WO2023098388A1 - 电解除氧系统及其控制方法以及冰箱 - Google Patents

电解除氧系统及其控制方法以及冰箱 Download PDF

Info

Publication number
WO2023098388A1
WO2023098388A1 PCT/CN2022/129570 CN2022129570W WO2023098388A1 WO 2023098388 A1 WO2023098388 A1 WO 2023098388A1 CN 2022129570 W CN2022129570 W CN 2022129570W WO 2023098388 A1 WO2023098388 A1 WO 2023098388A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic
deoxygenation
liquid
control method
liquid level
Prior art date
Application number
PCT/CN2022/129570
Other languages
English (en)
French (fr)
Inventor
黄璐璐
费斌
苗建林
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023098388A1 publication Critical patent/WO2023098388A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/008Alarm devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/02Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to the field of freshness preservation, in particular to an electrolytic deoxygenation system, a control method thereof and a refrigerator.
  • the electrolytic deoxygenation device uses oxygen as the reactant to carry out an electrochemical reaction to consume oxygen.
  • oxygen In general, some key components of the electrolytic deoxidizer have the best service life.
  • the electrolytic deoxidizer After the electrolytic deoxidizer has been working for a certain period of time, some key components begin to age. If they cannot be replaced in time or the reaction is not stopped in time, it may cause the electrochemical reaction to fail to proceed normally, waste unnecessary electric energy, and even cause safety accidents. .
  • the inventors have recognized that it is necessary to monitor the condition of the electrolysis device to determine whether aging components need to be replaced.
  • An object of the present invention is to overcome at least one technical defect in the prior art, and provide an electrolytic deoxygenation system, a control method thereof, and a refrigerator.
  • a further object of the present invention is to provide a means for monitoring the state of the electrolytic deoxygenation device, which reduces the difficulty of state monitoring.
  • Another further object of the present invention is to improve the state monitoring accuracy of the electrolytic deoxygenation device.
  • Yet another further object of the present invention is to improve the operational reliability of the electrolytic deoxidizer and prevent the deoxidizer from being deoxidized in an aging state.
  • a control method of an electrolytic oxygen removal system has an electrolytic oxygen removal device for consuming oxygen through an electrochemical reaction under the action of an electrolytic voltage, and the control method includes: Obtain the electrolyte consumption of the electrolytic deoxygenation device; calculate the working time of the electrolytic deoxygenation device according to the electrolyte consumption; judge whether the working time reaches the preset time threshold; if so, output a prompt signal to remind the user to replace the electrolytic deoxygenation device The working element of the device.
  • the electrolytic deoxygenation system has a replenishment tank for replenishing electrolyte to the electrolytic deoxygenation device; and the step of obtaining the electrolyte consumption of the electrolytic deoxygenation device includes: obtaining the change value of the liquid level of the replenishment tank; according to the liquid level The change value determines the electrolyte consumption of the electrolytic deoxygenator.
  • a liquid level sensor is provided in the liquid replenishment chamber; and the step of obtaining the liquid level change value of the liquid replenishment chamber includes: obtaining a detection value of the liquid level sensor; and determining the liquid level change value according to the detection value.
  • the volume of the replenishment chamber V x ⁇ y ⁇ (1+z), wherein, x is the electrolyte consumption rate of the electrolytic deoxygenation device, y is the optimal service period of the working elements of the electrolytic deoxygenation device, and z is a constant.
  • the step of calculating the working hours of the electrolytic deoxygenation device according to the consumption of the electrolyte includes: acquiring a correspondence between the consumption of the electrolyte and the working hours; and determining the working hours according to the correspondence.
  • control method further includes: cutting off the electrolysis voltage of the electrolysis oxygen device to stop the electrochemical reaction.
  • the electrolytic oxygen removal system also has a reset switch, which is arranged on the power supply circuit where the electrolytic oxygen removal device is located, and is used to switch to an open circuit state when the electrolysis voltage of the electrolytic oxygen removal device is cut off; After the electrolysis voltage of the oxygen device, the control method further includes: detecting the state of the reset switch, and turning on the electrolysis voltage of the electrolysis oxygen device when the reset switch returns to the short circuit state, so as to continue the electrochemical reaction.
  • an electrolysis oxygen removal system comprising: an electrolysis oxygen removal device, which is used to consume oxygen through an electrochemical reaction under the action of an electrolysis voltage; and a control device, which has a processor and A memory, where a machine executable program is stored in the memory, and when the machine executable program is executed by the processor, it is used to implement the control method according to any one of the above.
  • the electrolytic deoxygenation system further includes: a liquid replenishment chamber, on which a liquid supply port is opened, and the liquid supply port is connected with the liquid replenishment port of the electrolytic deoxygenation device, so as to replenish electrolyte to the electrolytic deoxygenation device; and a liquid level sensor , is set in the liquid replenishment chamber, and is connected with the data of the control device, and is used to detect the change value of the liquid level in the liquid replenishment chamber.
  • a refrigerator including the electrolytic deoxygenation system as described above, the electrolytic deoxygenation device is in airflow communication with the storage space of the refrigerator, and is used to consume the storage space through an electrochemical reaction of oxygen.
  • the electrolytic deoxygenation system and its control method and the refrigerator of the present invention because the electrolytic deoxygenation system can determine the working time of the electrolytic deoxygenation device according to the electrolyte consumption of the electrolytic deoxygenation device, and determine whether to prompt replacement of the electrolytic deoxygenation device according to the working time
  • the control method of the present invention provides a means for monitoring the state of the electrolytic deoxygenation device, the control logic is simple and ingenious, and it is beneficial to reduce the difficulty of state monitoring.
  • the electrolytic deoxygenation system and its control method and the refrigerator of the present invention since the electrolyte consumption of the electrolytic deoxygenation device can accurately reflect the working hours of the electrolytic deoxygenation device, the solution of the present invention can indirectly, Accurately determine the duration of the actual electrochemical reaction of the electrolytic deoxidizer, compared with the scheme of judging whether it has reached the aging state based on the accumulated installation time of the electrolytic deoxidizer, it has significantly improved state monitoring accuracy.
  • the reset switch of the electrolytic deoxygenation system can be switched to an open circuit state when the electrolytic deoxygenation device is powered off, even if the user artificially closes the electric deoxygenation device Remove the switching element of the power supply circuit where the oxygen removal device is located, and the power supply circuit where the electrolytic oxygen removal device is located is still an open circuit. Therefore, the scheme of the present invention can prevent the electrolytic oxygen removal device from deoxidizing in an aging state, which is beneficial to improve the electrolytic oxygen removal device. The operational reliability of the device.
  • Fig. 1 is a schematic diagram of a control method of an electrolysis oxygen removal system according to an embodiment of the present invention
  • Fig. 2 is a schematic block diagram of an electrolysis oxygen removal system according to one embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an electrolytic deoxidation system according to an embodiment of the present invention.
  • Fig. 4 is the control flowchart of the electrolysis oxygen removal system according to one embodiment of the present invention.
  • Fig. 5 is a control flow chart of the electrolysis oxygen removal system according to another embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a liquid level switch of an electrolytic deoxygenation system according to an embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of a filter mechanism of an electrolytic deoxygenation system according to an embodiment of the present invention.
  • Fig. 9 is a schematic exploded view of the filter mechanism of the electrolysis oxygen removal system shown in Fig. 8;
  • Fig. 10 is a schematic structural diagram of a liquid replenishment chamber and a filter mechanism of an electrolytic oxygen deoxidation system according to an embodiment of the present invention
  • Fig. 11 is a schematic perspective view of the replenishment tank and the filter mechanism of the electrolytic deoxygenation system shown in Fig. 10;
  • Fig. 12 is a schematic diagram of the filtration and recovery process of the replenishment chamber and the filtration mechanism of the electrolytic deoxygenation system shown in Fig. 10;
  • Fig. 13 is a schematic structural view of the second compartment cover of the liquid replenishment compartment of the electrolysis oxygen removal system shown in Fig. 10 .
  • Fig. 1 is a schematic diagram of a control method of an electrolytic deoxygenation system 2 according to an embodiment of the present invention.
  • the electrolytic oxygen removal system 2 has an electrolytic oxygen removal device 100 for consuming oxygen through an electrochemical reaction under the action of an electrolytic voltage.
  • Electrolyte solution is contained inside the electrolytic oxygen removal device 100 .
  • the electrochemical components of the electrolytic deoxidation device 100 are immersed in the electrolyte, thereby performing electrochemical reactions and consuming the electrolyte.
  • the control method of the electrolytic oxygen removal system 2 may generally include the following steps:
  • step S102 the consumption of the electrolyte solution of the electrolytic deoxygenation device 100 is obtained.
  • the electrolyte solution consumption refers to the amount of electrolyte solution consumed when the electrolytic deoxygenation device 100 performs an electrochemical reaction.
  • the electrolyte consumption in this embodiment may be a volume value, and its unit is liter (L). In some embodiments, the electrolyte consumption may also be a mass value, and its unit is kilogram (kg).
  • Step S104 calculating the working hours of the electrolytic deoxygenation device 100 according to the electrolyte consumption.
  • the working time of the electrolytic deoxygenation device 100 refers to the cumulative reaction time during which the electrolytic deoxygenation device 100 performs electrochemical reactions.
  • Step S106 judging whether the working time reaches a preset time threshold.
  • the duration threshold is used to measure the lifetime of the electrolytic deoxygenation device 100 .
  • the duration threshold can be set according to the optimal use period of a certain key component of the electrolytic deoxygenation device 100 (such as the cathode plate described below). For example, the duration threshold may be equal to the optimal usage period, or the difference between the duration threshold and the optimal usage period is within a preset range.
  • Step S108 if yes, then output a prompt signal to prompt the user to replace the working components of the electrolytic oxygen removal device 100, such as the cathode plate described below.
  • the electrolytic deoxygenation system 2 may be further provided with a buzzer or a warning light. By controlling the buzzer to emit an alarm sound or the warning light to emit an alarm light, the output of the prompt signal can be completed.
  • the replacement of the working components of the electrolytic oxygen deoxidizer 100 mentioned in this embodiment may refer to the replacement of the cathode plate.
  • the duration threshold may also be determined according to the optimal use period of other working components of the electrolytic oxygen deoxygenation device 100, so as to determine whether to output a prompt signal, which is not specifically limited here.
  • the present embodiment provides a means for monitoring the state of the electrolytic deoxygenation device 100 , the control logic is simple and ingenious, which is beneficial to reduce the difficulty of state monitoring.
  • the scheme of this embodiment can indirectly and accurately determine the actual electrochemical reaction of the electrolytic deoxygenation device 100. Compared with the scheme of judging whether the aging state is reached according to the accumulated installation time of the electrolytic deoxygenation device 100 , the time length has significantly improved state monitoring accuracy.
  • Fig. 2 is a schematic block diagram of an electrolysis oxygen removal system 2 according to an embodiment of the present invention.
