WO2023098260A1 - 雾化芯、雾化器及气溶胶发生装置 - Google Patents

雾化芯、雾化器及气溶胶发生装置 Download PDF

Info

Publication number
WO2023098260A1
WO2023098260A1 PCT/CN2022/121673 CN2022121673W WO2023098260A1 WO 2023098260 A1 WO2023098260 A1 WO 2023098260A1 CN 2022121673 W CN2022121673 W CN 2022121673W WO 2023098260 A1 WO2023098260 A1 WO 2023098260A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating film
aerosol
atomizing
porous body
film
Prior art date
Application number
PCT/CN2022/121673
Other languages
English (en)
French (fr)
Inventor
邱伟华
Original Assignee
常州市派腾电子技术服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202123041955.6U external-priority patent/CN216701671U/zh
Priority claimed from CN202111475166.5A external-priority patent/CN116349939A/zh
Application filed by 常州市派腾电子技术服务有限公司 filed Critical 常州市派腾电子技术服务有限公司
Publication of WO2023098260A1 publication Critical patent/WO2023098260A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring

Definitions

  • the invention belongs to the technical field of smoking simulation, and in particular relates to an atomizing core, an atomizer and an aerosol generating device.
  • the coated ceramic atomizing core used in the aerosol generating device is generally coated with a heating film on the atomizing surface of the porous ceramic. Since the film layer material of the heating film will be filled in the micropores on the atomizing surface of the porous ceramic, the pore size of the pores on the atomizing surface of the porous ceramic will be greatly reduced, thereby reducing the rate at which the aerosol-forming substrate is transmitted to the heating film, making the The aerosol-forming substrate cannot be quickly and stably transported to the heating film, which may easily cause insufficient liquid supply on the heating film and dry-fired carbon deposits, which not only affects the stability of the smoke generated by the atomization of the coated ceramic atomizing core, but also reduces the coating The atomization effect of the ceramic atomizing core.
  • one of the purposes of the embodiments of the present invention is to provide a heating film on the atomization surface of the porous body and a through structure on the heat generation film to improve the atomization surface.
  • the liquid conduction rate of the micropores on the top avoids the atomization core of dry burning carbon deposits caused by insufficient liquid supply in the heating film.
  • an atomizing core comprising:
  • a porous body the surface of which is formed with an atomizing surface for heating and atomizing the aerosol-forming substrate, the porous body has micropores;
  • a heating film used to heat and atomize the aerosol-forming substrate after being powered on, the heating film is arranged on the atomizing surface, and the aerosol-forming substrate can be transported to the heating film through the micropores;
  • the heating film is provided with a through structure
  • the atomization surface has a first area corresponding to the position of the through structure, and a second area covered by the heating film, the first area
  • the pore diameter of the micropores is larger than the pore diameter of the second region, so that the rate at which the micropores of the first region transmit the aerosol-forming substrate to the heat generating film is greater than that of the micropores of the second region to the heat generating film.
  • the rate at which a membrane transports an aerosol-forming matrix is provided with a through structure
  • the atomization surface has a first area corresponding to the position of the through structure, and a second area covered by the heating film, the first area
  • the pore diameter of the micropores is larger than the pore diameter of the second region, so that the rate at which the micropores of the first region transmit the aerosol-forming substrate to the heat generating film is greater than that of the micropores of the second region to the heat generating film.
  • the through structure is a hole-like structure penetratingly arranged along the thickness direction of the heating film.
  • the hole-like structure is a circular through hole, and the diameter of the circular through hole is 0.2-0.8 mm.
  • the porous structure is a strip-shaped hole, and the width of the strip-shaped hole is 0.2-0.8 mm.
  • the number of the through-structures is set to be multiple, and the plurality of the through-structures are distributed on the heating film at intervals, and the distance between two adjacent through-structures is equal.
  • the atomizing surface is also provided with a blind groove structure for storing aerosol-forming substrates, and the setting position of the blind groove structure corresponds to the setting position of the through structure, so that the absorption of the porous body
  • the minimum distance from the liquid surface to the bottom of the blind tank structure is smaller than the minimum distance from the liquid-absorbing surface to the atomizing surface.
  • the depth of the blind groove structure is 1%-30% of the height of the porous body.
  • the heating film is formed on the atomizing surface through a thin film deposition process, and the thickness of the heating film is 200-1000 nm.
  • the second object of the embodiments of the present invention is to provide an atomizer having an atomizing core provided by any of the above solutions.
  • the technical solution adopted by the present invention is: to provide an atomizer, including the atomizing core provided by any one of the above solutions.
  • the third object of the embodiments of the present invention is to provide an aerosol generating device having an atomizing core or an atomizer provided by any of the above solutions.
  • the technical solution adopted by the present invention is to provide an aerosol generating device, including the atomizing core or the atomizer provided by any of the above solutions.
  • a heating film is arranged on the atomizing surface of the porous body, and a through-through structure is arranged on the heating film. There is a first area corresponding to the position of the through structure, and a second area covered by the heating film.
  • the diameter of the micropores located in the first area on the atomizing surface is larger than the aperture of the micropores located in the second area on the atomizing surface , so that the rate at which the micropores in the first region transmit the aerosol-forming substrate to the heating film is greater than the rate at which the micropores in the second region transmit the aerosol-forming substrate to the heating film, thereby increasing the atomization of the porous body and the liquid supply to the heating film.
  • Speed so that the aerosol-forming substrate stored in the porous body can be quickly and stably transmitted to the heating film, preventing dry burning of the heating film due to insufficient liquid supply and carbon deposition.
  • Fig. 1 is a schematic diagram of a three-dimensional structure of an atomizing core provided by an embodiment of the present invention
  • Fig. 2 is a partially enlarged structural schematic diagram of part A in Fig. 1;
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a porous body provided by an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a three-dimensional structure of an atomizing core provided by another embodiment of the present invention.
  • Fig. 5 is a partially enlarged structural schematic diagram of part B in Fig. 4;
  • FIG. 6 is a schematic diagram of a three-dimensional structure of a porous body provided by another embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the three-dimensional structure of the atomizing core provided by another embodiment of the present invention.
  • Fig. 8 is a partially enlarged structural schematic diagram of part C in Fig. 7;
  • Fig. 9 is a schematic diagram of a three-dimensional structure of an atomizing core provided by another embodiment of the present invention.
  • FIG. 10 is a partially enlarged structural schematic diagram of part D in FIG. 9 .
  • the atomizing core provided by the embodiment of the present invention is used in an atomizer, which can generate heat under the electric drive of the power supply device of the aerosol generating device, and heat and atomize the aerosol-forming substrate in the liquid storage chamber of the atomizer to form smoke , for the user to smoke to achieve the effect of simulating smoking.
  • the atomizing core provided by Embodiment 1 of the present invention includes a porous body 1 and a heating film 2 , and the surface of the porous body 1 is formed with an atomizing surface 11 for heating and atomizing an aerosol-forming substrate.
