WO2023098309A1 - 一种以空壳酞菁为分子探针测定锂离子的荧光分析法 - Google Patents

一种以空壳酞菁为分子探针测定锂离子的荧光分析法 Download PDF

Info

Publication number
WO2023098309A1
WO2023098309A1 PCT/CN2022/124988 CN2022124988W WO2023098309A1 WO 2023098309 A1 WO2023098309 A1 WO 2023098309A1 CN 2022124988 W CN2022124988 W CN 2022124988W WO 2023098309 A1 WO2023098309 A1 WO 2023098309A1
Authority
WO
WIPO (PCT)
Prior art keywords
phthalocyanine
empty
shell
fluorescence
analysis method
Prior art date
Application number
PCT/CN2022/124988
Other languages
English (en)
French (fr)
Inventor
李东辉
张艳
黄萍
邓雅斌
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Priority to US18/267,586 priority Critical patent/US20240328946A1/en
Publication of WO2023098309A1 publication Critical patent/WO2023098309A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06193Secundary in-situ sources, e.g. fluorescent particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Definitions

  • the invention relates to the technical field of fluorescent probes, in particular to a fluorescence analysis method using empty-shell phthalocyanine as a molecular probe to measure lithium ions.
  • Lithium is widely used in industry, medicine, chemical industry and other fields. Lithium-ion batteries have many advantages such as light weight and long life. The development of electric vehicles and other portable electronics industries has drawn much attention to the application of lithium in the battery industry [Li, L. et al. Prog Nat Sci-Mater, 2019, 29 (2): 111-118. Tan, Y.Z. et al. Small, 2017, 13(48). Guo, X. J. et al. Russ J Phys Chem., 2019, 93(3): 584-587.]. Lithium salts are widely used as thickeners for lithium-based greases to provide lubricants with suitable consistency, rheological and tribological properties [Ge, X.Y.
  • Lithium also contributes to demyelination and axon regeneration [Makoukji, J. et ai. Pro.
  • lithium detection methods include mass spectrometry [Cloete, K.J. et al. Anal Methods-Uk, 2017, 9(36): 5249-5253], high performance liquid chromatography [Schultz, C. et al. Rsc Adv, 2017, 7( 45): 27853-27862], galvanostatic intermittent titration [Prosini, P.P. et al.
  • Empty-shell phthalocyanine is a phthalocyanine compound that does not have a coordination atom in the center of the macrocycle, and it can form complexes with more than 70 elements.
  • elemental phthalocyanine compounds are mostly used as high-quality blue and green dyes. Since the end of the last century, the application of elemental phthalocyanine compounds in many high-tech fields such as molecular sensing, efficient catalysis, optical data storage, photodynamic cancer therapy and molecular conductors/semiconductors has increased rapidly [Liu, X. et al. Chem Phys Lett, 2003,379(5-6):517-525], but the development and application of empty-shell phthalocyanines as molecular probes are still rarely reported.
  • the purpose of the present invention is to provide high sensitivity, strong specificity, good stability, the measurement wavelength is in the long-wave region of visible light, the photobleaching effect is small, and the interference of background fluorescence and scattered light that may exist in actual samples can be significantly eliminated.
  • Cyanine reacts with lithium ions to emit strong red fluorescence, a fluorescence analysis method using empty-shell phthalocyanine as a molecular probe to measure lithium ions.
  • the specific steps of the present invention are as follows: firstly add alkaline organic medium to a series of reaction vessels, then add the same volume of phthalocyanine organic solution; then sequentially add lithium ion organic solution with increasing concentration; after the reaction system is constant volume, place it for reaction, scan
  • the fluorescence spectrum of the reaction system measures the relative fluorescence intensity at the fluorescence peak.
  • the basic organic medium includes a basic organic solvent or a basic mixed solvent composed of a basic organic substance and an organic solvent.
  • the basic organic solvent or basic organic substance includes but not limited to diethylamine, triethylamine, butylamine, ethanolamine, isopropylamine, pyridine, hexahydropyridine, morpholine, quinoline, benzothiazole, tetramethyl Ethylenediamine, triethylenetetramine, N,N-dimethyl-1,3 diaminopropane and other basic organic substances or basic organic solvents.
  • the organic solvent used in the organic phthalocyanine solution can be selected from dimethylformamide, dimethyl sulfoxide, sulfolane, chlorobenzene or quinoline, etc., which have relatively high solubility to empty-shell phthalocyanine.
  • the organic phthalocyanine solution is a phthalocyanine solution with a final concentration ranging from 5.0 ⁇ 10 -7 to 2.0 ⁇ 10 -6 mol/L;
  • the molecular formula of the phthalocyanine is C 32 H 18 N 8 .