  • the electrolytic oxygen removal system 2 may further include a control device 800, which has a processor 810 and a memory 820.
  • a machine executable program 821 is stored in the memory 820, and the machine executable program 821 is executed by the processor 810. When executed, is used to implement a control method according to any of the following.
  • the control device 800 is integrated with the power supply of the electrolytic oxygen removal device 100 .
  • the power supply and the electrolytic deoxygenation device 100 are connected to form a power supply loop through the power supply line 700 , so that the power supply supplies the electrolysis voltage to the electrolytic deoxygenation device 100 by means of the power supply loop.
  • the electrolysis voltage of the electrolytic deoxygenation device 100 can be cut off or restored.
  • the control device 800 may be a main control chip.
  • the memory 820 stores a machine-executable program 821 , and when the machine-executable program 821 is executed by the processor 810 , it is used to implement the control method of the electrolysis oxygen removal system 2 in any of the following embodiments.
  • the processor 810 may be a central processing unit (CPU), or a digital processing unit (DSP) and so on.
  • the memory 820 is used to store programs executed by the processor 810 .
  • the memory 820 may be any medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 820 may also be a combination of various memories. Since the machine executable program 821 is executed by the processor 810 to implement each process of the following method embodiments and achieve the same technical effect, to avoid repetition, details are not repeated here.
  • Fig. 3 is a schematic structural diagram of an electrolytic deoxygenation system 2 according to an embodiment of the present invention.
  • the electrolytic deoxygenation system 2 of this embodiment may further include a liquid replenishment tank 200 for replenishing electrolyte to the electrolytic deoxygenation device 100 .
  • the electrolyte here should be interpreted in a broad sense, which can refer to the electrolyte in the electrolytic deoxygenation device 100 , and can also refer to certain components in the electrolyte actually consumed in the electrochemical reaction process, such as water.
  • the electrolytic deoxidizer 100 has an anode plate and a cathode plate as electrochemical elements. Oxygen in the air can undergo a reduction reaction at the cathode plate, namely: O 2 +2H 2 O+4e - ⁇ 4OH - .
  • the OH - produced by the cathode plate can undergo oxidation reaction at the anode plate and generate oxygen, namely: 4OH - ⁇ O 2 +2H 2 O + 4e - .
  • the entire electrochemical reaction process consumes only water. As the electrochemical reaction proceeds, the moisture in the original electrolyte solution in the electrolytic deoxygenation device 100 decreases continuously.
  • a liquid storage space 210 is formed inside the replenishment chamber 200 . In this embodiment, the liquid storage space 210 can directly contain water to supplement reactants to the electrolytic deoxygenation device 100 .
  • the electrolytic deoxygenation system 2 of this embodiment is integrated with a deoxygenation function and a fluid replenishment function at the same time, and can use its own fluid replenishment chamber 200 to replenish fluid to the electrolytic deoxygenation device 100, which is conducive to reducing the difficulty of rehydration of the electrolytic deoxygenation device 100.
  • the fluid replenishment process of 100 is safer, more effective, timely and intelligent, and can further ensure the oxygen removal effect of the electrolytic deoxygenation device 100 .
  • the electrolytic oxygen removal device 100 is organically combined with the liquid replenishment chamber 200 to form the electrolytic oxygen removal system 2, which can solve problems such as difficulty in replenishing liquid, high safety risks, waste gas pollution, and electrolyte loss in the oxygen removal process, and can guarantee to a certain extent
  • the oxygen removal process is carried out continuously, which is beneficial to promote the popularization and application of the electrolytic oxygen removal device 100 in the refrigerator 1 field, and improve the freshness preservation performance of the refrigerator 1 .
  • the above step S102 includes: acquiring the change value of the liquid level of the replenishment tank 200, and determining the electrolyte consumption of the electrolytic deoxygenation device 100 according to the change value of the liquid level. Since the liquid replenishment tank 200 supplies liquid to the electrolytic deoxygenation device 100 , the liquid level of the electrolytic deoxygenation device 100 can be kept at a "stable value", and the liquid level change value of the liquid replenishment tank 200 directly reflects the electrolyte consumption of the electrolytic deoxygenation device 100 .
  • the electrolytic deoxygenation device 100 may further include a reaction vessel (for example, it may be in the shape of a cuboid), and the anode plate and the cathode plate are respectively arranged in the reaction vessel, or communicate with the inner space of the reaction vessel, so that Immerse in electrolyte solution.
  • a liquid replenishment port 116 for communicating with the liquid replenishment chamber 200 is opened on the reaction container to allow the liquid from the liquid replenishment chamber 200 to flow into the reaction container.
  • the liquid replenishment chamber 200 is provided with a liquid supply port 262 for communicating with the liquid replenishment port 116 .
  • the liquid supply port 262 communicates with the liquid replenishment port 116 of the electrolytic deoxygenation device 100 to replenish the electrolytic solution to the electrolytic deoxygenation device 100 .
  • the infusion tube 300 is connected between the liquid supply port 262 and the liquid infusion port 116 to form a liquid infusion channel.
  • the electrolytic deoxygenation system 2 may further include a liquid level switch 500, which is disposed in the reaction vessel, and has a switch body 520, and is used to move according to the liquid level in the reaction vessel, thereby opening and closing the liquid replenishment port 116 to allow or stop liquid replenishment
  • the liquid in the chamber 200 flows into the reaction vessel through the liquid supply port 262 and the liquid replenishment port 116 . That is to say, the liquid level switch 500 is used to control the opening and closing of the liquid replenishing port 116 . That is, the liquid level switch 500 acts as a gate of the infusion channel, and plays a role of opening and closing the infusion channel.
  • the switch body 520 of the liquid level switch 500 moves according to the liquid level of the reaction container, so as to close or open the liquid replenishment port 116 , and the opening and closing process of the liquid replenishment port 116 does not need electronic control.
  • the liquid replenishment port 116 may be disposed on the top cover of the reaction vessel.
  • the liquid supply port 262 is higher than the liquid replenishment port 116 .
  • the switch body 520 is movably arranged below the liquid replenishment port 116, and when the liquid level in the reaction container rises, it rises to press against the lower edge of the liquid replenishment port 116 to close the liquid replenishment port 116, and in the reaction container When the liquid level drops, the liquid replenishment port 116 is opened by descending away from the lower peripheral edge of the liquid replenishment port 116 .
  • the switch body 520 can rise up and buckle against the lower peripheral edge of the liquid replenishment port 116 to close the liquid replenishment port 116, so that the liquid in the liquid replenishment chamber cannot pass through the liquid replenishment port 116.
  • the liquid level in the reaction container is lowered, it can be lowered to deviate and open the liquid replenishment port 116, so that the liquid in the liquid replenishment chamber can flow down into the reaction container by its own gravity, so as to realize the liquid level control in the reaction container. It tends to be stable.
  • the electrolyte consumption of the electrolytic deoxygenation device 100 is indirectly determined according to the liquid level change value of the liquid replenishment tank 200, which can ensure the accuracy of the determination process and avoid directly measuring the liquid level change value in the reaction vessel. Safe and reliable.
  • a liquid level sensor 900 is disposed in the liquid replenishment tank 200 .
  • the step of obtaining the change value of the liquid level of the replenishment tank 200 includes: obtaining the detection value of the liquid level sensor 900, and determining the change value of the liquid level according to the detection value.
  • the liquid level sensor 900 is in data connection with the control device 800 , and is used to detect the change value of the liquid level in the replenishment tank 200 and send it to the control device 800 .
  • a liquid level sensor 900 is provided in the liquid replenishment chamber 200 to indirectly detect the electrolyte consumption of the electrolytic deoxygenation device 100, It can prevent the liquid level sensor 900 from being corroded by acid and alkali from affecting the accuracy of the detection result or shortening the service life.
  • the liquid level sensor 900 does not need to be treated with acid and alkali resistance, so the manufacturing cost of the whole system can also be reduced.
  • the liquid storage space may store electrolyte solution with a relatively low concentration, so as to make up for the loss of electrolyte produced during the exhaust process of the electrolytic deoxygenation device 100 . The electrolyte is less concentrated and, therefore, less or negligibly corrosive.
  • the liquid level sensor 900 may refer to any one of a static pressure liquid level gauge, a liquid level transmitter and a water level sensor, and is a pressure sensor for measuring liquid level.
  • the above step S104 includes: acquiring a correspondence between electrolyte consumption and working hours, and determining the working hours according to the correspondence. For example, the corresponding relationship between electrolyte consumption and working hours is determined according to the electrolyte consumption rate.
  • the electrolyte consumption is directly proportional to the working time, and the ratio between the two is the electrolyte consumption rate.
  • the electrolyte consumption rate can be pre-calculated and set by the engineer.
  • the liquid level sensor 900 can detect the electrolyte consumption at a preset time interval.
  • the working hours of the electrolytic deoxygenation device 100 can be continuously monitored during the use of the electrolytic deoxygenation device 100 , which is conducive to improving the reliability of the monitoring process, so as to find out the state aging problem of the electrolytic deoxygenation device 100 in time.
  • the volume of the liquid replenishment chamber 200 has a preset fixed value.
  • the volume of the replenishment tank 200 V x ⁇ y ⁇ (1+z), wherein, x is the electrolyte consumption rate of the electrolytic deoxygenation device 100, and its unit is L/h (liter/hour), and y is the electrolytic deoxygenation device 100.
  • the unit of the optimal service period of the working components of the oxygen device 100 is h (hour), and z is a constant.
  • the liquid level sensor 900 of this embodiment may be disposed at the bottom of the liquid replenishment tank 200 .
  • the liquid level sensor 900 When the liquid level in the replenishment tank 200 drops to the preset warning line position, the liquid level sensor 900 sends a trigger signal and transmits it to the control device 800 of the electrolytic deoxygenation system 2. At this time, the control device 800 will judge the electrical Whether the working time of the oxygen device 100 reaches the time threshold.
  • the installation position of the liquid level sensor 900 and the position of the warning line can be set higher than the liquid supply port 262 of the replenishment tank 200 , and the dotted line in FIG. 3 shows the installation height of the liquid level sensor 900 and the position of the warning line.
  • z is a percentage, for example, can be any value within the range of 1%-10%, with a certain margin z used to characterize part of the space at the top and bottom of the rehydration chamber 200 .
  • the volume of the rehydration tank 200 is pre-designed, and after filling water according to the volume of the rehydration tank 200, the liquid level sensor 900 only needs to send a signal to the control device 800 once when the liquid level of the rehydration tank 200 drops to the warning line position. By triggering the signal, it can be determined that the working time has reached the time threshold. When the liquid level of the liquid replenishment tank 200 has not dropped to the warning line, there is no need to send it. This can simplify the data processing process and make it simple and effective.
