气孔用于排出过滤后的气体;和第二储液部,其具有第二过滤壳体和第二过滤件;第二过滤壳体上开设有第二进气孔和第二出气孔;第二进气孔与第一出气孔相通,第二过滤件设置于第二过滤壳体内,并用于使自第一出气孔通入第二进气孔的气体中的特定物质成分溶解于第二过滤壳体内,以实现再次过滤回收;第二出气孔用于排出经再次过滤后的气体。
可选地,第一储液部还具有第一储液容器,第一过滤壳体与第一储液容器相通,以允许溶解于第一过滤壳体内的特定物质成分进入第一储液容器;且第二储液部还具有第二储液容器,第二过滤壳体与第二储液容器相通,以允许溶解于第二过滤壳体内的特定物质成分进入第二储液容器。
可选地,第二储液容器与第一储液容器相通;且第一储液容器上开设有连通外部环境的供液口,用于向外部环境补液。
可选地,第二储液容器与第一储液容器具有共用的壁,且第二储液容器的一部分底壁通过上凹形成共用的第一壁和第二壁;其中第一壁作为第一储液容器的侧壁,第二壁作为第一储液容器的一部分顶壁;且第二壁上开设有开口,以连通第二储液容器与第一储液容器。
可选地,储液装置还包括:液位开关,设置于第一储液容器内,且其具有开关本体,用于根据第一储液容器内的液位移动从而开闭开口,以允许或制止第二储液容器内的液体经开口流入第一储液容器内。
可选地,第一进气孔和第一出气孔分别位于第一储液容器的第三壁上,第三壁为第一储液容器的另一部分顶壁,自第二壁朝向远离第二储液容器的方向向外水平延伸;且第二进气孔和第二出气孔分别位于第二储液容器的顶壁上;第一过滤件和第二过滤件分别为导气管,且分别自第一进气孔和第二进气孔向下延伸至第一过滤壳体内的底部区段和第二过滤壳体内的底部区段。
可选地,第一过滤壳体插入第一储液容器内,且第一过滤壳体的底部开设有连通第一储液容器的第一出液孔,以允许第一过滤壳体内的液体流至第一储液容器内;且第二过滤壳体插入第二储液容器内,且第二过滤壳体的底部开设有连通第二储液容器的第二出液孔,以允许第二过滤壳体内的液体流至第二储液容器内。
可选地,第一储液容器和第一过滤壳体分别由透明材料制成;且/或第二储液容器和第二过滤壳体分别由透明材料制成。
根据本发明的另一方面,还提供了一种反应系统,包括:反应装置,其具有反应容器,反应容器的内部作为发生化学反应的场所,且反应容器上开设有排气口,用于排放化学反应产生的气体;以及如上述任一项的储液装置,其中,第一进气孔与排气口相通。
根据本发明的另一方面,还提供了一种冰箱,包括:如上述的反应系统;其中,反应系统的反应容器内设置有电化学反应元件,用于通过电化学反应消耗冰箱内的氧气。
本发明的具备过滤回收功能的储液装置以及具有其的冰箱,由于储液装置可利用第一过滤件和第一过滤壳体使通入第一进气孔的气体中的特定物质成分溶解于第一过滤壳体内,以实现过滤回收,并可利用第二过滤件和第二过滤壳体使自第一出气孔通入第二进气孔的气体中的特定物质成分溶解于第二过滤壳体内,以实现再次过滤回收,因此,本发明提供了一种具备过滤回收功能的储液装置,该储液装置可使得气体中的特定物质成分得到分离并被回收使用,从而减少或避免气体排放所导致的污染,同时提高资源利用效率。
进一步地,本发明的具备过滤回收功能的储液装置以及具有其的冰箱,利用第一储液部和第二储液部进行有机结合,对通入第一进气孔的气体中的特定物质成分进行多次过滤回收,这有利于提高储液装置的过滤效率和回收效率,能够进一步地降低废气排放污染和资源浪费。
更进一步地,本发明的具备过滤回收功能的储液装置以及具有其的冰箱,由于第一储液容器和第一过滤壳体分别由透明材料制成,且/或第二储液容器和第二过滤壳体分别由透明材料制成,透明材料具有外显功能,这使得用户易于观察储液装置的过滤回收过程,从而确定储液装置的工作状态。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的储液装置的示意性结构图;
图2是图1所示的储液装置的示意性俯视图;
图3是图1所示的储液装置的示意性主视图;
图4是图2所示的储液装置的部分结构的示意性侧视图;
图5是图2所示的储液装置的部分结构的示意性结构图;
图6是图2所示的储液装置的第一过滤机构的示意性结构图;
图7是图6所示的储液装置的第一过滤机构的示意性分解图;
图8是图3所示的储液装置的第二储液容器的第二仓盖的示意性结构图;
图9是图2所示的储液装置的液位开关的示意性结构图;
图10是图9所示的储液装置的液位开关的示意性分解图;
图11是图9所示的储液装置的液位开关的示意性透视图;
图12是根据本发明一个实施例的反应系统的示意性结构图;
图13是根据本发明一个实施例的冰箱的示意性结构图。
具体实施方式
图1是根据本发明一个实施例的储液装置10的示意性结构图。图2是图1所示的储液装置10的示意性俯视图。图3是图1所示的储液装置10的示意性主视图。其中,图3为透视图。本实施例的储液装置10具备过滤回收功能,可将气体中的特定物质成分分离并加以回收,以供利用。
储液装置10一般性地可包括第一储液部100和第二储液部200。