  • the serial concentration of the lithium ion organic solution falls within the linear range of the corresponding working curve; the linear range of the corresponding working curve refers to the working curve range corresponding to the concentration of the phthalocyanine solution used for determining the lithium ion concentration.
  • the time for the standing reaction is not less than 50 minutes
  • the relative fluorescence intensity at the measuring fluorescence peak can be measured in the wavelength range of 660-710nm.
  • the reactions involved in the present invention are carried out in organic medium.
  • an organic medium the fluorescence of phthalocyanine without a coordination atom in the center (that is, an empty shell phthalocyanine) is very weak, and in the presence of lithium ions, the two undergo a coordination reaction to form lithium phthalocyanine.
  • the present invention has the following outstanding advantages:
  • the detection sensitivity is extremely high. Based on the lithium ion detection method established by the present invention, its detection limit is as low as 5.0 ⁇ 10 -10 mol/L, or 4.25 ⁇ 10 -9 g/L, or 4.25 ⁇ 10 -12 g/mL, which is the detection limit of the method Reached the ppt level, better than the methods reported in the literature.
  • a lithium ion solution of 5.0 ⁇ 10 -7 mol/L can present visible red fluorescence, which is very beneficial for on-site analysis.
  • the measurement wavelength is greater than 670nm, which is located in the long-wavelength region of visible light. Since the scattered light is proportional to the fourth power of the wavelength, it can effectively avoid the interference of scattered light during measurement; since the fluorescence emission of natural and synthetic fluorescent substances is very small in the detection wavelength region, it can avoid the interference of background fluorescence interference.
  • Figure 1 is the excitation spectrum and fluorescence spectrum of the reaction system in the presence or absence of lithium ions
  • Figure 2 is a comparison of the fluorescence response of empty-shell phthalocyanines to lithium ions and common metal ions;
  • Fig. 3 is the stability curve of measuring system
  • Figure 4 is a standard working curve for the determination of lithium ions.
  • the principle of the invention is that in an organic medium, especially an alkaline organic medium, lithium ions can react with empty-shell phthalocyanine to emit strong red fluorescence, and the generation of fluorescence has the remarkable characteristics of ultrasensitivity and high specificity.
  • the added phthalocyanine solution has a final concentration ranging from 5.0 ⁇ 10 -7 to 2.0 ⁇ 10 -6 mol/L. After the reaction system is at constant volume, the reaction time is not less than 60 minutes, and then the relative fluorescence intensity is measured in the wavelength range of 660-710nm.
  • Described phthalocyanine is:
  • Figure 1 is the excitation spectrum and fluorescence spectrum of the reaction system in the presence and absence of lithium ions.
  • the concentration of hollow phthalocyanine is 1.0 ⁇ 10 -6 mol/L
  • the concentration of lithium ions (10 ⁇ 10 -8 mol/L) are (a)0, (b)5, (c)10 , (d)20, (e)30, (f)40, (g)50, (h)60.
  • Figure 2 is a comparison of the fluorescence response of empty-shell phthalocyanines to lithium ions and common metal ions.
  • Figure 3 is the stability curve of the assay system
  • Fig. 4 is the standard working curve of measuring lithium ion.
  • Table 2 is the measurement results of actual samples.
  • the invention is applied to the determination of lithium ion content in lithium carbonate tablets and lithium carbonate sustained-release tablets, which are commonly used drugs for treating mania. Since lithium carbonate, the main drug in lithium carbonate tablets or lithium carbonate sustained-release tablets, is not soluble in DMF or the mixed solvent used, and the solid drug contains other insoluble substances, it is necessary to pre-treat the sample.
  • the specific method is: take 20 lithium carbonate tablets or lithium carbonate sustained-release tablets, weigh the total mass, and then fully grind them in a mortar. Weigh 0.5000g of finely ground powder into a beaker, add 40.0mL of 1.0mol/L hydrochloric acid to fully react, and filter to remove insoluble matter.
  • the filtrate was heated at 200°C, and the hydrochloric acid was evaporated to dryness to obtain a solid.
  • the solid was dissolved in DMF and the volume was adjusted to 25.0 mL, and then 5.0 ⁇ L of the solution was drawn to dilute to 25.0 mL.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种以空壳酞菁为分子探针测定锂离子的荧光分析法,具体步骤为:在一系列反应容器中先加入碱性有机介质,再加入相同体积酞菁有机溶液;然后依次加入浓度递增的锂离子有机溶液;反应体系定容后,放置反应,扫描反应体系的荧光光谱,测量荧光峰处的相对荧光强度。测定方法的灵敏度高,特异性强,线性响应佳,稳定性好,实用性强;测定波长处于可见光的长波区域,充分发挥长波荧光探针的优势,测定体系光漂白作用小,有效消除样品中可能存在的背景荧光和散射光的干扰。