  • the liquid replenishment chamber 200 is first filled with water. After the water is filled to the designated position, the water in the liquid replenishment chamber 200 is continuously consumed as the electrochemical reaction continues.
  • the liquid level in the liquid replenishment chamber 200 When it falls to the warning line, it means that the service time of the key components of the electrolytic deoxygenation device 100 has reached the optimum service period.
  • the specified position may refer to the highest liquid level of the liquid replenishment tank 200 .
  • the volume between the designated position and the position of the warning line is determined according to the electrolyte consumption of the electrolytic deoxygenation device 100 in the optimal use period. While reminding to replace key components, it also means that the liquid replenishment chamber 200 needs to be refilled, which kills two birds with one stone.
  • the control method further includes: cutting off the electrolysis voltage of the electrolysis oxygen device 100 to stop the electrochemical reaction.
  • Cutting off the electrolysis voltage of the electrolytic oxygen removal device 100 refers to cutting off the circuit between the electrolytic oxygen removal device 100 and its power supply. By cutting off the power supply circuit where the electrolytic deoxygenation device 100 is located, the electrolysis voltage of the electrolytic deoxygenation device 100 can be cut off.
  • a switch element may be provided on the power supply circuit, and by controlling the switch element to open or close, the electrolysis voltage of the electrolytic oxygen removal device 100 can be cut off or connected.
  • the electrolytic oxygen removal system 2 also has a reset switch, which is set on the power supply circuit where the electrolytic oxygen removal device 100 is located, and is used to switch to an open circuit when the electrolysis voltage of the electrolytic oxygen removal device 100 is cut off. state.
  • the reset switch can be arranged in series with the electrolytic deoxygenation device 100 in the power supply circuit. When the reset switch is in the off state, even if the switch element is closed, the power supply circuit is still in the off state, and the electrolytic oxygen removal device 100 cannot be energized and started.
  • the reset switch can be set in the control device 800 and can only be operated by professional engineers to adjust the state of the reset switch to a short-circuit state. For example, after the engineer completes the replacement and inspection of the above-mentioned key components and refills the liquid replenishment chamber 200, he presses the reset switch to adjust the reset switch to a short-circuit state. Such setting can prevent the electrolysis oxygen device 100 from being powered on and started due to the user artificially turning on the electrolysis voltage without replacing parts, thereby avoiding the waste of electric energy or causing safety accidents.
  • the control method further includes: detecting the state of the reset switch, and turning on the electrolytic voltage of the electrolytic oxygen removal device 100 when the reset switch returns to the short circuit state, so that it can continue the electrochemical reaction .
  • the switch element can be closed to connect the electrolytic voltage of the electrolytic oxygen removal device 100, so that the electrolytic oxygen removal device 100 uses electrochemical reaction Oxygen in the storage space 101 is consumed.
  • the control method may further include: detecting the liquid level of the replenishment tank 200 to determine whether the liquid replenishment tank 200 has been filled to a specified position, and if so, then The step of switching on the electrolysis voltage of the electrolysis oxygen removal device 100 is performed, which can ensure the smooth progress of the electrochemical reaction.
  • the liquid level of the liquid replenishment chamber 200 can be determined according to the detection value of the liquid level sensor 900 .
  • Fig. 4 is a control flow chart of the electrolysis oxygen removal system 2 according to one embodiment of the present invention.
  • the control process of the electrolytic oxygen removal system 2 may generally include the following steps:
  • Step S402 acquiring the detection value of the liquid level sensor 900.
  • Step S404 determining the change value of the liquid level according to the detection value.
  • Step S406 determining the electrolyte consumption of the electrolytic deoxygenation device 100 according to the change value of the liquid level.
  • Step S408 acquiring the corresponding relationship between electrolyte consumption and working hours.
  • Step S410 determine the working hours according to the corresponding relationship.
  • Step S412 judging whether the working time reaches the preset duration threshold, if yes, execute step S414, if not, execute step S402.
  • step S414 a prompt signal is output to prompt the user to replace the working components of the electrolytic deoxygenation device 100 .
  • Step S416, cut off the electrolysis voltage of the electrolysis oxygen removal device 100 to stop the electrochemical reaction.
  • Step S420 when the reset switch returns to the short-circuit state, the electrolytic voltage of the electrolytic oxygen removal device 100 is turned on, so that the electrochemical reaction continues.
  • Fig. 5 is a control flow chart of the electrolysis oxygen removal system 2 according to another embodiment of the present invention.
  • the control process of the electrolytic oxygen removal system 2 of this embodiment may generally include the following steps:
  • Step S502 acquiring a trigger signal of the liquid level sensor 900.
  • the trigger signal is acquired, it is determined that the electrolyte consumption of the electrolytic deoxygenation device 100 reaches the preset consumption threshold, and the electrolytic deoxygenation device is determined by obtaining the working time of the electrolytic deoxygenation device corresponding to the preset consumption threshold. actual working hours.
  • step S504 it is determined that the working time of the electrolysis oxygen device 100 reaches a preset time threshold.
  • step S506 a prompt signal is output to prompt the user to replace the working components of the electrolytic deoxygenation device 100 .
  • Step S508 cut off the electrolysis voltage of the electrolysis oxygen device 100 to stop the electrochemical reaction.
  • Step S510 detecting the state of the reset switch.
  • Step S512 when the reset switch returns to the short-circuit state, the electrolysis voltage of the electrolysis oxygen removal device 100 is turned on, so that the electrochemical reaction continues.
  • Fig. 6 is a schematic structural diagram of a refrigerator 1 according to an embodiment of the present invention.
  • the refrigerator 1 may generally include the electrolysis oxygen removal system 2 as in any of the above embodiments, the electrolysis oxygen removal device 100 is in airflow communication with the storage space 101 of the refrigerator 1, and is used to consume the oxygen in the storage space 101 through an electrochemical reaction .
  • the refrigerator 1 may further include a box body, which defines the above-mentioned storage space 101 inside.
  • the electrolytic deoxygenation system 2 can be arranged in the box, thereby improving the structural integrity of the refrigerator 1 .
  • control device 800 of the electrolytic deoxygenation system 2 can be integrated on the main control board of the refrigerator 1 , which is beneficial to simplify the overall electrical control structure of the refrigerator 1 .
  • Fig. 7 is a schematic structural diagram of the liquid level switch 500 of the electrolytic oxygen deoxygenation system 2 according to an embodiment of the present invention.
  • the liquid level switch 500 also includes a float 510, which is fixedly connected with the switch body 520 or is integral with the switch body 520, and is rotatably arranged around an axis, and is used to float or sink by rotating around an axis in the reaction vessel, thereby driving The switch body 520 moves. That is to say, the switch body 520 is "driven" by the float 510, and the power required for the movement of the float 510 is determined by the buoyancy it experiences in the reaction vessel.
  • a part of the float 510 is immersed in the liquid, so that the float 510 is buoyed by the liquid.
  • the buoyancy force on the float 510 will also change, so that the resultant force of the buoyancy force on the float 510 and the gravity will change.
  • the buoyancy force on the float 510 will decrease. If the resultant force of the buoyancy force on the float 510 and gravity is downward, the float 510 will move downward. On the contrary, it will cause the float 510 to move upward.
  • the float 510 of this embodiment does not move up and down in a straight line, but rises or falls by rotating around an axis. With this design, it is only necessary to pivotally connect the float 510 to a fixed shaft, and no installation size is required.
  • High-precision guide components have the advantages of compact structure, simple assembly process, and high device reliability.
  • the movement trajectory is clear and definite, which makes the float 510 and the switch body 520 of this embodiment easy to move along a clear and definite movement trajectory, thereby improving the reliability of the liquid level switch 500 and reducing or avoiding the Due to the free movement of the float 510, problems such as poor sealing are caused.
  • the liquid level switch 500 may further include a rotating shaft 530 and a connecting piece 540 .
  • the rotating shaft 530 is fixed to the reaction container.
  • the rotating shaft 530 may be fixed in the inner space of the reaction vessel, and fixedly connected with the inner wall of the reaction vessel.
  • the rotating shaft 530 can also be detachably fixed to the reaction container, which can adjust the height of the rotating shaft 530 according to actual needs, so as to adjust the height of the liquid level in the container at which the liquid replenishment starts.
  • the connecting member 540 is fixedly connected with the float 510 or integrally formed with the float 510 , and has a shaft hole formed thereon for the rotating shaft 530 to be inserted into and rotatably matched to realize the rotatable connection. That is to say, the connecting member 540 assembles the rotating shaft 530 and the float 510 into an organic whole, so that the float 510 can rotate around the rotating shaft 530 .
  • the float 510 By opening a shaft hole on the connecting piece 540 and rotatably fitting the rotation shaft 530 with the shaft hole, the float 510 can be rotatably assembled to the rotation shaft 530 , which has an extraordinar structure and simple process.
  • the switch body 520 is rod-shaped.
  • An installation opening is also formed on the connecting member 540 for a part of the switch body 520 to be inserted therein so as to achieve fixed assembly. That is to say, a part of the switch body 520 is indirectly fixedly connected to the float 510 by being fixedly assembled with the connecting piece 540 .
  • a part of the above-mentioned switch body 520 can be assembled with the installation opening of the connecting member 540 through an interference fit.
  • the rotating shaft 530 and the switch body 520 are respectively assembled to the connecting piece 540 fixedly connected with the float 510 or integrated with the float 510 to form the liquid level switch 500 with strong structural integrity.
  • FIG. 8 is a schematic structural diagram of the filter mechanism 400 of the electrolysis oxygen removal system 2 according to an embodiment of the present invention.
  • FIG. 9 is a schematic exploded view of the filter mechanism 400 of the electrolysis oxygen removal system 2 shown in FIG. 8 .
  • the electrolysis oxygen removal system 2 further includes a filter mechanism 400 having a housing 420 and a filter part 440 .
  • the inner space 421 of the housing 420 communicates with the liquid storage space 210, and the filter 440 is disposed in the inner space 421 of the housing 420, and is used to dissolve specific substance components in the gas from the exhaust port 112 inside the housing 420 Space 421, so as to enter the liquid storage space 210 for recycling. That is to say, the gas discharged from the exhaust port 112 can be filtered under the function of the filter part 440 to separate specific material components and make the specific material components stay in the inner space 421 of the casing 420 .
  • a space for containing liquid is formed in the casing 420 , for example, an electrolyte or water containing a specific component may be contained.
  • the specific substance components in the gas discharged from the reaction vessel can be dissolved in the inner space 421 of the shell 420 means that they can be dissolved in the liquid contained in the reaction vessel.
  • the filter mechanism 400 can dissolve the specific substance components in the gas discharged from the electrolytic oxygen removal device 100 in the inner space 421 of the housing 420, so that the gas to be discharged can be filtered, which is beneficial to reduce the concentration of the gas discharged from the electrolytic oxygen removal device 100. Corrosive, reducing the adverse impact of the oxygen removal process on the environment.
  • the housing 420 of the filter mechanism 400 is in communication with the liquid storage space 210, the specific substance components dissolved in the housing 420 can enter the liquid storage space 210, therefore, the specific substances in the gas discharged from the electrolytic oxygen removal device 100 Components can be recycled and reused, which helps to reduce resource consumption in the oxygen removal process.
  • the specific material components mentioned above are water-soluble substances.
  • the liquid components stored in the casing 420 and the liquid replenishment chamber 200 can be adjusted according to the physical and chemical properties of the specific material components to be separated.
  • FIG. 10 is a schematic structural diagram of the liquid replenishment chamber 200 and the filter mechanism 400 of the electrolysis oxygen removal system 2 according to an embodiment of the present invention.
  • FIG. 11 is a schematic perspective view of the replenishment tank 200 and the filter mechanism 400 of the electrolysis oxygen removal system 2 shown in FIG. 10 .
  • the housing 420 is inserted into the liquid storage space 210, and the bottom of the housing 420 is provided with a liquid outlet for communicating with the liquid storage space 210.
  • the hole is used to allow the liquid in the casing 420 to flow back into the liquid replenishment chamber 200 .
  • the liquid replenishment chamber 200 may be substantially in the shape of a cuboid, and the casing 420 may be inserted into the liquid replenishment chamber 200 as an inner sleeve.
  • the examples of the shapes of the replenishment tank 200 and the housing 420 are only schematic, and those skilled in the art should easily expand them, so they will not be enumerated here.
  • the liquid outlet hole 422 can be used as a "window" for material exchange between the inner space 421 of the casing 420 and the inner space of the replenishment chamber 200 (ie, the liquid storage space 210 ).
  • the liquid outlet hole 422 can keep the inner space 421 of the housing 420 consistent with the liquid level in the inner space of the liquid replenishment chamber 200 , and make the liquid in the housing 420 easily diffuse into the liquid replenishment chamber 200 .
  • the casing 420 is arranged in the inner space of the liquid replenishment chamber 200 and communicates with the liquid replenishment chamber 200 through the liquid outlet hole 422 at the bottom of the casing 420, the liquid in the casing 420 can pass through the liquid outlet hole 422 downward by its own gravity and It returns to the replenishment tank 200, which makes the recycling process simple and effective.
  • the casing 420 defines an air inlet 423 for communicating with the exhaust port 112 and the inner space 421 of the casing 420 .
  • the electrolysis oxygen system 2 may further include a gas delivery pipe 600 , one end of which communicates with the exhaust port 112 and the other end communicates with the air inlet 423 , for guiding the gas from the exhaust port 112 to the air inlet 423 .
  • Using the gas delivery pipe 600 to connect the exhaust port 112 and the intake hole 423 can simplify the connection structure of the gas delivery pipeline between the exhaust port 112 and the intake hole 423 and improve the flexibility of the assembly process.
  • the filter part 440 is an air duct, which is inserted into the inner space 421 of the casing 420 from the air inlet 423 and extends to the bottom section in the casing 420, so that the air from the exhaust port 112 The gas is guided to the bottom section inside the housing 420 so that certain substance components in the gas from the exhaust port 112 dissolve in the inner space 421 of the housing 420 during the ascent.
  • the air guiding tube of this embodiment can be a straight tube with openings at both ends to facilitate the inflow or outflow of gas. The structure is simple and has a better air guiding effect.
  • Extending the air duct to the bottom section of the housing 420 allows the air duct to transport the gas to the depth of the liquid in the housing 420, thereby prolonging the flow path of the gas in the housing 420, and the gas flowing out of the air duct is rising During the process, it can fully contact with the liquid in the shell 420, so that specific substances in the gas can be dissolved in the shell 420, which enables the electrolytic oxygen deoxygenation system 2 to obtain better filtration, purification and recovery effects with a compact and simple structure.
  • the shape of the air duct can be transformed into a vertically curved hook-shaped tube, and it has a straight tube section extending to the bottom section of the housing 420 and a curved section extending upward from the end of the straight tube section.
  • the ends of the bent sections are slightly higher than the ends of the straight sections to direct the gas flowing through them upwards.
  • the straight section resembles an umbrella shaft, and the bent section resembles an umbrella handle attached to the end of the umbrella shaft.
  • the curved pipe section is bent and extended upwards from the end of the straight pipe section, which allows the gas flowing out of the airway to be guided to flow upwards, thereby making the direction of movement of the gas more definite.
  • the fact that the end of the curved pipe section is slightly higher than the end of the straight pipe section means that the end of the curved pipe section is still in the bottom section of the housing 420 , which does not significantly shorten the flow path of the gas during the dissolution process.
  • the housing 420 is also provided with an air outlet 424 , which is spaced apart from the air inlet 423 on the top of the housing 420 , and is used to discharge the gas that flows through the air duct and the inner space of the housing 420 and is separated into specific material components.
  • the air outlet 424 is used to discharge the filtered gas to the external environment, for example, it can be discharged to the air of the external environment.
  • the air inlet hole 423 and the air outlet hole 424 may be respectively located on the top cover of the housing 420 .
  • the air inlet hole 423 and the air outlet hole 424 may be circular openings respectively.
  • the air inlet hole 423 and the air outlet hole 424 in this embodiment may be tubular through holes respectively.
  • the air guide tube and the air inlet 423 may be in one piece.
  • the tube hole wall of the air inlet 423 can continuously extend downwards and protrude into the casing, serving as an air guide tube.
  • an air outlet conduit may be connected to the air outlet hole 424 for guiding air.
  • the housing 420 may be integrally formed. In other optional embodiments, the housing 420 may be formed by connecting multiple different parts.
  • the casing 420 may include a first compartment body 426 with a top opening and a first compartment cover 428 closing the top opening of the first compartment body 426 .
  • the air inlet hole 423 and the air outlet hole 424 are located on the first cover 428 at intervals from each other.
  • the first chamber body 426 may be in the shape of a straight tube with a diameter greater than that of the airway.
  • the top end of the first compartment body 426 is open and is in sealing connection with the first compartment cover 428 .
  • the bottom end of the first chamber body 426 is closed, and the above-mentioned liquid outlet hole 422 is opened thereon.
  • the air inlet hole 423 together with the air guide tube and the air outlet hole 424 are covered by the first chamber body 426 to form a sleeve structure.
  • the bottom end of the air guide tube is higher than the bottom end of the first compartment body 426 , preventing the gas flowing out of the air guide tube from escaping the first compartment body 426 .
  • the liquid replenishment chamber 200 can be integrally formed, which is beneficial to improve the sealing effect of the liquid replenishment chamber 200 and prevent liquid leakage.
  • the liquid replenishment chamber 200 may be formed by connecting multiple different components.
  • the replenishment cartridge 200 may include a second cartridge body 260 with a top opening and a second cartridge cover 280 closing the top opening of the second cartridge body 260 .
  • the second bin body 260 may be in the shape of a cuboid tank without a cover, and its volume is larger than that of the first bin body 426 .
  • FIG. 12 is a schematic diagram of the filtration recovery process of the replenishment tank 200 and the filter mechanism 400 of the electrolytic oxygen deoxidation system 2 shown in FIG. 10 .
  • the direction of the arrow in the figure shows the flow direction of the gas, or the flow direction of the liquid. Due to the limitation of the "air trap" of the casing 420, the gas flowing out of the air duct can only rise in the form of bubbles inside the first warehouse body 426 until it reaches the top of the first warehouse cover 428 above the first warehouse body 426. The air outlet hole 424 is exhausted, thereby completing the filtering process.
  • the above screw fastening installation method can also be changed to an interference fit or sealing connection with a sealing ring, as long as the sealing is guaranteed to be watertight and airtight.
  • the first chamber body 426 can be used as a liquid replenishment chamber, and the liquid inside it can be transported to the reaction container again in the form of liquid replenishment, so as to achieve reuse.
  • FIG. 13 is a schematic structural view of the second compartment cover 280 of the liquid replenishment compartment 200 of the electrolysis oxygen removal system 2 shown in FIG. 10 .
  • Fig. 13(a) is a perspective view
  • Fig. 13(b) is a front view
  • Fig. 13(c) is a top view.
  • An installation opening 282 is defined on the second cover 280 .
  • the hole wall of the installation port 282 extends upward to form a hollow cylindrical external thread interface 288 . Since the externally threaded interface 288 extends upward from the hole wall of the installation port 282 , the upper edge of the externally threaded interface 288 is higher than the upper surface of the second compartment cover 280 and higher than the upper edge of the liquid filling tank 286 described later. This can control the maximum liquid level of the liquid addition process below the upper edge of the externally threaded interface 288.
  • the first compartment cover 428 has a closing cover plate 428a located above the first compartment body 426 and an annular internal thread interface 428b extending downward from the outer peripheral edge of the closing cover plate 428a.
  • the closing cover plate 428a is used to cover the top opening of the first warehouse body 426 .
  • the ring-shaped internal thread interface 428 b is screwed to the external thread interface 288 , so that the first compartment cover 428 is detachably connected to the second compartment cover 280 . That is, the annular internal thread interface 428b is used to connect the first compartment cover 428 to the second compartment cover 280 .
  • the first chamber body 426 extends downward from the lower surface of the closed cover plate 428a, and is inserted into the liquid replenishment chamber 200 after passing through the external threaded interface 288 .
  • the installation port 282 can be closed by screwing the first compartment cover 428 and the second compartment cover 280, which can simplify the installation and fixing process of the filter mechanism 400, realize one-step installation, and at the same time make the first compartment body 426 function as a "air trap”. effect.
  • a liquid filling opening 284 may be opened on the second compartment cover 280 , and the opening wall thereof extends downward to form a liquid filling groove 286 . Since the liquid filling tank 286 extends downward from the upper surface of the second warehouse cover 280, and the external threaded interface 288 extends upward from the upper surface of the second warehouse cover 280, therefore, when the liquid filling port 284 is extended to the second warehouse body 260 When adding liquid, even if the liquid adding process causes the second chamber body 260 to overflow, the liquid level during overflow will not exceed the external threaded interface 288 .
  • a part of the tank wall of the liquid adding tank 286 extends downwards obliquely, so that a tapered opening is formed at the bottom of the liquid adding tank 286 . That is to say, the water filling tank is an inclined through hole with a certain depth, which is convenient for the user to observe the liquid level when adding liquid.
  • There is a liquid level mark on the tank wall extending downwards to indicate the liquid level during the liquid filling process.
  • the liquid level mark can be designed as a "maximum liquid level scale line", which is used to remind the user that the liquid has been filled.
  • a liquid supply port 262 is provided at the bottom section of the second chamber body 260 to allow the liquid in the second chamber body 260 to flow out automatically by gravity, which is beneficial to improve the automation of the liquid supply process.
  • the edge of the second compartment cover 280 has a protrusion 287 protruding outward for applying force.
  • the user can apply force to the second compartment cover 280 by grabbing or other actions, so as to realize the disassembly process between the second compartment cover 280 and the second compartment body 260 .
  • the periphery of the closing place between the second warehouse cover 280 and the second warehouse body 260 can be provided with an elastic sealing ring, which is convenient to realize sealing by pressing between the second warehouse cover 280 and the second warehouse body 260, so as to prevent the second Storehouse body 260 leaks.
  • the electrolytic deoxygenation system 2 and its control method and refrigerator 1 of the present invention because the electrolytic deoxygenation system 2 can determine the working hours of the electrolytic deoxygenation device 100 according to the electrolyte consumption of the electrolytic deoxygenation device 100, and determine whether to It prompts to replace the working components of the electrolytic deoxygenation device 100. Therefore, the present invention provides a means for state monitoring of the electrolytic deoxygenation device 100.
  • the control logic is simple and ingenious, which helps to reduce the difficulty of state monitoring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种电解除氧系统及其控制方法以及冰箱,其中电解除氧系统具有电解除氧装置,其用于在电解电压的作用下通过电化学反应消耗氧气,并且控制方法包括:获取电解除氧装置的电解液消耗量;根据电解液消耗量计算电解除氧装置的工作时长;判断工作时长是否达到预设的时长阈值;若是,则输出提示信号,以提示用户更换电解除氧装置的工作元件。基于上述方法,提供了一种电解除氧装置的状态监测手段,控制逻辑简单而巧妙,有利于降低状态监测难度。

Description

电解除氧系统及其控制方法以及冰箱 技术领域
本发明涉及保鲜领域,特别是涉及电解除氧系统及其控制方法以及冰箱。
背景技术
电解除氧装置以氧气为反应物进行电化学反应,从而起到消耗氧气的作用。一般情况下,电解除氧装置的部分关键部件具有最佳使用周期。
在电解除氧装置累计工作一定时间后,部分关键部件开始出现老化,如果无法及时更换或者不及时停止反应,则可能会导致电化学反应无法正常进行,浪费不必要的电能,甚至会引发安全事故。
发明人认识到,有必要对电解除氧装置的状态进行监测,以确定是否需要更换老化的部件。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种电解除氧系统及其控制方法以及冰箱。
本发明的一个进一步的目的是要提供一种电解除氧装置的状态监测手段,降低状态监测难度。
本发明的另一个进一步的目的是要提高电解除氧装置的状态监测精度。
本发明的又一个进一步的目的是要提高电解除氧装置的运行可靠性,避免电解除氧装置在老化状态下进行除氧。
根据本发明的一方面,提供了一种电解除氧系统的控制方法,电解除氧系统具有电解除氧装置,其用于在电解电压的作用下通过电化学反应消耗氧气,并且控制方法包括:获取电解除氧装置的电解液消耗量;根据电解液消耗量计算电解除氧装置的工作时长;判断工作时长是否达到预设的时长阈值;若是,则输出提示信号,以提示用户更换电解除氧装置的工作元件。
可选地,电解除氧系统具有补液仓,用于向电解除氧装置补充电解液;且获取电解除氧装置的电解液消耗量的步骤包括:获取补液仓的液位变化值;根据液位变化值确定电解除氧装置的电解液消耗量。
可选地,补液仓内设置有液位传感器;且获取补液仓的液位变化值的步骤包括:获取液位传感器的检测值;根据检测值确定液位变化值。
可选地,补液仓的容积V=x╳y╳(1+z),其中,x为电解除氧装置的电解液消耗速率,y为电解除氧装置的工作元件的最佳使用周期,z为常数。
可选地,根据电解液消耗量计算电解除氧装置的工作时长的步骤包括:获取电解液消耗量与工作时长之间的对应关系;根据对应关系确定工作时长。
可选地,在输出提示信号的同时,控制方法还包括:切断电解除氧装置的电解电压,使其停止进行电化学反应。
可选地,电解除氧系统还具有复位开关,设置于电解除氧装置所在的供电回路上,并用于在电解除氧装置的电解电压被切断的情况下切换至断路状态;且在切断电解除氧装置的电解电压之后,控制方法还包括:检测复位开关的状态,且在复位开关恢复至短路状态时接通电解除氧装置的电解电压,使其继续进行电化学反应。
根据本发明的另一方面,还提供了一种电解除氧系统,包括:电解除氧装置,其用于在电解电压的作用下通过电化学反应消耗氧气;以及控制装置,其具有处理器和存储器,存储器内存储有机器可执行程序,机器可执行程序被处理器执行时,用于实现根据上述任一项的控制方法。
可选地,电解除氧系统还包括:补液仓,其上开设有供液口,供液口与电解除氧装置的补液口相连通,以向电解除氧装置补充电解液;以及液位传感器,设置于补液仓内,并与控制装置数据连接,用于检测补液仓内的液位变化值。
根据本发明的又一方面,还提供了一种冰箱,包括如上述任一项的电解除氧系统,电解除氧装置与冰箱的储物空间气流连通,用于通过电化学反应消耗储物空间的氧气。
本发明的电解除氧系统及其控制方法以及冰箱,由于电解除氧系统可以根据电解除氧装置的电解液消耗量确定电解除氧装置的工作时长,并根据工作时长确定是否提示更换电解除氧装置的工作元件,因此,本发明的控制方法提供了一种电解除氧装置的状态监测手段,控制逻辑简单而巧妙,有利于降低状态监测难度。
进一步地,本发明的电解除氧系统及其控制方法以及冰箱,由于电解除氧装置的电解液消耗量能够准确地反映电解除氧装置的工作时长,因此,本发明的方案,能够间接地、准确地确定电解除氧装置实际发生电化学反应的时长,相对于根据电解除氧装置的累计安装时长判定是否达到老化状态的方案而言,具备明显提高的状态监测精度。
更进一步地,本发明的电解除氧系统及其控制方法以及冰箱,由于电解除氧系统的复位开关可在电解除氧装置断电的情况下切换至断路状态,此时即便用户人为地闭合电解除氧装置所在供电回路的开关元件,电解除氧装置所在的供电回路仍为断路,因此,本发明的方案,可以避免电解除氧装置在老化状态下进行除氧,这有利于提高电解除氧装置的运行可靠性。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的电解除氧系统的控制方法的示意图;
图2是根据本发明一个实施例的电解除氧系统的示意性框图;
图3是根据本发明一个实施例的电解除氧系统的示意性结构图;
图4是根据本发明一个实施例的电解除氧系统的控制流程图;
图5是根据本发明另一实施例的电解除氧系统的控制流程图;
图6是根据本发明一个实施例的冰箱的示意性结构图;
图7是根据本发明一个实施例的电解除氧系统的液位开关的示意性结构图;
图8是根据本发明一个实施例的电解除氧系统的过滤机构的示意性结构图;
图9是图8所示的电解除氧系统的过滤机构的示意性分解图;
图10是根据本发明一个实施例的电解除氧系统的补液仓和过滤机构的示意性结构图;
图11是图10所示的电解除氧系统的补液仓和过滤机构的示意性透视图;
图12是图10所示的电解除氧系统的补液仓和过滤机构的过滤回收过程的示意图;
图13是图10所示的电解除氧系统的补液仓的第二仓盖的示意性结构图。
具体实施方式
图1是根据本发明一个实施例的电解除氧系统2的控制方法的示意图。电解除氧系统2具有电解除氧装置100,其用于在电解电压的作用下通过电化学反应消耗氧气。电解除氧装置100的内部盛放电解液。电解除氧装置100的电化学元件浸于电解液,从而进行电化学反应,并消耗电解液。
电解除氧系统2的控制方法一般性地可包括如下步骤:
步骤S102,获取电解除氧装置100的电解液消耗量。电解液消耗量是指电解除氧装置100进行电化学反应时所消耗的电解液的量。本实施例的电解液消耗量可为体积值,其单位为升(L)。在一些实施例中,电解液消耗量也可为质量值,其单位为千克(kg)。
步骤S104,根据电解液消耗量计算电解除氧装置100的工作时长。电解除氧装置100的工作时长是指电解除氧装置100进行电化学反应的累计反应时长。
步骤S106,判断工作时长是否达到预设的时长阈值。其中,时长阈值用于衡量电解除氧装置100的寿命。时长阈值可以根据电解除氧装置100的某一关键部件(例如下述阴极板)的最佳使用周期进行设置。例如,时长阈值可以等于最佳使用周期,或者与最佳使用周期之间的差值处于预设范围内。
步骤S108,若是,则输出提示信号,以提示用户更换电解除氧装置100的工作元件,例如下述阴极板。例如,电解除氧系统2可进一步地设置有蜂鸣器,或者警示灯,通过控制蜂鸣器发出警报提示音,或者控制警示灯发出警报提示光,可完成提示信号的输出。发明人认识到,阴极板易于老化,因此,本实施例所提及的更换电解除氧装置100的工作元件可以指更换阴极板。在一些实施例中,也可以根据电解除氧装置100的其他工作元件的最佳使用周期确定时长阈值,从而判定是否输出提示信号,在此不做具体限定。
使用上述方法,由于电解除氧系统2可以根据电解除氧装置100的电解液消耗量确定电解除氧装置100的工作时长,并根据工作时长确定是否提示更换电解除氧装置100的工作元件,因此,本实施例提供了一种电解除氧装置100的状态监测手段,控制逻辑简单而巧妙,有利于降低状态监测难度。
由于电解除氧装置100的电解液消耗量能够准确地反映电解除氧装置100的工作时长,因此,本实施例的方案,能够间接地、准确地确定电解除氧装置100实际发生电化学反应的时长,相对于根据电解除氧装置100的累计安装时长判定是否达到老化状态的方案而言,具备明显提高的状态监测精度。
图2是根据本发明一个实施例的电解除氧系统2的示意性框图。除了电解除氧装置100外,电解除氧系统2进一步地可包括控制装置800,其具有处理器810和存储器820,存储器820内存储有机器可执行程序821,机器可执行程序821被处理器810执行时,用 于实现根据以下任一项的控制方法。
控制装置800的内部集成有电解除氧装置100的供电电源。供电电源与电解除氧装置100之间通过供电线700连接成供电回路,使得供电电源依靠供电回路向电解除氧装置100提供电解电压。通过对供电线700的通断状态进行控制,即可切断或恢复电解除氧装置100的电解电压。
控制装置800可以为主控芯片。其中存储器820内存储有机器可执行程序821,机器可执行程序821被处理器810执行时用于实现以下任一实施例的电解除氧系统2的控制方法。处理器810可以是一个中央处理单元(CPU),或者为数字处理单元(DSP)等等。存储器820用于存储处理器810执行的程序。存储器820可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,但不限于此。存储器820也可以是各种存储器的组合。由于机器可执行程序821被处理器810执行时实现下述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图3是根据本发明一个实施例的电解除氧系统2的示意性结构图。本实施例的电解除氧系统2进一步地可包括补液仓200,用于向电解除氧装置100补充电解液。此处的电解液应做广义理解,既可以指电解除氧装置100内的电解液,又可以指电化学反应过程实际消耗的电解液中的某些成分,例如水等。
例如,电解除氧装置100具有阳极板和阴极板,作为电化学元件。空气中的氧气可以在阴极板处发生还原反应,即:O 2+2H 2O+4e -→4OH -。阴极板产生的OH -可以在阳极板处可以发生氧化反应,并生成氧气,即:4OH -→O 2+2H 2O+4e -。整个电化学反应过程仅消耗水。随着电化学反应的进行,电解除氧装置100内原有的电解液中的水分不断减少。补液仓200的内部形成储液空间210,本实施例中,储液空间210内可以直接盛放水,以向电解除氧装置100补充反应物。
本实施例的电解除氧系统2同时集成有除氧功能和补液功能,能够利用自身的补液仓200向电解除氧装置100补液,有利于降低电解除氧装置100的补液难度,电解除氧装置100的补液过程更加安全、有效、及时、智能,可进一步保证电解除氧装置100的除氧效果。
将电解除氧装置100与补液仓200进行有机结合,形成电解除氧系统2,可解决除氧过程所存在的补液困难、安全风险高、废气污染、电解质流失等问题,在一定程度上可保证除氧过程连续进行,有利于促进电解除氧装置100在冰箱1领域的推广应用,提高冰箱1的保鲜性能。
上述步骤S102包括:获取补液仓200的液位变化值,根据液位变化值确定电解除氧装置100的电解液消耗量。由于补液仓200向电解除氧装置100补液,因此可使电解除氧装置100的液位处于“稳定值”,补液仓200的液位变化值直接反映电解除氧装置100的电解液消耗量。
在一些可选的实施例中,电解除氧装置100进一步地可包括反应容器(例如可为长方体形状),阳极板和阴极板分别设置于反应容器内,或与反应容器的内部空间相通,从而浸于电解液。反应容器上开设有用于连通补液仓200的补液口116,以允许来自补液仓200的液体流入反应容器内。补液仓200上开设有供液口262,用于连通补液口116。即,供液口262与电解除氧装置100的补液口116相连通,以向电解除氧装置100补充 电解液。输液管300连接于供液口262与补液口116之间,以形成输液通道。
电解除氧系统2可以进一步地包括液位开关500,设置于反应容器内,且其具有开关本体520,并用于根据反应容器内的液位移动,从而开闭补液口116,以允许或制止补液仓200内的液体流经供液口262和补液口116进入反应容器内。也就是说,液位开关500用于控制补液口116的开闭。即,液位开关500作为输液通道的闸门,起到通断输液通道的作用。液位开关500的开关本体520根据反应容器的液位高低而进行移动,以此来封闭或打开补液口116,补液口116的开闭过程无需电控。
例如,补液口116可以设置于反应容器的顶盖上。供液口262高于补液口116。开关本体520可移动地设置于补液口116的下方,并且在反应容器内的液位升高的情况下通过上升至与补液口116的下周缘相抵压以封闭补液口116,且在反应容器内的液位降低的情况下通过下降偏离补液口116的下周缘从而打开补液口116。
也就是说,开关本体520可在反应容器内的液位升高的情况下上升并抵扣在补液口116的下周缘从而封闭补液口116,使得补液仓内的液体无法通过补液口116,还可在反应容器内的液位降低的情况下下降从而偏离并打开补液口116,使得补液仓内的液体可以依靠自身重力下流至反应容器内,以此实现对反应容器内的液位控制,使其趋向稳定。
使用上述方法,根据补液仓200的液位变化值间接地确定电解除氧装置100的电解液消耗量,既可保证确定过程的准确性,又可避免直接测定反应容器内的液位变化值,安全可靠。
在一些可选的实施例中,补液仓200内设置有液位传感器900。且获取补液仓200的液位变化值的步骤包括:获取液位传感器900的检测值,根据检测值确定液位变化值。液位传感器900与控制装置800数据连接,用于检测补液仓200内的液位变化值,并向控制装置800发送。
由于本实施例的补液仓200内盛放的液体为水,不具有腐蚀性,因此,通过在补液仓200内设置液位传感器900,以间接地检测电解除氧装置100的电解液消耗量,可以防止液位传感器900因受酸碱腐蚀而影响检测结果的准确性或者缩短寿命。此外,液位传感器900无需进行耐酸耐碱处理,因此还可降低整个系统的制造成本。在一些可选的实施例中,储液空间内可以盛放浓度较低的电解液,以弥补电解除氧装置100的排气过程所产生的电解质损失。电解液的浓度较低,因此,腐蚀性较小,或可忽略不计。
液位传感器900可以指静压液位计、液位变送器以及水位传感器中的任一种传感器,是一种测量液位的压力传感器。
在一些可选的实施例中,上述步骤S104包括:获取电解液消耗量与工作时长之间的对应关系,根据对应关系确定工作时长。例如,根据电解液消耗速率确定电解液消耗量与工作时长之间的对应关系。电解液消耗量与工作时长呈正比例关系,且二者之间的比值为电解液消耗速率。电解液消耗速率可由工程师进行预先计算并设定。液位传感器900可以每隔预设时间间隔检测一次电解液消耗量。
使用上述方法,可以在电解除氧装置100的使用过程中不断地监测电解除氧装置100的工作时长,有利于提高监测过程的可靠性,以便于及时发现电解除氧装置100的状态老化问题。
在一些可选的实施例中,补液仓200的容积具有预设的固定值。例如,补液仓200的容积V=x╳y╳(1+z),其中,x为电解除氧装置100的电解液消耗速率,其单位为L/h (升/小时),y为电解除氧装置100的工作元件的最佳使用周期,其单位为h(小时),z为常数。本实施例的液位传感器900可以设置于补液仓200的底部。当补液仓200内的液位下降至预设的警戒线位置时,液位传感器900发出触发信号并传送给电解除氧系统2的控制装置800,此时控制装置800将根据上述触发信号判定电解除氧装置100的工作时长是否达到时长阈值。液位传感器900的安装位置和警戒线的位置可以高于补液仓200的供液口262设置,图3中的虚线示出液位传感器900的安装高度和警戒线的位置。在一些实施例中,z为百分数,例如可以为1%~10%范围内的任意值,给与一定的余量z,用于表征补液仓200顶部和底部的部分空间。
使用上述方法,对补液仓200的容积进行预先设计,并根据补液仓200的容积进行注水之后,液位传感器900仅需要在补液仓200的液位下降至警戒线位置时向控制装置800发送一次触发信号,即可确定工作时长已达时长阈值,当补液仓200的液位没有下降至警戒线位置时则无需发送,这可以简化数据处理过程,使之简便而有效。
在电解除氧系统2投入使用之前,先对补液仓200注水,注水至指定位置后,随着电化学反应的不断进行,补液仓200内的水分被不断消耗,当补液仓200内的液位下降至警戒线时,意味着到电解除氧装置100的关键部件的使用时长已达最佳使用周期。指定位置可以指补液仓200的最高液位处。指定位置与警戒线位置之间的体积大小根据最佳使用周期内电解除氧装置100的电解液消耗量进行确定。在提示更换关键部件的同时,也意味着补液仓200需要重新加注,一举两得。
在一些可选的实施例中,在输出提示信号的同时,控制方法还包括:切断电解除氧装置100的电解电压,使其停止进行电化学反应。切断电解除氧装置100的电解电压是指切断电解除氧装置100与其供电电源之间的电路。通过切断电解除氧装置100所在的供电回路,可切断电解除氧装置100的电解电压。例如,供电回路上可以设置有开关元件,通过控制开关元件打开或闭合,可切断或接通电解除氧装置100的电解电压。
通过在发出提示信号的同时使电解除氧装置100自动地停止进行电化学反应,能够避免因部件老化而导致的耗电或者发生安全事故,有利于提高系统运行的可靠性。
在一些进一步的实施例中,电解除氧系统2还具有复位开关,设置于电解除氧装置100所在的供电回路上,并用于在电解除氧装置100的电解电压被切断的情况下切换至断路状态。例如,复位开关可以与电解除氧装置100串联设置于供电回路中。当复位开关为断路状态时,即便闭合开关元件,供电回路仍处于断路状态,电解除氧装置100无法通电启动。
复位开关可以设置于控制装置800内,仅能由专业的工程师才可操作,以将复位开关的状态调整为短路状态。例如,工程师在完成更换和检查上述关键部件、且对补液仓200进行再次注水之后,按下复位开关,可将复位开关调整为短路状态。如此设置,可以防止电解除氧装置100在未更换部件的情况下因用户人为地接通电解电压而通电启动,从而避免发生电能浪费或导致安全事故。
在切断电解除氧装置100的电解电压之后,控制方法还包括:检测复位开关的状态,且在复位开关恢复至短路状态时接通电解除氧装置100的电解电压,使其继续进行电化学反应。例如,在复位开关恢复至短路状态且冰箱1的储物空间101具有除氧需求时,可闭合开关元件,以接通电解除氧装置100的电解电压,使电解除氧装置100利用电化学反应消耗储物空间101的氧气。
在一些进一步的实施例中,在确定复位开关恢复至短路状态之后,控制方法还可以进一步地包括:检测补液仓200的液位,以确定补液仓200内是否已注水至指定位置,若是,则执行接通电解除氧装置100的电解电压的步骤,这可以保证电化学反应的顺利进行。在检测补液仓200液位的步骤中,根据液位传感器900的检测值可确定补液仓200的液位。
图4是根据本发明一个实施例的电解除氧系统2的控制流程图。电解除氧系统2的控制流程一般性地可包括如下步骤:
步骤S402,获取液位传感器900的检测值。
步骤S404,根据检测值确定液位变化值。
步骤S406,根据液位变化值确定电解除氧装置100的电解液消耗量。
步骤S408,获取电解液消耗量与工作时长之间的对应关系。
步骤S410,根据对应关系确定工作时长。
步骤S412,判断工作时长是否达到预设的时长阈值,若是,则执行步骤S414,若否,则执行步骤S402。
步骤S414,输出提示信号,以提示用户更换电解除氧装置100的工作元件。
步骤S416,切断电解除氧装置100的电解电压,使其停止进行电化学反应。
步骤S418,检测复位开关的状态。
步骤S420,在复位开关恢复至短路状态时接通电解除氧装置100的电解电压,使其继续进行电化学反应。
图5是根据本发明另一实施例的电解除氧系统2的控制流程图。本实施例的电解除氧系统2的控制流程一般性地可包括如下步骤:
步骤S502,获取液位传感器900的触发信号。在获取到触发信号的情况下,即确定电解除氧装置100的电解液消耗量达到预设消耗阈值,且通过获取与预设消耗阈值相对应的电解除氧装置的工作时长确定电解除氧装置的实际工作时长。
步骤S504,确定电解除氧装置100的工作时长达到预设的时长阈值。
步骤S506,输出提示信号,以提示用户更换电解除氧装置100的工作元件。
步骤S508,切断电解除氧装置100的电解电压,使其停止进行电化学反应。
步骤S510,检测复位开关的状态。
步骤S512,在复位开关恢复至短路状态时接通电解除氧装置100的电解电压,使其继续进行电化学反应。
图6是根据本发明一个实施例的冰箱1的示意性结构图。
冰箱1一般性地可包括如以上任一项实施例的电解除氧系统2,电解除氧装置100与冰箱1的储物空间101气流连通,用于通过电化学反应消耗储物空间101的氧气。冰箱1还可以进一步地包括箱体,其内部限定出上述储物空间101。电解除氧系统2可以设置于箱体内,从而提高冰箱1的结构一体性。
在一些实施例中,上述电解除氧系统2的控制装置800可以集成设置于冰箱1的主控板上,这有利于简化冰箱1整体的电控结构。
图7是根据本发明一个实施例的电解除氧系统2的液位开关500的示意性结构图。
参考图7,下面将对液位开关500的具体结构进行进一步介绍。液位开关500还包括浮子510,与开关本体520固定连接或与开关本体520为一体件,且可绕轴转动地设置, 用于在反应容器内通过绕轴转动实现上浮或下沉,从而带动开关本体520移动。也就是说,开关本体520由浮子510进行“驱动”,浮子510进行移动所需的动力由其在反应容器内所受的浮力决定。
例如,浮子510的一部分通过浸于液体,从而使浮子510受到液体的浮力。当反应容器的内部空间的液位发生变化时,浮子510所受的浮力也会发生变化,从而使得浮子510所受的浮力与重力的合力发生变化。例如,当反应容器内的液位降低时,浮子510所受的浮力会减小,若浮子510所受的浮力与重力的合力方向向下,则会导致浮子510向下运动。反之,则会导致浮子510向上运动。
本实施例的浮子510并非沿直线做升降运动,而是以绕轴转动的方式上升或下降,如此设计,仅需要使浮子510与某一固定轴进行可枢转地连接即可,无需安装尺寸精度较高的导向部件,具备结构精巧、装配过程简单、装置可靠性好的优点。
由于浮子510可绕轴转动地设置,运动轨迹清晰明确,这使得本实施例的浮子510和开关本体520易于沿清晰明确的运动轨迹移动,从而提高液位开关500的可靠性,减少或避免了因浮子510自由运动而带来密封不严等问题。
液位开关500还可以进一步地包括旋转轴530和连接件540。
其中,旋转轴530固定于反应容器。例如,旋转轴530可以固定于反应容器的内部空间,且与反应容器的容器内壁固定连接。
在一些可选的实施例中,旋转轴530还可以可拆卸地固定于反应容器,这可以根据实际需要调节旋转轴530的高度,从而调节开始启动补液的容器内的液位高度。
连接件540与浮子510固定连接或与浮子510为一体件,其上形成有轴孔,以供旋转轴530插入其中且可转动地配合从而实现可转动地连接。也就是说,连接件540将旋转轴530与浮子510装配成一个有机的整体,使得浮子510可绕旋转轴530转动。
通过在连接件540上开设轴孔,并使旋转轴530与轴孔可转动地配合,即可将浮子510可绕轴转动地装配至旋转轴530,结构精妙,工序简单。
开关本体520呈杆状。连接件540上还形成有安装口,以供开关本体520的一部分插入其中从而实现固定装配。也就是说,开关本体520的一部分通过与连接件540固定装配,从而间接地与浮子510实现固定连接。例如,上述开关本体520的一部分可与连接件540的安装口通过过盈配合的方式进行装配。
分别将旋转轴530与开关本体520装配至与浮子510固定连接或与浮子510为一体件的连接件540,从而形成液位开关500,结构整体性强。
图8是根据本发明一个实施例的电解除氧系统2的过滤机构400的示意性结构图。图9是图8所示的电解除氧系统2的过滤机构400的示意性分解图。
在一些实施例中,电解除氧系统2还包括过滤机构400,其具有壳体420和过滤部440。壳体420的内部空间421与储液空间210相连通,过滤部440设置于壳体420的内部空间421,并用于使来自排气口112的气体中的特定物质成分溶解于壳体420的内部空间421,以便进入储液空间210供回收使用。也就是说,从排气口112排出的气体可以在过滤部440的作用下实现过滤,以分离出特定物质成分,并使特定物质成分滞留在壳体420的内部空间421。壳体420内形成用于盛装液体的空间,例如可以盛装含有特定成分的电解液或者水等。反应容器所排出的气体中的特定物质成分可以溶解于壳体420的内部空间421是指溶解于反应容器所盛装的液体中。
由于过滤机构400可使电解除氧装置100排出的气体中的特定物质成分溶解于壳体420的内部空间421,从而使待排放气体得到过滤,这有利于降低电解除氧装置100所排放气体的腐蚀性,降低除氧过程对环境产生的不良影响。
此外,由于过滤机构400的壳体420与储液空间210相连通,溶解于壳体420内的特定物质成分可以进入储液空间210,因此,电解除氧装置100所排放的气体中的特定物质成分能够得到回收再利用,这有利于降低除氧过程的资源消耗。
上述特定物质成分为可溶于水的物质。在一些可选的实施例中,可根据待分离的特定物质成分的物理化学性质调整壳体420内和补液仓200内所存放的液体成分。
图10是根据本发明一个实施例的电解除氧系统2的补液仓200和过滤机构400的示意性结构图。图11是图10所示的电解除氧系统2的补液仓200和过滤机构400的示意性透视图。
对于壳体420与储液空间210之间的连通方式,在一些可选的实施例中,壳体420插入储液空间210,且壳体420的底部开设有用于连通储液空间210的出液孔,以允许壳体420内的液体回流至补液仓200内。例如,补液仓200可以大致呈长方体状,壳体420可以作为内套管插入补液仓200内。关于补液仓200和壳体420的形状举例,仅仅是示意性的,本领域技术人员应当易于拓展,此处不再一一枚举。
出液孔422可作为壳体420的内部空间421与补液仓200的内部空间(即,储液空间210)之间进行物质交换的“窗口”。该出液孔422可使壳体420的内部空间421与补液仓200的内部空间的液面保持一致,且使壳体420内的液体易于扩散至补液仓200内。
由于壳体420设置于补液仓200的内部空间,且通过位于壳体420底部的出液孔422与补液仓200相连通,壳体420内的液体能够依靠自身重力向下通过出液孔422并回流至补液仓200内,这使得回收过程简易有效。
壳体420上开设有用于连通排气口112与壳体420的内部空间421的进气孔423。电解除氧系统2还可以进一步地包括输气管600,其一端连通排气口112,另一端连通进气孔423,用于将来自排气口112的气体导引至进气孔423。
利用输气管600连接排气口112与进气孔423,可以简化排气口112与进气孔423之间的输气管路的连接结构,提高装配过程的灵活性。
在一些可选的实施例中,过滤部440为导气管,自进气孔423插入壳体420的内部空间421,并延伸至壳体420内的底部区段,以将来自排气口112的气体导引至壳体420内的底部区段,使得来自排气口112的气体中的特定物质成分在上升过程中溶解于壳体420的内部空间421。本实施例的导气管可为直管,其两端均为开口,以便于通入或流出气体,结构简单,具备较优的导气效果。
使导气管延伸至壳体420内的底部区段,可使导气管将气体输送至壳体420内的液体深处,从而延长气体在壳体420内的流动路径,流出导气管的气体在上升过程中能够与壳体420内的液体充分接触,使得气体中的特定物质成分溶解于壳体420内,这使得电解除氧系统2能以精巧简单的结构获得较优的过滤净化以及回收效果。
在一些可选的实施例中,导气管的形状可以变换为竖弯钩状管,且其具有延伸至壳体420的底部区段的直管段以及自直管段的末端弯折向上延伸形成的弯管段。弯管段的末端略高于直管段的末端,用于将流经其的气体向上导引。直管段类似于伞杆,弯管段类似于连接至伞杆末端的伞柄。使弯管段从直管段的末端弯折向上延伸,这可使流出导 气管的气体被导引着向上流动,从而使得气体的运动方向更加明确。弯管段的末端略高于直管段的末端是指,弯管段的末端仍然处在壳体420的底部区段中,这不会明显缩短气体在溶解过程的流动路径。
壳体420上还开设有出气孔424,与进气孔423相互间隔地位于壳体420的顶部,用于排放流经导气管以及壳体420的内部空间且被分离出特定物质成分的气体。该出气孔424用于将过滤后的气体排至外部环境,例如可以排放至外部环境的空气中。
在一些实施例中,进气孔423和出气孔424可以分别位于壳体420的顶盖上。进气孔423和出气孔424可以分别为圆形开口。本实施例的进气孔423和出气孔424可以分别为管状通孔。导气管和进气孔423可以为一体件。进气孔423的管孔孔壁可以向下连贯地延伸并伸入壳体内,作为导气管。在一些实施例中,出气孔424处可以连接有出气导管,用于导引气体。
在一些可选的实施例中,壳体420可为一体成型。在另一些可选的实施例中,壳体420可由多个不同的部件连接而成。例如壳体420可包括具有顶部开口的第一仓体426以及封闭第一仓体426的顶部开口的第一仓盖428。且进气孔423和出气孔424相互间隔地位于第一仓盖428上。第一仓体426可以为直管状,其管径大于导气管的管径。第一仓体426的顶端为开口状,且与第一仓盖428之间密封连接。第一仓体426的底端为闭合状,且其上开设有上述出液孔422。出液孔422可以为至少一个。
进气孔423连同导气管、以及出气孔424,被第一仓体426所包覆,形成套管结构。导气管的底端高于第一仓体426的底端,防止流出导气管的气体逃逸出第一仓体426。
在一些可选的实施例中,补液仓200可为一体成型,这有利于提高补液仓200的密封效果,防止漏液。在另一些可选的实施例中,补液仓200可由多个不同的部件连接而成。例如补液仓200可包括具有顶部开口的第二仓体260以及封闭第二仓体260的顶部开口的第二仓盖280。第二仓体260可以为无盖的长方体水槽状,其容积大于第一仓体426的容积。
图12是图10所示的电解除氧系统2的补液仓200和过滤机构400的过滤回收过程的示意图。
图中箭头方向示出气体流动方向,或者液体的流动方向。由于壳体420这一“隔气管”的限制,流出导气管的气体只能以气泡的形式在第一仓体426的内部上升,直至到达位于第一仓体426上方的第一仓盖428的出气孔424并被排出,从而完成过滤过程。在一些可选的实施例中,上述螺接紧固的安装方式也可以变换为过盈配合或者采用密封圈进行密封连接等方式,只要保证密封不漏水不透气即可。
当来自从排气口112排放的气体含有可溶性的酸性物质或碱性物质时,这些特定物质成分被过滤留在了第一仓体426中,并逐渐通过第一仓体426底部的出液孔422,从而扩散到第二仓体260内的液体中。第一仓体426可作为补液仓,其内部的液体可以通过补液的形式再次输送至反应容器,从而实现再利用。
图13是图10所示的电解除氧系统2的补液仓200的第二仓盖280的示意性结构图。其中,图13(a)为立体图,图13(b)为主视图,图13(c)为俯视图。
第二仓盖280上开设有安装口282。安装口282的孔壁向上延伸形成有中空筒状的外螺纹接口288。由于该外螺纹接口288从安装口282的孔壁向上延伸形成,因此,外螺纹接口288的上边缘高于第二仓盖280的上表面,同时高于下述加液槽286的上边缘。这 可将加液过程的最高液位控制在外螺纹接口288的上边缘以下。
第一仓盖428具有位于第一仓体426上方的封闭盖板428a以及从封闭盖板428a的外周缘向下延伸形成的环状内螺纹接口428b。其中,封闭盖板428a用于遮蔽第一仓体426的顶部开口。环状内螺纹接口428b与外螺纹接口288进行螺接,使得第一仓盖428与第二仓盖280可拆卸地连接。即,环状内螺纹接口428b用于将第一仓盖428连接至第二仓盖280。
第一仓体426自封闭盖板428a的下表面向下延伸,穿过外螺纹接口288之后插入补液仓200内。
利用第一仓盖428与第二仓盖280进行螺接以封闭安装口282,可以简化过滤机构400的安装固定过程,实现一步安装到位,同时还可使第一仓体426发挥“隔气管”作用。
在一些可选的实施例中,第二仓盖280上可以开设有加液口284,其口壁向下延伸形成加液槽286。由于该加液槽286自第二仓盖280的上表面向下延伸,而外螺纹接口288自第二仓盖280的上表面向上延伸,因此,当从加液口284向第二仓体260添加液体时,即使加液过程导致第二仓体260溢液,溢液时的液面不会超过外螺纹接口288。