  • the outer surface of the porous body 1 is formed with an atomizing surface 11 .
  • the aforementioned at least part of the outer surface refers to one side or multiple sides of the porous body 1 .
  • the at least part of the outer surface mentioned above may also refer to a part of the outer surface on one side of the porous body 1 , that is, the case where the area of the atomizing surface 11 is smaller than the area of the outer surface of the side.
  • the interior of the porous body 1 and/or the surface of the porous body 1 have micropores with capillary adsorption, the porous body 1 can absorb and store aerosols through the micropores to form a matrix, and the aerosol-forming matrix absorbed and stored by the porous body 1 can be formed through micropores.
  • the pores are continuously transported to the atomizing face 11 .
  • the above-mentioned porous body 1 can be but not limited to porous ceramics or porous glass. When the porous body 1 is porous ceramics, the porosity of the porous ceramics ranges from 30% to 70%, and the pore size of the micropores is 5-120 ⁇ m.
  • the heating film 2 is arranged on the atomizing surface 11.
  • the aerosol-forming substrate absorbed and stored by the porous body 1 can be transported to the atomizing surface 11 through micropores, and then from the atomizing surface 11.
  • the micropores are transmitted to the heating film 2, and the heating film 2 can heat the aerosol-forming substrate after being energized, and atomize the atomized aerosol-forming substrate to form smoke that can be inhaled by the user.
  • the heating film 2 is formed on the atomizing surface 11 of the porous body 1 through a thin film deposition process, and the thickness of the heating film 2 is 200-1000 nm.
  • the above thin film deposition processes include but are not limited to physical vapor deposition processes such as thermal evaporation deposition process, plasma sputtering deposition process, magnetron sputtering process deposition, and chemical vapor deposition process.
  • the heating film 2 can be at least one of metal films such as copper film, iron film, nickel film, chromium film, gold film, silver film, platinum film, palladium film, molybdenum film, and the heating film 2 can also be gold and silver.
  • the film material of the heating film 2 may be partially filled in the porous body 1.
  • the micropores on the atomizing surface 11 will greatly reduce the pore diameter of the micropores on the porous ceramic atomizing surface 11, thereby reducing the rate at which the aerosol-forming substrate is transmitted to the heating film 2, so that the aerosol-forming substrate cannot be replenished in time.
  • the heating film 2 it is easy to cause insufficient liquid supply to the heating film 2 and cause carbon deposition due to dry burning.
  • a through structure 3 is provided on the heating film 2, which can speed up the rate at which the atomization surface 11 of the porous body 1 transmits the aerosol to the heating film 2 to form a matrix, and overcomes the dry burning of the heating film 2 due to insufficient liquid supply. Defects that affect the atomization effect due to carbon deposition.
  • the atomizing surface 11 has a first area 111 corresponding to the position of the penetrating structure 3 and a second area 112 covered by the heating film 2 . That is to say, please further refer to FIG. 3 and FIG.
  • the area on the atomizing surface 11 not covered by the heating film 2 is the first area 111
  • the area on the atomizing surface 11 covered by the heating film 2 is the second area 112
  • the combination of the first area 111 and the second area 112 constitutes the atomization area of the atomization surface 11 .
  • the diameter of the micropores in the first region 111 is larger than the micropores in the second region 112 pore size, so that the rate at which the micropores in the first region 111 transmit aerosol-forming substrates to the heating film 2 is greater than the rate at which the micropores in the second region 112 transmit aerosol-forming substrates to the heating film 2, so as to improve the mist of the porous body 1
  • the effect of the liquid supply rate of the chemical surface 11 to the heating film 2 promotes the aerosol-forming matrix stored in the porous body 1 to be quickly transmitted to the heating film 2, preventing the heating film 2 from dry burning due to insufficient liquid supply, thereby effectively slowing down or Avoid carbon deposition on the heating film 2 .
  • the methods of processing and forming the through structure 3 on the heating film 2 include but are not limited to the following methods: one is laser processing, by controlling the intensity, pulse width and time of the laser light source, processing and forming the through structure 3 on the heating film 2
  • the second is mechanical processing, by controlling the size and time of the processing tool, the through structure 3 is formed on the heating film 2;
  • the third is mask processing, by covering the preset first area 111 on the atomization surface 11, the preset The first region 111 is not coated, so that the through structure 3 is formed on the heating film 2 .
  • the atomizing core provided by the embodiment of the present invention is provided with a heating film 2 on the atomizing surface 11 of the porous body 1, a through-through structure 3 is provided on the heating film 2, and the atomizing surface 11 has a The first region 111 corresponding to the location of the penetrating structure 3 and the second region 112 covered by the heating film 2 are connected. Since the micropores in the first region 111 on the atomizing surface 11 are not affected by the filling of the film material of the heating film 2, the diameter of the micropores in the first region 111 on the atomizing surface 11 is larger than that in the first region 111 on the atomizing surface 11.
  • the micropore diameter of the second region 112 so that the rate at which the micropores in the first region 111 transmit aerosol-forming substrates to the heating film 2 is greater than the rate at which the micropores in the second region 112 transmit aerosol-forming substrates to the heating film 2, thereby improving
  • the rate at which the atomizing surface 11 of the porous body 1 supplies liquid to the heating film 2 enables the aerosol-forming matrix stored in the porous body 1 to be quickly and stably transmitted to the heating film 2, preventing the heating film 2 from drying out due to insufficient liquid supply. burnt carbon.
  • the through structure 3 is a hole-like structure arranged through the thickness direction of the heating film 2 .
  • the specific shape of the hole-like structure is not limited to openings of regular or irregular geometric figures such as circles, ellipses, rectangles, squares, parallelograms, and polygons. That is to say, the specific shape of the porous structure can be reasonably set according to actual use requirements, and is not limited here.
  • the opening area of the porous structure is 0.03-0.5 mm 2 , so that the setting of the porous structure can significantly increase the transmission rate of the aerosol-forming substrate to the heat-generating film 2 without causing the heat-generating film 2 to
  • the problem of reduced atomization efficiency occurs due to the reduction of the area of the porous body 1, and the effect of balancing the liquid conduction rate of the porous body 1 and the atomization efficiency of the heating film 2 is achieved.
  • the penetrating structure 3 may be a hole-like structure provided through the heating film, but is not limited to a hole-like structure provided through the heating film. trough structure.
  • the hole-like structure is a circular through hole
  • the diameter of the circular through hole is 0.2-0.8mm
  • the shortest distance between vias is equal.
  • the distance between any two adjacent circular through holes is equal, and the center-to-center distance between two adjacent circular through holes is 1 to 2 times the diameter of the circular through hole, so that the aerosol forms a matrix
  • the rate of transmission to the heating film 2 is equal and stable, balancing the liquid conduction rate of the porous body 1 and the atomization efficiency of the heating film 2, and further preventing the phenomenon of local dry burning of the heating film 2, that is, preventing the distribution of the penetrating structure 3 on the heating film 2
  • Insufficient liquid supply in sparse areas leads to carbon deposition due to dry burning, while excessive liquid supply in areas with densely distributed penetrating structures 3 on the heating film 2 reduces the amount of generated smoke.