Description

一种以空壳酞菁为分子探针测定锂离子的荧光分析法
本申请要求于2021年11月30日提交中国专利局、申请号为CN202111437631.6、发明名称为“一种以空壳酞菁为分子探针测定锂离子的荧光分析法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及荧光探针技术领域,尤其是涉及一种以空壳酞菁为分子探针测定锂离子的荧光分析法。
背景技术
锂在工业、医药、化工等领域有着广泛的应用。锂离子电池有着质量轻、寿命长等诸多优点,电动汽车以及其他便携式电子行业的发展,使锂在电池行业的应用备受关注[Li,L.et al.Prog Nat Sci-Mater,2019,29(2):111-118.Tan,Y.Z.et al.Small,2017,13(48).Guo,X.J.et al.Russ J Phys Chem.,2019,93(3):584-587.]。锂盐被广泛用作锂基润滑脂的增稠剂,使润滑剂具有合适的稠度、流变和摩擦学性能[Ge,X.Y.et al.Tribology,2015,35(3):254-258.Paszkowski,M.et al.I.Tribol Lett,2014,56(1):107-117.],广泛地应用于飞机、火车、汽车、坦克。在医学领域,锂对神经损伤具有保护作用,因而常用于治疗神经退行性疾病如帕金森氏症、阿尔茨海默氏症和亨廷顿氏病以及肌萎缩侧索硬化症[Basselin,M.et al.Neuropsychopharmacol,2006,31(8):1659-1674]。锂还有助于再脱髓鞘和轴突再生[Makoukji,J.et ai.Pro.Natl Acad Sci USA,2012,109(10):3973-3978],广泛用于治疗双向情感障碍疾病,是衡量其他治疗双相情感障碍药物的标准[Young,A.H.et al,Brit J Psychiat,2007,191:474-476]。
常用的锂检测法有质谱[Cloete,K.J.et al.Anal Methods-Uk,2017,9(36):5249-5253]、高效液相色谱[Schultz,C.et al.Rsc Adv,2017,7(45):27853-27862]、恒电流间歇滴定[Prosini,P.P.et al.Solid State Ionics,2002,148(1-2):45-51]、电感耦合等离子体质谱法[Moriguti,T.Geostand Geoanal Res,2004,28(3):371-382]、等离子体原子发射光谱[Banno,M.et al.Anal Chim Acta,2009,634(2):153-157]、气相色谱[Wang,Z.J Anal Atom Spectrom,2013,28(2):234-240]和分光光度法[Albero,M.I.et al.Sensor Actuat B-Chem,2010,145(1):133-138]等。这些方法通常需要使用大型仪器或操作步骤较多。因此,开发简便、灵敏、选择性好的锂 离子定量检测法有着重要的现实意义。
空壳酞菁是大环中心不具有配位原子的酞菁化合物,它可与70多种元素形成配合物。传统上,元素酞菁化合物多用做高品质蓝、绿染料。上世纪末以来,元素酞菁化合物在分子传感、高效催化、光学数据存储、光动力癌症治疗和分子导体/半导体等诸多高科技领域的应用迅速增加[Liu,X.et al.Chem Phys Lett,2003,379(5-6):517-525],但空壳酞菁作为分子探针的开发与应用仍鲜见报道。
发明内容
