WO2021143328A1 - 发热体的制造方法 - Google Patents

发热体的制造方法 Download PDF

Info

Publication number
WO2021143328A1
WO2021143328A1 PCT/CN2020/128515 CN2020128515W WO2021143328A1 WO 2021143328 A1 WO2021143328 A1 WO 2021143328A1 CN 2020128515 W CN2020128515 W CN 2020128515W WO 2021143328 A1 WO2021143328 A1 WO 2021143328A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
photosensitive glass
heating element
manufacturing
heating
Prior art date
Application number
PCT/CN2020/128515
Other languages
English (en)
French (fr)
Inventor
吕铭
石志强
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2021143328A1 publication Critical patent/WO2021143328A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/46Heating elements having the shape of rods or tubes non-flexible heating conductor mounted on insulating base
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • the invention relates to the field of atomization devices, in particular to a method for manufacturing a heating element.
  • An electronic atomization device is generally used to simulate smoking articles or inhalers for inhaled medicines used to treat respiratory diseases.
  • the electronic atomization device includes an atomizer and a power supply, and the atomizer is provided with a heating element for atomizing the aerosol generating substrate.
  • the wick is an existing heating body, and the wick makes the liquid aerosol generating substrate to be atomized reach the heating wire through capillary action. Most of the wicks are made of glass fibers, and individual glass fibers can be easily broken, so the user may inhale loose or loose fiber fragments.
  • the porous ceramic heating element is more and more popular in the market because of its higher temperature stability and relatively safer.
  • the heating power of the heating element is matched with the parameters of the ceramic body, such as thermal conductivity, porosity, permeability, etc.
  • the range of porosity fluctuations is relatively large, and the heating power is difficult to accurately match, resulting in the same batch of delivery
  • the atomization effect of the electronic atomization device is not consistent.
  • porous ceramics have poor liquid-locking ability, they are prone to oil leakage.
  • the surface roughness of porous ceramics is large, and the thickness of the heating film is difficult to be uniform, resulting in local high temperature and dry burning.
  • a method for manufacturing a heating element is provided.
  • a method for manufacturing a heating element includes the following steps:
  • the photosensitive glass substrate has a plurality of parts to be holed
  • a heat generating layer is provided on the surface of the photosensitive glass substrate.
  • FIG. 1 is a schematic diagram of a longitudinal cross-sectional structure of an atomizer in some embodiments of the application;
  • FIG. 2 is a schematic cross-sectional structure diagram of the heating element of the atomizer shown in FIG. 1;
  • 3 is a schematic diagram of the shape of through holes in different embodiments.
  • Figure 5 is a schematic diagram of the distribution of boiling points of smoke oil components
  • Figure 6 is a schematic diagram of the temperature field distribution of the heating element
  • Fig. 7 is a graph showing the temperature rise of the heating element over time in some embodiments.
  • Fig. 8 is a graph showing the temperature change of the heating element with the thickness change in some embodiments.
  • Fig. 9 is a graph showing the temperature rise of the heating element over time in other embodiments.
  • Fig. 10 is a graph showing the temperature change of the heating element with the thickness change in other embodiments.
  • FIG. 11 is a schematic diagram of a longitudinal cross-sectional structure of a heating element in some other embodiments of the application.
  • FIG. 12 is a schematic diagram of a longitudinal cross-sectional structure of a heating element in some other embodiments of the application.
  • FIG. 13 is a schematic diagram of a longitudinal cross-sectional structure of a heating element in some other embodiments of the application.
  • FIG. 14 is a schematic diagram of a longitudinal cross-sectional structure of a heating element in some other embodiments of the application.
  • Fig. 15 is a schematic diagram of a manufacturing method of a heating element in some embodiments of the application.
  • 16 is a schematic diagram of a longitudinal cross-sectional structure of the heating element in some embodiments of the application.
  • Figure 17 is a schematic diagram of some embodiments of the application after high temperature tempering treatment.
  • FIG. 18 is a schematic diagram of some embodiments of the application after processing at a time
  • Fig. 19 is a schematic diagram of the heating element in some embodiments of the application from another angle;
  • FIG. 20 is a schematic diagram of a plurality of heating elements formed on a photosensitive glass substrate in some embodiments of this application;
  • FIG. 21 is a schematic diagram of a photosensitive glass substrate forming a plurality of heating elements in some other embodiments of the application.
  • Figure 1 shows an electronic atomization device in some embodiments of the present invention.
  • the electronic atomization device has excellent consistent atomization volume parameters, which can include an atomizer 1 and is detachably connected to the atomizer 1
  • the power supply device 2 of the atomizer 1 is used to contain an aerosol-generating substrate such as e-liquid or medicine, and heat and atomize the aerosol-generating substrate.
  • the power supply device 2 is used to supply power to the atomizer 1 and control the electronic atomization device. Understandably, the power supply device 2 is not limited to be detachably connected with the atomizer 1, and the two can also be connected as a whole.
  • the atomizer 1 may include a base 10, a heating element 20 installed on the base 10, and a shell 30 combined with the base 10.
  • An atomizing cavity 11 for mixing mist and air may be formed between the base 10 and the lower side of the heating element 20, and an air inlet 110 connecting the atomizing cavity 11 with the outside may also be formed on the base 10.
  • the heating element 20 can be used to absorb and heat the aerosol generating substrate in the atomization accommodating cavity 32 after being energized.
  • An air flow channel 31 for leading out the mixture of mist and air may be formed in the housing 30, and the air flow channel 31 is in communication with the air outlet side of the atomization cavity 11.
  • the housing 30 can also be formed with an accommodation cavity 32 for storing aerosol generating substrates such as e-liquid, and the accommodation cavity 32 is connected to the upper side of the heating element 20 for liquid conduction. It is understandable that the heating element 20 is not limited to the horizontal arrangement shown in the figure, and it can also be arranged upright.
  • the power supply device 2 may include a housing 201 detachably connected to the atomizer 1, and a rechargeable or non-rechargeable battery 202 and a control circuit 203 arranged in the housing 201.
  • the control The circuit 203 can control the battery 202 to provide corresponding preset power according to the set atomization amount.
  • Fig. 2 shows a heating element 20 in some embodiments of the present invention.
  • the heating element 20 has an excellent liquid locking function and is configured to have a precise controllable porosity range.
  • the heating element 20 in some embodiments may include a base layer 21 having a first surface (bottom surface shown) and a second surface (top surface shown) opposite to the first surface.
  • the heat generating layer 22 on the first surface of the base layer 21, the protective layer 23 formed on the surface of the heat generating layer 22, the isolation layer 24 formed on the second surface of the base layer 21, and a large number of them are formed by the isolation layer 24.
  • the surface penetrates to the outer surface of the protective layer 23 and has a longitudinally elongated through hole 25 with capillary force.
  • the base layer 21 may be flat in some embodiments, including the first surface and the second surface described above, which may be flat surfaces, and the through hole 25 may be cylindrical in some embodiments, which has a linear longitudinal The axis, the longitudinal axis is preferably perpendicular to the first surface and the second surface. Understandably, the through hole 25 can also be arranged in other regular geometric shapes. Since the through hole 25 is set in a regular geometric shape, the volume of the through hole 25 in the heating element 20 can be calculated, so that the porosity of the entire heating element 20 can also be obtained, so that the porosity of the heating element 20 of similar products is consistent. Sex can be well guaranteed.
  • the base layer 21 may be a glass layer, a dense ceramic layer, or a suitable other material layer in some embodiments, which preferably has a dense base, a smooth surface, and a regular shape (for example, a rectangular plate shape, a circular plate shape). , Cylindrical and other regular geometric shapes) in order to better control and calculate porosity and other parameters.
  • the base layer 21 when it is a glass layer, it can be a glass ceramic layer, a common glass layer or a quartz glass layer, and its thermal conductivity can range from 0.1W/mK to 5W/mK, preferably 0.3W/mK-5W/mK.
  • the thickness of the heating element 20 is preferably between 0.1 mm and 10 mm, and the porosity is between 0.2 and 0.8.
  • the base layer 21 samples the dense base, which means that the solid part of the base layer 21 itself is not liquid-conducting.
  • the porosity of the entire structure is realized by processing the through holes 25 to ensure that the porosity of the same type of heating element 20 has excellent consistency. , It can better overcome the shortcomings that the porosity of porous bodies such as sintered ceramics is difficult to accurately control.
  • the thickness of the heating layer 22 may range from 1 ⁇ m to 200 ⁇ m, and the resistance range may range from 0.1 to 10 ohms, preferably 0.4 to 3 ohms.
  • the temperature field of the heating layer 22 may be uniform, or may be divided or changed in gradient.
  • two sides of the heating layer 22 are respectively provided with a positive electrode and a negative electrode, and the positive electrode and the negative electrode are electrically connected to the power supply device 2 respectively.
  • the material of the heating layer 22 may be elemental metals such as nickel, chromium, silver, palladium, ruthenium, and platinum, or an alloy formed of two or more of them.
  • the axis of the through hole 25 with capillary force may be a straight line in some embodiments and be arranged perpendicular to the base layer 21.
  • the through hole 25 with capillary force may be cylindrical in some embodiments, and the pore diameter may preferably range from 1 ⁇ m to 200 ⁇ m.
  • one end of the through holes 25 with capillary force directly contacts the aerosol generating substrate (e-liquid) contained in the containing cavity, so as to absorb the aerosol generating substrate through capillary force.
  • the heating element 20 When the base layer 21 is glass, the through hole 25 with capillary force can be formed by a laser-induced deep etching method, and it can also be formed by a combination of photosensitive glass exposure, tempering, and etching.
  • the through hole 25 with capillary force can also have a variety of different forms, as shown in FIG. 3, the through hole 25 with capillary force is not limited to the vertical cylindrical shape shown in FIG. 3a, and it can be It is the inclined cylindrical shape shown in FIG. 3b, the truncated cone shape shown in FIG. 3c, the rounded cone shape shown in FIG. 3d, and the dumbbell shape shown in FIG.
  • the shape of the through hole 25 takes the convenience of manufacturing and calculation of the volume of the through hole as the priority direction.
  • the through holes 25 with capillary force are not limited to the same size, and different sizes can also be used for different combinations. Different sizes and layout densities of the through holes 25 can change the surface heat flux density and at the same time affect the oil conduction rate.
  • the surface temperature field can be designed by adjusting the distribution of the surface through holes 25 to improve the consistency of the heating element 20 and the ability to resist dry burning.
  • the through holes 25 with capillary force are arranged in a rectangular array; wherein, in the solution shown in FIG. 4a, the diameter of the through holes 25 with capillary force in the middle area is larger than that of the two sides.
  • the through holes 25 with capillary force are arranged in a circular array; wherein, in the solution shown in FIG.
  • the aperture of the through holes 25 with capillary force in the middle area is larger than that of the peripheral area.
  • the pore size of the through hole 25 with capillary force; in the solution shown in FIG. 4d, the pore size of the through hole 25 with capillary force in the middle area is smaller than the pore size of the through hole 25 with capillary force in the peripheral area.