加液槽286的一部分槽壁倾斜向下延伸设置,使加液槽286的底部形成渐缩的开口。也就是说,加水槽为具有一定深度的倾斜通孔,这便于用户在加液时观察液位情况。倾斜向下延伸的槽壁上具有液位标识,以提示加液过程的液位。例如,该液位标识可被设计为“最高液位刻度线”,用于提示用户液体已注满。
在第二仓体260的底部区段开设供液口262,可使第二仓体260内的液体依靠重力自动流出,这有利于提高供液过程的自动化程度。
在一些可选的实施例中,第二仓盖280的边缘具有向外凸出以供施力的突起287。用户可通过抓取等动作向第二仓盖280施力,从而实现第二仓盖280与第二仓体260之间的拆装过程。
第二仓盖280与第二仓体260之间的闭合处的周缘可设置有弹性密封圈,便于通过第二仓盖280与第二仓体260之间的压合实现密封,以防第二仓体260漏水。
本发明的电解除氧系统2及其控制方法以及冰箱1,由于电解除氧系统2可以根据电解除氧装置100的电解液消耗量确定电解除氧装置100的工作时长,并根据工作时长确定是否提示更换电解除氧装置100的工作元件,因此,本发明提供了一种电解除氧装置100的状态监测手段,控制逻辑简单而巧妙,有利于降低状态监测难度。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种电解除氧系统的控制方法,所述电解除氧系统具有电解除氧装置,其用于在电解电压的作用下通过电化学反应消耗氧气,并且所述控制方法包括:
    获取所述电解除氧装置的电解液消耗量;
    根据所述电解液消耗量计算所述电解除氧装置的工作时长;
    判断所述工作时长是否达到预设的时长阈值;
    若是,则输出提示信号,以提示用户更换所述电解除氧装置的工作元件。
  2. 根据权利要求1所述的控制方法,其中,
    所述电解除氧系统具有补液仓,用于向所述电解除氧装置补充电解液;且
    获取所述电解除氧装置的电解液消耗量的步骤包括:
    获取所述补液仓的液位变化值;
    根据所述液位变化值确定所述电解除氧装置的电解液消耗量。
  3. 根据权利要求2所述的控制方法,其中,
    所述补液仓内设置有液位传感器;且
    获取所述补液仓的液位变化值的步骤包括:
    获取所述液位传感器的检测值;
    根据所述检测值确定所述液位变化值。
  4. 根据权利要求2所述的控制方法,其中,
    所述补液仓的容积V=x╳y╳(1+z),其中,x为所述电解除氧装置的电解液消耗速率,y为所述电解除氧装置的工作元件的最佳使用周期,z为常数。
  5. 根据权利要求1-4中任一项所述的控制方法,其中,
    根据所述电解液消耗量计算所述电解除氧装置的工作时长的步骤包括:
    获取所述电解液消耗量与所述工作时长之间的对应关系;
    根据所述对应关系确定所述工作时长。
  6. 根据权利要求1-4中任一项所述的控制方法,在输出提示信号的同时,所述控制方法还包括:
    切断所述电解除氧装置的电解电压,使其停止进行电化学反应。
  7. 根据权利要求6所述的控制方法,其中,
    所述电解除氧系统还具有复位开关,设置于所述电解除氧装置所在的供电回路上,并用于在所述电解除氧装置的电解电压被切断的情况下切换至断路状态;且
    在切断所述电解除氧装置的电解电压之后,所述控制方法还包括:
    检测所述复位开关的状态,且在所述复位开关恢复至短路状态时接通所述电解除氧装置的电解电压,使其继续进行电化学反应。
  8. 一种电解除氧系统,包括:
    电解除氧装置,其用于在电解电压的作用下通过电化学反应消耗氧气;以及
    控制装置,其具有处理器和存储器,所述存储器内存储有机器可执行程序,所述机器可执行程序被所述处理器执行时,用于实现根据权利要求1-7中任一项所述的控制方法。
  9. 根据权利要求8所述的电解除氧系统,还包括:
    补液仓,其上开设有供液口,所述供液口与所述电解除氧装置的补液口相连通,以向所述电解除氧装置补充电解液;以及
    液位传感器,设置于所述补液仓内,并与所述控制装置数据连接,用于检测所述补液仓内的液位变化值。
  10. 一种冰箱,包括:
    如权利要求8-9中任一项所述的电解除氧系统,所述电解除氧装置与所述冰箱的储物空间气流连通,用于通过电化学反应消耗所述储物空间的氧气。
PCT/CN2022/129570 2021-12-03 2022-11-03 电解除氧系统及其控制方法以及冰箱 WO2023098388A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111467794.9A CN116222132A (zh) 2021-12-03 2021-12-03 电解除氧系统及其控制方法以及冰箱
CN202111467794.9 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023098388A1 true WO2023098388A1 (zh) 2023-06-08

Family

ID=86568388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129570 WO2023098388A1 (zh) 2021-12-03 2022-11-03 电解除氧系统及其控制方法以及冰箱

Country Status (2)

Country Link
CN (1) CN116222132A (zh)
WO (1) WO2023098388A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101368781A (zh) * 2007-08-13 2009-02-18 河南新飞电器有限公司 一种保鲜冰箱
CN102688664A (zh) * 2011-03-24 2012-09-26 株式会社东芝 电解装置及冰箱
JP2013066453A (ja) * 2011-09-26 2013-04-18 Toshiba Corp 減酸素ユニット、減酸素制御システム及び冷蔵庫
WO2017091785A1 (en) * 2015-11-23 2017-06-01 Xergy Inc. Environment control system utilizing an electrochemical cell
CN109855378A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN109855376A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其除氧控制方法
CN112747534A (zh) * 2019-10-31 2021-05-04 青岛海尔电冰箱有限公司 冰箱
CN112747530A (zh) * 2019-10-31 2021-05-04 青岛海尔电冰箱有限公司 冰箱
CN113446802A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧模组与冰箱
CN113446795A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧模组、保鲜装置及冰箱

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101368781A (zh) * 2007-08-13 2009-02-18 河南新飞电器有限公司 一种保鲜冰箱
CN102688664A (zh) * 2011-03-24 2012-09-26 株式会社东芝 电解装置及冰箱
JP2013066453A (ja) * 2011-09-26 2013-04-18 Toshiba Corp 減酸素ユニット、減酸素制御システム及び冷蔵庫
WO2017091785A1 (en) * 2015-11-23 2017-06-01 Xergy Inc. Environment control system utilizing an electrochemical cell
CN109855378A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其储物容器
CN109855376A (zh) * 2017-11-30 2019-06-07 青岛海尔股份有限公司 冷藏冷冻装置及其除氧控制方法
CN112747534A (zh) * 2019-10-31 2021-05-04 青岛海尔电冰箱有限公司 冰箱
CN112747530A (zh) * 2019-10-31 2021-05-04 青岛海尔电冰箱有限公司 冰箱
CN113446802A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧模组与冰箱
CN113446795A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧模组、保鲜装置及冰箱

Also Published As

Publication number Publication date
CN116222132A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
US8032256B1 (en) Liquid level control systems
WO2023098388A1 (zh) 电解除氧系统及其控制方法以及冰箱
US3717421A (en) Apparatus and method for a liquid level sensor
US20160061791A1 (en) Automatic Ammonium Analyzer
CN113832498B (zh) 便于检测水电解制氢装置中电极或隔膜性能的检测装置
JP2018119885A (ja) 全リン自動測定装置
WO2023098486A1 (zh) 冰箱及其控制方法
KR102278108B1 (ko) Ict 융복합 축산 악취제거장치
JP2018158285A (ja) 電解水生成装置
WO2023098749A1 (zh) 储液装置以及具有其的电解除氧系统和冰箱
CN219991740U (zh) 一种精准计量的自动加药器
CN220671322U (zh) 一种沉浸式液体ph在线检测装置
CN117030951B (zh) 一种酸雾废气检测系统及具备该系统的净化塔
CN211785387U (zh) 一种恒温电位滴定仪
CN221056859U (zh) 一种用于环境试验室温湿度测量中的自动补水装置
CN217204471U (zh) 一种自动加液的装置
CN220508894U (zh) 一种氢氧化钠浓度在线监测装置
CN113495584B (zh) 一种水量监测控制系统及氢空一体机
CN214503246U (zh) 盐水浓度监测装置
CN116222118A (zh) 具备过滤回收功能的储液装置以及具有其的冰箱
CN219915650U (zh) 样本分析仪
JP2011210976A (ja) 基板処理装置の供給異常検知方法及びそれを用いた基板処理装置
CN211971876U (zh) 一种可控制臭氧投加量的小试验装置
CN215572188U (zh) 一种气体分析仪的炉头冷却装置
JP3411094B2 (ja) 塩水供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900193

Country of ref document: EP

Kind code of ref document: A1