本发明的目的在于提供灵敏度高、特异性强、稳定性好,测定波长处于可见光的长波区域,光漂白作用小,可显著消除实际样品中可能存在的背景荧光和散射光干扰,基于空壳酞菁与锂离子反应发出强红色荧光的一种以空壳酞菁为分子探针测定锂离子的荧光分析法。
本发明的具体步骤为:在一系列反应容器中先加入碱性有机介质,再加入相同体积酞菁有机溶液;然后依次加入浓度递增的锂离子有机溶液;反应体系定容后,放置反应,扫描反应体系的荧光光谱,测量荧光峰处的相对荧光强度。
所述反应容器不少于3个。
所述碱性有机介质包括碱性有机溶剂或碱性有机物质与有机溶剂组成的碱性混合溶剂。
所述碱性有机溶剂或碱性有机物质包括但不限于二乙胺、三乙胺、丁胺、乙醇胺、异丙胺、吡啶、六氢吡啶、吗啡啉、喹啉、苯并噻唑、四甲基乙二胺、三乙烯四胺、N,N-二甲基-1,3二氨基丙烷等碱性有机物质或碱性有机溶剂。
所述酞菁有机溶液所用的有机溶剂可选自二甲基甲酰胺、二甲亚砜、环丁砜、氯苯或喹啉等对空壳酞菁具有较大溶解度的有机溶剂。
所述酞菁有机溶液为终浓度介于5.0×10 -7~2.0×10 -6mol/L所相应量的酞菁溶液;
所述酞菁的分子式为C 32H 18N 8
酞菁的结构式如下:
Figure PCTCN2022124988-appb-000001
所述锂离子有机溶液的系列浓度落在相应的工作曲线线性范围内;所述相应工作曲线线性范围是指对应于所用酞菁溶液浓度所决定的测定锂离子浓度的工作曲线范围。
所述放置反应的时间不少于50min;
所述测量荧光峰处的相对荧光强度可在660~710nm的波长范围内测定相对荧光强度。
本发明所涉及的反应是在有机介质中进行。有机介质中,中心没有配位原子的酞菁(即空壳酞菁)的荧光十分微弱,而在锂离子的存在下,二者发生配位反应,形成酞菁锂。
我们发现,这一产物的有机溶液在紫外光或605nm以上波长光线的激发下,发出很强的红色荧光,其最大发射波长在673nm左右。据此,建立以空壳酞菁为荧光探针超灵敏、高特异性测定锂离子的荧光分析新方法。
与现有技术相比,本发明具有以下突出的优点:
1)以空壳酞菁为荧光探针超灵敏、高特异性、高特异性测定锂离子的荧光分析法未见报道,是首次提出。
2)检测灵敏度极高。依托本发明所建立的锂离子检测法,其检测限低至5.0×10 -10mol/L,或4.25×10 -9g/L,或4.25×10 -12g/mL,即方法的检测限达到ppt级,优于文献报道的方法。
3)特异性强。常见19种金属离子无干扰。
4)线性响应优异。标准工作曲线的相关系数接近四个9。
5)操作简便,且可实现目视化观测。5.0×10 -7mol/L的锂离子溶液即可呈现可视的红色荧光,十分有利于现场分析。
6)测定波长大于670nm,位于可见光的长波区域。由于散射光与波长的四 次方成正比,因而可有效避开测定时散射光的干扰;由于天然和人工合成的荧光物质的荧光发射在检测波长区域者极少,因而可以避开背景荧光的干扰。
附图说明
图1是锂离子存在与不存在下反应体系的激发光谱与荧光光谱;
图2是空壳酞菁对锂离子与常见金属离子荧光响应比较;
图3是测定体系的稳定性曲线;
图4是测定锂离子的标准工作曲线。
具体实施方式
本发明的原理是在有机介质特别是碱性有机介质中,锂离子可与空壳酞菁反应发出强红色荧光,且荧光的产生具有超灵敏和高特异性的显著特征。以下实施例将结合附图对本发明作进一步的说明。
本发明实施例包括以下步骤:
1)在反应容器中加入碱性有机溶剂或有机溶剂与碱性有机物质组成的混合溶剂;
2)在各反应容器中加入相同体积酞菁有机溶液;
3)依次加入浓度递增的锂离子有机溶液;
4)放置,扫描反应体系的荧光光谱,测量荧光峰处的相对荧光强度。
在一系列反应容器中依次加入浓度递增的锂离子有机溶液,所用反应容器不少于3个;锂离子溶液的系列浓度落在相应的工作曲线线性范围内;所谓的相应工作曲线线性范围是指对应于所用酞菁溶液浓度所决定的测定锂离子浓度的工作曲线范围。