其中,第一储液部100具有第一过滤壳体120和第一过滤件130。第一过滤壳体120和第一过滤件130形成第一过滤机构。第一过滤壳体120上开设有第一进气孔121和第一出气孔122。第一过滤件130设置于第一过滤壳体120内,并用于使通入第一进气孔121的气体中的特定物质成分溶解于第一过滤壳体120内,以实现过滤回收。第一出气孔122用于排出过滤后的气体。
第一过滤壳体120内也可以用于存放液体,例如含有特定成分的电解液或者水等。来自储液装置10的外部环境的气体中的特定物质成分溶解于第一过滤壳体120内,是指溶解于第一过滤壳体120所存放的液体中。
第二储液部200具有第二过滤壳体220和第二过滤件230。第二过滤壳体220和第二过滤件230形成第二过滤机构。第二过滤壳体220上开设有第二进气孔221和第二出气孔222。第二进气孔221与第一出气孔122相通,第二过滤件230设置于第二过滤壳体220内,并用于使自第一出气孔122通入第二进气孔221的气体中的特定物质成分溶解于第二过滤壳体220内,以实现再次过滤回收。第二出气孔222用于排出经再次过滤后的气体。
第二过滤壳体220内也可以用于存放液体,例如含有特定成分的电解液或者水等。 来自储液装置10的外部环境的气体中的特定物质成分溶解于第二过滤壳体220内,是指溶解于第二过滤壳体220所存放的液体中。
本实施例中,上述特定物质成分为可溶于水的物质。在一些可选的实施例中,可根据待分离的特定物质成分的物理化学性质调整第一过滤壳体120和第二过滤壳体220所存放的液体成分。
本实施例的储液装置10,由于可利用第一过滤件130和第一过滤壳体120使通入第一进气孔121的气体中的特定物质成分溶解于第一过滤壳体120内,以实现过滤回收,并可利用第二过滤件230和第二过滤壳体220使自第一出气孔122通入第二进气孔221的气体中的特定物质成分溶解于第二过滤壳体220内,以实现再次过滤回收,因此,本实施例提供了一种具备过滤回收功能的储液装置10,该储液装置10可使得气体中的特定物质成分得到分离并被回收使用,从而减少或避免气体排放所导致的污染,同时提高资源利用效率。
利用第一储液部100和第二储液部200进行有机结合,对通入第一进气孔121的气体中的特定物质成分进行多次过滤回收,这有利于提高储液装置10的过滤效率和回收效率,能够进一步地降低废气排放污染和资源浪费。
值得说明的是,第二过滤部的数量可以根据实际需要设置为一个或多个,以调整过滤回收的次数。本实施例仅针对第二过滤部的数量为一个的情况进行示例,但不应视为对第二过滤部的数量进行限定。
在一些可选的实施例中,第一储液部100还具有第一储液容器110,第一过滤壳体120与第一储液容器110相通,以允许溶解于第一过滤壳体120内的特定物质成分进入第一储液容器110。
第二储液部200还具有第二储液容器210,第二过滤壳体220与第二储液容器210相通,以允许溶解于第二过滤壳体220内的特定物质成分进入第二储液容器210。
由于每一过滤壳体分别具有与之对应相通的储液容器,滞留在每一过滤壳体内的特定物质成分可汇流至对应的储液容器,以实现再利用。
至于每一过滤壳体与对应储液容器之间的连通方式,例如,每一过滤壳体可以插入对应储液容器内。每一储液容器可以大致呈长方体状,每一过滤壳体可以作为内套管插入对应储液容器内。
具体地,第一过滤壳体120插入第一储液容器110内,且第一过滤壳体120的底部开设有连通第一储液容器110的第一出液孔123,以允许第一过滤壳体120内的液体流至第一储液容器110内。第二过滤壳体220插入第二储液容器210内,且第二过滤壳体220的底部开设有连通第二储液容器210的第二出液孔223,以允许第二过滤壳体220内的液体流至第二储液容器210内。
由于每一过滤壳体通过位于底部的出液孔与对应储液容器相连通,每一过滤壳体内的液体能够依靠自身重力向下通过出液孔并回流至储液容器内,这使得储液装置10的回收过程简易有效。
以上关于连通方式的举例仅仅是示意性的,本领域技术人员应当易于拓展,此处不再一一枚举。
在一些可选的实施例中,第二储液容器210与第一储液容器110相通。且第一储液容器110上开设有连通外部环境的供液口114,用于向外部环境补液。即,本实施例的储 液装置10在储存液体的同时,既具备过滤回收功能,又具备补液功能,这便于使过滤回收得到的特定物质成分被再次利用。例如,第一储液容器110内的特定物质成分从供液口114流出后即可供外部环境的某些装置再次利用。进入第二储液容器210内的特定物质成分可以先进入第一储液容器110,然后经供液口114流出,以供外部环境的某些装置再次利用。
图4是图2所示的储液装置10的部分结构的示意性侧视图。图5是图2所示的储液装置10的部分结构的示意性结构图。图4和图5均为透视图,图5采用虚线示出透视部分。
在一些可选的实施例中,第二储液容器210与第一储液容器110具有共用的壁,且第二储液容器210的一部分底壁211通过上凹(即,向上凹陷)形成共用的第一壁111和第二壁112。也就是说,共用的壁包括第一壁111和第二壁112。其中第一壁111作为第一储液容器110的侧壁,其可沿竖直面延伸。第二壁112作为第一储液容器110的一部分顶壁,其可沿水平面延伸。若第二储液容器210的底壁211未进行上凹,则第二储液容器210大致呈长方体状。通过使第二储液容器210的一部分底壁211上凹,并形成共用的第一壁111和第二壁112,可使第一储液容器110的一部分位于第二储液容器210的下方。