  • the hole-like structure is a strip-shaped hole, and the width of the strip-shaped hole is 0.2-0.8 mm.
  • a plurality of strip-shaped holes can be evenly distributed on the heating film 2, and the center distance between any two adjacent strip-shaped holes is 1.5 to 2 times the hole width, so that the transmission rate of the aerosol-forming substrate to the heating film 2 is equal It is stable and balances the liquid conduction rate of the porous body 1 and the atomization efficiency of the heating film 2 .
  • the strip-shaped holes may be, but not limited to, long strip-shaped holes whose length direction is perpendicular to the thickness direction of the heating film 2.
  • the strip-shaped holes may also be oval holes or elongated holes. Rectangular holes of unequal width, etc. That is to say, the strip hole can be a long strip hole whose two ends respectively extend to the edge of the heating film 2, and the strip hole can also be an oval hole whose two ends do not extend to the edge of the heating film 2 or a rectangle with unequal length and width. hole. Taking strip holes as elongated holes as an example, the two ends of the elongated holes can respectively extend to the edge of the heating film 2, so that the heating film 2 can be divided into multiple sections through the elongated holes, and set in the porous body The electrode 4 on the 1 is connected to the multi-segment heating film 2.
  • the pore structure can be a linear elongated hole whose length direction is perpendicular to the thickness direction of the heating film 2.
  • the pore structure can also be a curved elongated hole or a composite of a curve and a straight line. type elongated hole.
  • the width of the elongated holes may be fixed or variable.
  • the number of through-structures 3 is set to multiple, the specific number of through-structures 3 can be two or more, and the specific number of through-structures 3 can be Reasonably select and set according to the area size of the heating film 2 or the use requirements, and no unique limitation is made here.
  • a plurality of through structures 3 are distributed on the heating film 2 at intervals, and the distance between two adjacent through structures 3 is equal. In this way, the penetrating structure 3 can be evenly distributed on the heating film 2, so that the rate at which the aerosol-forming substrate is transmitted to the heating film 2 is equal and stable, and further prevents the phenomenon of localized dry burning of the heating film 2, that is, prevents the heating film 2 from being heated.
  • the areas where the through-structure 3 is sparsely distributed are insufficient in liquid supply and carbon deposits due to dry burning, while the areas where the through-structure 3 is densely distributed on the heating film 2 are supplied with too much liquid to reduce the amount of smoke generated, so as to achieve a balance between the liquid conduction rate of the porous body 1 and the heat-generating film. 2
  • the effect of the atomization efficiency in order to better balance the liquid conduction rate of the porous body 1 and the atomization efficiency of the heating film 2 , the distance between two adjacent through structures 3 is 0.2-0.8 mm.
  • the specific shape of the through structure 3 is not limited to regular or irregular geometric figures such as circles, ellipses, rectangles, squares, parallelograms, polygons, etc.
  • the specific shape of the through structure 3 can be reasonable according to actual use requirements setting, which is not uniquely limited here.
  • the atomizing surface 11 is also provided with a blind groove structure 5 for storing the aerosol-forming substrate.
  • the installation positions of the groove structures 5 correspond to the installation positions of the through structures 3 .
  • the blind groove structure 5 may be a circular groove.
  • the blind slot structure 5 may be a rectangular slot. It should be noted that the blind slot structure 5 may be, but not limited to, circular slots, rectangular slots, etc., and the blind slot structure 5 may also be a combination of circular slots and rectangular slots.
  • At least part of the outer surface of the porous body 1 is formed with a liquid-absorbing surface, and the micropores on the liquid-absorbing surface can transmit the aerosol-forming substrate in the liquid storage chamber of the nebulizer to the interior of the porous body 1 in micropores.
  • the minimum distance from the liquid-absorbing surface of the porous body 1 to the groove bottom of the blind groove structure 5 is smaller than the minimum distance from the liquid-absorbing surface to the atomizing surface 11, and then Make the liquid absorption of porous body 1 face the blind groove structure 5 to transmit the rate of aerosol formation matrix greater than the rate of porous body 1 liquid absorption face to atomization surface 11 to transmit the rate of aerosol formation matrix, shorten the liquid conduction distance transmitted to the heating film, relatively
  • the area of the atomization surface 11 of the porous body 1 without the blind groove structure 5 has a relatively high liquid conduction rate, and at the same time, the capillary action of the blind groove structure 5 is used to store and transport the aerosol-forming substrate, so that it can be transferred to the heat generating
  • the film 2 quickly and stably provides enough aerosol-forming substrates to prevent the heat-generating film 2 from atomizing and consuming the aerosol-forming substrates too quickly, which would cause carbon deposition due to
  • the above-mentioned blind groove structure 5 is a capillary structure capable of absorbing liquid, storing liquid, and conducting liquid, and the capillary structure is generally distributed in the corresponding area of the atomizing surface 11 in the form of a groove structure, which can provide rapid and stable heating for the heating film 2. Provide adequate aerosol-forming substrate.
  • the depth of the blind groove structure 5 is set It is 1% to 30% of the height of the porous body 1 .
  • the methods of processing and forming the blind groove structure 5 on the atomizing surface 11 of the porous body 1 include but are not limited to the following methods: first, after the porous body 1 is manufactured, the porous body 1 is formed by laser processing, mechanical processing, etc. The blind groove structure 5 is formed on the atomizing surface 11 of the porous body 1 , and then the heating film 2 is formed on the atomizing surface 11 of the porous body 1 .
  • the wall area of the blind groove structure 5 is relatively large, which can ensure that the micropore diameter on the wall of the blind groove structure 5 is still larger than The pore diameter of the micropores of the second area 112 covered by the heating film 2 on the atomizing surface 11; the second is to form the heating film 2 on the atomizing surface 11 of the porous body 1 after making the porous body 1, and then use laser processing, mechanical
  • the through structure 3 is formed on the heating film 2 by means of processing, and then the blind hole structure is formed on the first region 111 corresponding to the through structure 3 on the atomization surface 11 of the porous body 1 by means of laser processing and mechanical processing.
  • the heat-generating film-type atomizing core without a through-through structure in the prior art and the heating-film 2-type atomizing core with a through-through structure 3 provided by the embodiment of the present invention are tested. After the test, when the suction is less than 100 puffs, The heating film without a through structure has serious carbon deposition, and the amount of smoke per puff decreases sharply, which seriously affects the taste. On the other hand, the heat-generating film 2 provided with the through structure 3 has only slight carbon deposits on the surface of the heat-generating film 2 when the puff reaches 200 puffs, and the amount of smoke per puff is stable.
  • An embodiment of the present invention also provides an atomizer, and the atomizer includes the atomizing core provided in any one of the above embodiments. Since the atomizer has all the technical features of the atomizing core provided by any of the above embodiments, it has the same technical effect as the atomizing core.
  • An embodiment of the present invention also provides an aerosol generating device, which includes the atomizing core provided in any of the above embodiments or the atomizer provided in any of the above embodiments. Since the aerosol generating device has all the technical features of the atomizing core or atomizer provided by any of the above embodiments, it has the same technical effect as the atomizing core.