所加入酞菁溶液为终浓度介于5.0×10 -7~2.0×10 -6mol/L。反应体系定容后,放置反应的时间不少于60min,而后在660~710nm的波长范围内测定相对荧光强度。
所述酞菁为:
分子式:C 32H 18N 8
结构式:
Figure PCTCN2022124988-appb-000002
以下是优化条件下实验操作示例。
在5.0mL的塑料离心管中依次加入45.0μL浓度为1.0×10 -6mol/L的酞菁DMF溶液和一定体积的1.0×10 -4mol/L氯化锂DMF溶液溶液,及一定体积的混合溶剂(三乙烯四胺-无水乙醇混合溶剂,v/v=1:1),使总体积为3.0mL,混匀,室温放置1h后在荧光分光光度计上扫描发射光谱,测量673nm处的荧光强度。各组分用量见表1。
表1反应体系各组分用量参数
Figure PCTCN2022124988-appb-000003
以下结合图、表对本发明作详细说明。
1)反应体系的激发光谱与荧光光谱
图1为锂离子存在与不存在下反应体系的激发光谱与荧光光谱。
实验发现,在合适有机介质中(如示例中的三乙烯四胺-无水乙醇混合溶剂),荧光极弱的空心酞菁在锂离子的存在下发出强烈的荧光,且体系的荧光强度随着锂离子浓度的增加而增加,荧光峰出现在673nm。
在图1中,空心酞菁的浓度为1.0×10 -6mol/L,锂离子的浓度(10×10 -8mol/L)分别为(a)0,(b)5,(c)10,(d)20,(e)30,(f)40,(g)50,(h)60。
2)图2为空壳酞菁对锂离子与常见金属离子荧光响应之比较。
考察了空壳酞菁对常见金属离子即Na +,K +,Mg 2+,Al 3+,Ca 2+,Ba 2+,Mn 2+,Fe 2+,Fe 3+,Ni 2+,Co 2+,Cd 2+,Cu 2+,Ag +,Hg +,Hg 2+,Pb 2+,Zn 2+的荧光响应行为。结果显示,空壳酞菁对上述金属离子几乎没有荧光响应,而在锂离子的存在下,反应体系的荧光急剧增加,表明空壳酞菁对锂离子具有高特异性响应。图2中所有金属离子的浓度均为1.0×10 -6mol/L。
3)图3为测定体系的稳定性曲线
实验考察显示,体系反应60min后即可达到稳定,因此在实际工作中,选择反应60min再进行测定,或光谱扫描。
4)图4为测定锂离子的标准工作曲线。
在优化的实验条件下,建立测定锂离子的标准工作曲线,该曲线的线性回归方程为y=14.2x+53.2,线性相关系数r=0.9995。响应区间为1.0×10 -8mol/L~6.0×10 -7mol/L,方法检测限为5.0×10 -10mol/L。
5)表2是实际样品的测定结果。
将本发明应用于治疗躁狂症的常用药物碳酸锂片和碳酸锂缓释片中锂离子含量的测定。由于碳酸锂片或碳酸锂缓释片中的主药碳酸锂并不溶于DMF或所用的混合溶剂中,且固态药品中含有其他不溶物质,所以需要对样品进行前处理。具体方法为:取20片碳酸锂片或碳酸锂缓释片,称其总质量,尔后在研钵中充分研磨。称取0.5000g研细的粉末于烧杯中,加入1.0mol/L的盐酸40.0mL进行充分反应,过滤除去不溶物。滤液在200℃条件下加热,将盐酸挥发干后得到固体。将此固体用DMF溶解并定容至25.0mL,再吸取5.0μL溶液稀释至25.0mL。
表2实际样品测定结果
Figure PCTCN2022124988-appb-000004
吸取经过前处理的样品溶液15.0μL,按步骤进行实验操作和检测,依测得 的结果计算药片中碳酸锂的含量,并将结果与标示量进行比较,结果列于表2。结果显示本发明的测定结果具有很高的准确性。
上述实施例仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (14)