  • the temperature field of the heating layer 22 changes gradually from the central part of the heating layer 22 to the peripheral part.
  • the e-liquid components with different boiling points can be atomized in different areas, and the taste is better.
  • the aerosol-generating base e-liquid contains e-liquid components with different boiling points, including nicotine with a boiling point of about 250 degrees, propylene glycol with a boiling point of 180 degrees, and propylene with a boiling point of about 290 degrees.
  • Triol ethyl lactate with a boiling point of about 150 degrees
  • ⁇ -valerolactone with a boiling point of about 200 degrees
  • triethyl citrate with a boiling point of about 290 degrees
  • benzoic acid with a boiling point of about 250 degrees
  • a boiling point of about 270 Damascone and 2,3,5-trimethylpyrazine with a boiling point of about 170 degrees.
  • the temperature distribution fields of different regions as shown in Fig. 6 are set.
  • Fig. 6a and Fig. 6b show that the temperature field is gradually decreasing from both sides of the middle phase
  • Fig. 6c and Fig. 6d show that the temperature field shows a decreasing gradient from the middle to the periphery.
  • the temperature field is not limited to the gradient decreasing from the middle to the periphery. In some cases, it can also increase gradient.
  • the isolation layer 24 is used to isolate the base layer 21 from the aerosol generating matrix, and has the functions of heat insulation and corrosion prevention.
  • the thermal conductivity of the isolation layer 24 may range from 0.01 W/mK to 2 W/mK in some embodiments, and its thickness may range from 0.1 ⁇ m to 100 ⁇ m in some embodiments.
  • the isolation layer 24 may be made of porous materials such as nano alumina, nano zirconia, or nano cerium oxide.
  • the protective layer 23 is used in some embodiments to prevent or reduce the contact between the e-liquid and the heating layer 22 to prevent the atomized gas from carrying harmful substances in the heating layer 22 to the human body.
  • the existence of the through hole 25 with capillary force can also improve the liquid-locking ability of the heating element 20.
  • the liquid-locking ability of the through hole 25 with capillary force is related to the aerosol generating matrix.
  • the surface tension is proportional to the relationship. The greater the surface tension, the stronger the liquid locking ability.
  • the surface tension of the suitable aerosol-generating substrate such as e-liquid may be 10mN/m-75mN/m, preferably 38mN/m-65mN/m.
  • the power supply is controlled to provide a corresponding preset power according to the set atomization amount; wherein the preset power is related to the volume of all through holes 25 with capillary force and the viscosity of the aerosol generating substrate. Because the structure, shape and size of the through holes 25 with capillary force in the base layer 25 are very consistent, the capillary conduction rate is very stable during the atomization process, and the power can be controlled to accurately control the suction of each mouth. Atomization amount. In addition, the through hole 25 with capillary force during the atomization process is sufficient to guide the oil and the rate is stable, and the oil supply has a strong corresponding relationship with the time. The precise control of the dosage can also be achieved through time control.
  • an electronic atomization device is provided, the viscosity of the aerosol generating substrate is in the range of 40cP-1000cP.
  • the operating temperature range of the heating element 20 away from the aerosol generating substrate can be achieved. It is 100°C-350°C, and the operating temperature range of the heating element 20 near the aerosol generating substrate can be 22°C-100°C.
  • the pore size of the through holes 25 with capillary force arranged in a matrix can be set to 10 ⁇ m, the hole spacing is 20 ⁇ m, the thickness of the glass base layer 21 is 1500 ⁇ m, the length is 9.9 mm, 5.49 mm, and the thickness of the heating layer is 10 ⁇ m.
  • the total thickness of the protective layer and the isolation layer is 50 ⁇ m.
  • the temperature rise curves of the atomization surface (bottom surface shown in Figure 1) and the back surface (top surface shown in Figure 1) of the heating element 20 are shown in Figure 7.
  • the highest temperature on the back side of the first suction is about 90 degrees.
  • the surface temperature of the heating element 20 is uniform, and the internal temperature drop along the thickness direction is about 169 degrees, and the temperature change curve along the thickness direction is shown in FIG. 8.
  • an electronic atomization device is provided, the viscosity of the aerosol generating substrate is in the range of 1000 cP to 10000 cP, and the heating element 20 is configured to keep the heating element 20 away from the aerosol generating substrate in the accommodating cavity 32
  • the operating temperature range on one side is 150°C-250°C, and the operating temperature range of the heating element 20 near the aerosol generating substrate in the containing cavity 32 is 80°C-150°C.
  • the pore size of the through holes 25 with capillary force arranged in a matrix can be set to 10 ⁇ m, the hole spacing is 20 ⁇ m, the thickness of the glass base layer 21 is 1000 ⁇ m, the length is 8.03 mm, 4.03 mm, and the thickness of the heating layer is 10 ⁇ m.
  • the total thickness of the protective layer and the isolation layer is 50 ⁇ m.
  • the temperature rise curves of the atomization surface (the surface far away from the aerosol generating substrate) and the back surface (the surface near the aerosol generating substrate) of the heating element 20 are shown in Fig. 9. At this time, the back side of the first suction is the highest The temperature is about 107.7 degrees.
  • the surface temperature of the heating element 20 is uniform, and the internal temperature drop along the thickness direction is about 100 degrees, and the temperature change curve along the thickness direction is shown in FIG. 10.
  • an electronic atomization device is provided.
  • the viscosity of the aerosol generating substrate is in the range of 0.1 cP-40 cP.
  • the heating element 20 is kept away from the aerosol generating substrate in the accommodating cavity 32.
  • the working temperature range of the side is 70°C-150°C, and the working temperature range of the side of the heating element 20 close to the aerosol generating substrate in the containing cavity 32 is 22°C-40°C.
  • the specific configuration of the heating element 20 can be referred to the above, which will not be repeated here.
  • FIG 11 shows a heating element 20a in some embodiments of the present invention.
  • the heating element 20a is similar to the heating element 20 described above. It may include a base layer 21a having a first surface and a second surface opposite to the first surface.
  • the heating layer 22a formed on the second surface of the base layer 21a, the isolation layer 24a formed on the surface of the heating layer 22a, and a plurality of capillary forces penetrating from the outer surface of the isolation layer 24a to the first surface of the base layer 21a ⁇ 25 ⁇ The through hole 25.
  • the heating element 20a is provided with the heating layer 22a on the side surface of the base layer 21a close to the aerosol generating substrate, so as to realize the protection and heat insulation of the heating layer 22a by the isolation layer 24a. .
  • FIG 12 shows a heating element 20b in some embodiments of the present invention.
  • the heating element 20b is similar to the heating element 20 described above. It may include a base layer 21b having a first surface and a second surface opposite to the first surface.
  • the two heating layers 22b formed on the first surface and the second surface of the base layer 21b, the protective layer 23b and the isolation layer 24b formed on the surfaces of the two heating layers 22b, and the plurality of layers are formed on the outer surface of the isolation layer 24b.
  • the surface penetrates to the through hole 25b with capillary force on the outer surface of the protective layer 23b.
  • the heating layer 22b distributed on the first surface is mainly used for atomizing the aerosol generating substrate
  • the heating layer 22b distributed on the second surface is mainly used for preheating the aerosol generating substrate and reducing the viscosity of the aerosol generating substrate. Increase the catheterization rate.
  • the two heating layers 21b can be electrically controlled at the same time or independently.
  • the resistance and shape of the two heating layers 21b can be the same or different, and can be set according to actual needs.
  • FIG. 13 shows a heating element 20c in some embodiments of the present invention.
  • the heating element 20c is similar to the heating element 20 described above. It may include a base layer 21c having a first surface and a second surface opposite to the first surface.
  • the heat generating layer 22c formed on the first surface of the base layer 21c and a plurality of through holes 25c having capillary force penetrating the base layer 21c and the heat generating layer 22c.
  • the heating element 20c can be suitable for use in situations where heat insulation and protection are not severe.
  • FIG 14 shows a heating element 20d in some embodiments of the present invention.
  • the heating element 20d includes a cylindrical base layer 21d, a heating layer 22d formed on the inner surface of the base layer 21d, and a surface of the heating layer 22d.
  • the longitudinal axis of the through hole 25d coincides with the normal line of the base layer 21d.
  • Both the inner surface and the outer surface of the base layer 21d may be smooth cylindrical surfaces in some embodiments.
  • the heating element 20d is suitable to be set up longitudinally, with the accommodating cavity 32 of the atomizer 1 surrounding it.
  • the present invention provides an electronic atomization device with consistent atomization parameters, its atomizer, and heating element.
  • the atomization amount parameter refers to a fixed power, a fixed air pressure, and a sufficient amount of e-liquid supply. In this case, the amount of atomization per unit time.
  • the heating element in some embodiments of the present invention has the advantages of excellent liquid locking, liquid leakage prevention and the like.
  • the heating element in some embodiments of the present invention also has the advantage of preventing local high temperature and generating burnt smell.
  • the surface of the base layer is easy to be flat, so that the thickness of the heating layer can be very precise.
  • FIG. 15 shows a schematic diagram of a manufacturing method of the heating element 20 in some embodiments of the present application
  • FIG. 16 shows a heating element obtained by the manufacturing method of the heating element 20 in some embodiments of the present application.
  • 20 is a schematic cross-sectional view.
  • the manufacturing method of the heating element 20 includes the following steps:
  • the photosensitive glass substrate 26 has a plurality of holes to be formed 27 to form the through holes 25 of the heating body 20 during the manufacturing process.
  • the photosensitive glass substrate 26 may be lithium aluminum-silicate glass doped with metal elements such as silver and cerium.
  • the photosensitive glass substrate 26 has the advantages of high hardness, good chemical stability, and thermal stability. , Can make the produced heating element 20 not easy to be damaged, and the performance is more stable.
  • the photosensitive glass substrate 26 can also use other types of glass, as long as the photosensitive glass substrate 26 is sensitive to light and can be etched by the etchant at the same time, that is, the heating element 20 whose porosity can be precisely controlled can be manufactured according to this manufacturing method.
  • the material of the photosensitive glass substrate 26 should be a glass material with photosensitive characteristics.
  • the thickness of the photosensitive glass substrate 26 may be greater than 100 um.
  • the exposure process can adopt a mask exposure method, and the exposure process includes:
  • a light source and a mask plate are provided.
  • the mask plate has a light-transmitting area and a light-shielding area, and the shape of the light-transmitting area is adapted to the shape of the portion 27 to be formed on the surface of the photosensitive glass substrate 26.
  • the mask plate is placed on one side of the photosensitive glass substrate 26 so that the light-transmitting area of the mask plate is opposite to the portion 27 to be holed, and the light source is placed on the side of the mask plate away from the photosensitive glass substrate 26.
  • the light emitted by the light source passes through the mask plate and reaches the portion to be formed 27 for exposure.
  • the light source can be an ultraviolet light source with a wavelength of 290nm-360nm, which has high energy and can ensure the exposure effect.
  • a laser beam exposure method can also be used.
  • the laser beam has a strong directivity and is precisely controlled by an industrial computer.
  • the laser beam can accurately hit the portion 27 to be holed for exposure, which improves the exposure process. Accuracy.