Abstract

本发明提供了一种雾化芯、雾化器及气溶胶发生装置,雾化芯结构中,在多孔体的雾化面上设置发热膜,在发热膜上设置有贯通结构,雾化面上具有与贯通结构所在位置相对应的第一区域,以及被发热膜覆盖的第二区域。由于位于雾化面上第一区域的微孔不会受到发热膜的膜材料填充的影响,使得位于雾化面上第一区域的微孔孔径大于位于雾化面上第二区域的微孔孔径,从而使得第一区域的微孔向发热膜传输气溶胶形成基质的速率大于第二区域的微孔向发热膜传输气溶胶形成基质的速率,进而提高多孔体的雾化面向发热膜供液的速率,使得多孔体内部储存的气溶胶形成基质能够快速、稳定地传输至发热膜,防止发热膜因供液不足而发生干烧积碳。

Description

雾化芯、雾化器及气溶胶发生装置 技术领域
本发明属于模拟吸烟技术领域,特别地,涉及一种雾化芯、雾化器及气溶胶发生装置。
背景技术
气溶胶发生装置使用的镀膜陶瓷雾化芯,一般是在多孔陶瓷的雾化面上镀一层发热膜。由于发热膜的膜层材料会填充于多孔陶瓷雾化面上的微孔中,大幅度减小多孔陶瓷雾化面上的微孔孔径,从而降低气溶胶形成基质传输至发热膜的速率,使得气溶胶形成基质无法快速、稳定地传输至发热膜,容易造成发热膜出现供液不足而发生干烧积碳的问题,不仅影响镀膜陶瓷雾化芯雾化产生烟雾量的稳定性,而且降低镀膜陶瓷雾化芯的雾化效果。
发明内容
基于现有技术中存在的上述问题,本发明实施例的目的之一在于提供一种通过在多孔体的雾化面上设置发热膜,并在发热膜上设置有贯通结构,以提高雾化面上的微孔的导液速率,避免发热膜出现供液不足而发生干烧积碳的雾化芯。
为实现上述目的,本发明采用的技术方案是:提供一种雾化芯,包括:
多孔体,表面形成有用于供气溶胶形成基质加热雾化的雾化面,所述多孔体具有微孔;以及
发热膜,用于在通电后加热并雾化气溶胶形成基质,所述发热膜设置于所述雾化面上,所述气溶胶形成基质可经由所述微孔传输至所述发热膜;
其中,所述发热膜上设置有贯通结构,所述雾化面上具有与所述贯通结构所在位置相对应的第一区域,以及被所述发热膜覆盖的第二区域,所述第一区域的微孔孔径大于所述第二区域的微孔孔径,以使所述第一区域的微孔向所述发热膜传输气溶胶形成基质的速率大于所述第二区域的微孔向所述发热膜传输气溶胶形成基质的速率。
进一步地,所述贯通结构为沿所述发热膜的厚度方向贯穿设置的孔状结构。
进一步地,所述孔状结构为圆形通孔,所述圆形通孔的直径为0.2~0.8mm。
进一步地,所述孔状结构为条形孔,所述条形孔的孔宽为0.2~0.8mm。
进一步地,所述贯通结构的数量设置为多个,多个所述贯通结构间隔分布于所述发热膜上,相邻两个所述贯通结构之间的间距相等。
进一步地,所述雾化面上还设有用于储存气溶胶形成基质的盲槽结构,所述盲槽结构的设置位置与所述贯通结构的设置位置相对应,以使所述多孔体的吸液面至所述盲槽结构的槽底的最小距离小于所述吸液面至所述雾化面的最小距离。
进一步地,所述盲槽结构的深度为所述多孔体高度的1%~30%。
进一步地,所述发热膜通过薄膜沉积工艺形成于所述雾化面上,所述发热膜的厚度为200~1000nm。
基于现有技术中存在的上述问题,本发明实施例的目的之二在于提供一种具有上述任一方案提供的雾化芯的雾化器。
为实现上述目的,本发明采用的技术方案是:提供一种雾化器,包括上述任一方案提供的所述雾化芯。
基于现有技术中存在的上述问题,本发明实施例的目的之三在于提供一种具有上述任一方案提供的雾化芯或雾化器的气溶胶发生装置。
为实现上述目的,本发明采用的技术方案是:提供一种气溶胶发生装置,包括上述任一方案提供的所述雾化芯或所述雾化器。
本发明实施例中的上述一个或多个技术方案,与现有技术相比,至少具有 如下有益效果之一:
本发明实施例中的雾化芯、雾化器及气溶胶发生装置,雾化芯结构中,在多孔体的雾化面上设置发热膜,在发热膜上设置有贯通结构,雾化面上具有与贯通结构所在位置相对应的第一区域,以及被发热膜覆盖的第二区域。由于位于雾化面上第一区域的微孔不会受到发热膜的膜材料填充的影响,使得位于雾化面上第一区域的微孔孔径大于位于雾化面上第二区域的微孔孔径,从而使得第一区域的微孔向发热膜传输气溶胶形成基质的速率大于第二区域的微孔向发热膜传输气溶胶形成基质的速率,进而提高多孔体的雾化面向发热膜供液的速率,使得多孔体内部储存的气溶胶形成基质能够快速、稳定地传输至发热膜,防止发热膜因供液不足而发生干烧积碳。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的雾化芯的立体结构示意图;
图2为图1中A部位局部放大的结构示意图;
图3为本发明实施例提供的多孔体的立体结构示意图;
图4为本发明另一实施例提供的雾化芯的立体结构示意图;
图5为图4中B部位局部放大的结构示意图;
图6为本发明另一实施例提供的多孔体的立体结构示意图;
图7为本发明另一实施例提供的雾化芯的立体结构示意图;
图8为图7中C部位局部放大的结构示意图;
图9为本发明另一实施例提供的雾化芯的立体结构示意图;
图10为图9中D部位局部放大的结构示意图。