  1. 一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,其具体步骤为:
    在一系列反应容器中先加入碱性有机介质,再在各反应容器中加入相同体积空壳酞菁有机溶液;然后依次加入浓度递增的锂离子有机溶液;反应体系定容后,放置反应,扫描反应体系的荧光光谱,测量荧光峰处的相对荧光强度。
  2. 如权利要求1所述一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,所述反应容器不少于3个。
  3. 如权利要求1所述一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,所述碱性有机介质包括碱性有机溶剂或碱性有机物质与有机溶剂组成的碱性混合溶剂。
  4. 如权利要求3所述一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,所述碱性有机溶剂或所述碱性混合溶剂中的碱性有机物质包括但不限于二乙胺、三乙胺、丁胺、乙醇胺、异丙胺、吡啶、六氢吡啶、吗啡啉、喹啉、苯并噻唑、四甲基乙二胺、三乙烯四胺或N,N-二甲基-1,3二氨基丙烷。
  5. 如权利要求4所述一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,当所述碱性混合溶剂中的碱性有机物质为三乙烯四胺时,所述碱性混合溶剂中的有机溶剂为无水乙醇。
  6. 如权利要求5所述一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,所述三乙烯四胺和无水乙醇的体积比为1:1。
  7. 如权利要求1所述一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,所述空壳酞菁有机溶液所用的有机溶剂为对空壳酞菁具有较大溶解度的有机溶剂,选自二甲基甲酰胺、二甲亚砜、环丁砜、氯苯、喹啉。
  8. 如权利要求1所述一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,所述空壳酞菁有机溶液为终浓度介于5.0×10 -7~2.0×10 -6mol/L所相应量的酞菁有机溶液;所述空壳酞菁有机溶液中的酞菁的分子式为C 32H 18N 8
  9. 如权利要求1所述一种以空壳酞菁为分子探针测定锂离子的荧光分析 法,其特征在于,所述锂离子有机溶液的系列浓度落在相应的工作曲线线性范围内;所述相应的工作曲线线性范围是指对应于所述空壳酞菁有机溶液的浓度所决定的测定锂离子浓度的工作曲线范围。
  10. 如权利要求9所述一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,所述工作曲线的线性回归方程为y=14.2x+53.2,线性相关系数r=0.9995;所述x为锂离子浓度,y为相对荧光强度;
    响应区间为1.0×10 -8mol/L~6.0×10 -7mol/L。
  11. 如权利要求1所述一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,所述放置反应的时间不少于50min。
  12. 如权利要求1所述一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,所述测量荧光峰处的相对荧光强度可在660~710nm的波长范围内测定相对荧光强度。
  13. 如权利要求1~12任一项所述一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,将样品溶液按步骤进行实验操作和检测,所述步骤为:
    1)在反应容器中加入碱性有机溶剂或碱性有机物质与有机溶剂组成的碱性混合溶剂;
    2)在所述反应容器中加入空壳酞菁有机溶液;
    3)在所述反应容器中加入样品溶液;
    4)放置,扫描反应体系的荧光光谱,测量荧光峰处的相对荧光强度;
    依测得的结果计算样品中的锂离子含量。
  14. 如权利要求1所述一种以空壳酞菁为分子探针测定锂离子的荧光分析法,其特征在于,所述荧光分析法的检测限为5.0×10 -10mol/L、4.25×10 -9g/L或4.25×10 -12g/mL。
PCT/CN2022/124988 2021-11-30 2022-10-13 一种以空壳酞菁为分子探针测定锂离子的荧光分析法 WO2023098309A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/267,586 US20240328946A1 (en) 2021-11-30 2022-10-13 FLUORESCENCE ANALYSIS METHOD FOR LITHIUM ION DETERMINATION USING FREE-BASE PHTHALOCYANINE (FBPc) AS MOLECULAR PROBE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111437631.6 2021-11-30
CN202111437631.6A CN114136943B (zh) 2021-11-30 2021-11-30 一种以空壳酞菁为分子探针测定锂离子的荧光分析法