第二壁112上开设有开口112a,以连通第二储液容器210与第一储液容器110。这可促使第二储液容器210内的液体依靠自身重力经由开口112a下流至第一储液容器110内。
在一些可选的实施例中,第一进气孔121和第一出气孔122分别位于第一储液容器110的第三壁113上,第三壁113为第一储液容器110的另一部分顶壁,自第二壁112朝向远离第二储液容器210的方向向外水平延伸。本实施例的第二壁112和第三壁113连接成水平平面,以作为第一储液容器110的顶壁。第三壁113为非共用的壁,其上方并未设置第二储液容器210,这便于开设第一进气孔121和第一出气孔122。
第二进气孔221和第二出气孔222分别位于第二储液容器210的顶壁上。
在使用状态下,第二储液容器210内的液位高于第一储液容器110内的液位。
在一些可选的实施例中,第二储液容器210和第一储液容器110可以由上述一体式设置变换为分离独立设置。此时第二储液容器210上开设液体排出口216,第一储液容器110上开设液体输入口116,通过连通液体排出口216与液体输入口116,即可使两个储液容器相通。
由于两个过滤机构的结构相同,因此下面仅选取第一过滤机构为例,对其结构进行介绍。图6是图2所示的储液装置10的第一过滤机构的示意性结构图。图7是图6所示的储液装置10的第一过滤机构的示意性分解图。
第一过滤件130和第二过滤件230分别为导气管,且分别自第一进气孔121和第二进气孔221向下延伸至第一过滤壳体120内的底部区段和第二过滤壳体220内的底部区段。例如,可将第一过滤件130命名为第一导气管,并将第二过滤件230命名为第二导气管。第一导气管自第一进气孔121向下插入第一过滤壳体120内,并延伸至第一过滤壳体120内的底部区段。第二导气管自第二进气孔221向下插入第二过滤壳体220内,并延伸至第二过滤壳体220内的底部区段。
使两个导气管分别延伸至对应过滤壳体内的底部区段,可将流经导气管的气体导引 至对应过滤壳体内的底部区段,从而延长气体在过滤壳体内的流动路径,流出导气管的气体在上升过程中能够与过滤壳体内的液体充分接触,使得气体中的特定物质成分能够较为充分地溶解于过滤壳体内,这使得储液装置1020能以精巧简单的结构获得较优的过滤净化效果。
本实施例的导气管可为直管,其两端均为开口112a,以便于通入或流出气体,结构简单,具备较优的导气效果。
在一些可选的实施例中,导气管的形状可以变换为竖弯钩状管,且其具有直管段以及自直管段的末端弯折向上延伸形成的弯管段。弯管段的末端略高于直管段的末端,用于将流经其的气体向上导引。
也就是说,本实施例的导气管可以呈竖弯钩形状,直管段类似于伞杆,弯管段类似于连接至伞杆末端的伞柄。使弯管端从直管段的末端弯折向上延伸,这可使流出导气管的气体被导引着向上流动,从而使得气体的运动方向更加明确。弯管段的末端略高于直管段的末端是指,弯管段的末端仍然处在过滤壳体的底部区段中,这不会明显缩短气体在溶解过程的流动路径。
采用导气管和过滤壳体相互配合,实现利用水进行气体过滤,可避免使用损耗性滤材,且无需更换滤材,有利于节约成本。
在一些可选的实施例中,每个过滤壳体可为一体成型。在另一些可选的实施例中,过滤壳体可由多个不同的部件连接而成。例如每个过滤壳体可分别包括具有顶部开口112a的第一仓体501以及封闭第一仓体501的顶部开口112a的第一仓盖502。且进气孔和出气孔相互间隔地位于第一仓盖502上。第一仓体501可以为直管状,其管径大于导气管的管径。第一仓体501的顶端为开口112a状,且与第一仓盖502之间密封连接。第一仓体501的底端为闭合状,且其上开设有上述出液孔。出液孔可以为至少一个。
进气孔连同导气管、以及出气孔,被第一仓体501所包覆,形成套管结构。导气管的底端高于第一仓体501的底端,防止流出导气管的气体逃逸出第一仓体501。
在一些可选的实施例中,第一储液容器110和第二储液容器210可分别为一体成型,这有利于提高储液容器的密封效果,防止漏液。在另一些可选的实施例中,第二储液容器210可变换为由多个不同的部件连接而成。例如第二储液容器210可包括具有顶部开口112a的第二仓体601以及封闭第二仓体601的顶部开口112a的第二仓盖602。第二仓体601可以为无盖的长方体水槽状,其容积大于第一仓体501的容积。
图8是图3所示的储液装置10的第二储液容器210的第二仓盖602的示意性结构图。其中,图8(a)为立体图,图8(b)为主视图,图8(c)为俯视图。
第二仓盖602上开设有安装口602a。安装口602a的孔壁向上延伸形成有中空筒状的外螺纹接口602e。由于该外螺纹接口602e从安装口602a的孔壁向上延伸形成,因此,外螺纹接口602e的上边缘高于第二仓盖602的上表面,同时高于下述加液槽602c的上边缘。这可将加液过程的最高液位控制在外螺纹接口602e的上边缘以下。