其中,图中各附图标记:
1-多孔体;11-雾化面;111-第一区域;112-第二区域;
2-发热膜;3-贯通结构;
4-电极;5-盲槽结构。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请一并参阅图1至10,现对本发明实施例提供的雾化芯进行说明。本发明实施例提供的雾化芯用于雾化器,其可在气溶胶发生装置的电源装置的电驱动下发热,将雾化器的储液腔中的气溶胶形成基质加热雾化形成烟雾,以供用户吸食而达到模拟吸烟的效果。
实施例一
请结合参阅图1,本发明实施例一提供的雾化芯包括多孔体1和发热膜2,多孔体1的表面形成有用于供气溶胶形成基质加热雾化的雾化面11。可以理解地,多孔体1的至少部分外表面形成有雾化面11。上述至少部分外表面是指多孔体1一侧外表面或多侧外表面。当然,上述至少部分外表面还可以指多孔体1一侧外表面上的部分表面,即雾化面11的面积小于该侧外表面的面积的情形。多孔体1内部和/或多孔体1的表面具有毛细吸附作用的微孔,多孔体1可通过微孔吸附、存储气溶胶形成基质,且多孔体1吸附、存储的气溶胶形成基质可经由微孔持续传输至雾化面11。上述多孔体1可以是但不限于多孔陶瓷或多孔玻璃等,在多孔体1为多孔陶瓷时,多孔陶瓷的孔隙率范围是30%~70%,微孔的孔径大小为5~120μm。
请进一步结合参阅图1和图2,发热膜2设置于雾化面11上,多孔体1吸附、存储的气溶胶形成基质可经由微孔传输至雾化面11,再由雾化面11上的 微孔传输至发热膜2,发热膜2在通电后可对气溶胶形成基质进行加热,将雾化气溶胶形成基质雾化形成可供用户吸食的烟雾。在其中一些实施例中,发热膜2通过薄膜沉积工艺形成于多孔体1的雾化面11上,发热膜2的厚度为200~1000nm。上述薄膜沉积工艺包括但不限于热蒸发沉积工艺、等离子体溅射沉积工艺、磁控溅射工艺沉积等物理气相沉积工艺,以及化学气相沉积工艺。其中,发热膜2可以是铜膜、铁膜、镍膜、铬膜、金膜、银膜、铂膜、钯膜、钼膜等金属膜中的至少一种,发热膜2还可以是金银合金膜、金铂合金膜、金银铂合金膜、银钯合金膜、银铂合金膜、钯铜合金膜、钯银合金膜、镍铬合金膜中的至少一种。
请进一步结合参阅图1、图3、图4和图6,由于在多孔体1的雾化面11上形成发热膜2的过程中,发热膜2的膜层材料可能会部分填充于多孔体1的雾化面11上的微孔,就会大幅度减小多孔陶瓷雾化面11上的微孔孔径,从而降低气溶胶形成基质传输至发热膜2的速率,使得气溶胶形成基质无法及时补充至发热膜2,容易造成发热膜2出现供液不足而发生干烧积碳的问题。针对上述存在的问题,在发热膜2上设置有贯通结构3,可以加快多孔体1的雾化面11向发热膜2传输气溶胶形成基质的速率,克服发热膜2因供液不足发生干烧积碳而影响雾化效果的缺陷。具体地,在发热膜2上设置有贯通结构3后,雾化面11上具有与贯通结构3所在位置相对应的第一区域111,以及被发热膜2覆盖的第二区域112。也就是说,请进一步结合参阅图3和图6,雾化面11上未被发热膜2覆盖的区域为第一区域111,雾化面11上被发热膜2覆盖的区域为第二区域112,第一区域111与第二区域112组合形成的区域共同构成雾化面11的雾化区域。由于雾化面11上与贯通结构3所在位置相对应的第一区域111的微孔不会受到形成发热膜2过程的影响,使得第一区域111的微孔孔径大于第二区域112的微孔孔径,进而使得第一区域111的微孔向发热膜2传输气溶胶形成基质的速率大于第二区域112的微孔向发热膜2传输气溶胶形成基质的速率,达到提高了多孔体1的雾化面11向发热膜2供液的速率的效果, 促使多孔体1内部储存的气溶胶形成基质能够快速传输至发热膜2,防止发热膜2因供液不足而发生干烧,因而有效减缓或避免发热膜2产生积碳。需要注意的是,在发热膜2上加工形成贯通结构3的方式包括但不限于如下方式:一是激光加工,通过控制激光光源强度、脉冲宽度、时间,在发热膜2上加工形成贯通结构3;二是机械加工,通过控制加工刀具的尺寸、时间,在发热膜2上加工形成贯通结构3;三是掩模加工,通过遮蔽在雾化面11上预设的第一区域111,使预设的第一区域111不镀膜,从而在发热膜2上加工形成贯通结构3。
本发明实施例提供的雾化芯,与现有技术相比,在多孔体1的雾化面11上设置发热膜2,在发热膜2上设置有贯通结构3,雾化面11上具有与贯通结构3所在位置相对应的第一区域111,以及被发热膜2覆盖的第二区域112。由于位于雾化面11上第一区域111的微孔不会受到发热膜2的膜材料填充的影响,使得位于雾化面11上第一区域111的微孔孔径大于位于雾化面11上第二区域112的微孔孔径,从而使得第一区域111的微孔向发热膜2传输气溶胶形成基质的速率大于第二区域112的微孔向发热膜2传输气溶胶形成基质的速率,进而提高多孔体1的雾化面11向发热膜2供液的速率,使得多孔体1内部储存的气溶胶形成基质能够快速、稳定地传输至发热膜2,防止发热膜2因供液不足而发生干烧积碳。
请结合参阅图1、图2、图4和图5,在其中一些实施例中,贯通结构3为沿发热膜2的厚度方向贯穿设置的孔状结构。需要注意的是,孔状结构的具体形状不限于圆形、椭圆形、矩形、正方形、平行四边形、多边形等规则几何图形或者不规则几何图形的开孔。也就是说,孔状结构的具体形状可根据实际使用需求而合理设定,在此不作唯一限定。在其中一些实施例中,孔状结构的开孔面积为0.03~0.5mm 2,使得孔状结构的设置,能够明显提高气溶胶形成基质传输至发热膜2的速率,并且不会导致发热膜2的面积减小而出现雾化效率降低的问题,达到平衡多孔体1的导液速率与发热膜2的雾化效率的效果。需要注意的是,贯通结构3可以是贯穿发热膜设置的孔状结构但不限于贯穿发热膜 设置孔状结构,贯通结构3还可以是贯穿发热膜设置的缝状结构或贯穿发热膜设置的连通槽状结构。
请结合参阅图1和图2,在其中一些实施例中,孔状结构为圆形通孔,圆形通孔的直径为0.2~0.8mm,任一圆形通孔与其相邻的其他圆形通孔之间的最短距离相等。也就是说,任意相邻两个圆形通孔之间的距离相等,且相邻两个圆形通孔之间的中心距为圆形通孔直径的1~2倍,使气溶胶形成基质传输至发热膜2的速率相等且稳定,平衡多孔体1的导液速率与发热膜2的雾化效率,进一步防止发热膜2局部发生干烧的现象,即防止发热膜2上贯通结构3分布稀疏的区域供液不足而干烧积碳,而发热膜2上贯通结构3分布密集的区域供液过多而降低生成烟雾量。
请结合参阅图4和图5,在其中一些实施例中,孔状结构为条形孔,条形孔的孔宽为0.2~0.8mm。多个条形孔可在发热膜2上均匀分布,且任意相邻两个条形孔之间的中心距为孔宽的1.5~2倍,使气溶胶形成基质传输至发热膜2的速率相等且稳定,平衡多孔体1的导液速率与发热膜2的雾化效率。需要注意的是,,在其中另一些实施例中,条形孔可以是但不限于长度方向垂直于发热膜2的厚度方向的长条形孔,例如条形孔还可以是椭圆形孔或长宽不相等的矩形孔等。也就是说,条形孔可以是两端分别延伸到发热膜2边缘的长条形孔,条形孔还可以是两端不延伸到发热膜2边缘的椭圆形孔或长宽不相等的矩形孔。以条形孔为长条形孔为例进行说明,长条形孔的两端可分别延伸到发热膜2的边缘,这样可通过长条形孔将发热膜2分隔成多段,设于多孔体1上的电极4与多段发热膜2均导通。这样,使得多个长条形孔在发热膜2上均匀分布,使气溶胶形成基质传输至发热膜2的速率相等且稳定,平衡多孔体1的导液速率与发热膜2的雾化效率,进一步防止发热膜2局部发生干烧的现象,即防止发热膜2上贯通结构3分布稀疏的区域供液不足而干烧积碳,而发热膜2上贯通结构3分布密集的区域供液过多而降低生成烟雾量。另外需要注意的是,孔状结构可以是上述长度方向垂直于发热膜2的厚度方向的直线型长条形孔,孔 状结构还可以是曲线型长条形孔或由曲线与直线结合的复合型长条形孔。并且,长条形孔的孔宽可以是固定不变的,也可以是可变的。
请结合参阅图1和图4,在其中一些实施例中,贯通结构3的数量设置为多个,贯通结构3的具体设置数量可以是两个或三个以上,贯通结构3的具体设置数量可以根据发热膜2的面积大小或使用需求而合理选取设置,在此不作唯一限定。多个贯通结构3间隔分布于发热膜2上,且相邻两个贯通结构3之间的间距相等。这样,可使得贯通结构3在发热膜2上均匀分布,从而使气溶胶形成基质传输至发热膜2的速率相等且稳定,进一步防止发热膜2局部发生干烧的现象,即防止发热膜2上贯通结构3分布稀疏的区域供液不足而干烧积碳,而发热膜2上贯通结构3分布密集的区域供液过多而降低生成烟雾量,达到平衡多孔体1的导液速率与发热膜2的雾化效率的效果。在其中一些具体实施例中,为了更好地平衡多孔体1的导液速率与发热膜2的雾化效率,相邻两个贯通结构3之间的距离为0.2~0.8mm。需要注意的是,贯通结构3的具体形状不限于圆形、椭圆形、矩形、正方形、平行四边形、多边形等规则几何图形或者不规则几何图形,贯通结构3的具体形状可根据实际使用需求而合理设定,在此不作唯一限定。
实施例二
请结合参阅图7至图10,实施例二中的雾化芯与实施例一中的雾化芯区别在于:雾化面11上还设有用于储存气溶胶形成基质的盲槽结构5,盲槽结构5的设置位置与贯通结构3的设置位置相对应。请进一步结合参阅图7和图8,在其中一些实施例中,盲槽结构5可以为圆形槽。请进一步结合参阅图9和图10,在其中另一些实施例中,盲槽结构5可以为矩形槽。需要注意的是,盲槽结构5可以是但不限于圆形槽、矩形槽等,盲槽结构5还可以是圆形槽与矩形槽的结合。
在其中一些实施例中,多孔体1的至少部分外表面形成有吸液面,吸液面 上的微孔可将雾化器的储液腔中的气溶胶形成基质传输至多孔体1的内部微孔中。由于实施例二中的雾化面11上增设盲槽结构5,使得多孔体1的吸液面至盲槽结构5的槽底的最小距离小于吸液面至雾化面11的最小距离,进而使得多孔体1的吸液面向盲槽结构5传输气溶胶形成基质的速率大于多孔体1的吸液面向雾化面11传输气溶胶形成基质的速率,缩短传输至发热膜的导液距离,相对多孔体1的雾化面11上未设置盲槽结构5的区域部分具有相对较高的导液速率,同时利用盲槽结构5的毛细作用对气溶胶形成基质进行储存及传输,从而能够向发热膜2快速、稳定地提供足够的气溶胶形成基质,防止发热膜2雾化消耗气溶胶形成基质速度过快而发生干烧积碳。需要注意的是,上述盲槽结构5是能够吸液、储液及导液的毛细结构,且毛细结构总体呈槽状结构分布于雾化面11的相应区域,能够为发热膜2快速、稳定地提供足够的气溶胶形成基质。
在其中一些具体实施例中,为了保证盲槽结构5不会轻易被发热膜2的膜材料充填,并且不会导致多孔体1锁液能力出现下降而发生漏液,盲槽结构5的深度设置为多孔体1高度的1%~30%。需要注意的是,在多孔体1的雾化面11上加工形成盲槽结构5的方式包括但不限于如下方式:一是制作多孔体1后,利用激光加工、机械加工等方式在多孔体1的雾化面11上形成盲槽结构5,接着在多孔体1的雾化面11上形成发热膜2。即使在形成发热膜2的过程中可能会有小部分膜材料进入盲槽结构5,但是盲槽结构5的壁体面积相对较大,能够保证盲槽结构5壁体上的微孔孔径仍然大于雾化面11上被发热膜2覆盖的第二区域112的微孔的孔径;二是制作多孔体1后,在多孔体1的雾化面11上形成发热膜2,接着利用激光加工、机械加工等方式在发热膜2上形成贯通结构3,然后利用激光加工、机械加工等方式,在多孔体1的雾化面11上与贯通结构3对应的第一区域111形成盲孔结构。
将现有技术中不具有贯通结构的发热膜式雾化芯与本发明实施例提供的具有贯通结构3的发热膜2式雾化芯进行测试,经测试,在抽吸不到100口时,未设置贯通结构的发热膜严重积碳,且每口烟雾量急剧减少,严重影响口感。 而设置有贯通结构3的发热膜2,在抽吸至200口时,发热膜2表面只有轻微积碳,并且每口烟雾量稳定。
本发明实施例还提供一种雾化器,雾化器包括上述任一实施例提供的雾化芯。因雾化器具有上述任一实施例提供的雾化芯的全部技术特征,故其具有雾化芯相同的技术效果。
本发明实施例还提供一种气溶胶发生装置,气溶胶发生装置包括上述任一实施例提供的雾化芯或上述任一实施例提供的的雾化器。因气溶胶发生装置具有上述任一实施例提供的雾化芯或雾化器的全部技术特征,故其具有雾化芯相同的技术效果。
以上所述仅为本发明的较佳实施例而已,并不用于限定本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种雾化芯,其特征在于,包括:
    多孔体,表面形成有用于供气溶胶形成基质加热雾化的雾化面,所述多孔体具有微孔;以及
    发热膜,用于在通电后加热并雾化气溶胶形成基质,所述发热膜设置于所述雾化面上,所述气溶胶形成基质可经由所述微孔传输至所述发热膜;
    其中,所述发热膜上设置有贯通结构,所述雾化面上具有与所述贯通结构所在位置相对应的第一区域,以及被所述发热膜覆盖的第二区域,所述第一区域的微孔孔径大于所述第二区域的微孔孔径,以使所述第一区域的微孔向所述发热膜传输气溶胶形成基质的速率大于所述第二区域的微孔向所述发热膜传输气溶胶形成基质的速率。
  2. 如权利要求1所述的雾化芯,其特征在于,所述贯通结构为沿所述发热膜的厚度方向贯穿设置的孔状结构。
  3. 如权利要求2所述的雾化芯,其特征在于,所述孔状结构为圆形通孔,所述圆形通孔的直径为0.2~0.8mm。
  4. 如权利要求2所述的雾化芯,其特征在于,所述孔状结构为条形孔,所述条形孔的孔宽为0.2~0.8mm。
  5. 如权利要求1至4任一项所述的雾化芯,其特征在于,所述贯通结构的数量设置为多个,多个所述贯通结构间隔分布于所述发热膜上,相邻两个所述贯通结构之间的间距相等。
  6. 如权利要求1至4任一项所述的雾化芯,其特征在于,所述雾化面上还设有用于储存气溶胶形成基质的盲槽结构,所述盲槽结构的设置位置与所述贯通结构的设置位置相对应,以使所述多孔体的吸液面至所述盲槽结构的槽底的最小距离小于所述吸液面至所述雾化面的最小距离。
  7. 如权利要求6所述的雾化芯,其特征在于,所述盲槽结构的深度为所述 多孔体高度的1%~30%。
  8. 如权利要求1至4任一项所述的雾化芯,其特征在于,所述发热膜通过薄膜沉积工艺形成于所述雾化面上,所述发热膜的厚度为200~1000nm。
  9. 一种雾化器,其特征在于,包括如权利要求1至8任一项所述的雾化芯。
  10. 一种气溶胶发生装置,其特征在于,包括如权利要求1至8任一项所述的雾化芯或如权利要求9所述的雾化器。
PCT/CN2022/121673 2021-12-04 2022-09-27 雾化芯、雾化器及气溶胶发生装置 WO2023098260A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202123041955.6U CN216701671U (zh) 2021-12-04 2021-12-04 雾化芯、雾化器及气溶胶发生装置
CN202111475166.5A CN116349939A (zh) 2021-12-04 2021-12-04 雾化芯、雾化器及气溶胶发生装置
CN202111475166.5 2021-12-04
CN202123041955.6 2021-12-04

Publications (1)

Publication Number Publication Date
WO2023098260A1 true WO2023098260A1 (zh) 2023-06-08

Family

ID=86611500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121673 WO2023098260A1 (zh) 2021-12-04 2022-09-27 雾化芯、雾化器及气溶胶发生装置

Country Status (1)

Country Link
WO (1) WO2023098260A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209235000U (zh) * 2018-10-26 2019-08-13 深圳市合元科技有限公司 雾化芯和包括该雾化芯的雾化器
CN111053291A (zh) * 2019-12-02 2020-04-24 深圳麦克韦尔科技有限公司 电子雾化装置、雾化芯及其制备方法
CN111109666A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化组件和雾化组件的制造方法
WO2020187938A1 (en) * 2019-03-21 2020-09-24 Nerudia Limited Fluid transfer article
CN111728273A (zh) * 2020-05-15 2020-10-02 深圳麦克韦尔科技有限公司 梯度多孔材料及其制备方法、雾化器和电子雾化装置
CN216701671U (zh) * 2021-12-04 2022-06-10 东莞市维万特智能科技有限公司 雾化芯、雾化器及气溶胶发生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209235000U (zh) * 2018-10-26 2019-08-13 深圳市合元科技有限公司 雾化芯和包括该雾化芯的雾化器
WO2020187938A1 (en) * 2019-03-21 2020-09-24 Nerudia Limited Fluid transfer article
CN111053291A (zh) * 2019-12-02 2020-04-24 深圳麦克韦尔科技有限公司 电子雾化装置、雾化芯及其制备方法
CN111109666A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化组件和雾化组件的制造方法
CN111728273A (zh) * 2020-05-15 2020-10-02 深圳麦克韦尔科技有限公司 梯度多孔材料及其制备方法、雾化器和电子雾化装置
CN216701671U (zh) * 2021-12-04 2022-06-10 东莞市维万特智能科技有限公司 雾化芯、雾化器及气溶胶发生装置

Similar Documents

Publication Publication Date Title
CN216701671U (zh) 雾化芯、雾化器及气溶胶发生装置
WO2021143328A1 (zh) 发热体的制造方法
WO2021013208A1 (zh) 雾化组件及电子雾化装置
CN111109665A (zh) 电子雾化装置及其雾化器和发热体
WO2023082892A1 (zh) 具有微孔发热片的雾化芯
CN114451586A (zh) 具有纳米金属镀膜层的雾化芯
WO2020248230A1 (zh) 电子雾化装置及其雾化器和发热组件
WO2022088892A1 (zh) T 型雾化芯
WO2023098260A1 (zh) 雾化芯、雾化器及气溶胶发生装置
WO2023193644A1 (zh) 雾化芯、雾化器及气溶胶发生装置
CN114794566A (zh) 一种导液玻璃基体以及发热体的制备方法
WO2023035823A1 (zh) 吸液发热件、雾化器及气溶胶发生装置
CN214283302U (zh) 一种高稳定性玻璃雾化器及电子烟
CN114916708A (zh) 发热组件、雾化器及电子雾化装置
WO2021233009A1 (zh) 雾化件、雾化器及其气溶胶发生装置
WO2024036878A1 (zh) 一种雾化芯及雾化器
CN116349939A (zh) 雾化芯、雾化器及气溶胶发生装置
WO2023029870A1 (zh) 雾化组件、雾化器及气溶胶发生装置
CN218219158U (zh) 一种雾化芯及雾化器
WO2022057921A1 (zh) 雾化芯、雾化器和电子雾化装置
CN218681990U (zh) 雾化芯、雾化器及气溶胶发生装置
WO2023016202A1 (zh) 一种电子雾化装置及其雾化器和雾化组件
WO2022170725A1 (zh) 一种导液玻璃基体以及发热体的制备方法
CN114794565A (zh) 发热体、雾化组件及电子雾化装置
CN114794567A (zh) 发热体、雾化组件及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900068

Country of ref document: EP

Kind code of ref document: A1