Publications (1)

Publication Number Publication Date
WO2023098309A1 true WO2023098309A1 (zh) 2023-06-08

Family

ID=80389391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124988 WO2023098309A1 (zh) 2021-11-30 2022-10-13 一种以空壳酞菁为分子探针测定锂离子的荧光分析法

Country Status (3)

Country Link
US (1) US20240328946A1 (zh)
CN (1) CN114136943B (zh)
WO (1) WO2023098309A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136943B (zh) * 2021-11-30 2024-01-05 厦门大学 一种以空壳酞菁为分子探针测定锂离子的荧光分析法
CN115372328B (zh) * 2022-08-25 2023-10-24 迈卡斯生物科技(苏州)有限公司 一种锂离子测量方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367173A (zh) * 2001-01-21 2002-09-04 中国科学院感光化学研究所 金属酞菁化合物及其制法和用途
US6476219B1 (en) * 2002-02-08 2002-11-05 Xerox Corporation Methods for preparing phthalocyanine compositions
CN101421236A (zh) * 2006-03-15 2009-04-29 巴斯夫欧洲公司 芳基-或烷氧基取代的酞菁作为液体的标记物的用途
CN112409365A (zh) * 2020-12-09 2021-02-26 福州大学 3-磺酸基丙烷巯基修饰酞菁及其制备方法与在制药领域的应用
JP2021138938A (ja) * 2020-02-28 2021-09-16 東洋インキScホールディングス株式会社 蛍光標識剤、及びフタロシアニン
CN114136943A (zh) * 2021-11-30 2022-03-04 厦门大学 一种以空壳酞菁为分子探针测定锂离子的荧光分析法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494793A (en) * 1986-12-15 1996-02-27 British Technology Group Usa Inc. Monomeric phthalocyanine reagents
CN102735662B (zh) * 2012-07-19 2014-06-18 贵州大学 一种锌离子的荧光发射光谱分析法
KR101809829B1 (ko) * 2016-04-12 2017-12-15 부경대학교 산학협력단 sIPN 구조가 코어에 형성된 형광 이미징용 표지나노입자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1367173A (zh) * 2001-01-21 2002-09-04 中国科学院感光化学研究所 金属酞菁化合物及其制法和用途
US6476219B1 (en) * 2002-02-08 2002-11-05 Xerox Corporation Methods for preparing phthalocyanine compositions
CN101421236A (zh) * 2006-03-15 2009-04-29 巴斯夫欧洲公司 芳基-或烷氧基取代的酞菁作为液体的标记物的用途
JP2021138938A (ja) * 2020-02-28 2021-09-16 東洋インキScホールディングス株式会社 蛍光標識剤、及びフタロシアニン
CN112409365A (zh) * 2020-12-09 2021-02-26 福州大学 3-磺酸基丙烷巯基修饰酞菁及其制备方法与在制药领域的应用
CN114136943A (zh) * 2021-11-30 2022-03-04 厦门大学 一种以空壳酞菁为分子探针测定锂离子的荧光分析法