第一仓盖502具有位于第一仓体501上方的封闭盖板502a以及从封闭盖板502a的外周缘向下延伸形成的环状内螺纹接口502b。其中,封闭盖板502a用于遮蔽第一仓体501的顶部开口112a。环状内螺纹接口502b与外螺纹接口602e进行螺接,使得第一仓盖502与第二仓盖602可拆卸地连接。即,环状内螺纹接口502b用于将第一仓盖502连接至第二仓盖602。
第一仓体501自封闭盖板502a的下表面向下延伸,穿过外螺纹接口602e之后插入储液容器内。
利用第一仓盖502与第二仓盖602进行螺接以封闭安装口602a,可以简化第二过滤机构的安装固定过程,实现一步安装到位。
在一些可选的实施例中,第二仓盖602上可以开设有加液口602b,其口壁向下延伸形成加液槽602c。由于该加液槽602c自第二仓盖602的上表面向下延伸,而外螺纹接口602e自第二仓盖602的上表面向上延伸,因此,当从加液口602b向第二仓体601添加液体时,即使加液过程导致第二仓体601溢液,溢液时的液面不会超过外螺纹接口602e。
加液槽602c的一部分槽壁倾斜向下延伸设置,使加液槽602c的底部形成渐缩的开口112a。也就是说,加水槽为具有一定深度的倾斜通孔,这便于用户在加液时观察液位情况。倾斜向下延伸的槽壁上具有液位标识,以提示加液过程的液位。例如,该液位标识可被设计为“最高液位刻度线”,用于提示用户液体已注满。
在一些可选的实施例中,第二仓盖602的边缘具有向外凸出以供施力的突起602d。用户可通过抓取等动作向第二仓盖602施力,从而实现第二仓盖602与第二仓体601之间的拆装过程。
第二仓盖602与第二仓体601之间的闭合处的周缘可设置有弹性密封圈,便于通过第二仓盖602与第二仓体601之间的压合实现密封,以防第二仓体601漏水。
第一储液容器110为一体成型。为实现第一过滤机构的装配,第一储液容器110的第三壁113上也开设有安装口602a,该安装口602a的外形与第二仓盖602上的安装口602a的外形相同,第一过滤机构相对于该安装口602a的装配方式与第二过滤机构相对于安装口602a的装配方式也相同,此处不再赘述。
图9是图2所示的储液装置10的液位开关300的示意性结构图。图10是图9所示的储液装置10的液位开关300的示意性分解图。
在一些进一步的实施例中,储液装置10还可以进一步地包括液位开关300,设置于第一储液容器110内,且其具有开关本体310,用于根据第一储液容器110内的液位移动从而开闭开口112a,以允许或制止第二储液容器210内的液体经开口112a流入第一储液容器110内。也就是说,液位开关300用于控制开口112a的开闭。即,液位开关300作为第二储液容器210与第一储液容器110之间的输液通道的闸门,起到通断输液通道的作用。液位开关300的开关本体310根据第一储液容器110的液位高低而进行移动,以此来封闭或打开开口112a,开口112a的开闭过程无需电控。图9(a)示出开关本体310封闭开口112a时的状态,图9(b)示出开关本体310打开开口112a时的状态,图中箭头方向示出浮子320的转动方向。
开关本体310可在第一储液容器110内的液位升高的情况下上升并抵扣在开口112a的下周缘从而封闭开口112a,使得第二储液容器210内的液体无法通过开口112a,还可在第一储液容器110内的液位降低的情况下下降从而偏离并打开开口112a,使得第二储液容器210内的液体可以依靠重力向下流至第一储液容器110内。在液位开关300的作用下,第一储液容器110内的液体和第二储液容器210内的液体无法直接接触,并可保持一定的高度距离,防止因液体汇合而导致溶液物质迁移,避免污染。
液位开关300还包括浮子320,与开关本体310固定连接或与开关本体310为一体件,用于在第一储液容器110内通过上浮或下沉运动带动开关本体310移动。也就是说,开 关本体310由浮子320进行“驱动”,浮子320进行移动所需的动力由其在第一储液容器110内所受的浮力决定。
例如,浮子320的一部分通过浸于液体,从而使浮子320受到液体的浮力。当第一储液容器110内的液位发生变化时,浮子320所受的浮力也会发生变化,从而使得浮子320所受的浮力与重力的合力发生变化。例如,当第一储液容器110内的液位降低时,浮子320所受的浮力会减小,若浮子320所受的浮力与重力的合力方向向下,则会导致浮子320向下运动。反之,则会导致浮子320向上运动。浮子320可以沿竖直方向上升或下降,或者可以沿曲线上升或下降。
在一些可选的实施例中,浮子320可绕轴转动地设置。即,本实施例的浮子320并非沿直线做升降运动,而是以绕轴转动的方式上升或下降,如此设计,仅需要使浮子320与某一固定轴进行可枢转地连接即可,无需安装尺寸精度较高的导向部件,具备结构精巧、装配过程简单、装置可靠性好的优点。
由于浮子320可绕轴转动地设置,运动轨迹清晰明确,这使得本实施例的浮子320和开关本体310易于沿清晰明确的运动轨迹移动,从而提高液位开关300的可靠性,减少或避免了因浮子320自由运动而带来密封不严等问题。
液位开关300还可以进一步地包括旋转轴340和连接件330。
其中,旋转轴340固定于第一储液容器110。例如,旋转轴340可以固定于第一储液容器110的内部空间,且与第一储液容器110的容器内壁固定连接。
在一些可选的实施例中,旋转轴340还可以可拆卸地固定于第一储液容器110,这可以根据实际需要调节旋转轴340的高度,从而调节开始启动补液的第一储液容器110内的液位高度。
连接件330与浮子320固定连接或与浮子320为一体件,其上形成有轴孔341,以供旋转轴340插入其中且可转动地配合从而实现可转动地连接。也就是说,连接件330将旋转轴340与浮子320装配成一个有机的整体,使得浮子320可绕旋转轴340转动。
通过在连接件330上开设轴孔341,并使旋转轴340与轴孔341可转动地配合,即可将浮子320可绕轴转动地装配至旋转轴340,结构精妙,工序简单。
开关本体310呈杆状。连接件330上还形成有安装口602a,以供开关本体310的一部分插入其中从而实现固定装配。也就是说,开关本体310的一部分通过与连接件330固定装配,从而间接地与浮子320实现固定连接。例如,上述开关本体310的一部分可与连接件330的安装口602a通过过盈配合的方式进行装配。
分别将旋转轴340与开关本体310装配至与浮子320固定连接或与浮子320为一体件的连接件330,从而形成液位开关300,结构整体性强。开关本体310和浮子320位于旋转轴340的同侧。开关本体310与浮子320同侧是指,开关本体310位于旋转轴340与浮子320之间,这是使开关本体310根据第一储液容器110内部空间的液位高度做出与浮子320“同向运动”的关键,可以获得更大的“力臂比值”。
本实施例中,旋转轴340的中心轴线沿水平方向延伸,且垂直于浮子320的中央纵向竖直对称面。例如,对于圆柱形浮子320而言,当浮子320的两个底面321沿水平方向相对设置时,浮子320的中央纵向竖直对称面即为浮子320的沿竖直方向延伸的纵向中心截面。在开关本体310封闭补液口202的情况下,安装孔342的中心轴线沿竖直方向延伸,且平行于浮子320的中央纵向竖直中心线,其中,浮子320的中央纵向竖直中 心线即为浮子320的沿竖直方向延伸的纵向中心截面的纵向中心线。“横”“纵”等方位性词语均是相对于液位开关300的实际使用状态而言的,纵向大致为竖直方向。
在一些可选的实施例中,浮子320呈空心柱状。本实施例的浮子320的圆柱体为空腔结构,可以进一步提升浮力(整体密度小于液体密度)。浮子320的中心轴线与轴孔341的中心轴线平行。其中,浮子320的中心轴线分别与两个底面321的中心共线。由于轴孔341的中心轴线沿水平方向延伸,因此,浮子320的中心轴线也沿水平方向延伸,且浮子320的两个底面321沿水平方向相对设置。
在一些可选的实施例中,连接件330为悬臂,自浮子320的柱体侧面322的上侧部区段倾斜向外且向上延伸形成。其中,“向外”是指沿柱体侧面322的径向向外。
图11是图9所示的储液装置10的液位开关300的示意性透视图。
开关本体310为杆状塞盖,其具有装配部311以及封堵部312。其中装配部311为杆,并固定装配于安装孔342。封堵部312为塞盖,并连接于装配部311的顶部,用于打开或封闭补液口202。塞盖可以为圆柱形,其上表面为平面状。与传统锥形头塞与水嘴的配合结构相比,本实施例的塞盖与下环形凸缘的配合机构具有位置容错率高的优点,塞盖无需与下环形凸缘的出液口进行精准对齐,只要塞盖的上表面能够覆盖锥形水嘴口即可。本实施例的塞盖与杆为一体件。
安装孔342的内壁的中部区段沿径向向内延伸形成有中部环形凸缘342a。装配部311的主体杆311c的杆径与中部环形凸缘342a的孔径相同,以便插入中部环形凸缘342a所限定的孔内。装配部311还具有从其主体杆311c沿径向向外延伸的上环形凸台311a和下环形凸台311b,分别位于中部环形凸缘342a的上方和下方,以限制开关本体310相对于安装孔342的运动自由度。
通过对安装孔342的孔结构和开关本体310的杆结构和塞结构进行设计,可以提高开关本体310与安装孔342之间通过固定装配所得到整体结构的结构稳定性。
在一些可选的实施例中,开关本体310由耐酸耐碱的弹性材料制成,例如三元乙丙橡胶或者氟橡胶等,依靠自身弹性变形挤压与之密封配合的补液口202,从而实现密封。旋转轴340由耐酸耐碱的材料制成,例如镀铬的金属材料、陶瓷材料或者塑料材料等。浮子320可以由聚四氟乙烯或者聚己二酰丁二胺等耐酸耐碱材料制成。
在一些可选的实施例中,第一储液容器110和第一过滤壳体120分别由透明材料制成,且第二储液容器210和第二过滤壳体220也分别由透明材料制成。在另一些可选的实施例中,第一储液容器110和第一过滤壳体120分别由透明材料制成,或者第二储液容器210和第二过滤壳体220分别由透明材料制成。
由于透明材料具有外显功能,这使得用户易于观察储液装置10的过滤回收过程,从而确定储液装置10的工作状态。通过观察第一过滤壳体120内或第二过滤壳体220内是否存在气泡上升现象,可确定与储液装置10相连的反应装置20是否处于工作状态。在一些实施例中,当储液装置10与反应装置20组装成反应系统2时,反应装置20所排放的气体可依次流经第一过滤件130、第一过滤壳体120、第二过滤件230以及第二过滤壳体220,通过观察第一过滤壳体120内或第二过滤壳体220内是否存在气泡上升现象,可确定反应装置20是否在进行反应。
在一些进一步的实施例中,若增加对第二储液部200的灯光照明,则能够更好地凸显气泡的边缘,使“工作外显”效果更佳显著。例如,储液装置10可在第二储液容器210 的顶部、底部或者侧部安装照明灯。
图12是根据本发明一个实施例的反应系统2的示意性结构图。反应系统2一般性地可包括反应装置20和以上任一实施例的储液装置10。反应装置20具有反应容器,反应容器的内部作为发生化学反应的场所,且反应容器上开设有排气口201,用于排放化学反应产生的气体。第一进气孔121与排气口201相通。
反应系统2可进一步地包括多个输气管30和多个输液管40,其中,一个输气管30连接于第一出气孔122与第二进气孔221之间,另一输气管30连接于第一进气孔121与下述反应装置20的排气口201之间,一个输液管40连接于第一储液容器110的供液口114与反应装置20的补液口202之间,另一输液管40连接于第二储液容器210的液体排出口216与第一储液容器110的液体输入口116之间。
在一些实施例中,反应装置20可以为电解除氧装置,用于通过电化学反应消耗冰箱1内部的氧气,起到降氧作用。在一些可选的实施例中,反应装置20可以根据实际需要替换为其他装置,例如用于除臭的反应装置20等。
反应容器内可以设置有电化学反应元件(阳极板、阴极板等),还存放有电解液,例如氢氧化钠溶液等。阳极板、阴极板分别浸于电解液中。
当将电解除氧装置安装于冰箱1时,阴极板可与冰箱1的储物间室气流连通。且在通电情况下,阴极板用于通过电化学反应消耗储物间室内的氧气。例如,空气中的氧气可以在阴极板处发生还原反应,即:O 2+2H 2O+4e -→4OH -
阳极板与阴极板相互间隔地设置于反应容器500内。且在通电情况下,阳极板用于通过电化学反应向阴极提供反应物(例如,电子)且生成氧气。阴极板产生的OH-可以在阳极板处可以发生氧化反应,并生成氧气,即:4OH -→O 2+2H 2O+4e -。氧气可以通过反应容器上的排气口201排出。
反应容器内所生成的氧气进入第一导气管,并在第一过滤壳体120内得到一次过滤回收,使得氧气所携带的电解质滞留在第一过滤壳体120内。从第一排气孔流出的氧气可能仍携带电解质,通过使其进入第二导气管,并在第二过滤壳体220内得到二次过滤回收,可使得氧气所携带的电解质继续溶解,从而提高过滤回收效率。
经二次过滤后,流出第二排气孔的氧气所携带的电解质含量非常少,已经下降到用户可以接触,且第二过滤壳体220内所溶解的电解质含量也非常少,当用户针对第二储液容器210进行加液时,或者通过第二储液容器210和第二过滤壳体220观察气泡时,可保证安全性,方便非专业人员执行加液过程。
反应容器上可开设有补液口202,第一储液容器110的供液口114与反应容器的补液口202相连通,使得第一储液容器110内的液体依次流经供液口114和补液口202从而进入反应容器。反应容器内可以设置有另一液位开关300,用于根据反应容器内的液位自动地开闭补液口202,该液位开关300的结构与以上实施例所提到的液位开关300的结构相同,此处不再赘述。
本实施例中,由于电解除氧装置的电化学反应会消耗水,因此,第一储液容器110、第一过滤壳体120、第二储液容器210以及第二过滤壳体220内的液体可以直接为水,或者可以变换为浓度较低的电解液。
利用储液装置10和电解除氧装置进行有机配合,可以自动地向电解除氧装置补水,同时可以去除电解除氧装置所产生的废气中的酸性成分或者碱性成分,回收并重复利用 原本流失掉的电解质,整个过程无需专业人员进行操作,也无需使用电子元件,整个系统具有集成化、模块化、低成本的优点,能够解决除氧过程中所存在的补液困难、电解液流失等问题。
图13是根据本发明一个实施例的冰箱1的示意性结构图。冰箱1包括如以上任一实施例的反应系统2。其中,反应系统2的反应容器内设置有电化学反应元件,用于通过电化学反应消耗冰箱1内的氧气。电化学反应元件可包括以上实施例所提到的阳极板和阴极板。阴极板可与冰箱1的储物空间101气流连通,从而利用储物空间101的氧气作为反应物发生上述氧化反应。
本实施例的方案,将反应装置20与储液装置10进行有机结合,形成用于进行电解除氧的反应系统2,可解决除氧过程所存在的补液困难、安全风险高、废气污染、电解质流失等问题,在一定程度上可保证除氧过程连续进行,有利于促进电解除氧技术在冰箱1领域的推广应用,提高冰箱1的保鲜性能。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种具备过滤回收功能的储液装置,包括:
    第一储液部,其具有第一过滤壳体和第一过滤件;所述第一过滤壳体上开设有第一进气孔和第一出气孔;所述第一过滤件设置于所述第一过滤壳体内,并用于使通入所述第一进气孔的气体中的特定物质成分溶解于所述第一过滤壳体内,以实现过滤回收;所述第一出气孔用于排出过滤后的气体;和
    第二储液部,其具有第二过滤壳体和第二过滤件;所述第二过滤壳体上开设有第二进气孔和第二出气孔;所述第二进气孔与所述第一出气孔相通,所述第二过滤件设置于所述第二过滤壳体内,并用于使自所述第一出气孔通入所述第二进气孔的气体中的特定物质成分溶解于所述第二过滤壳体内,以实现再次过滤回收;所述第二出气孔用于排出经再次过滤后的气体。
  2. 根据权利要求1所述的储液装置,其中,
    所述第一储液部还具有第一储液容器,所述第一过滤壳体与所述第一储液容器相通,以允许溶解于所述第一过滤壳体内的特定物质成分进入所述第一储液容器;且
    所述第二储液部还具有第二储液容器,所述第二过滤壳体与所述第二储液容器相通,以允许溶解于所述第二过滤壳体内的特定物质成分进入所述第二储液容器。
  3. 根据权利要求2所述的储液装置,其中,
    所述第二储液容器与所述第一储液容器相通;且
    所述第一储液容器上开设有连通外部环境的供液口,用于向所述外部环境补液。
  4. 根据权利要求2或3所述的储液装置,其中,
    所述第二储液容器与所述第一储液容器具有共用的壁,且所述第二储液容器的一部分底壁通过上凹形成共用的第一壁和第二壁;其中所述第一壁作为所述第一储液容器的侧壁,所述第二壁作为所述第一储液容器的一部分顶壁;且
    所述第二壁上开设有开口,以连通所述第二储液容器与所述第一储液容器。
  5. 根据权利要求4所述的储液装置,还包括:
    液位开关,设置于所述第一储液容器内,且其具有开关本体,用于根据所述第一储液容器内的液位移动从而开闭所述开口,以允许或制止所述第二储液容器内的液体经所述开口流入所述第一储液容器内。
  6. 根据权利要求4所述的储液装置,其中,
    所述第一进气孔和所述第一出气孔分别位于所述第一储液容器的第三壁上,所述第三壁为所述第一储液容器的另一部分顶壁,自所述第二壁朝向远离所述第二储液容器的方向向外水平延伸;且
    所述第二进气孔和所述第二出气孔分别位于所述第二储液容器的顶壁上;
    所述第一过滤件和所述第二过滤件分别为导气管,且分别自所述第一进气孔和所述 第二进气孔向下延伸至所述第一过滤壳体内的底部区段和所述第二过滤壳体内的底部区段。
  7. 根据权利要求2-3、5-6中任一项所述的储液装置,其中,
    所述第一过滤壳体插入所述第一储液容器内,且所述第一过滤壳体的底部开设有连通所述第一储液容器的第一出液孔,以允许所述第一过滤壳体内的液体流至所述第一储液容器内;且
    所述第二过滤壳体插入所述第二储液容器内,且所述第二过滤壳体的底部开设有连通所述第二储液容器的第二出液孔,以允许所述第二过滤壳体内的液体流至所述第二储液容器内。
  8. 根据权利要求2-3、5-6中任一项所述的储液装置,其中,
    所述第一储液容器和所述第一过滤壳体分别由透明材料制成;且/或
    所述第二储液容器和所述第二过滤壳体分别由透明材料制成。
  9. 一种反应系统,包括:
    反应装置,其具有反应容器,所述反应容器的内部作为发生化学反应的场所,且所述反应容器上开设有排气口,用于排放所述化学反应产生的气体;以及
    如权利要求1-8中任一项所述的储液装置,其中,所述第一进气孔与所述排气口相通。
  10. 一种冰箱,包括:
    如权利要求9所述的反应系统;其中,所述反应系统的反应容器内设置有电化学反应元件,用于通过电化学反应消耗所述冰箱内的氧气。
PCT/CN2022/129569 2021-12-03 2022-11-03 具备过滤回收功能的储液装置以及具有其的冰箱 WO2023098387A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111475136.4 2021-12-03
CN202111475136.4A CN116222120A (zh) 2021-12-03 2021-12-03 具备过滤回收功能的储液装置以及具有其的冰箱

Publications (1)

Publication Number Publication Date
WO2023098387A1 true WO2023098387A1 (zh) 2023-06-08

Family

ID=86581123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129569 WO2023098387A1 (zh) 2021-12-03 2022-11-03 具备过滤回收功能的储液装置以及具有其的冰箱

Country Status (2)

Country Link
CN (1) CN116222120A (zh)
WO (1) WO2023098387A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0282682A1 (en) * 1987-03-19 1988-09-21 Dante Celluprica Device for filtrate the exhaust gases of internal combustion engine and method of carry out the filtration of same
CN203852976U (zh) * 2014-04-06 2014-10-01 宋育红 一种滤网和过滤液综合过滤空气净化器
CN208066013U (zh) * 2017-11-09 2018-11-09 南京佛睿得新材料科技有限公司 空气净化器
CN208115394U (zh) * 2017-11-09 2018-11-20 南京思睿达新材料科技有限公司 用于空气净化器的一级过滤装置
CN210292481U (zh) * 2019-04-17 2020-04-10 佛山市顺德区阿波罗环保器材有限公司 氧气分离装置和冰箱
CN217465118U (zh) * 2021-12-03 2022-09-20 青岛海尔电冰箱有限公司 电解除氧装置以及具有其的冰箱
CN217686164U (zh) * 2021-12-03 2022-10-28 青岛海尔电冰箱有限公司 具备过滤回收功能的储液装置以及具有其的冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0282682A1 (en) * 1987-03-19 1988-09-21 Dante Celluprica Device for filtrate the exhaust gases of internal combustion engine and method of carry out the filtration of same
CN203852976U (zh) * 2014-04-06 2014-10-01 宋育红 一种滤网和过滤液综合过滤空气净化器
CN208066013U (zh) * 2017-11-09 2018-11-09 南京佛睿得新材料科技有限公司 空气净化器
CN208115394U (zh) * 2017-11-09 2018-11-20 南京思睿达新材料科技有限公司 用于空气净化器的一级过滤装置
CN210292481U (zh) * 2019-04-17 2020-04-10 佛山市顺德区阿波罗环保器材有限公司 氧气分离装置和冰箱
CN217465118U (zh) * 2021-12-03 2022-09-20 青岛海尔电冰箱有限公司 电解除氧装置以及具有其的冰箱
CN217686164U (zh) * 2021-12-03 2022-10-28 青岛海尔电冰箱有限公司 具备过滤回收功能的储液装置以及具有其的冰箱

Also Published As

Publication number Publication date
CN116222120A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN217686164U (zh) 具备过滤回收功能的储液装置以及具有其的冰箱
KR101340378B1 (ko) 산업용 배터리의 증류수 충진시스템
CN217654171U (zh) 电解除氧装置以及具有其的冰箱
CN217465119U (zh) 氧气处理装置和具有其的冰箱
WO2023098387A1 (zh) 具备过滤回收功能的储液装置以及具有其的冰箱
WO2024017203A1 (zh) 氧气处理系统以及冰箱
WO2023098486A1 (zh) 冰箱及其控制方法
WO2023098749A1 (zh) 储液装置以及具有其的电解除氧系统和冰箱
CN217876737U (zh) 液位开关以及具有其的储液装置和冰箱
WO2023098377A1 (zh) 电解除氧装置以及具有其的冰箱
JP2015209567A (ja) 電解ガス発生装置および電解ガス供給システム
WO2023098474A1 (zh) 电解除氧装置以及具有其的冰箱
JP2016221451A (ja) 電解水生成装置および電解ユニット
CN210311379U (zh) 一种储液瓶
WO2014115880A1 (ja) 空気マグネシウム電池及びそれを使用した電力供給装置
WO2023098735A1 (zh) 氧气处理装置和具有其的冰箱
WO2023098388A1 (zh) 电解除氧系统及其控制方法以及冰箱
JP2012236168A (ja) オゾン水生成システム
CN116222118A (zh) 具备过滤回收功能的储液装置以及具有其的冰箱
CN220169434U (zh) 一种补水组件
CN210607450U (zh) 一种具有注液系统的蓄电池
KR200322386Y1 (ko) 가스-전해액 분리 수단을 구비한 수산 가스 발생 장치
CN215083858U (zh) 家用制氢机
CN213853815U (zh) 一种盐酸生产排污口处理装置
CN214655280U (zh) 一种制氢溶氢处理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900192

Country of ref document: EP

Kind code of ref document: A1