  • the light source and the exposure mode there are other options for the light source and the exposure mode, as long as the portion 27 to be formed into a hole can be exposed to reduce the silver ions in the portion to be formed into a hole 27 to silver atoms.
  • the photosensitive glass substrate 26 is heated in an environment of 500° C. for 30 minutes to 2 hours. After the first heating, the silver atoms in the portion 27 to be holed will diffuse and form nanoclusters.
  • FIG. 17 shows a schematic diagram of the photosensitive glass substrate 26 after high-temperature tempering treatment.
  • the portion 27 of the photosensitive glass substrate 26 to be formed forms a microcrystalline region of lithium silicate, and the portion 27 to be formed Its performance is different from that of other parts, and it is more likely to be corroded by etchant.
  • the high-temperature tempering process can also have other methods, such as performing high-temperature tempering treatment on the photosensitive glass substrate 26 at 500° C.-600° C., and heating to form a crystallite area in one step.
  • the heating is divided into two times, so that the portion 27 to be holed can be formed into a microcrystalline area more fully, so that a more regular through hole 25 can be formed after the etching process.
  • an etching solution is provided to perform an etching process to remove the portion 27 of the photosensitive glass substrate 26 to be formed.
  • FIG. 18 shows a schematic cross-sectional view of the photosensitive glass substrate 26 after etching.
  • the hole portion 27 to be formed extends from one surface of the photosensitive glass substrate 26 to the opposite surface. Therefore, after the etching process, the photosensitive glass forms a plurality of elongated through holes 25 with capillary force, and the through holes 25 penetrate the photosensitive glass.
  • the substrate 26 is provided to perform an etching process to remove the portion 27 of the photosensitive glass substrate 26 to be formed.
  • the etching solution may be an acidic etching solution based on a hydrofluoric acid solution, or an alkaline etching solution based on potassium hydroxide. Since the portion 27 to be holed of the photosensitive glass substrate 26 forms a microcrystalline region of lithium silicate, the etching rate of the portion 27 to be holed by the etching solution is 20-50 times higher than that of other parts of the photosensitive glass substrate 26. By controlling the time of the etching process, the etching is stopped when the hole portion 27 to be formed is removed, that is, the hole portion 27 to be formed can be removed to form the through hole 25, and other parts of the photosensitive glass substrate 26 can be prevented from being corroded.
  • the aperture of the through hole 25 is controlled to be between 5 um and 50 um, and the hole depth ratio of the through hole 25 is greater than or equal to 5:1.
  • the hole diameter of the through hole 25 can be reasonably configured to avoid that the hole diameter of the through hole 25 is too small, the produced heating element 20 has poor liquid conductivity, or the through hole 25 has an excessively large hole diameter, the produced heating element 20 is easy to
  • the apertures of the through holes 25 in each part of the photosensitive glass substrate 26 may be equal or unequal.
  • the ratio of the center distance between two adjacent through holes 25 to the aperture of the through holes 25 is less than or equal to 2:1 to ensure that the through holes 25 have sufficient distribution density, so that the heating element 20 has a high temperature atomization. Sufficient fuel supply capacity.
  • the center distance between any two adjacent through holes 25 can be the same or different, and when the center distance between any two adjacent through holes 25 is different, the distance between any two adjacent through holes 25
  • the ratio of the minimum center distance to the aperture of the two through holes 25 is less than or equal to 2:1. It can be understood that the size and location of the through hole 25 can be obtained by setting the size and location of the portion 27 to be formed during the manufacturing process.
  • the through hole 25 can also have different shapes.
  • the axis of the through hole 25 is perpendicular to the surface of the photosensitive glass substrate 26, while in the embodiment shown in FIG. 3, the axis of the through hole 25 can also be inclined to the photosensitive glass substrate 26.
  • the shape of the through hole 25 may also be a truncated cone shape, a dumbbell shape, or the like.
  • the shape of the through hole 25 can be changed by adjusting the shape of the portion 27 to be formed and the angle of the exposure process.
  • the axis of the portion to be holed 27 is also inclined to the axis of the photosensitive glass substrate 26.
  • a light source and a mask are used for exposure processing, a surface light source can be used, so that the light emitted by the light source is irradiated on the photosensitive glass substrate 26 in a direction parallel to the axis of the portion 27 to be formed. In other words, the emission direction of the light source is parallel to the direction to be formed.
  • the axis of the hole-forming portion 27 If a laser beam is used for the exposure process, the direction of the laser beam is controlled to irradiate parallel to the axis of the portion 27 to be holed.
  • the exposure time or exposure intensity of the portion to be formed 27 is controlled to change gradually from the axis of the portion to be formed 27 to the edge, so that the exposure degree of different positions in the exposure area changes gradually. , The formation of microcrystalline regions with gradual thickness. Furthermore, after the etching process, a truncated cone-shaped through hole 25 whose inner wall is inclined to the surface of the photosensitive glass substrate 26 is formed.
  • the shape of the photosensitive glass substrate 26 is also not limited.
  • the shape of the photosensitive glass substrate 26 may be cylindrical, and the area to be holed is arranged around the photosensitive glass substrate 26.
  • the light source or laser beam surrounds the photosensitive glass substrate 26 from the outside so that the parts 27 to be formed holes in different directions can be exposed.
  • the heating layer 22 can generate heat when energized, so that the produced heating element 20 can heat the atomized aerosol generating substrate.
  • the heating layer 22 can be formed on the surface of the photosensitive glass substrate 26 by means of physical vapor deposition (PVD), chemical vapor deposition (CVD), electroless plating, electroplating, or printing-sintering, and the material of the heating layer 22 can be It is nickel, chromium, silver, palladium, ruthenium, platinum, gold, molybdenum and other simple metals or alloys of two or more of them. It can also be non-metallic materials such as graphene, conductive ceramics or conductive polymers.
  • the shape of the heating layer 22 is not limited. As shown in FIG. 16, the heating layer 22 may extend in a planar shape on the surface of the photosensitive glass substrate 26, that is, the heating layer 22 covers the surface of the photosensitive glass substrate 26. Of course, the heating layer 22 can also cover only a part of the surface of the photosensitive glass substrate 26. For example, in some embodiments, the through hole 25 is formed in the middle part of the photosensitive glass substrate 26, and the heating layer 22 covers the middle of the surface of the photosensitive glass substrate 26. Part, only the middle part of the produced heating element 20 can heat the atomized aerosol generating substrate. As shown in FIG. 19, the heating layer 22 can also extend in a continuous line on the surface of the photosensitive glass substrate 26, which can generate heat and save the cost of the heating element 20.
  • the temperature field distribution of the heating layer 22 can be controlled by controlling the extension path of the heating layer 22. For example, by making the heating layer 22 uniformly distributed in each part, the temperature field of each part of the heating layer 22 is made equal. Or by making the coverage area of the heating layer 22 different in each part, for example, the coverage area of the heating layer 22 on the surface of the photosensitive glass substrate 26 in the direction toward the periphery is gradually changed, thereby making the temperature field of the heating layer 22 prepared The gradient changes from the middle to the periphery.
  • the heating layer 22 may cover part of the area where the through hole 25 is located, and during the process of forming the heating layer 22, the forming material of the heating layer 22 may be sputtered or extended to the location of the through hole 25.
  • the thickness of the heating layer 22 is controlled to be smaller than the aperture of the through holes 25, for example, the thickness of the heating layer 22 is Between 500nm-5um. Therefore, when the forming material of the heating layer 22 is sputtered or extended to the position of the through hole 25, it will be deposited on the sidewall of the through hole 25. Since the thickness of the heating layer 22 is smaller than the hole diameter of the through hole 25, the forming material of the heating layer 22 will not block the through hole 25, so as to ensure that the through hole 25 in the area covered by the heating layer 22 still has the ability to conduct oil.
  • the manufacturing method of the heating body 20 further includes:
  • An electrode 28 is provided on the surface of the photosensitive glass substrate 26.
  • the electrode 28 includes a positive electrode and a negative electrode.
  • the two electrodes 28 are respectively located at two ends of the heating layer 22 and are electrically connected to the heating layer 22.
  • the heating layer 22 can be connected to the power supply circuit through the electrode 28, so that the heating layer 22 generates heat.
  • the electrodes 28 can be formed on both ends of the heating layer 22 by printing electronic paste or electroplating.
  • the material of the electrode 28 may be an alloy formed of one or more of metal materials such as copper, nickel, gold, silver, or tin, or may be a multilayer deposition of elemental metals.
  • the manufacturing method of the heating element 20 may further include: disposing a protective layer 23 on the heating layer 22.
  • the protective layer 23 can also extend linearly, that is, the protective layer 23 only covers the heating layer 22 and does not cover the surface of the photosensitive glass substrate 26.
  • the heat generating layer 22 can be protected, and the material of the protective layer 23 can also be saved.
  • the surface of the photosensitive glass substrate 26 away from the heating layer 22 can also be provided with an isolation layer 24, the isolation layer 24 can also be provided on the heating layer 22, and both sides of the photosensitive glass substrate 26 can also be provided.
  • the heating layer 22 is provided, and more specific arrangements can be obtained from the setting of the heating elements 20 in the above-mentioned embodiments, which will not be repeated here.
  • a plurality of heating elements 20 may be formed on one photosensitive glass substrate 26, and the manufacturing method of the heating elements 20 further includes ,
  • the photosensitive glass substrate 26 has been cut to form a plurality of independent heating elements 20.
  • a plurality of identical units are arranged on the photosensitive glass substrate 26.
  • each unit forms a heating element 20, that is, a plurality of heating elements 20 arranged in sequence are formed on the photosensitive glass substrate 26.
  • the arrangement order of the heating elements 20 and the shape of the photosensitive glass substrate 26 are not limited. For example, in the embodiment shown in FIG. 20 and FIG.
  • the heating elements 20 are closely arranged in a square matrix, which can save the material of the photosensitive glass substrate 26.
  • the photosensitive glass substrate 26 can be any suitable shape such as a circle or a square.
  • a single heating element 20 after being cut, has a length of 5mm-10mm, a width of 3mm-6mm, and a thickness of 0.1-0.7mm.
  • a plurality of through holes 25 with capillary force are formed on the photosensitive glass substrate 26, so that the porosity of the formed heating element 20 can be accurately controlled, so that the heating element 20 and including the heating element 20 can be precisely controlled.
  • the atomization parameters of the atomizer and atomization device are consistent.
  • the heating element 20 is not limited to being produced by the above-mentioned manufacturing method of the heating element 20, and the heating element 20 can be formed by engraving the through hole 25 in the base layer by a method such as laser engraving.
  • the through hole 25 is formed by chemical etching. During the processing, stress concentration is not easily generated around the through hole 25, and the shape of the through hole 25 can be more regular and complete.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the first feature "on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediate medium get in touch with.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Resistance Heating (AREA)

Abstract

一种发热体(20)的制造方法,包括如下步骤:提供光敏玻璃基板(26),光敏玻璃基板(26)上具有多个待成孔部分(27);对光敏玻璃基板(26)上的待成孔部分(27)进行曝光处理;对光敏玻璃基板(26)在500℃-600℃下进行高温回火处理;提供蚀刻液进行蚀刻处理,去除待成孔部分(27),以形成多个具有毛细作用力的纵长形通孔(25),通孔(25)贯穿光敏玻璃基板(26);在光敏玻璃基板(26)的表面上设置发热层(22)。

Description

发热体的制造方法 技术领域
本发明涉及雾化装置领域,特别是涉及一种发热体的制造方法。
背景技术
电子雾化装置,一般用于模拟吸烟物品或用于治疗呼吸道疾病的吸入药剂的吸入器。电子雾化装置包括雾化器和电源,雾化器设有发热体用于雾化气溶胶生成基质。
灯芯是现有的一种加热体,灯芯使待雾化的液态气溶胶生成基质通过毛细作用抵达加热丝。灯芯大多由玻璃纤维制成,单个的玻璃纤维会轻易折断,因此使用者有可能吸入松动的或松脱的纤维碎片。
多孔陶瓷加热体因为温度稳定性较高,相对更安全,因此越来越受到市场的欢迎。发热体的加热功率和陶瓷体的参数例如导热系数、孔隙率、渗透率等配合设置,但多孔陶瓷在批量生产中,孔隙率的范围波动范围比较大,加热功率难以精准匹配,造成同一批出厂的电子雾化装置雾化效果并不一致。
另外,因为多孔陶瓷锁液能力较差,容易漏油。多孔陶瓷表面粗糙度较大,发热膜的厚度难以均匀,造成局部高温,产生干烧现象。
发明内容
根据本申请的各种实施例,提供一种发热体的制造方法。
一种发热体的制造方法,包括如下步骤:
提供光敏玻璃基板,所述光敏玻璃基板上具有多个待成孔部分;
对所述光敏玻璃基板上的待成孔部分进行曝光处理;
对所述光敏玻璃基板在500℃-600℃下进行高温回火处理;
提供蚀刻液进行蚀刻处理,去除所述待成孔部分,以形成多个具有毛细作用力的纵长形通孔,所述通孔贯穿所述光敏玻璃基板;
在所述光敏玻璃基板的表面上设置发热层。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请一些实施例中的雾化器的纵向剖面结构示意图;
图2为图1所示雾化器的发热体的剖面结构示意图;
图3为不同实施例中的通孔的形状示意图;
图4为不同实施例中的通孔的分布示意图;
图5为烟油成份的沸点的分布示意图;
图6为发热体的温度场分布示意图;
图7为发热体在一些实施例中随着时间变化的温升曲线图;
图8为发热体在一些实施例中随着厚度变化的温度变化曲线图;
图9为发热体在另一些实施例中随着时间变化的温升曲线图;
图10为发热体在另一些实施例中随着厚度变化的温度变化曲线图;
图11为本申请另一些实施例中的发热体的纵向剖面结构示意图;
图12为本申请再一些实施例中的发热体的纵向剖面结构示意图;
图13为本申请还一些实施例中的发热体的纵向剖面结构示意图;
图14为本申请再一些实施例中的发热体的纵向剖面结构示意图;
图15为本申请一些实施例中发热体的制造方法的示意图;
图16为本申请有一些实施例中发热体的纵向剖面结构示意图;
图17为本申请一些实施例中高温回火处理后的示意图;
图18为本申请一些实施例中时刻处理后的示意图;
图19为本申请一些实施例中发热体另一角度的示意图;
图20为本申请一些实施例中光敏玻璃基板形成多个发热体的示意图;
图21为本申请另一些实施例中光敏玻璃基板形成多个发热体的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
图1示出了本发明一些实施例中的电子雾化装置,该电子雾化装置具有优良的一致性的雾化量参数,其可包括雾化器1以及与雾化器1可拆卸地连接的电源装置2,该雾化器1用于收容烟油或药剂等气溶胶生成基质,并加热雾化该气溶胶生成基质。该电源装置2用于给该雾化器1供电,并控制对电子雾化装置进行控制。可以理解地,电源装置2并不局限于与雾化器1可拆卸地相连接,两者也可以连成一体。
该雾化器1在一些实施例中可包括底座10、安装于该底座10上的发热体20以及结合于该底座10上的壳体30。底座10与发热体20的下侧面之间可形成有供雾气和空气相混合的雾化腔11,底座10上还可形成有将雾化腔11与外界相连通的进气口110。该发热体20可用于吸取并在通电后加热雾化容置腔32中的气溶胶生成基质。壳体30中可形成用于将雾气和空气的混合物导出的气流通道31,该气流通道31与雾化腔11的出气侧相连通。壳体30中还可形成用于存储诸如烟油等气溶胶生成基质的容置腔32,该容置腔32与发热体20的上侧面导液连接。可以理解地,发热体20并不局限于图示的水平布置,其也可以竖立布置。
该电源装置2在一些实施例中可包括与雾化器1可拆卸地相连接的壳体201以及设置于该壳体201内的可充电或非可充电的电池202和控制电路203,该控制电路203可根据设定的雾化量控制电池202提供对应的预设功率。
图2示出了本发明一些实施例中的发热体20,该发热体20具有优良的锁液功能,其被配置为孔隙率范围精准可控。如图所示,该发热体20在一些实施例中可包括具有第一表面(图示的底面)和与该第一表面相对的第二表面(图示的顶面)的基体层21、形成于基体层21的该第一表面上的发热层22、形成于该发热层22表面的保护层23、形成于该基体层21的第二表面上的隔离层24以及多数个由隔离层24外表面贯通至保护层23外表面的具有毛细作用力的纵长型通孔25。
基体层21在一些实施例中可呈平板状,其包括其上述的第一表面和第二表面可均为平坦的表面,通孔25在一些实施中可呈圆柱状,其具有一个直线型纵轴线,该纵轴线优选地与该第一表面和第二表面相垂直。可以理解地,通孔25也可以设置成其他规则的几何形状。由于通孔25被设置呈规则的几何形状,因此通孔25在发热体20的体积能够计算得出,从而也可以整个发热体20的孔隙率,使得同类产品的发热体20的孔隙率的一致性能够得到良好的保 证。
基体层21在一些实施例中可为玻璃层、致密陶瓷层、或者合适的其他材料层,其优选地具有致密的基体、光滑的表面以及规则的形状(例如,矩形板状、圆形板状、圆筒状等规则的几何形状),以便更好的控制和计算孔隙率等参数。在一些实施例中,当该基体层21为玻璃层时,其可以是玻璃陶瓷层、普通玻璃层或者是石英玻璃层,其导热系数范围可为0.1W/mK-5W/mK,优选地为0.3W/mK-5W/mK。在一些实施例中,该发热体20的厚度优选地在0.1mm-10mm之间,孔隙率0.2-0.8。基体层21采样致密的基体,表示基体层21的实体部分本身并不导液,让整个结构的孔隙率通过加工通孔25来实现,以保证同种发热体20的孔隙率具备优良的一致性,能够较好地克服类似烧结式陶瓷等多孔体的孔隙率难以精确控制的弊病。
在一些实施例中,该发热层22的厚度范围可为1μm-200μm,其电阻范围可为0.1-10欧姆,优选地为0.4-3欧姆。发热层22的温度场可以是均匀的,也可以是分区或梯度变化。在一些实施例中,发热层22的二侧分别设有正电极和负电极,正电极、负电极分别与电源装置2电连接。该发热层22材料可以是镍、铬、银、钯、钌、铂等单质金属或其中两种及以上金属形成的合金。
具有毛细作用力的通孔25的轴线在一些实施例中可为直线,且与基体层21呈垂直布置。具有毛细作用力的通孔25在一些实施例可呈圆柱状,其孔径范围优选地可为1μm-200μm。该发热体20在使用过程中,这些具有毛细作用力的通孔25的一端直接与容置在容置腔的气溶胶生成基质(烟油)接触,以经由毛细力将气溶胶生成基质吸取至发热体20中。当基体层21为玻璃时,该具有毛细作用力的通孔25可采用激光诱导的深度蚀刻的方法形成,其也可以采用光敏玻璃曝光、回火、蚀刻等组合工艺成型。
可以理解地,具有毛细作用力的通孔25也可以是多种不同形态,如图3所示,具有毛细作用力的通孔25并不局限于图3a所示的垂直式圆柱状,其可以是图3b所示的倾斜式圆柱状、图3c所示的圆台状、图3d所示的倒圆台状以及图3e所示的两端大中间小的哑铃状。优选地,通孔25的形状以方便制造及方便计算通孔体积为优先考虑方向。
如图4所示,具有毛细作用力的通孔25也不限于同一尺寸,其也可以采用不同尺寸进行不同的搭配。不同的通孔25大小和布置密度可以改变表面热流密度,同时影响导油速率,可以通过调节表面通孔25分布来设计表面温度场,提升发热体20的一致性和抗干烧能力。
如图4a和图4b所示,具有毛细作用力的通孔25均呈矩形阵列排列;其中,图4a所示的方案中,中部区域的具有毛细作用力的通孔25的孔径大于两侧区域的具有毛细作用力的通孔25的孔径;图4b所示的方案中,中部区域的具有毛细作用力的通孔25的孔径小于两侧区域的具有毛细作用力的通孔25的孔径。如图4c和图4d所示,具有毛细作用力的通孔25均呈圆形阵列排列;其中,图4c所示的方案中,中部区域的具有毛细作用力的通孔25的孔径大于外围区域的具有毛细作用力的通孔25的孔径;图4d所示的方案中,中部区域的具有毛细作用力的通孔25的孔径小于外围区域的具有毛细作用力的通孔25的孔径。
在一些实施例中,发热层22的温度场由发热层22中心部位往周边部位的方向梯度变化。如此,可以不同区域雾化沸点不同的烟油成分,口感更佳。具体如图5所示,以气溶胶生成基质烟油为例,其中包含不同沸点的烟油成分,包括沸点在250度左右的尼古丁、沸点在180度左右的丙二醇、沸点在290度左右的丙三醇、沸点在150度左右的乳酸乙酯、沸点在200度左右的γ-戊内酯、沸点在290度左右的柠檬酸三乙酯、沸点在250度左右的苯甲酸、沸点在270左右的大马酮以及沸点在170度左右的2,3,5-三甲基吡嗪。
为此设置图6所示的不同区域的温度分布场。其中,图6a和图6b表示温度场是由中部相两侧呈梯度递减设置;图6c和图6d表示温度场由中部向外围呈梯度递减。可以理解地,温度场并不局限于由中部向周边梯度递减,在一些场合,也可以梯度增加。
隔离层24用于将基体层21与气溶胶生成基质相隔离,具有隔热、防腐蚀的作用。隔离层24的导热系数范围在一些实施例中可为0.01W/mK-2W/mK,其厚度范围在一些实施例可为0.1μm-100μm。隔离层24在一些实施例中可以是采用纳米氧化铝、纳米氧化锆、或纳米氧 化铈等多孔材料。保护层23在一些实施例中用于防止或减少烟油和发热层22接触,避免雾化气带出发热层22中的对人体有害物质。
在一些实施例中,具有毛细作用力的通孔25的存在还可以提升发热体20的锁液能力,在一些实施例中,具有毛细作用力的通孔25的锁液能力与气溶胶生成基质的表面张力成正比关系。表面张力越大,锁液能力越强。为了更好的锁油,防漏液,适配的烟油等气溶胶生成基质的表面张力可为10mN/m-75mN/m,优选地为38mN/m-65mN/m。
在一些实施例中,根据设定的雾化量控制电源提供对应的预设功率;其中,预设功率与所有具有毛细作用力的通孔25的体积、气溶胶生成基质的黏度相关联。由于基体层25内的具有毛细作用力的通孔25的结构形状和尺寸具有很好的一致性,毛细导液速率在雾化过程中非常稳定,通过控制功率可以达到精准控制每口抽吸的雾化量。另外,雾化过程中具有毛细作用力的通孔25导油供油充分,速率稳定,供油量与时间有很强的对应关系,通过时间控制也可以达到对剂量的精准控制。
在一些实施例中,提供了一种电子雾化装置,其气溶胶生成基质黏度范围为40cP-1000cP,通过配置发热体20,令得发热体20远离气溶胶生成基质一侧的工作温度范围可为100℃-350℃,发热体20靠近气溶胶生成基质一侧的工作温度范围可为22℃-100℃。具体地,可以设定呈矩阵排列的具有毛细作用力的通孔25的孔径为10μm,孔间距为20μm,玻璃基体层21的厚度为1500μm、长度9.9mm、5.49mm、发热层厚度为10μm,保护层和隔离层的厚度合计50μm,此时经过测试,发热体20雾化面(图1所示的底面)和背面(图1所示的顶面)的温升曲线如图7所示,此时,第一口抽吸背面最高温度约为90度。发热体20的表面温度均匀,内部沿厚度方向的温降约为169度,其温度沿厚度方向的变化曲线如图8所示。
在另一些实施例中,提供了一种电子雾化装置,其气溶胶生成基质黏度范围为1000cP-10000cP,通过配置发热体20,令得发热体20远离容置腔32中的气溶胶生成基质一侧的工作温度范围为150℃-250℃,发热体20靠近容置腔32中的气溶胶生成基质一侧的工作温度范围为80℃-150℃。具体地,可以设定呈矩阵排列的具有毛细作用力的通孔25的孔径为10μm,孔间距为20μm,玻璃基体层21的厚度为1000μm、长度8.03mm、4.03mm、发热层厚度为10μm,保护层和隔离层的厚度合计50μm。发热体20雾化面(远离气溶胶生成基质一侧的表面)和背面(靠近气溶胶生成基质一侧的表面)的温升曲线如图9所示,此时,第一口抽吸背面最高温度约为107.7度。发热体20的表面温度均匀,内部沿厚度方向的温降约为100度,其温度沿厚度方向的变化曲线如图10所示。
在一些实施例中,提供了一种电子雾化装置,气溶胶生成基质黏度范围为0.1cP-40cP,通过配置发热体20,令得发热体20远离容置腔32中的气溶胶生成基质一侧的工作温度范围为70℃-150℃,发热体20靠近容置腔32中的气溶胶生成基质一侧的工作温度范围为22℃-40℃。发热体20具体配置可以参照上述,在此不再赘述。
图11示出了本发明一些实施例中的发热体20a,该发热体20a与上述发热体20类似,其可包括具有第一表面和与该第一表面相对的第二表面的基体层21a、形成于基体层21a的该第二表面上的发热层22a、形成于该发热层22a表面的隔离层24a以及多数个由隔离层24a外表面贯通至基体层21a的第一表面的具有毛细作用力的通孔25。该发热体20a与上述发热体20a相比,是将发热层22a设置到了基体层21a靠近气溶胶生成基质的一侧表面上了,以藉由隔离层24a实现对发热层22a的保护和隔热。
图12示出了本发明一些实施例中的发热体20b,该发热体20b与上述发热体20类似,其可包括具有第一表面和与该第一表面相对的第二表面的基体层21b、分别形成于基体层21b的该第一表面和该第二表面上的两个发热层22b、分别形成于该两个发热层22b表面的保护层23b和隔离层24b以及多数个由隔离层24b外表面贯通至保护层23b外表面的具有毛细作用力的通孔25b。其中,分布于第一表面的发热层22b主要用于雾化气溶胶生成基质,分布于第二表面上的发热层22b主要用于预热气溶胶生成基质,降低气溶胶生成基质的粘度,以提高导液速率。该两个发热层21b可同时电气控制,也可以独立控制,两者的电阻、形状可 以相同,也可以不相同,具体可以根据需要设置。
图13示出了本发明一些实施例中的发热体20c,该发热体20c与上述发热体20类似,其可包括具有第一表面和与该第一表面相对的第二表面的基体层21c、形成于该基体层21c的该第一表面上的发热层22c以及贯通该基体层21c和该发热层22c的多数个具有毛细作用力的通孔25c。该发热体20c可以适合一些对隔热、保护不严苛的情景下使用。
图14示出了本发明一些实施例中的发热体20d,该发热体20d包括圆筒状的基体层21d、形成于基体层21d的内表面上的发热层22d、形成于该发热层22d表面的保护层23d、形成于该基体层21d的外表面上的隔离层24d以及多数个由隔离层24d外表面贯通至保护层23d内表面的具有毛细作用力的纵长型通孔25d。优选地,通孔25d的纵轴线与该基体层21d的法线相重合。基体层21d的内表面和外表面在一些实施例中均可为光滑的圆柱面。该发热体20d适合纵向设立,并让雾化器1的容置腔32围绕在周围。
本发明在一些实施例中提供了一种雾化参数一致性的电子雾化装置及其雾化器、发热体,该雾化量参数是指在固定功率、固定气压、烟油供应量充足的情况下,单位时间内的雾化量。
本发明在一些实施例中的发热体具有优良的锁液、防漏液等优点。
本发明在一些实施例中的发热体还具有防止局部高温,产生焦味的优点。另外,基体层表面容易平整,从而发热层的厚度可以做到很精准。
请参见图15和图16,图15示出了本申请一些实施例中发热体20的制造方法的示意图,图16示出了本申请一些实施例中发热体20的制造方法制得的发热体20的剖面示意图。发热体20的制造方法包括如下步骤:
S110,提供光敏玻璃基板26。光敏玻璃基板26上具有多个待成孔部分27,以在制造过程中形成发热体20的通孔25。
在一些实施例中,光敏玻璃基板26可以为掺杂银、铈等金属元素的锂铝-硅酸盐玻璃,如此,光敏玻璃基板26具有高硬度、良好的化学稳定性和热稳定性等优点,能够使制得的发热体20不易受损,性能更稳定。当然,光敏玻璃基板26也可以采用其他类型的玻璃,只要光敏玻璃基板26对光照敏感,同时能够被蚀刻液蚀刻,即能够依此制造方法制得孔隙率大小可精确控制的发热体20即可,换言之,光敏玻璃基板26的材料应当为具有光敏特性的玻璃材料。另外,为保证制得的发热体20具有足够的结构强度,光敏玻璃基板26的厚度可大于100um。
S120,对光敏玻璃基板26上的待成孔部分27进行曝光处理。在曝光处理过程中,光敏玻璃基板26的待成孔部分27中的铈离子接受光子后释放电子,而银离子得到电子后被还原成银原子。
具体地,曝光处理可采用掩模板曝光的方式,则曝光处理包括:
提供光源及掩模板,掩模板具有透光区域和遮光区域,透光区域的形状与待成孔部分27于光敏玻璃基板26表面的形状像适应。将掩模板置于光敏玻璃基板26的一侧,使掩模板的透光区域与待成孔部分27相对,光源置于掩模板背离光敏玻璃基板26的一侧。光源发射的光线透过掩模板后到达待成孔部分27进行曝光。光源可采用波长在290nm-360nm波段的紫外光光源,具有较高的能量,能够保证曝光效果。
在另一些实施例中,也可采用激光束曝光的方式,激光束的方向性强,通过工控机进行精密控制,能够使激光束精确地打到待成孔部分27进行曝光,提升曝光处理的精度。当然,光源以及曝光方式还可以有其他的选择,只要能够对待成孔部分27进行曝光,以将待成孔部分27的银离子还原成银原子即可。
S130,高温回火处理,包括:
第一次加热,将光敏玻璃基板26在500℃的环境下加热30分钟-2小时。经第一次加热后,待成孔部分27的银原子会发生扩散并形成纳米簇。
第二次加热,将光敏玻璃基板26在600℃的环境下加热30分钟-2小时。经第二次加热后,形成纳米簇的银原子将形成锂硅酸盐的微晶区域。参考图17所示,图17即示出了光敏 玻璃基板26经高温回火处理后的示意图,光敏玻璃基板26的待成孔部分27形成锂硅酸盐的微晶区域,待成孔部分27的性能与其他部分性能不同,更容易被蚀刻液腐蚀。
当然,高温回火处理过程还可有其他方式,例如对光敏玻璃基板26在500℃-600℃下进行进行高温回火处理,一步加热形成微晶区域。分为两次加热,能够使待成孔部分27更充分地形成微晶区域,以在蚀刻处理后形成更规则的通孔25。
S140,提供蚀刻液进行蚀刻处理,去除光敏玻璃基板26的待成孔部分27。参考图17和图18所示,图18示出了经蚀刻处理后光敏玻璃基板26的剖面示意图。待成孔部分27由光敏玻璃基板26的一表面延伸至相对的另一表面,因而在蚀刻处理后,光敏玻璃形成多个具有毛细作用力的纵长形通孔25,通孔25贯穿光敏玻璃基板26。
具体地,蚀刻液可以采用以氢氟酸溶液为基础的酸性蚀刻液,也可以采用以氢氧化钾为基础的碱性蚀刻液。由于光敏玻璃基板26的待成孔部分27形成锂硅酸盐的微晶区域,蚀刻液对待成孔部分27的腐蚀速率比光敏玻璃基板26其他部分的腐蚀速率高20-50倍。通过对蚀刻处理的时间进行把控,当待成孔部分27被去除时则停止蚀刻,即能够去除待成孔部分27以形成通孔25,也能够避免光敏玻璃基板26的其他部分被腐蚀。
进一步地,在一些实施例中,通孔25的孔径控制在5um-50um之间,且通孔25的孔深比大于或等于5:1。如此,通孔25的孔径能够得到合理配置,以避免通孔25的孔径过小,制得的发热体20导液能力差,或者通孔25的孔径过大,制得的发热体20容易于通孔25处漏油的问题。一并参考图4所示,根据发热体20的不同制造需求,光敏玻璃基板26各部位的通孔25孔径可以相等,也可以不等,孔径的具体设置可参照上述各实施例的发热体20获得。另外,相邻两通孔25之间的中心距与通孔25的孔径之比小于或等于2:1,以保证通孔25有足够的分布密度,进而使发热体20在高温雾化时有充足的供油能力。当然,任意相邻的两通孔25之间的中心距可以相同,也可以不同,且当任意相邻的两通孔25之间的中心距不同时,任意相邻两通孔25之间的中心距的最小值与该两通孔25的孔径之比小于或等于2:1。可以理解的是,通孔25的尺寸及设置位置均可通过制造过程中对待成孔部分27的尺寸及位置的设置获得。
一并参考图3所示,根据发热体20的不同制造需求,通孔25还可以有不同的形状。例如,在图16所示的实施例中,通孔25的轴线垂直于光敏玻璃基板26的表面,而在图3所示的实施例中,通孔25的轴线还可倾斜于光敏玻璃基板26的表面,或者,通孔25的形状还可以为圆台状、哑铃状等形状。具体地,可通过调整待成孔部分27的形状以及曝光处理的角度改变通孔25的形状。例如,当通孔25的轴线倾斜于光敏玻璃基板26的表面时,待成孔部分27的轴线也倾斜于光敏玻璃基板26的轴线。若采用光源及掩模板进行曝光处理,则可以采用面光源,使光源发射的光线以平行于待成孔部分27的轴线的方向照射到光敏玻璃基板26上,换言之,光源的发射方向平行于待成孔部分27的轴线。若采用激光束进行曝光处理,则控制激光束的方向平行于待成孔部分27的轴线照射。而当通孔25的形状为圆台状时,控制待成孔部分27的曝光时间或曝光强度由待成孔部分27的轴线指向边缘的方向梯度变化,以使得曝光区域不同位置的曝光程度梯度变化,形成厚度渐变的微晶区域。进而在蚀刻处理后形成内壁倾斜于光敏玻璃基板26表面的圆台形状通孔25。
光敏玻璃基板26的形状也不限,例如,参考图14所示,在一些实施例中,光敏玻璃基板26的形状可以圆筒状,则待成孔区域环绕光敏玻璃基板26设置,在曝光处理的过程中,光源或激光束从外侧环绕光敏玻璃基板26以便不同方向的待成孔部分27均能得到曝光。
S150,在光敏玻璃基板26的表面上设置发热层22。发热层22能够在通电时产生热量,以使制得的发热体20能够加热雾化气溶胶生成基质。
具体地,可在光敏玻璃基板26的表面上通过物理气相沉积(PVD)、化学气相沉积(CVD)、化学镀、电镀或印刷-烧结等方式形成所述发热层22,且发热层22材料可以是镍、铬、银、钯、钌、铂、金、钼等单质金属或其中两种及以上金属形成的合金,也可以是石墨烯,导电陶瓷或导电高分子等非金属材料。
发热层22的形状不限,参考图16所示,发热层22可以于光敏玻璃基板26的表面呈面状延伸,即发热层22覆盖光敏玻璃基板26的表面。当然,发热层22也可仅覆盖光敏玻璃基板26表面的一部分,例如,在一些实施例中,通孔25形成于光敏玻璃基板26的中间部分,而发热层22覆盖光敏玻璃基板26表面的中间部分,则制得的发热体20仅中间部分能够加热雾化气溶胶生成基质。参考图19所示,发热层22还可以于光敏玻璃基板26的表面呈一连续的线状延伸,既能够产生热量,也能够节省发热体20的成本。需要说明的是,当发热层22呈一连续的线状延伸时,通过控制发热层22的延伸路径,可以控制发热层22的温度场分布。例如,通过使发热层22于各部分均匀分布,使得发热层22各部分的温度场相等。或通过使发热层22于各部分的覆盖面积不同,例如使发热层22于光敏玻璃基板26表面的中间指向周边的方向上的覆盖面积呈梯度变化,进而使制得的发热层22的温度场由中部指向周边的方向梯度变化。
可以理解的是,发热层22可能会覆盖部分通孔25所在的区域,则在形成发热层22的过程中,发热层22的形成材料可能会溅射或延伸至通孔25所在位置。为避免发热层22的形成材料封堵通孔25,影响通孔25的导油能力,在一些实施例中,控制发热层22的厚度小于通孔25的孔径,例如,发热层22的厚度在500nm-5um之间。由此,当发热层22的形成材料溅射或延伸至通孔25所在位置时,会沉积于通孔25的侧壁。由于发热层22的厚度小于通孔25的孔径,发热层22的形成材料不会封堵通孔25,以保证发热层22覆盖区域的通孔25依然具有导油能力。
进一步地,参考图19所示,为便于发热层22的通电,在一些实施例中,在设置发热层22之后,发热体20的制造方法还包括:
在光敏玻璃基板26的表面上设置电极28。电极28包括正、负两极,两个电极28分别位于发热层22的两端并与发热层22电性连接。当制得发热体20后,发热层22可通过电极28与供电电路连通,以使发热层22产生热量。具体地,可以通过印刷电子浆料或电镀等方式在发热层22的两端形成电极28。且电极28材料可以为铜、镍、金、银或锡等金属材料的其中一种或多种形成的合金,也可以是单质金属的多层沉积。
一并参考图2所示,发热体20的制造方法还可包括:在发热层22上设置一层保护层23。需要说明的是,当发热层22于光敏玻璃基板26的表面呈线状延伸时,保护层23也可以呈线状延伸,即保护层23仅覆盖发热层22而未覆盖光敏玻璃基板26表面的其他部分,即能够保护发热层22,也能够节省保护层23的材料。一并参考图11、图12所示,光敏玻璃基板26背离发热层22的表面还可设置有隔离层24,隔离层24也可设置于发热层22上,光敏玻璃基板26的两面也均可设置有发热层22,更多具体设置方式可由上述各实施例中发热体20的设置获得,此处不再赘述。
一并参考图20和图21所示,在一些实施例中,为提升加工效率,降低生产成本,一个光敏玻璃基板26上可形成有多个发热体20,则发热体20的制造方法还包括,切割光敏玻璃基板26已形成多个独立的发热体20。在未切割前,光敏玻璃基板26上排列有多个相同的单元,经上述各工艺后,每一单元形成一发热体20,即光敏玻璃基板26上形成多个依次排列的发热体20。且在未切割前,发热体20的排列顺序及光敏玻璃基板26的形状不限。例如,在图20和图21所示的实施例中,发热体20呈方形矩阵紧密排列,能够节省光敏玻璃基板26的材料。而光敏玻璃基板26可以为圆形、方形等任意适用形状。在一些实施例中,经切割后,单个发热体20的长度为5mm-10mm,宽度为3mm-6mm,厚度为0.1-0.7mm。
上述发热体20的制造方法,在光敏玻璃基板26上形成多个具有毛细作用力的通孔25,使得形成的发热体20的孔隙率大小可精确控制,进而使发热体20及包括发热体20的雾化器、雾化装置雾化参数具有一致性。
需要说明的是,发热体20不仅限于采用上述发热体20的制造方法制得,还可通过激光雕刻等方法于基体层雕刻通孔25形成发热体20。上述发热体20的制造方法,通过化学蚀刻形成通孔25,在加工过程中通孔25四周不易产生应力集中的现象,能够使通孔25的形状更 加规则完整。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种发热体的制造方法,包括如下步骤:
    提供光敏玻璃基板,所述光敏玻璃基板上具有多个待成孔部分;
    对所述光敏玻璃基板上的待成孔部分进行曝光处理;
    对所述光敏玻璃基板在500℃-600℃下进行高温回火处理;
    提供蚀刻液进行蚀刻处理,去除所述待成孔部分,以形成多个具有毛细作用力的纵长形通孔,所述通孔贯穿所述光敏玻璃基板;
    在所述光敏玻璃基板的表面上设置发热层。
  2. 根据权利要求1所述的发热体的制造方法,其特征在于,所述曝光处理包括:
    提供光源及掩模板,所述掩模板的透光区域的形状与所述待成孔部分相适配;所述光源透过所述掩模板照射所述待成孔部分;或者
    提供激光束,所述激光束照射所述待成孔部分。
  3. 根据权利要求2所述的发热体的制造方法,其特征在于,在步骤“提供光源及掩模板,所述掩模板的透光区域的形状与所述待成孔部分相适配”中,提供波长在290nm-360nm波段的紫外光光源。
  4. 根据权利要求2所述的发热体的制造方法,其特征在于,
    所述待成孔部分的轴线垂直或倾斜于所述光敏玻璃基板的表面,当提供光源及掩模板进行曝光处理时,提供发射方向平行于所述待成孔部分的轴线的面光源;或者
    所述待成孔部分的轴线垂直或倾斜于所述光敏玻璃基板的表面,当提供激光束进行曝光处理时,提供发射方向平行于所述待成孔部分的轴线的激光束。
  5. 根据权利要求1所述的发热体的制造方法,其特征在于,所述待成孔部分的曝光时间和/或曝光强度由所述待成孔部分的轴线指向边缘的方向梯度变化。
  6. 根据权利要求1所述的发热体的制造方法,其特征在于,在步骤“提供光敏玻璃基板,所述光敏玻璃基板上具有多个待成孔部分”中,提供包括掺杂银、铈元素的锂铝-硅酸盐玻璃。
  7. 根据权利要求6所述的发热体的制造方法,其特征在于,所述高温回火处理包括:
    第一次加热,对所述光敏玻璃基板进行500℃加热,持续时间为30分钟-2小时;
    第二次加热,对所述光敏玻璃基板进行600℃加热,持续时间为30分钟-2小时。
  8. 根据权利要求1所述的发热体的制造方法,其特征在于,在所述光敏玻璃基板的表面上设置发热层包括:
    在所述光敏玻璃基板的表面上通过物理气相沉积、化学气相沉积、化学镀、电镀或印刷-烧结的方式形成所述发热层。
  9. 根据权利要求1所述的发热体的制造方法,其特征在于,在步骤“在所述光敏玻璃基板的表面上设置发热层”中,形成材料包括银、铂、金、钯、镍、铬、钌、钼的其中一种或多种的任意组合的发热层;或者
    在步骤“在所述光敏玻璃基板的表面上设置发热层”中,形成材料包括石墨烯、导电陶瓷或导电高分子的发热层。
  10. 根据权利要求1所述的发热体的制造方法,其特征在于,
    在步骤“在所述光敏玻璃基板的表面上设置发热层”中,形成于所述光敏玻璃基板的表面呈面状延伸的发热层;或者
    在步骤“在所述光敏玻璃基板的表面上设置发热层”中,形成于所述光敏玻璃基板的表面呈一连续的线状延伸的发热层;或者
    在步骤“在所述光敏玻璃基板的表面上设置发热层”中,形成于所述光敏玻璃基板的表面呈多条并联的线状延伸的发热层。
  11. 根据权利要求1所述的发热体的制造方法,其特征在于,在所述光敏玻璃基板的表面上设置发热层之后,所述发热体的制造方法还包括:
    在所述光敏玻璃基板的表面上设置电极,所述电极位于所述发热层的两端,所述电极与 所述发热层电性连接。
  12. 根据权利要求11所述的发热体的制造方法,其特征在于,在步骤“在所述光敏玻璃基板的表面上设置电极”中,形成材料包括铜、镍、金、银、锡的其中一种或多种的任意组合的电极。
  13. 根据权利要求11所述的发热体的制造方法,其特征在于,在步骤“在所述光敏玻璃基板的表面上设置电极”中,形成单质金属多层沉积的电极。
  14. 根据权利要求1所述的发热体的制造方法,其特征在于,还包括:
    切割所述光敏玻璃基板以形成多个长度为5mm-10mm,宽度为3mm-6mm,厚度为0.1mm-0.7mm的发热体。
  15. 根据权利要求1-14任一项所述的发热体的制造方法,其特征在于,在步骤“提供蚀刻液进行蚀刻处理,去除所述待成孔部分,以形成多个具有毛细作用力的纵长形通孔,所述通孔贯穿所述光敏玻璃基板”中,提供包括氢氟酸溶液的酸性蚀刻液,或包括氢氧化钾的碱性蚀刻液。
  16. 根据权利要求1-14任一项所述的发热体的制造方法,其特征在于,在步骤“提供蚀刻液进行蚀刻处理,去除所述待成孔部分,以形成多个具有毛细作用力的纵长形通孔,所述通孔贯穿所述光敏玻璃基板”中,形成深宽比大于或等于5:1的通孔。
  17. 根据权利要求1-14任一项所述的发热体的制造方法,其特征在于,在步骤“提供蚀刻液进行蚀刻处理,去除所述待成孔部分,以形成多个具有毛细作用力的纵长形通孔,所述通孔贯穿所述光敏玻璃基板”中,形成最小中心距与孔径之比小于或等于2:1的通孔。
  18. 根据权利要求1-14任一项所述的发热体的制造方法,其特征在于,在步骤“在所述光敏玻璃基板的表面上设置发热层”中,形成厚度为500nm-5um的发热层。
  19. 根据权利要求1-14任一项所述的发热体的制造方法,其特征在于,在步骤“提供光敏玻璃基板”中,提供厚度大于100um的光敏玻璃基板。
  20. 根据权利要求1-14任一项所述的发热体的制造方法,其特征在于,在步骤“提供蚀刻液进行蚀刻处理,去除所述待成孔部分,以形成多个具有毛细作用力的纵长形通孔,所述通孔贯穿所述光敏玻璃基板”中,形成孔径在5um-50um之间的通孔。
PCT/CN2020/128515 2020-01-17 2020-11-13 发热体的制造方法 WO2021143328A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/072794 WO2021142786A1 (zh) 2020-01-17 2020-01-17 电子雾化装置及其雾化器和发热体
CNPCT/CN2020/072794 2020-01-17

Publications (1)

Publication Number Publication Date
WO2021143328A1 true WO2021143328A1 (zh) 2021-07-22

Family

ID=76809381

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/072794 WO2021142786A1 (zh) 2020-01-17 2020-01-17 电子雾化装置及其雾化器和发热体
PCT/CN2020/128515 WO2021143328A1 (zh) 2020-01-17 2020-11-13 发热体的制造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072794 WO2021142786A1 (zh) 2020-01-17 2020-01-17 电子雾化装置及其雾化器和发热体

Country Status (4)

Country Link
US (1) US20220338543A1 (zh)
EP (1) EP4085777A4 (zh)
CN (1) CN113141678A (zh)
WO (2) WO2021142786A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023005059A1 (zh) * 2021-07-26 2023-02-02 比亚迪精密制造有限公司 电子烟雾化芯、电子烟雾化芯的制备方法、电子烟雾化组件和电子烟
WO2023134196A1 (zh) * 2022-01-17 2023-07-20 惠州市新泓威科技有限公司 具有纳米金属镀膜层的雾化芯
WO2023134197A1 (zh) * 2022-01-17 2023-07-20 惠州市新泓威科技有限公司 具有定向微孔的雾化芯
EP4226783A4 (en) * 2021-12-30 2023-09-20 Shenzhen Smoore Technology Limited HEATING ARRANGEMENT, ATOMIZER AND ELECTRONIC ATOMIZING DEVICE
EP4266825A1 (en) * 2022-04-20 2023-10-25 Shenzhen Smoore Technology Limited Atomization core, atomizer, and electronic atomization device
WO2023209365A1 (en) * 2022-04-28 2023-11-02 Nicoventures Trading Limited Heater assembly and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022179233A1 (zh) * 2021-12-02 2022-09-01 深圳麦克韦尔科技有限公司 发热体组件、雾化器及电子雾化装置
CN218773343U (zh) * 2022-10-20 2023-03-31 东莞市克莱鹏雾化科技有限公司 分体式玻璃发热片及雾化装置
GB202217023D0 (en) * 2022-11-15 2022-12-28 Nicoventures Trading Ltd Heater assembly and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869630A (zh) * 2010-02-10 2013-01-09 生命生物科学有限公司 制造适合微细加工的光敏基底的方法
CN104053372A (zh) * 2012-11-12 2014-09-17 刘秋明 电子烟装置、电子烟及其雾化装置
CN106542733A (zh) * 2016-09-28 2017-03-29 北方夜视技术股份有限公司 微孔光学元件及其制备方法
CN209376696U (zh) * 2018-11-29 2019-09-13 深圳市合元科技有限公司 电子烟雾化器及包含该电子烟雾化器的电子烟
CN111109665A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014106590A1 (de) * 2014-05-09 2015-11-12 Aie Investments S.A. Elektrische Zigarette
CA3021544A1 (en) * 2016-06-20 2017-12-28 Philip Morris Products S.A. Vaporiser assembly for an aerosol-generating system
CN110234241B (zh) * 2017-02-24 2023-01-24 菲利普莫里斯生产公司 用于气溶胶生成系统中的气溶胶生成元件的模制安装
DE102017123870B4 (de) * 2017-10-13 2019-05-09 Hauni Maschinenbau Gmbh Verdampfereinheit für einen Inhalator, insbesondere für ein elektronisches Zigarettenprodukt
EP3753427A4 (en) * 2018-02-13 2021-09-08 Shenzhen Smoore Technology Limited ELECTRONIC CIGARETTE AND HEATING ARRANGEMENT AND HEATING ELEMENT OF IT
CN209498589U (zh) * 2019-01-05 2019-10-18 深圳市合元科技有限公司 雾化芯及电子烟
CN110250590A (zh) * 2019-06-22 2019-09-20 深圳市你我网络科技有限公司 一种电子烟烟雾器及电子烟

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869630A (zh) * 2010-02-10 2013-01-09 生命生物科学有限公司 制造适合微细加工的光敏基底的方法
CN104053372A (zh) * 2012-11-12 2014-09-17 刘秋明 电子烟装置、电子烟及其雾化装置
CN106542733A (zh) * 2016-09-28 2017-03-29 北方夜视技术股份有限公司 微孔光学元件及其制备方法
CN209376696U (zh) * 2018-11-29 2019-09-13 深圳市合元科技有限公司 电子烟雾化器及包含该电子烟雾化器的电子烟
CN111109665A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023005059A1 (zh) * 2021-07-26 2023-02-02 比亚迪精密制造有限公司 电子烟雾化芯、电子烟雾化芯的制备方法、电子烟雾化组件和电子烟
EP4226783A4 (en) * 2021-12-30 2023-09-20 Shenzhen Smoore Technology Limited HEATING ARRANGEMENT, ATOMIZER AND ELECTRONIC ATOMIZING DEVICE
WO2023134196A1 (zh) * 2022-01-17 2023-07-20 惠州市新泓威科技有限公司 具有纳米金属镀膜层的雾化芯
WO2023134197A1 (zh) * 2022-01-17 2023-07-20 惠州市新泓威科技有限公司 具有定向微孔的雾化芯
EP4266825A1 (en) * 2022-04-20 2023-10-25 Shenzhen Smoore Technology Limited Atomization core, atomizer, and electronic atomization device
WO2023209365A1 (en) * 2022-04-28 2023-11-02 Nicoventures Trading Limited Heater assembly and method

Also Published As

Publication number Publication date
US20220338543A1 (en) 2022-10-27
WO2021142786A1 (zh) 2021-07-22
EP4085777A4 (en) 2023-10-25
CN113141678A (zh) 2021-07-20
EP4085777A1 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2021143328A1 (zh) 发热体的制造方法
CN111109665A (zh) 电子雾化装置及其雾化器和发热体
CN114451586A (zh) 具有纳米金属镀膜层的雾化芯
CN114794566A (zh) 一种导液玻璃基体以及发热体的制备方法
CN112841745A (zh) 基于微孔陶瓷基体的雾化芯及含其的电子烟
WO2020248230A1 (zh) 电子雾化装置及其雾化器和发热组件
CN218185267U (zh) 发热体、雾化器及电子雾化装置
CN216701680U (zh) 雾化芯、雾化器及气溶胶发生装置
CN214283302U (zh) 一种高稳定性玻璃雾化器及电子烟
WO2023193644A1 (zh) 雾化芯、雾化器及气溶胶发生装置
TW202214125A (zh) 霧化裝置及其霧化元件
WO2022170727A1 (zh) 发热体、雾化组件及电子雾化装置
WO2022170726A1 (zh) 发热体、雾化组件及电子雾化装置
CN216983627U (zh) 具有纳米金属镀膜层的雾化芯
WO2022170728A1 (zh) 发热体、雾化组件及电子雾化装置
WO2023179258A1 (zh) 中心通孔导液的雾化芯
WO2022170725A1 (zh) 一种导液玻璃基体以及发热体的制备方法
CN218681990U (zh) 雾化芯、雾化器及气溶胶发生装置
CN114762540A (zh) 一种管式发热体、雾化器及电子雾化装置
CN114794565A (zh) 发热体、雾化组件及电子雾化装置
CN114794568A (zh) 发热体、雾化组件及电子雾化装置
CN114794567A (zh) 发热体、雾化组件及电子雾化装置
CN215347051U (zh) 基于微孔陶瓷基体的雾化芯及含其的电子烟
CN211672461U (zh) 雾化芯及电子雾化装置
CN114794569A (zh) 一种雾化芯、雾化器及其电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914727

Country of ref document: EP

Kind code of ref document: A1