Also Published As

Publication number Publication date
US20240328946A1 (en) 2024-10-03
CN114136943A (zh) 2022-03-04
CN114136943B (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
WO2023098309A1 (zh) 一种以空壳酞菁为分子探针测定锂离子的荧光分析法
Fu et al. A novel fluorescent-colorimetric probe for Al 3+ and Zn 2+ ion detection with different response and applications in F− detection and cell imaging
Hosseini et al. Fluorescence “turn-on” chemosensor for the selective detection of zinc ion based on Schiff-base derivative
Zhang et al. 1, 3-Dithiole-2-thione derivatives featuring an anthracene unit: new selective chemodosimeters for Hg (II) ion
Guha et al. Thiophene anchored coumarin derivative as a turn-on fluorescent probe for Cr3+: cell imaging and speciation studies
Jiang et al. An ultra-sensitive and ratiometric fluorescent probe based on the DTBET process for Hg 2+ detection and imaging applications
Firooz et al. Development of a highly sensitive and selective optical sensor for determination of ultra-trace amount of silver ions
Chen et al. An aggregation induced emission enhancement-based ratiometric fluorescent sensor for detecting trace uranyl ion (UO22+) and the application in living cells imaging
CN108949171B (zh) 一种稀土碳纳米粒子及其制备方法和基于荧光色度测定pH值的应用
JP2007024634A (ja) ヒ素・リン・シリカの高感度吸光検出法
Zhao et al. An intelligent smartphone-test strip detection platform for rapid and on-site sensing of benzoyl peroxide in flour samples
Liu et al. A new Schiff base derived from 5-(thiophene-2-yl) oxazole as “off-on-off” fluorescence sensor for monitoring indium and ferric ions sequentially and its application
Dai et al. Rapid self-calibrating fluorescent detection of copper (II) ions in wine with high accuracy
Guo et al. A new aggregation-induced emission-based fluorescent probe for effective detection of Hg2+ in water, tea and seafood and its cell imaging
Quartarolli et al. Overcoming lithium analysis difficulties with a simple colorimetric/spectrophotometric method
CN108169225A (zh) 一种cod快速分析仪的分析试剂及其配制方法
CN114113018B (zh) 一种以四硝基酞菁为试剂测定锌离子的荧光检测法
Wang et al. 1, 4-Dihydroxyanthraquinone–Cu 2+ ensemble probe for selective detection of sulfide anion in aqueous solution
Qiao et al. Study on interactions of aminoglycoside antibiotics with calf thymus DNA and determination of calf thymus DNA via the resonance Rayleigh scattering technique
CN112557355B (zh) 一种稀土荧光探针检测生物体液中铋离子的方法
Zhang et al. A post-synthetically modified Eu@ Zn-MOF for ratiometric fluorescence detection of tetracycline in tap water
Makki et al. Highly sensitive and selective colorimetric sensor for iron (II) ion detection based on 4-amino-antipyrine derivative
CN109632783B (zh) 吲哚氯化物的新应用
Sharma et al. Diphenylether based derivatives as Fe (III) chemosensors: spectrofluorimetry, electrochemical and theoretical studies
CN106872427A (zh) 一种碳量子点靶向检测溶酶体中h2s的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE