WO2023005059A1 - 电子烟雾化芯、电子烟雾化芯的制备方法、电子烟雾化组件和电子烟 - Google Patents

电子烟雾化芯、电子烟雾化芯的制备方法、电子烟雾化组件和电子烟 Download PDF

Info

Publication number
WO2023005059A1
WO2023005059A1 PCT/CN2021/130136 CN2021130136W WO2023005059A1 WO 2023005059 A1 WO2023005059 A1 WO 2023005059A1 CN 2021130136 W CN2021130136 W CN 2021130136W WO 2023005059 A1 WO2023005059 A1 WO 2023005059A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
electronic cigarette
electronic
porous
core
Prior art date
Application number
PCT/CN2021/130136
Other languages
English (en)
French (fr)
Inventor
江品颐
徐述荣
杨伟强
吴学通
Original Assignee
比亚迪精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪精密制造有限公司 filed Critical 比亚迪精密制造有限公司
Priority to EP21951631.7A priority Critical patent/EP4349191A1/en
Publication of WO2023005059A1 publication Critical patent/WO2023005059A1/zh
Priority to US18/399,728 priority patent/US20240138478A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible

Definitions

  • the disclosure belongs to the technical field of electronic cigarette products, and in particular, the disclosure relates to an electronic cigarette core, an electronic cigarette component and an electronic cigarette.
  • the atomizing core is an important part of the electronic atomization device. It mainly includes a porous ceramic substrate and a porous heating element arranged on the surface of the porous ceramic substrate. Conducted to the porous heating element, the atomized liquid is atomized after being heated by the porous heating element.
  • An object of the embodiments of the present disclosure is to provide a new technical solution for an electronic cigarette core, an electronic cigarette component and an electronic cigarette.
  • an electronic smog core includes a porous ceramic substrate and a heating element
  • the porous ceramic substrate includes a liquid-absorbing surface and an atomizing surface
  • the heating element is arranged on On the atomizing surface
  • the heating body is a porous heating body, and the porosity of the porous heating body is less than or equal to 30%.
  • the porosity of the porous heating element is less than or equal to 10%.
  • the porosity of the porous heating element is less than or equal to 3%.
  • the pore diameter of the porous heating element is less than or equal to 10 ⁇ m.
  • the pore diameter of the porous heating element is less than or equal to 2 ⁇ m.
  • the porous heating element is disposed on the atomizing surface by printing or coating, and the printing includes screen printing or stencil printing.
  • the thickness of the porous heating element ranges from 40-200 ⁇ m.
  • a method for preparing an electronic cigarette wick comprising:
  • the slurry is arranged on the surface of the porous ceramic substrate for sintering, the sintering is carried out under a hydrogen and/or nitrogen protective atmosphere or under a vacuum condition with a degree of vacuum ⁇ 1 Pa, and the sintering temperature is 950 -1200°C.
  • the sintering is performed under a mixed atmosphere of hydrogen and nitrogen, and the sintering temperature is 1030-1200°C.
  • the glass powder includes 4%-15% Na 2 O, 0-2% MgO, 2%-15% Al 2 O 3 , 0%-7% K 2 O, 0%-15% CaO, 20%-90% SiO 2 ;
  • the conductive powder includes one or more of nickel-chromium-iron alloy, nickel-chromium alloy, nickel, silver, and palladium;
  • the organic solvent includes terpineol, butyl carbitol, butyl One or more of base carbitol acetate and DBE.
  • the ratio of the sum of the mass of the conductive powder and the glass powder to the mass of the organic solvent is (40-90):(10-60).
  • the slurry is provided on the surface of the porous ceramic substrate by printing or coating, and the printing includes screen printing or steel plate printing.
  • an electronic cigarette vaporizing core which is prepared by the preparation method described in the above-mentioned embodiments.
  • an electronic vaping assembly which includes: a casing, an oil storage tank disposed in the casing, the vaping core and the lower cover described in the above-mentioned embodiments , one end of the housing is provided with an air outlet passage, and the other end of the housing is an open end; the lower cover is provided at the opening end of the housing, and the lower cover is provided with an air intake passage;
  • the liquid-absorbing surface communicates with the liquid storage bin, an atomizing chamber is formed between the atomizing surface and the lower base, and the air inlet passage, the atomization chamber and the air outlet passage are connected with each other.
  • the electronic atomization assembly further includes a first sealing element, the first sealing element is sleeved on the porous ceramic substrate, and the first sealing element covers at least part of the outer peripheral surface of the porous ceramic substrate and the edge of the absorbent surface to form a seal.
  • the electronic cigarette assembly also includes: an upper bracket and a second sealing element; the upper bracket cooperates with the lower cover to form an accommodating cavity, the electronic aerosolization core is located in the accommodating cavity and the electronic aerosolization core is supported on On the lower cover, the upper bracket is provided with an oil guide hole and an air outlet hole, the liquid absorption surface of the porous ceramic substrate communicates with the oil storage bin through the oil guide hole, and the atomization chamber passes through the The air guide hole communicates with the air outlet channel; the second sealing element is sleeved on the outer periphery of the upper bracket, and the outer edge of the second sealing element abuts against the inner wall of the housing to enclose the oil storage tank, And the second sealing element is provided with a first communication hole for connecting the oil storage tank and the oil guide hole, and the second sealing element is provided with a second communication hole for connecting the air outlet channel and the air outlet hole. connected hole.
  • the electronic cigarette assembly further includes: a lower bracket, the upper bracket cooperates with the lower bracket to form an accommodating cavity, the electronic aerosolization core is arranged in the accommodating cavity and the electronic aerosolization core is supported on the On the lower bracket, the liquid-absorbing surface of the porous ceramic substrate communicates with the oil storage tank through the oil guide hole; an atomization chamber is formed between the atomization surface of the porous ceramic substrate and the lower bracket, and the lower
  • the bracket is provided with a vent hole communicating with the air intake hole.
  • the electronic aerosolization assembly further includes: a third sealing element, the third sealing element is arranged around the outer periphery of the lower cover, and the outer edge of the third sealing element abuts against the inner wall of the housing .
  • an electronic cigarette including the electronic cigarette generating component described in the above-mentioned embodiments.
  • the inventors of the present disclosure found in their research that in the electronic cigarettes currently on the market, the heating element of the ceramic atomizing core absorbs part of the e-liquid. Due to the high heating temperature of the porous heating element when it is working, the smoke entering the gap of the porous heating element The cracking of the oil will cause the smoke to have a burnt smell, which will reduce the use efficiency of the e-liquid and the user experience, and the cracked e-liquid will have carbon deposits in the porous heating body, which will reduce the service life of the atomizing core.
  • the inventors of the present disclosure found during the experiment that, using a conventional porous heating element, the smoke formed by heating has a burnt smell, the taste of the smoke is poor, and the heating element is easy to burn out.
  • the inventors of the present disclosure accidentally discovered in the experiment that, By adjusting the composition ratio of the heating element and the sintering process, when the porosity of the heating element is controlled to be less than or equal to 30%, the burnt smell in the smoke and the situation that the heating element is easy to burn out will be greatly improved.
  • this disclosure proposes an electronic smog core, which is mainly composed of a porous ceramic substrate and a heating element.
  • the heating element adopts a porous heating element.
  • the porosity of the heating element is less than or equal to 30%.
  • FIG. 1 is a cross-sectional view of a porous heating element in an electronic smog heating core provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic structural diagram of the electronic cigarette wick provided by an embodiment of the present disclosure
  • Fig. 3 is a top view of an electronic cigarette wick provided by an embodiment of the present disclosure
  • Fig. 4 is a side view of the electronic cigarette wick provided by the embodiment of the present disclosure.
  • Fig. 5 is another side view of the electronic cigarette wick provided by the embodiment of the present disclosure.
  • FIG. 6 is an exploded view of an electronic cigarette assembly provided by an embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view of an electronic cigarette atomization component provided by an embodiment of the present disclosure.
  • FIG. 8 is a flow chart of a method for preparing an electronic cigarette wick provided by an embodiment of the present disclosure.
  • 100-electronic cigarette core 101-housing; 1011-outlet channel; 102-oil storage tank; 103-upper bracket; 1031-air outlet; 1032-oil guide hole; -air inlet; 106-spray chamber; 107-second sealing element; 1071-first communication hole; 1072-second communication hole; 108-first sealing element; 109-third sealing element; 1010-suction element.
  • an embodiment of the present disclosure provides an electronic cigarette wick.
  • the electronic cigarette atomizing core 100 includes a heating element and a porous ceramic substrate 2 , the porous ceramic substrate 2 includes a liquid absorbing surface and an atomizing surface, and the heating element is arranged on the atomizing surface.
  • the heating element adopts a porous heating element 1, and the porosity of the porous heating element 1 is less than or equal to 30%.
  • the porous heating element 1 may include a conductive framework and a glass body embedded in the conductive framework. There are holes 11 in the porous heating element 1, so that the porous heating element 1 has a certain porosity.
  • the conductive skeleton may be a conductive skeleton formed by stacking conductive powder, and the glass body may be glass powder.
  • the porous heating element 1 needs to be baked at a high temperature during the molding process, so that the conductive powder contacts and accumulates closely under the capillary wetting effect of the high-temperature melting of the glass powder, and at the same time the molten glass powder can be filled to the conductive powder. In the pores where the powder accumulates, the density of the porous heating element 1 is improved, so that the porosity of the porous heating element 1 is less than or equal to 30%.
  • the porous heating element 1 When the porous heating element 1 has a relatively high density, the e-liquid on the atomization surface of the electronic cigarette core 100 will not penetrate into the holes 11 of the porous heating element 1, avoiding the porous heating element 1 in the heating state. For the pyrolysis of e-liquid, carbon deposition is not easy to occur on the porous heating element 1 .
  • the e-liquid can maintain a suitable atomization temperature, which improves the fullness of the e-liquid atomization and the reduction of the taste of the smoke.
  • the holes 11 communicate with the outside, and the porosity of the porous heating element 1 can be obtained by testing means such as drainage method or physical adsorption.
  • the electronic cigarette core 100 provided by the embodiment of the present disclosure includes a porous heating element 1 and a porous ceramic substrate 2.
  • the porous ceramic substrate 2 includes a liquid-absorbing surface and an atomizing surface.
  • the porous heating element 1 is arranged on the atomizing surface by screen printing.
  • the porosity of the porous heating element 1 is less than or equal to 30%, which improves the density of the porous heating element 1, and prevents the e-liquid in the electronic vaporizing core 100 from penetrating into the porous heating element. Cracking of e-liquid in Body 1.
  • the e-liquid can maintain a suitable atomization temperature, which improves the fullness of the e-liquid atomization and the reduction of the taste of the smoke.
  • the porosity of the porous heating element 1 is less than or equal to 10%.
  • the porosity of the porous heating element 1 is less than or equal to 3%. The inventors of the present disclosure found during experiments that when the pores of the porous heating element 1 are less than or equal to the above value, the taste of the smoke is the best.
  • the porous heating element 1 when the porosity of the porous heating element 1 is less than or equal to a certain value, the porous heating element 1 has better density, which can prevent the e-liquid in the electronic vaping core 100 from penetrating into the porous heating element 1, and also Does not affect smoke volume.
  • the present disclosure can control the composition of the porous heating element 1, and flexibly control the high-temperature firing parameters of the porous heating element 1 during the molding process, so that the porosity of the porous heating element 1 can be controlled at 10%-30%, or less than Or equal to 10%, or less than or equal to 3%.
  • the porosity of the porous heating element 1 can also be controlled to be less than 10%, which further increases the density of the porous heating element 1 and prevents the e-liquid in the electronic cigarette core 100 from penetrating into the porous heating element 1 Cracking of smoke oil.
  • the present disclosure can control the composition of the porous heating element 1 and flexibly control the high-temperature firing parameters of the porous heating element 1 during the molding process, so that the porosity of the porous heating element 1 can be limited to within the range of not more than 3%.
  • the porosity of the porous heating element 1 is limited to a range not greater than 3%, the density of the porous heating element 1 can be improved more effectively, and the penetration of the e-liquid in the electronic cigarette core 100 into the porous heating element 1 can be avoided. Cracking of smoke oil. Moreover, when the user smokes the electronic cigarette, the e-liquid can maintain a suitable atomization temperature, which improves the fullness of the e-liquid atomization and the reduction of the taste of the smoke.
  • the pore size of the porous heating element 1 is less than or equal to 10 ⁇ m.
  • the porous heating element 1 will form a porous structure during the high-temperature firing process, such as the holes 11 in the porous heating element 1 , and the holes 11 communicate with the outside.
  • the diameter of the pores 11 can be controlled within a range of less than or equal to 10 ⁇ m.
  • the average pore diameter of the holes 11 is between 0.2-10 ⁇ m.
  • the firing temperature of the porous heating element 1 is closely related to the average pore size of the holes 11 .
  • the glass body When the firing temperature of the porous heating element 1 is low, the glass body cannot be fully melted, which prevents the glass body from being embedded in the middle of the conductive framework, resulting in an excessively large average pore size of the holes 11 . And when the firing temperature of the porous heating element 1 is high, the glass body is easy to volatilize after melting, which will also cause the porosity of the porous heating element 1 to increase and reduce the compactness of the porous heating element 1 .
  • the pore size of the porous heating element 1 is less than or equal to 2 ⁇ m, preferably 0.2-2 ⁇ m.
  • the gap of the conductive skeleton of the porous heating element 1 is the gap formed by the accumulation of conductive powder, that is, the particle size of the conductive powder is related to the gap size of the conductive skeleton. Furthermore, the particle size control of the conductive powder and the parameter control of the high-temperature firing of the porous heating element 1 can be combined to reduce the gap of the conductive skeleton, and the glass body can be fully filled into the gap of the conductive skeleton in the state of high-temperature melting, further reducing the hole 11. The pore size increases the compactness of the porous heating element 1.
  • the porous heating element 1 is disposed on the atomizing surface by printing or coating, and the printing includes screen printing or steel plate printing. In some embodiments, referring to Fig. 4 and Fig. 5, the thickness of the porous heating element 1 is in the range of 40-200 ⁇ m.
  • the porous heating element 1 can be arranged on the atomizing surface by screen printing, specifically, the slurry-like porous heating element 1 is screen-printed or plate-printed on the atomizing surface and then baked to shape it.
  • the thickness of the porous heating element 1 is 40-200 ⁇ m, the size balance and stability of the porous heating element 1 can be improved on the basis of ensuring the conductivity and electrothermal conversion stability of the porous heating element 1 .
  • the thickness of the porous heating element 1 is too small, there is a problem of non-uniform screen printing or stencil printing of the porous heating element 1, which may lead to the inability of continuous conduction in some positions of the porous heating element 1, which limits the electrothermal conversion efficiency of the porous heating element 1.
  • the thickness and size of the porous heating element 1 may be inconsistent if it is not fired in time, reducing the Dimensional consistency of the porous heating element 1 .
  • the electronic cigarette atomization core 100 includes a porous ceramic substrate 2 and a heating element, the heating element is a porous heating element 1 , the porous ceramic substrate 2 has a liquid-absorbing surface and an atomizing surface, and the porous ceramic substrate 2 has a liquid-absorbing surface and an atomizing surface.
  • the body 1 is arranged on the atomization surface of the porous ceramic matrix 2 .
  • the porous heating element 1 includes at least one first bending section and at least one second bending section, and the bending direction of the first bending section and the second bending section are opposite, so that the porous heating element 1 can be flexibly controlled.
  • the heating rate can ensure the heating balance of the atomizing surface, and the installation area of the porous heating element 1 can be simplified, and the installation cost of the porous heating element 1 can be reduced.
  • the two ends of the porous heating element 1 are respectively a first connecting section and a second connecting section.
  • the porous heating element 1 also includes a first heating section, a second heating section and a third heating section, the first heating section is connected between the first connecting section and the first bending section, and the second heating section is connected to the first bending section respectively.
  • the segment is connected to the second bending segment, and the third heating segment is connected between the second bending segment and the second connecting segment.
  • the first connecting section and the second connecting section respectively extend to the two ends of the atomizing surface, and the first heating section, the second heating section and the third heating section provide the main heat source for the porous heating element 1, and the atomizing surface can be heated Even heating.
  • an electrode 12 is provided on the porous heating body 1 , and the electrode 12 is used for electrical connection with an external power source.
  • the electrode 12 may include a positive electrode and a negative electrode, and the positive electrode and the negative electrode are respectively connected to two ends of the conductive framework of the porous heating element 1 .
  • the porous heating element 1 can be energized by applying voltage to the positive electrode and the negative electrode through the power supply in the electronic cigarette.
  • the porous heating element 1 When the porous heating element 1 generates heat, it can atomize the e-liquid at the atomizing end of the atomizing core 100 of the electronic cigarette to ensure the atomization effect of the electronic cigarette.
  • the electronic smog core 100 of the present disclosure is mainly composed of a porous ceramic substrate 2 and a heating element.
  • the density of 1 prevents the e-liquid cracking of the e-liquid from penetrating into the porous heating element 1 when the e-liquid in the vape core 100 penetrates into the porous heating element 1 .
  • the e-liquid can maintain a suitable atomization temperature, which improves the fullness of the e-liquid atomization and the reduction of the taste of the smoke.
  • the second aspect of the present disclosure provides a method for preparing an electronic cigarette wick 100 , as shown in FIG. 8 , the method includes:
  • the slurry is placed on the surface of the porous ceramic substrate for sintering.
  • the sintering is carried out under a hydrogen and/or nitrogen protective atmosphere or under a vacuum condition with a vacuum degree of ⁇ 1Pa, and the sintering temperature is 950-1200°C.
  • a porous ceramic matrix 2 may be provided.
  • the conductive powder and the glass powder in the heating element composition can be mixed with an organic solvent according to the volume ratio (28-60):(40-72) to obtain the slurry.
  • the slurry is placed on the surface of the porous ceramic substrate 2 for sintering, wherein the sintering can be carried out under a hydrogen and/or nitrogen protective atmosphere or under a vacuum condition with a vacuum degree of ⁇ 1Pa, the sintering temperature is 950-1200°C, and the sintering After completion, the electronic cigarette wick 100 is obtained.
  • the sintering process can be carried out in an atmosphere furnace.
  • the metallization and density of the heating element can be effectively improved.
  • the sintering temperature is too low, due to the high viscosity of the glass powder at low temperature, it is difficult to fully fill the gaps of the conductive powder, and the porous heating element 1 cannot be well densified and filled.
  • the sintering temperature is too high, the glass frit at high temperature is easy to volatilize after being melted, which causes the porosity of the porous heating element 1 to increase and reduces the compactness of the porous heating element.
  • the sintering is carried out under a mixed atmosphere of hydrogen and nitrogen, and the sintering temperature may be 1030-1200°C.
  • Conductive powder is generally metal powder or metal alloy powder. In the case of high-temperature sintering, the conductive powder easily reacts with oxygen in the sintering atmosphere to form metal oxides, which reduces the conductivity of the porous heating element 1 .
  • the sintering temperature is controlled at 1030-1200°C and carried out under protective atmosphere conditions, such as when the protective atmosphere is hydrogen and/or nitrogen, the hydrogen and nitrogen will not react with the metal powder, which can form a good protection for the conductive powder. , ensuring the conduction efficiency of the porous heating element 1 .
  • sintering can also be carried out under vacuum conditions, and the degree of vacuum is less than or equal to 1Pa. In the low vacuum state, it can also form a good protection for the conductive powder.
  • the glass powder includes 4%-15% Na 2 O, 0-2% MgO, 2%-15% Al 2 O 3 , 0%-7% K 2 O, 0%- 15% CaO, 20%-90% SiO2 .
  • the conductive powder includes one or more of nickel-chromium-iron alloy, nickel-chromium alloy, nickel, silver, and palladium. Among them, the nickel-chromium-iron alloy powder has a lower temperature resistance coefficient, so that the porous heating element 1 is applied in the electronic cigarette, and the heating speed of the porous heating element 1 is fast when it is energized, and the user's atomization response speed becomes faster when inhaling. , can have a good suction experience.
  • the organic solvent includes one or more of terpineol, butyl carbitol, butyl carbitol acetate, and DBE (a mixture of three divalent esters, commonly known as dimethyl nylon acid).
  • the ratio of the sum of the mass of the conductive powder and the glass powder to the mass of the organic solvent is (40-90): (10-60).
  • the conductive powder can serve as the conductive skeleton of the electronic cigarette core 100 in the electronic cigarette core 100 , and act as a conductive circuit.
  • the capillary wetting of the glass powder melted at high temperature can make the conductive powder contact each other and accumulate closely, and at the same time, the melted glass powder can fill the pores where the conductive powder accumulates.
  • the effective coordination of the real volume ratio of the glass powder and the conductive powder improves the density of the electronic cigarette wick 100 .
  • organic solvent can be some organic solvents with low boiling point, volatile under normal temperature and pressure, such as terpineol (Terpineol), butyl carbitol (diethylene glycol monobutyl ether), butyl carbitol acetate (Diethylene Glycol) One or more of Monobutyl Ether Acetate), DBE (Dimethyl nylon acid; a mixture of three divalent esters, commonly known as dimethyl nylon acid).
  • Tepineol terpineol
  • butyl carbitol diethylene glycol monobutyl ether
  • butyl carbitol acetate Diethylene Glycol
  • DBE Dimethyl nylon acid; a mixture of three divalent esters, commonly known as dimethyl nylon acid.
  • the addition of the organic solvent can make the conductive powder and the glass powder mix evenly, which ensures the density of the prepared porous heating element 1 on the one hand, and ensures the conductivity stability and structural uniformity of the porous heating element 1 on the other hand.
  • the heating element composition realizes the heating effect, it needs to go through the process of high-temperature calcination first. Due to the difference in the particle size and pore size of the conductive powder and the glass powder, by controlling the real volume ratio between the glass powder and the conductive powder, the conductive powder can contact each other and accumulate closely under the capillary wetting effect of the high-temperature melting of the glass powder, At the same time, the melted glass powder can be filled into the pores where the conductive powder is deposited, thereby improving the density of the porous heating element 1 prepared from the heating element composition.
  • the e-liquid in the electronic cigarette core 100 will not penetrate into the pores of the heating element, avoiding the damage of the porous heating element 1 to the e-liquid in the heating state. Cracking, carbon deposition is not easy to occur on the porous heating element 1 .
  • the e-liquid can maintain a suitable atomization temperature, which improves the fullness of the e-liquid atomization and the reduction of the taste of the smoke.
  • the content of the glass powder in the heating element composition is too low, it is not conducive to the accumulation of conductive powder, so that the pores of the porous heating element 1 prepared from the heating element composition are too large, which will easily lead to smoke on the electronic cigarette wick 100.
  • the oil penetrates into the pores of the porous heating element 1 .
  • the glass powder content in the heating element composition should not be too high.
  • the conductive powder content will be insufficient. Due to the poor conductivity of the glass powder, the porous heating element 1 prepared by the heating element composition will The resistance value is too high, which reduces the efficiency of electric heating.
  • the metal sheet-shaped heating element has the characteristics of high density, it is difficult to keep the metal sheet flush with the surface of the porous ceramic substrate, which leads to the problems of burning and carbon deposition on the raised part of the metal sheet when heating , reducing the service life of the metal sheet.
  • the slurry is disposed on the surface of the porous ceramic substrate 2 by printing or coating, and the printing includes screen printing or steel plate printing. That is to say, the porous heating element 1 is obtained by sintering the silk-screened heating element paste, which can make the conductive powder in the electronic cigarette core 100 contact each other and closely accumulate under the action of capillary wetting of glass powder melted at high temperature. At the same time, the melted glass powder can be filled into the pores where the conductive powder accumulates, thereby increasing the density of the porous heating element 1 and preventing the e-liquid in the vaping core 100 from penetrating into the pores of the porous heating element 1 .
  • the average particle size of the conductive powder is in the range of 3-40 ⁇ m, preferably 5-20 ⁇ m.
  • the average particle diameter of the glass powder is in the range of 1-20 ⁇ m, preferably 3-15 ⁇ m.
  • the average particle diameter of the conductive powder may be larger than that of the glass frit.
  • the accumulation of conductive powder can ensure the conductive stability of the heating element composition, and the glass powder can fill the gaps between the conductive powders to ensure the structural compactness of the porous heating element 1 prepared from the heating element composition.
  • the average particle size range of the conductive powder is directly related to the conductive stability of the heating element composition. If the average particle size range of the conductive powder is too small, the gap between the conductive powder particles is too small, which is not convenient for the glass powder in the molten state. The flow between the conductive powder particles reduces the connection strength between the conductive powder particles.
  • the particle size of the glass powder can be slightly smaller than that of the conductive powder.
  • the electronic cigarette heating core 100 with the porous heating element 1 is prepared through the preparation method of the electronic cigarette heating core 100 of the present disclosure.
  • the actual volume ratio of glass powder to conductive powder is 28:72
  • the mass ratio of organic solvent to powder is 45:55
  • the average particle size of conductive powder is 3 ⁇ m
  • the average particle size of glass powder is 1 ⁇ m
  • the conductive powder is nickel-chromium-iron alloy powder, wherein the mass ratio of nickel-chromium-iron is 80:10:10
  • the glass powder is soda calcium silicate glass
  • the organic solvent is terpineol.
  • the preparation method of the heating element mix the conductive powder, the glass powder and the organic solvent to prepare the heating element slurry, the heating element slurry is screen-printed and covered on the porous ceramic substrate 2, and the silk-screened heating element slurry is heated in an atmosphere furnace and sintering to obtain the porous heating element 1.
  • the atmosphere of the atmosphere furnace is a mixed gas with a volume ratio of H2 and N2 of 1:1, the sintering temperature is 1030°C, and the time is 15min.
  • the actual volume ratio of the glass powder to the conductive powder is 39:61 , and the rest of the features are the same as in Example 1.
  • the actual volume ratio of the glass powder to the conductive powder is 50:50 , and the rest of the features are the same as in Example 1.
  • the actual volume ratio of the glass powder to the conductive powder is 60:40 , and the rest of the features are the same as in Example 1.
  • the average particle size of the conductive powder is 5 ⁇ m
  • the average particle size of the glass powder is 3 ⁇ m
  • other characteristics are the same as those in Example 1.
  • the average particle size of the conductive powder is 20 ⁇ m
  • the average particle size of the glass powder is 15 ⁇ m
  • other characteristics are the same as those in Example 1.
  • the average particle size of the conductive powder is 40 ⁇ m
  • the average particle size of the glass powder is 20 ⁇ m
  • other characteristics are the same as those in Example 1.
  • the average particle size of the conductive powder is 1 ⁇ m
  • the average particle size of the glass powder is 0.5 ⁇ m
  • other characteristics are the same as those in Example 1.
  • the average particle size of the conductive powder is 50 ⁇ m
  • the average particle size of the glass powder is 30 ⁇ m
  • other characteristics are the same as those in Example 1.
  • the average particle size of the conductive powder is 5 ⁇ m
  • the average particle size of the glass powder is 3 ⁇ m
  • the atmosphere sintering temperature is 1060° C.
  • other characteristics are the same as in Example 1.
  • the average particle size of the conductive powder is 5 ⁇ m
  • the average particle size of the glass powder is 3 ⁇ m
  • the atmosphere sintering temperature is 1090° C.
  • other characteristics are the same as in Example 1.
  • the actual volume ratio of the glass powder to the conductive powder is 20:80, and the rest of the features are the same as in Example 1.
  • the atmosphere sintering temperature is 930° C., and other features are the same as in Example 5.
  • Smoking taste Assemble it into the pod accessories and assemble it into a pod, smoke it and evaluate it by a smoker.
  • an electronic cigarette atomizing core 100 which is prepared by the preparation method in the above-mentioned embodiments.
  • the electronic smog core 100 prepared by using this preparation method can be made by mixing the components of the heating element composition and printing on the surface of the porous ceramic substrate. After the silk-screened heating element slurry is sintered, the heating element composition can be made The conductive powders in the glass contact with each other and accumulate closely under the capillary wetting effect of the high-temperature melting of the glass powder.
  • the melted glass powder can be filled into the pores where the conductive powder accumulates, thereby increasing the density of the porous heating element 1 and preventing the e-liquid in the vaping core 100 from penetrating into the pores of the porous heating element 1 .
  • the vaping assembly includes: a casing 101 , an oil storage bin 102 disposed in the casing 101 , and the vaping core 100 of the present disclosure.
  • the lower cover 105, one end of the casing 101 is provided with an air outlet channel 1011, and the other end of the casing 101 is an open end.
  • the lower cover 105 is disposed on the open end of the housing 101 , and the lower cover 105 is provided with an air intake passage.
  • the liquid suction surface communicates with the liquid storage chamber, the atomization chamber 106 is formed between the atomization surface and the lower base, and the air inlet channel, the atomization chamber 106 and the air outlet channel 1011 are connected with each other.
  • the electronic cigarette assembly includes a casing 101, an oil storage bin 102 disposed in the casing 101, an electronic cigarette wick 100 of the present disclosure, and a lower cover 105.
  • One end of the casing 101 is provided with a There is an air outlet channel 1011, and the other end of the casing 101 is an open end.
  • the lower cover 105 is disposed on the open end of the housing 101 , and the lower cover 105 is provided with an air intake passage.
  • the liquid suction surface communicates with the liquid storage chamber, the atomization chamber 106 is formed between the atomization surface and the lower base, and the air inlet channel, the atomization chamber 106 and the gas outlet channel 1011 are connected with each other, and the first sealing element 108 is also included.
  • a sealing element 108 is sheathed on the porous ceramic base 2 , and the first sealing element 108 covers at least part of the peripheral surface of the porous ceramic base 2 and the edge of the liquid-absorbing surface to form a seal.
  • the electronic cigarette assembly includes a housing 101, an oil storage tank 102 disposed in the housing 101, an electronic cigarette coil 100 of the present disclosure, and a lower cover 105.
  • One end of the housing 101 is provided with a There is an air outlet channel 1011, and the other end of the casing 101 is an open end.
  • the lower cover 105 is disposed on the open end of the housing 101 , and the lower cover 105 is provided with an air intake passage.
  • the liquid suction surface communicates with the liquid storage chamber, the atomization chamber 106 is formed between the atomization surface and the lower base, and the air inlet channel, the atomization chamber 106 and the air outlet channel 1011 are connected with each other.
  • the electronic atomization assembly also includes a first sealing element 108, the first sealing element 108 is sheathed on the porous ceramic substrate 2, and the first sealing element 108 covers at least part of the peripheral surface of the porous ceramic substrate 2 and the edge of the liquid-absorbing surface to form a seal.
  • the vaping assembly further includes an upper bracket 103 and a second sealing element 107 .
  • the upper bracket 103 cooperates with the lower cover 105 to form a housing cavity, the electronic cigarette core 100 is located in the housing cavity and the electronic cigarette core 100 is supported on the lower cover 105, the upper bracket 103 is provided with an oil guide hole 1032 and an air outlet hole 1031, and the porous ceramic
  • the liquid-absorbing surface of the base body 2 communicates with the oil storage tank 102 through the oil guide hole 1032 , and the atomization chamber 106 communicates with the air outlet channel 1011 through the air guide hole.
  • the second sealing element 107 is sheathed on the outer periphery of the upper bracket 103, and the outer edge of the second sealing element 107 abuts against the inner wall of the housing 101 to enclose the oil storage tank 102, and the second sealing element 107 is provided with a hole for conducting the storage tank.
  • the first communication hole 1071 of the oil tank 102 and the oil guide hole 1032 , and the second communication hole 1072 for connecting the air outlet channel 1011 and the air outlet hole 1031 are opened on the second sealing element 107 .
  • the electronic cigarette assembly includes a housing 101, an oil storage bin 102 disposed in the housing 101, an electronic cigarette core 100 of the present disclosure, a lower cover 105, and the housing
  • One end of the housing 101 is provided with an air outlet channel 1011, and the other end of the casing 101 is an open end.
  • the lower cover 105 is disposed on the open end of the housing 101 , and the lower cover 105 is provided with an air intake passage.
  • the liquid suction surface communicates with the liquid storage chamber, the atomization chamber 106 is formed between the atomization surface and the lower base, and the air inlet channel, the atomization chamber 106 and the air outlet channel 1011 are connected with each other.
  • the electronic atomization assembly also includes a first sealing element 108, the first sealing element 108 is sheathed on the porous ceramic substrate 2, and the first sealing element 108 covers at least part of the peripheral surface of the porous ceramic substrate 2 and the edge of the liquid-absorbing surface to form a seal.
  • the vaping assembly further includes an upper bracket 103 and a second sealing element 107 .
  • the upper bracket 103 cooperates with the lower cover 105 to form a housing cavity, the electronic cigarette core 100 is located in the housing cavity and the electronic cigarette core 100 is supported on the lower cover 105, the upper bracket 103 is provided with an oil guide hole 1032 and an air outlet hole 1031, and the porous ceramic
  • the liquid-absorbing surface of the base body 2 communicates with the oil storage tank 102 through the oil guide hole 1032 , and the atomization chamber 106 communicates with the air outlet channel 1011 through the air guide hole.
  • the second sealing element 107 is sheathed on the outer periphery of the upper bracket 103, and the outer edge of the second sealing element 107 abuts against the inner wall of the housing 101 to enclose the oil storage tank 102, and the second sealing element 107 is provided with a hole for conducting the storage tank.
  • the first communication hole 1071 of the oil tank 102 and the oil guide hole 1032 , and the second communication hole 1072 for connecting the air outlet channel 1011 and the air outlet hole 1031 are opened on the second sealing element 107 .
  • the electronic vaping assembly also includes a lower bracket 104.
  • the upper bracket 103 cooperates with the lower bracket 104 to form an accommodation chamber.
  • the electronic aerosolization core 100 is arranged in the accommodating cavity and the electronic aerosolization core 100 is supported on the lower bracket 104.
  • the atomization of the porous ceramic substrate 2 An atomizing chamber 106 is formed between the surface and the lower bracket 104 , and the lower bracket 104 is provided with a vent hole communicating with the air inlet 1051 .
  • the vaping assembly includes a housing 101 , an oil storage bin 102 disposed in the housing 101 , and the vaping core 100 of the present disclosure, One end of the casing 101 is provided with an air outlet channel 1011 , and the other end of the casing 101 is an open end.
  • the electronic atomization assembly further includes a first sealing element 108 , the first sealing element 108 is sleeved on the porous ceramic substrate 2 , and the first sealing element 108 at least covers the porous ceramic substrate 2 Part of the peripheral surface and the edge of the suction surface.
  • the first sealing element 108 is sleeved on the outer periphery of the atomizing core 100 to effectively seal the e-liquid on the liquid-absorbing surface and avoid leakage of the e-liquid.
  • the vaping assembly further includes an upper bracket 103 , a lower bracket 104 and a lower cover 105 , and the lower cover 105 covers the open end of the housing 101 .
  • the lower cover 9 defines an air inlet 1051 .
  • the upper bracket 103 cooperates with the lower bracket 104 to form a receiving cavity, and the electronic cigarette atomizing core 100 is disposed in the receiving cavity.
  • An oil guide hole 1032 and an air outlet hole 1031 are opened on the upper bracket 103 , and the liquid-absorbing surface of the porous ceramic substrate 2 communicates with the oil storage bin 102 through the oil guide hole 1032 .
  • An atomization chamber 106 is formed between the atomization surface of the porous ceramic substrate 2 and the lower bracket 104, the lower bracket 104 is provided with a vent hole communicating with the air inlet hole 1051, and the air outlet hole 1031 communicates with the atomization chamber 106 and the air outlet channel 1011 respectively, External air can enter the atomization chamber 106 through the air inlet 1051 and the vent hole
  • the e-liquid flowing out of the oil storage tank 102 is guided to the liquid-absorbing surface of the porous ceramic substrate 2 through the oil guide hole 1032, and is absorbed into the porous ceramic substrate by the capillary action of the porous ceramic substrate 2.
  • the porous heating element 1 on the atomizing surface forms mist through the heating and atomization of the porous heating element 1.
  • the user sucks at the port of the air outlet channel 1011, and the air enters the mist through the air inlet hole 1051 under the action of the user's suction.
  • the aerosol carrying the atomization chamber 106 is exported to the air outlet channel 1011 for the user to inhale.
  • the vaping assembly further includes a second sealing element 107 and a third sealing element 109 .
  • the second sealing element 107 is sheathed on the outer periphery of the upper bracket 103, and the outer edge of the second sealing element 107 abuts against the inner wall of the housing 101 to enclose the oil storage tank 102, and the second sealing element 107 is provided with a hole for conducting the storage tank.
  • the first communication hole 1071 of the oil tank 102 and the oil guide hole 1032 , and the second communication hole 1072 for connecting the air outlet channel 1011 and the air outlet hole 1031 are opened on the second sealing element 107 .
  • the first sealing element 108 is sheathed on the outer periphery of the vaporization core 100 of the electronic cigarette.
  • the third sealing element 109 is disposed around the outer periphery of the lower cover 105 , and the outer edge of the third sealing element 109 abuts against the inner wall of the casing 101 .
  • the second sealing element 107, the first sealing element 108, and the third sealing element 109 are used to provide the necessary airtightness inside the electronic cigarette and avoid unnecessary conduction between the oil storage tank 102 and the connecting gaps of the various elements. , effectively avoid the occurrence of oil leakage.
  • the electronic cigarette further includes a liquid absorbing element 1010 , which is arranged around the periphery of the air inlet 1051 , and the liquid absorbing element 1010 is used to absorb the condensed liquid flowing out of the air inlet 1051 .
  • the electronic vaping component of the present disclosure by using the porous heating element 1 in the above-mentioned embodiment, avoids cracking of the vaping oil caused by penetration of the vaping oil in the vaping core 100 into the porous heating element 1 . Moreover, when the user smokes the electronic cigarette, the e-liquid can maintain a suitable atomization temperature, which improves the fullness of the e-liquid atomization and the reduction of the taste of the smoke.
  • the present disclosure also provides an electronic cigarette, including the electronic cigarette generating component in the above-mentioned embodiments. Since the electronic cigarette assembly of the embodiment of the present disclosure has the above-mentioned technical effect, the electronic cigarette according to the embodiment of the present disclosure should also have the corresponding technical effect, that is, the electronic cigarette of the present disclosure can avoid the smoke oil in the electronic cigarette cartridge 100 Penetrating into the porous heating element 1 to crack the e-liquid. Moreover, when the user smokes the electronic cigarette, the e-liquid can maintain a suitable atomization temperature, which improves the fullness of the e-liquid atomization and the reduction of the taste of the smoke.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)

Abstract

一种电子烟雾化芯(100)、电子烟雾化组件和电子烟,电子烟雾化芯(100)包括多孔陶瓷基体(2)和发热体(1),多孔陶瓷基体(2)包括吸液面和雾化面,发热体(1)设于雾化面,发热体(1)为多孔发热体,多孔发热体的孔隙率小于或等于30%。

Description

电子烟雾化芯、电子烟雾化芯的制备方法、电子烟雾化组件和电子烟
本公开要求于2021年08月19日提交中国专利局的申请号为202110957244.9、申请名称为“电子烟雾化芯、电子烟雾化组件和电子烟”以及2021年07月26日提交中国专利局的申请号为202110846774.6、申请名称为“发热体组合物、发热体的制备方法、发热体、电子烟雾化芯和电子烟”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于电子烟产品技术领域,具体地,本公开涉及一种电子烟雾化芯、电子烟雾化组件和电子烟。
背景技术
雾化芯是电子雾化装置中的重要部件,主要包括多孔陶瓷基体和设置在多孔陶瓷基体表面的多孔发热体,多孔陶瓷基体与储存雾化液的储油腔相连通,可将雾化液传导至多孔发热体,雾化液经多孔发热体加热后实现雾化。
但目前市面上的陶瓷雾化芯电子烟,用户在抽吸过程中,普遍容易出现焦糊味,严重影响了用户体验。
发明内容
本公开实施例的一个目的是提供一种电子烟雾化芯、电子烟雾化组件和电子烟的新技术方案。
根据本公开的第一方面,提供一种电子烟雾化芯,所述电子烟雾化芯包括多孔陶瓷基体和发热体,所述多孔陶瓷基体包括吸液面和雾化面,所述发热体设于所述雾化面,所述发热体为多孔发热体,所述多孔发热体的 孔隙率小于或等于30%。
可选地,所述多孔发热体的孔隙率小于或等于10%。
可选地,所述多孔发热体的孔隙率小于或等于3%。
可选地,所述多孔发热体的孔径小于或等于10μm。
可选地,所述多孔发热体的孔径小于或等于2μm。
可选地,所述多孔发热体通过印刷或涂覆的方式设置于所述雾化面,所述印刷包括丝网印刷或钢板印刷。
可选地,所述多孔发热体的厚度范围为40-200μm。
根据本公开的第二方面,提供一种电子烟雾化芯的制备方法,所述制备方法包括:
(1)提供多孔陶瓷基体;
(2)将导电粉与玻璃粉按照体积比(28-60):(40-72)与有机溶剂混合后得到浆料;
(3)将所述浆料设置于所述多孔陶瓷基体表面进行烧结,所述烧结在氢气和/或氮气保护气氛下或在真空度<1Pa的真空条件下进行,所述烧结的温度为950-1200℃。
可选地,所述烧结在氢气和氮气的混合气氛下进行,所述烧结的温度为1030-1200℃。
可选地,所述玻璃粉包括4%-15%Na 2O、0-2%MgO、2%-15%Al 2O 3、0%-7%K 2O、0%-15%CaO、20%-90%SiO 2;所述导电粉包括镍铬铁合金、镍铬合金、镍、银、钯中的一种或几种;所述有机溶剂包括松油醇,丁基卡必醇,丁基卡必醇醋酸酯、DBE中的一种或几种。
可选地,所述导电粉与所述玻璃粉的质量之和与所述有机溶剂的质量之比为(40-90):(10-60)。
可选地,所述浆料通过印刷或涂覆的方式设置于所述多孔陶瓷基体表面,所述印刷包括丝网印刷或钢板印刷。
根据本公开的第三方面,提供一种电子烟雾化芯,由上述实施例中所述的制备方法制备得到。
根据本公开的第四方面,提供一种电子烟雾化组件,所述电子烟雾化 组件包括:壳体、设于壳体内的储油仓和上述实施例中所述的电子烟雾化芯、下盖,所述壳体的一端设有出气通道,所述壳体的另一端为开口端;所述下盖盖设于所述壳体的开口端,所述下盖设置有进气通道;所述吸液面与所述储液仓连通,所述雾化面与下底座之间形成雾化室,所述进气通道、雾化室以及出气通道之间气体导通。
可选地,所述电子烟雾化组件还包括第一密封元件,所述第一密封元件套设在所述多孔陶瓷基体上,所述第一密封元件至少覆盖所述多孔陶瓷基体的部分外周面以及所述吸液面的边缘以形成密封。
所述电子烟雾化组件还包括:上支架、第二密封元件;所述上支架与下盖配合形成容纳腔,所述电子烟雾化芯位于所述容纳腔内且所述电子烟雾化芯支撑在所述下盖上,所述上支架上开设有导油孔和出气孔,所述多孔陶瓷基体的吸液面通过所述导油孔与所述储油仓连通,所述雾化室通过所述导气孔与出气通道连通;所述第二密封元件套设于所述上支架的外周,所述第二密封元件的外缘抵接所述壳体的内壁以合围形成所述储油仓,且所述第二密封元件上开设有用于导通所述储油仓和所述导油孔的第一连通孔,所述第二密封元件上开设有用于导通出气通道和出气孔的第二连通孔。
可选地,所述电子烟雾化组件还包括:下支架,所述上支架与下支架配合形成容纳腔,所述电子烟雾化芯设于所述容纳腔且所述电子烟雾化芯支撑在所述下支架上,所述多孔陶瓷基体的吸液面通过所述导油孔与储油仓连通;所述多孔陶瓷基体的雾化面与所述下支架之间形成雾化室,所述下支架设有与进气孔连通的通气孔。
可选地,电子烟雾化组件还包括:第三密封元件,所述第三密封元件环绕设置于所述下盖的外周,且所述第三密封元件的外缘抵接所述壳体的内壁。
根据本公开的第五方面,提供一种电子烟,包括上述实施例中所述的电子烟雾化组件。
本公开的发明人在研究中发现,当前市面上的电子烟,陶瓷雾化芯的发热体会吸附部分烟油,由于多孔发热体工作时的发热温度高,使得进入到多孔发热体缝隙中的烟油发生裂解使得烟雾出现焦糊味,降低了烟油的 使用效率和用户的使用体验,且裂解后的烟油会在多孔发热体内出现积碳,降低了雾化芯的使用寿命。
本公开的发明人在实验过程中发现,采用常规的多孔发热体,加热形成的烟雾具有焦糊味,烟雾口感差,且发热体易烧坏,本公开的发明人在实验中无意中发现,通过调节发热体的组分配比以及烧结工艺,控制发热体的孔隙率小于或等于30%时,烟雾中出现焦糊味以及发热体易烧坏的情况会大大改善,发明人经过深入分析发现,现有技术中出现该种情况,是由于现有技术中为了增加烟雾量,一般会控制发热体的孔隙较大,而烟油被传导至陶瓷基体的雾化面被加热的过程中,会有部分烟油存留在发热体的孔隙中,在发热体发热加热雾化烟油的过程中,这部分留在孔隙中的烟油会发生裂解,而裂解产生的物质会混入烟雾中被用户吸食,从而出现焦糊味的情况,另一方面,发明人还发现,裂解会产生部分碳,而碳的堆积会阻塞多孔陶瓷基体的孔隙,从而影响烟油的传导,使得发热体出现干烧而损坏。
本公开针对现有技术中,烟雾出现焦糊味以及发热体易损坏的情况,提出了一种电子烟雾化芯,主要由多孔陶瓷基体和发热体组成,发热体采用多孔发热体,通过控制多孔发热体的孔隙率小于或等于30%,将本公开的电子烟雾化芯应用于电子烟中,用户在抽吸时,烟油雾化的饱满度和抽吸的口感还原度高。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本公开的实施例,并且连同其说明一起用于解释本公开的原理。
图1为本公开实施例提供的电子烟雾化芯中的多孔发热体剖面图;
图2为本公开实施例提供的电子烟雾化芯的结构示意图;
图3为本公开实施例提供的电子烟雾化芯的俯视图;
图4为本公开实施例提供的电子烟雾化芯的一个侧视图;
图5为本公开实施例提供的电子烟雾化芯的又一个侧视图;
图6为本公开实施例提供的电子烟雾化组件的爆炸图;
图7为本公开实施例提供的电子烟雾化组件的截面图;
图8为本公开实施例提供的电子烟雾化芯的制备方法流程框图。
其中:
1-多孔发热体;11-孔洞;12-电极;2-多孔陶瓷基体;
100-电子烟雾化芯;101-壳体;1011-出气通道;102-储油仓;103-上支架;1031-出气孔;1032-导油孔;104-下支架;105-下盖;1051-进气孔;106-雾化室;107-第二密封元件;1071-第一连通孔;1072-第二连通孔;108-第一密封元件;109-第三密封元件;1010-吸液元件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
参照图1至图5,本公开实施例提供了一种电子烟雾化芯。电子烟雾化芯100包括发热体和多孔陶瓷基体2,多孔陶瓷基体2包括吸液面和雾化面,发热体设置于雾化面。发热体采用多孔发热体1,多孔发热体1的 孔隙率小于或等于30%。
具体地,多孔发热体1可以包括导电骨架和嵌入导电骨架中间的玻璃体,多孔发热体1中存在有孔洞11,使多孔发热体1具有一定的孔隙率。导电骨架可以为导电粉堆积形成的导电骨架,玻璃体可以为玻璃粉。如图1所示,多孔发热体1在成型的过程中需要经过高温焙烧,使得导电粉在玻璃粉高温熔化的毛细润湿作用下互相接触并紧密堆积,同时熔化后的玻璃粉可以填充到导电粉堆积的孔隙中,从而提高了多孔发热体1的致密度,使得多孔发热体1的孔隙率小于或等于30%。
多孔发热体1在具有较高的致密度的情况下,电子烟雾化芯100中雾化面的烟油便不会渗透至多孔发热体1的孔洞11中,避免发热状态下的多孔发热体1对烟油的裂解,多孔发热体1上也不容易出现积碳。使得用户在抽吸电子烟时,烟油可以保持合适的雾化温度,提高了烟油雾化的饱满度和抽吸的口感还原度。另外,孔洞11与外部连通,可以通过排水法或者物理吸附等测试手段获得多孔发热体1的孔隙率。
本公开实施例提供的电子烟雾化芯100包括多孔发热体1和多孔陶瓷基体2,多孔陶瓷基体2包括吸液面和雾化面,多孔发热体1通过丝网印刷设置于雾化面。通过对多孔发热体1的组分控制,使得多孔发热体1的孔隙率小于或等于30%,提高了多孔发热体1的致密度,避免了电子烟雾化芯100中的烟油渗透至多孔发热体1中对烟油的裂解。而且用户在抽吸电子烟时,烟油可以保持合适的雾化温度,提高了烟油雾化的饱满度和抽吸的口感还原度。
在一些实施方式中,多孔发热体1的孔隙率小于或等于10%。可选地,多孔发热体1的孔隙率小于或等于3%。本公开的发明人在实验过程中发现,当多孔发热体1的孔隙小于或等于上述值,烟雾口感最佳。
具体地,多孔发热体1的孔隙率小于或等于一定值时,多孔发热体1的具有较好的致密度,既能避免电子烟雾化芯100中的烟油渗透至多孔发热体1中,也不影响烟雾量。而本公开可以通过多孔发热体1的组分控制,并灵活控制多孔发热体1在成型的过程中的高温焙烧参数,可以将多孔发热体1的孔隙率控制在10%-30%,或者小于或等于10%,或者小于或等于 3%。
在本公开中,也可以将多孔发热体1的孔隙率控制在小于10%,进一步提高了多孔发热体1的致密度,避免了电子烟雾化芯100中的烟油渗透至多孔发热体1中对烟油的裂解。在本公开的一个实施例中,本公开可以通过多孔发热体1的组分控制,并灵活控制多孔发热体1在成型的过程中的高温焙烧参数,可以将多孔发热体1的孔隙率限制在不大于3%的范围内。在多孔发热体1的孔隙率限制在不大于3%的范围内时,可以更加有效地提高多孔发热体1的致密度,避免了电子烟雾化芯100中的烟油渗透至多孔发热体1中对烟油的裂解。而且用户在抽吸电子烟时,烟油可以保持合适的雾化温度,提高了烟油雾化的饱满度和抽吸的口感还原度。
在一些实施方式中,参见图1,多孔发热体1的孔径小于或等于10μm。
具体地,多孔发热体1在高温焙烧过程中会形成孔洞结构,比如多孔发热体1中的孔洞11,而且孔洞11与外部连通。为了避免了电子烟雾化芯100中的烟油渗透至多孔发热体1的孔洞11中,可以将孔洞11的孔径控制在小于或等于10μm的范围内。比如孔洞11的平均孔径在0.2-10μm之间。而多孔发热体1的焙烧温度与孔洞11的平均孔径尺寸息息相关。多孔发热体1的焙烧温度较低时,无法使玻璃体充分熔化,也就阻碍了玻璃体嵌入导电骨架中间,导致孔洞11的平均孔径过大。而多孔发热体1的焙烧温度较高时,玻璃体熔化后容易挥发,同样会导致多孔发热体1的孔隙率上升,降低了多孔发热体1的致密性。
在一些实施方式中,多孔发热体1的孔径小于或等于2μm,优选0.2-2μm。
具体地,多孔发热体1的导电骨架的间隙为导电粉堆积形成的间隙,也就是导电粉的颗粒尺寸大小关系到导电骨架的间隙大小。进而可以通过导电粉的颗粒尺寸控制和多孔发热体1高温焙烧的参数控制相配合,降低导电骨架的间隙,而玻璃体在高温熔化的状态下可以充分填充到导电骨架的间隙中,进一步降低孔洞11的孔径尺寸,提高多孔发热体1的致密性。
在本公开中,多孔发热体1通过印刷或涂覆的方式设置于雾化面,印刷包括丝网印刷或钢板印刷。在一些实施方式中,参见图4和图5,多孔 发热体1的厚度范围为40-200μm。
具体地,多孔发热体1可以通过丝网印刷设置于雾化面,具体为将浆料状的多孔发热体1丝网印刷或钢板印刷到雾化面后再进行焙烧定型。多孔发热体1的厚度在40-200μm的情况下,可以保证多孔发热体1导电和电热转化稳定性的基础上,提升多孔发热体1的尺寸均衡性和稳定性。而多孔发热体1的厚度太小时,存在多孔发热体1丝网印刷或钢板印刷不均匀的问题,可能导致多孔发热体1的部分位置不能连续导电,限制了多孔发热体1的电热转化效率。而多孔发热体1的厚度太大时,由于丝网印刷到雾化面的多孔发热体1具有一定的流动性,在未及时焙烧的情况下可能导致多孔发热体1的薄厚尺寸不一致,降低了多孔发热体1的尺寸一致性。
在一些实施方式中,参见图2和图3,电子烟雾化芯100包括多孔陶瓷基体2和发热体,发热体为多孔发热体1,多孔陶瓷基体2具有吸液面和雾化面,多孔发热体1设置于多孔陶瓷基体2的雾化面。
本公开将多孔发热体1包括至少一个第一弯折段和至少一个第二弯折段,而且第一弯折段与第二弯折段的弯折方向相反,既可以灵活控制多孔发热体1的加热速率,保证雾化面的发热均衡性,又可以简化多孔发热体1的设置面积,降低多孔发热体1的设置成本。
在一些实施方式中,如图3所示,多孔发热体1的两端分别为第一连接段和第二连接段。多孔发热体1还包括第一加热段、第二加热段和第三加热段,第一加热段连接在第一连接段和第一弯折段之间,第二加热段分别与第一弯折段和第二弯折段连接,第三加热段连接在第二弯折段和第二连接段之间。第一连接段和第二连接段分别延伸至雾化面的两端,第一加热段、第二加热段和第三加热段给多孔发热体1提供了主要的热源,可以对雾化面进行均衡加热。
在一些实施方式中,参见图2至图5,多孔发热体1上设置有电极12,电极12用于与外部电源电连接。
具体地,电极12可以包括正电极和负电极,并使得正电极和负电极分别连接于多孔发热体1的导电骨架两端。多孔发热体1用于电子烟时,通过电子烟内的电源给正电极和负电极施加电压,便可以给多孔发热体1 通电,多孔发热体1在通电的情况下可以将电能转化为热能,多孔发热体1发热时便可以将电子烟雾化芯100雾化端的烟油雾化,保证电子烟的雾化效果。
总而言之,本公开的电子烟雾化芯100,主要由多孔陶瓷基体2和发热体组成,发热体采用多孔发热体1,通过控制多孔发热体1的孔隙率小于或等于30%,提高了多孔发热体1的致密度,避免了电子烟雾化芯100中的烟油渗透至多孔发热体1中对烟油的裂解。而且用户在抽吸电子烟时,烟油可以保持合适的雾化温度,提高了烟油雾化的饱满度和抽吸的口感还原度。
本公开的第二方面提供了一种电子烟雾化芯100的制备方法,如图8所示,该制备方法包括:
S1、提供多孔陶瓷基体;
S2、将导电粉与玻璃粉按照体积比(28-60):(40-72)与有机溶剂混合后得到浆料;
S3、将浆料设置于多孔陶瓷基体表面进行烧结,烧结在氢气和/或氮气保护气氛下或在真空度<1Pa的真空条件下进行,烧结的温度为950-1200℃。
具体来说,参见图8,在本公开的电子烟雾化芯100的制备方法中,首先,可以提供一多孔陶瓷基体2。然后,可以将发热体组合物中的导电粉与玻璃粉按照体积比(28-60):(40-72)与有机溶剂混合后得到浆料。其中,导电粉的真实体积为导电粉的实体骨架所占用的体积,也就是导电粉的真实体积=导电粉的表观体积-导电粉的孔体积=导电粉的表观体积*(1-孔隙率)。类似地,玻璃粉的真实体积为玻璃粉的实体骨架所占用的体积,也就是玻璃粉的真实体积=玻璃粉的表观体积-玻璃粉的孔体积=玻璃粉的表观体积*(1-孔隙率)。对导电粉与玻璃粉的真实体积比例控制可以有效控制烧结后的多孔发热体1的孔隙率,避免电子烟雾化芯100上的烟油渗入到多孔发热体1内。
最后,将浆料设置于多孔陶瓷基体2表面进行烧结,其中,烧结可以 在氢气和/或氮气保护气氛下或在真空度<1Pa的真空条件下进行,烧结的温度为950-1200℃,烧结完成后,得到电子烟雾化芯100。
也就是说,烧结过程具体可以在气氛炉中进行,通过控制气氛炉中烧结的工艺参数,可以有效提升发热体的金属化和致密度。烧结的温度过低时,由于玻璃粉在温度较低时的黏度较高,难以充分填充到导电粉的间隙中,对多孔发热体1起不到很好的致密化和填充作用。而烧结的温度过高时,高温下的玻璃粉熔化后容易挥发,导致多孔发热体1的孔隙率上升,降低了多孔发热体的致密性。
在本公开中,烧结在氢气和氮气的混合气氛下进行,烧结的温度可选为1030-1200℃。导电粉一般为金属粉或者金属合金粉。在高温烧结的情况下,导电粉容易与烧结气氛中的氧气反应生成金属氧化物,降低了多孔发热体1的导电性。而烧结温度控制在1030-1200℃,并在保护气氛条件下进行时,比如保护气氛为氢气和/或氮气时,氢气和氮气不会与金属粉发生反应,可以对导电粉形成很好的保护,保证了多孔发热体1的导电效率。另外,烧结也可以在真空条件下进行,且真空度小于或等于1Pa。在低真空的状态下,同样可以对导电粉形成很好的保护。
在本公开的一些具体实施方式中,玻璃粉包括4%-15%Na 2O、0-2%MgO、2%-15%Al 2O 3、0%-7%K 2O、0%-15%CaO、20%-90%SiO 2。导电粉包括镍铬铁合金、镍铬合金、镍、银、钯中的一种或几种。其中,镍铬铁合金粉具有较低的温度电阻系数,使得多孔发热体1在应用于电子烟中,通电时多孔发热体1的发热速度快,使用者在抽吸时雾化的响应速度变快,能有很好的抽吸体验。有机溶剂包括松油醇,丁基卡必醇,丁基卡必醇醋酸酯、DBE(由三种二价酸酯组成的混合物,俗称尼龙酸二甲酯)中的一种或几种。导电粉与玻璃粉的质量之和与有机溶剂的质量之比为(40-90):(10-60)。
在本公开中,导电粉在电子烟雾化芯100中可以作为电子烟雾化芯100的导电骨架,起到导电线路的作用。而玻璃粉在高温熔化的毛细润湿作用下可以使得导电粉互相接触并紧密堆积,同时熔化后的玻璃粉可以填充到导电粉堆积的孔隙中。玻璃粉与导电粉的真实体积比的有效配合,从 而提高了电子烟雾化芯100的致密度。
上述有机溶剂可以为沸点低、在常温常压下易挥发的一些有机溶剂,比如松油醇(Terpineol),丁基卡必醇(diethylene glycol monobutyl ether),丁基卡必醇醋酸酯(Diethylene Glycol Monobutyl Ether Acetate)、DBE(Dimethyl nylon acid;由三种二价酸酯组成的混合物,俗称尼龙酸二甲酯)中的一种或多种。有机溶剂的添加可以使得导电粉与玻璃粉混合均匀,一方面保证了制备得到的多孔发热体1的致密度,另一方面可以保证多孔发热体1的导电稳定性和结构均匀性。
需要说明的是,发热体组合物在实现发热作用时,需要先经过高温焙烧的过程。由于导电粉和玻璃粉的粒径与孔隙大小存在差异,通过控制玻璃粉与导电粉之间的真实体积比,可以使得导电粉在玻璃粉高温熔化的毛细润湿作用下互相接触并紧密堆积,同时熔化后的玻璃粉可以填充到导电粉堆积的孔隙中,从而提高了由该发热体组合物制备得到的多孔发热体1的致密度。制备的多孔发热体1在具有较高的致密度的情况下,电子烟雾化芯100中的烟油便不会渗透至发热体的孔隙中,避免发热状态下的多孔发热体1对烟油的裂解,多孔发热体1上不容易出现积碳。使得用户在抽吸电子烟时,烟油可以保持合适的雾化温度,提高了烟油雾化的饱满度和抽吸的口感还原度。
而发热体组合物中的玻璃粉如果含量太低时,不利于导电粉的堆积,使得由发热体组合物制备得到的多孔发热体1的孔隙过大,容易导致电子烟雾化芯100上的烟油渗入到多孔发热体1的孔隙中。当然,发热体组合物中的玻璃粉含量不能太高,玻璃粉含量太高时便会导致导电粉含量不足,由于玻璃粉导电性差,会使得由发热体组合物制备得到的多孔发热体1的电阻值太高,降低了电加热的效率。
而金属片状的发热体虽然具有致密度高的特点,但金属片与多孔陶瓷基体表面贴合时难以保持齐平,从而导致金属片的凸起部分在发热时出现烧糊和积碳的问题,降低了金属片的使用寿命。
在本公开中,浆料通过印刷或涂覆的方式设置于多孔陶瓷基体2表面,印刷包括丝网印刷或钢板印刷。也就是说,多孔发热体1是将丝印后的发 热体浆料进行烧结后获得,可以使得电子烟雾化芯100中的导电粉在玻璃粉高温熔化的毛细润湿作用下互相接触并紧密堆积。同时熔化后的玻璃粉可以填充到导电粉堆积的孔隙中,从而提高了多孔发热体1的致密度,避免了电子烟雾化芯100中的烟油渗透至多孔发热体1的孔隙中。
在本公开中,为进一步提高多孔发热体1的致密度,在一些实施方式中,导电粉的平均粒径范围为3-40μm,优选5-20μm。玻璃粉的平均粒径范围为1-20μm,优选3-15μm。另外,导电粉的平均粒径可以大于玻璃粉的平均粒径。
具体地,导电粉的堆积可以保证发热体组合物的导电稳定性,而玻璃粉可以填充导电粉之间的间隙,保证由发热体组合物制备得到的多孔发热体1的结构致密性。而导电粉的平均粒径范围直接关系到发热体组合物的导电稳定性,导电粉的平均粒径范围过小时,也就使得导电粉颗粒之间的间隙过小,不便于熔化状态的玻璃粉流入导电粉颗粒之间,降低了导电粉颗粒之间的连接强度。导电粉的平均粒径范围过大时,也就是导电粉颗粒之间的间隙过大,需要过多的熔化状态的玻璃粉才可以将导电粉颗粒之间进行粘接,降低了发热体组合物的导电效率。另外,为了便于熔化状态的玻璃粉流入导电粉颗粒之间,可以使玻璃粉的颗粒粒径略小于导电粉的颗粒粒径。
以下通过具体实施例和对比例对本公开做进一步的说明。
以下实施例均是通过本公开的电子烟雾化芯100的制备方法制备得到具有该多孔发热体1的电子烟雾化芯100。
实施例1
发热体组合物中:玻璃粉与导电粉的真实体积比为28:72,有机溶剂与粉体的质量比为45:55,导电粉的平均粒径为3μm,玻璃粉的平均粒径为1μm,导电粉为镍铬铁合金粉,其中镍铬铁质量比为80:10:10,玻璃粉为钠钙硅酸盐玻璃,有机溶剂为松油醇。
发热体的制备方法:将导电粉、玻璃粉与有机溶剂进行混合,制备发热体浆料,发热体浆料经过丝印覆盖于多孔陶瓷基体2上,丝印的发热体 浆料在气氛炉中进行加热和烧结,得到多孔发热体1。
其中,气氛炉的气氛为H 2和N 2体积比1:1的混合气体,烧结温度为1030℃,时间为15min。
实施例2
玻璃粉与导电粉的真实体积比为39:61,其余特征与实施例1相同。
实施例3
玻璃粉与导电粉的真实体积比为50:50,其余特征与实施例1相同。
实施例4
玻璃粉与导电粉的真实体积比为60:40,其余特征与实施例1相同。
实施例5
导电粉的平均粒径为5μm,玻璃粉的平均粒径为3μm,其余特征与实施例1相同。
实施例6
导电粉的平均粒径为20μm,玻璃粉的平均粒径为15μm,其余特征与实施例1相同。
实施例7
导电粉的平均粒径为40μm,玻璃粉的平均粒径为20μm,其余特征与实施例1相同。
实施例8
导电粉的平均粒径为1μm,玻璃粉的平均粒径为0.5μm,其余特征与实施例1相同。
实施例9
导电粉的平均粒径为50μm,玻璃粉的平均粒径为30μm,其余特征与实施例1相同。
实施例10
导电粉的平均粒径为5μm,玻璃粉的平均粒径为3μm,气氛烧结温度为1060℃,其余特征与实施例1相同。
实施例11
导电粉的平均粒径为5μm,玻璃粉的平均粒径为3μm,气氛烧结温度 为1090℃,其余特征与实施例1相同。
对比例1
玻璃粉与导电粉的真实体积比为20:80,其余特征与实施例1相同。
对比例2
气氛烧结温度为930℃,其余特征与实施例5相同。
性能测试
将实施例和对比例得到的发热体进行如下测试:
孔隙率测试:通过阿基米德排水法进行测试。
电阻值:使用GB T 6146-2010方法测量。
抽吸口感:装配至烟弹配件中组装为烟弹,进行抽吸并由品烟师进行评测。
测试结果见表1:
表1
Figure PCTCN2021130136-appb-000001
由表1的测试结果可知,采用本公开提供的发热体组合物,应用于电子烟中,电子烟烟雾口感好无糊味而对比例为现有技术中使用的多孔发热体,其孔隙率大于34%,烟雾口感差,且发热体易烧坏。
根据本公开的第三方面,提供一种电子烟雾化芯100,由上述实施例中的制备方法制备得到。通过采用该制备方法制备出的电子烟雾化芯100,通过将发热体组合物的各组分混合后丝印到多孔陶瓷基体表面,丝印后的发热体浆料进行烧结后,可以使得发热体组合物中的导电粉在玻璃粉高温熔化的毛细润湿作用下互相接触并紧密堆积。同时熔化后的玻璃粉可以填充到导电粉堆积的孔隙中,从而提高了多孔发热体1的致密度,避免了电子烟雾化芯100中的烟油渗透至多孔发热体1的孔隙中。
本公开还提供一种电子烟雾化组件,在本公开的一些实施方式中,电子烟雾化组件包括:壳体101、设于壳体101内的储油仓102和本公开的电子烟雾化芯100、下盖105,壳体101的一端设有出气通道1011,壳体101的另一端为开口端。下盖105盖设于壳体101的开口端,下盖105设置有进气通道。吸液面与储液仓连通,雾化面与下底座之间形成雾化室106,进气通道、雾化室106以及出气通道1011之间气体导通。
在本公开的另一实施方式中,电子烟雾化组件包括壳体101、设于壳体101内的储油仓102和本公开的电子烟雾化芯100、下盖105,壳体101的一端设有出气通道1011,壳体101的另一端为开口端。下盖105盖设于壳体101的开口端,下盖105设置有进气通道。吸液面与储液仓连通,雾化面与下底座之间形成雾化室106,进气通道、雾化室106以及出气通道1011之间气体导通,还包括第一密封元件108,第一密封元件108套设在多孔陶瓷基体2上,第一密封元件108至少覆盖多孔陶瓷基体2的部分外周面以及吸液面的边缘以形成密封。
在本公开的另一实施方式中,电子烟雾化组件包括壳体101、设于壳体101内的储油仓102和本公开的电子烟雾化芯100、下盖105,壳体101 的一端设有出气通道1011,壳体101的另一端为开口端。下盖105盖设于壳体101的开口端,下盖105设置有进气通道。吸液面与储液仓连通,雾化面与下底座之间形成雾化室106,进气通道、雾化室106以及出气通道1011之间气体导通。电子烟雾化组件还包括第一密封元件108,第一密封元件108套设在多孔陶瓷基体2上,第一密封元件108至少覆盖多孔陶瓷基体2的部分外周面以及吸液面的边缘以形成密封。电子烟雾化组件还包括上支架103、第二密封元件107。上支架103与下盖105配合形成容纳腔,电子烟雾化芯100位于容纳腔内且电子烟雾化芯100支撑在下盖105上,上支架103上开设有导油孔1032和出气孔1031,多孔陶瓷基体2的吸液面通过导油孔1032与储油仓102连通,雾化室106通过导气孔与出气通道1011连通。第二密封元件107套设于上支架103的外周,第二密封元件107的外缘抵接壳体101的内壁以合围形成储油仓102,且第二密封元件107上开设有用于导通储油仓102和导油孔1032的第一连通孔1071,第二密封元件107上开设有用于导通出气通道1011和出气孔1031的第二连通孔1072。
在本公开的另一实施方式中,电子烟雾化组件包括壳体101、设于壳体101内的储油仓102和本公开的电子烟雾化芯电子烟雾化芯100、下盖105,壳体101的一端设有出气通道1011,壳体101的另一端为开口端。下盖105盖设于壳体101的开口端,下盖105设置有进气通道。吸液面与储液仓连通,雾化面与下底座之间形成雾化室106,进气通道、雾化室106以及出气通道1011之间气体导通。电子烟雾化组件还包括第一密封元件108,第一密封元件108套设在多孔陶瓷基体2上,第一密封元件108至少覆盖多孔陶瓷基体2的部分外周面以及吸液面的边缘以形成密封。电子烟雾化组件还包括上支架103、第二密封元件107。上支架103与下盖105配合形成容纳腔,电子烟雾化芯100位于容纳腔内且电子烟雾化芯100支撑在下盖105上,上支架103上开设有导油孔1032和出气孔1031,多孔陶瓷基体2的吸液面通过导油孔1032与储油仓102连通,雾化室106通过导气孔与出气通道1011连通。第二密封元件107套设于上支架103的外周,第二密封元件107的外缘抵接壳体101的内壁以合围形成储油仓102,且 第二密封元件107上开设有用于导通储油仓102和导油孔1032的第一连通孔1071,第二密封元件107上开设有用于导通出气通道1011和出气孔1031的第二连通孔1072。电子烟雾化组件还包括下支架104,上支架103与下支架104配合形成容纳腔,电子烟雾化芯100设于容纳腔且电子烟雾化芯100支撑在下支架104上,多孔陶瓷基体2的雾化面与下支架104之间形成雾化室106,下支架104设有与进气孔1051连通的通气孔。
在本公开的又一实施例中,如图6和图7所示,电子烟雾化组件包括壳体101、设于壳体101内的储油仓102和本公开上述的电子烟雾化芯100,壳体101的一端设有出气通道1011,壳体101的另一端为开口端。在一些实施方式中,参见图6和图7,电子烟雾化组件还包括第一密封元件108,第一密封元件108套设在多孔陶瓷基体2上,第一密封元件108至少覆盖多孔陶瓷基体2的部分外周面以及吸液面的边缘。第一密封元件108套接在雾化芯100的外周,可以对吸液面的烟油进行有效密封,避免烟油的泄漏。
在一些实施方式中,如图6和图7所示,电子烟雾化组件还包括上支架103、下支架104和下盖105,下盖105盖设于壳体101的开口端。下盖9开设有进气孔1051。上支架103与下支架104配合形成容纳腔,电子烟雾化芯100设于容纳腔。上支架103上开设有导油孔1032和出气孔1031,多孔陶瓷基体2的吸液面通过导油孔1032与储油仓102连通。多孔陶瓷基体2的雾化面与下支架104之间形成雾化室106,下支架104设有与进气孔1051连通的通气孔,出气孔1031分别与雾化室106和出气通道1011连通,外界空气可通过进气孔1051和通气孔进入雾化室106
具体地,电子烟雾化组件工作时,由储油仓102流出的烟油经由导油孔1032导流至多孔陶瓷基体2的吸液面,并由多孔陶瓷基体2的毛细作用吸收至多孔陶瓷基体2在雾化面的多孔发热体1,通过多孔发热体1的加热雾化形成雾气,此时用户在出气通道1011的端口抽吸,在用户的抽吸作用下空气经进气孔1051进入雾化室106中,携带雾化室106的气溶胶导出至出气通道1011供用户吸食。
在本公开的一些实施例中,参见图6和图7,电子烟雾化组件还包括 第二密封元件107和第三密封元件109。第二密封元件107套设于上支架103的外周,第二密封元件107的外缘抵接壳体101的内壁以合围形成储油仓102,且第二密封元件107上开设有用于导通储油仓102和导油孔1032的第一连通孔1071,第二密封元件107上开设有用于导通出气通道1011和出气孔1031的第二连通孔1072。
第一密封元件108套设于电子烟雾化芯100的外周。第三密封元件109环绕设置于下盖105的外周,且第三密封元件109的外缘抵接壳体101的内壁。
具体地,第二密封元件107、第一密封元件108和第三密封元件109用于提供电子烟内部必要的密封性,避免储油仓102以及各元件的连接间隙之间存在非必要的导通,有效避免漏油的发生。另外,电子烟还包括吸液元件1010,吸液元件1010环绕设置于进气孔1051的外周,吸液元件1010用于吸收进气孔1051流出的冷凝液体。
本公开的电子烟雾化组件,通过采用上述实施例中的多孔发热体1,避免了电子烟雾化芯100中的烟油渗透至多孔发热体1中对烟油的裂解。而且用户在抽吸电子烟时,烟油可以保持合适的雾化温度,提高了烟油雾化的饱满度和抽吸的口感还原度。
本公开还提供一种电子烟,包括上述实施例中的电子烟雾化组件。由于本公开实施例的电子烟雾化组件具有上述技术效果,因此,根据本公开实施例的电子烟也应具有相应的技术效果,即本公开的电子烟可以避免电子烟雾化芯100中的烟油渗透至多孔发热体1中对烟油的裂解。而且用户在抽吸电子烟时,烟油可以保持合适的雾化温度,提高了烟油雾化的饱满度和抽吸的口感还原度。
当然,对于本领域技术人员来说,本公开的电子烟的其他结构以及工作原理是可以理解并且能够实现的,在本公开中不再详细赘述。
虽然已经通过例子对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求 来限定。

Claims (19)

  1. 一种电子烟雾化芯,其特征在于,所述电子烟雾化芯包括:
    多孔陶瓷基体;和
    发热体,
    所述多孔陶瓷基体包括吸液面和雾化面,
    所述发热体设于所述雾化面,所述发热体为多孔发热体,所述多孔发热体的孔隙率小于或等于30%。
  2. 根据权利要求1所述的电子烟雾化芯,其特征在于,所述多孔发热体的孔隙率小于或等于10%。
  3. 根据权利要求1至2中任意一项所述的电子烟雾化芯,其特征在于,所述多孔发热体的孔隙率小于或等于3%。
  4. 根据权利要求1至3中任意一项所述的电子烟雾化芯,其特征在于,所述多孔发热体的孔径小于或等于10μm。
  5. 根据权利要求1或4所述的电子烟雾化芯,其特征在于,所述多孔发热体的孔径小于或等于2μm。
  6. 根据权利要求1至5中任意一项所述的电子烟雾化芯,其特征在于,所述多孔发热体通过印刷或涂覆的方式设置于所述雾化面,所述印刷包括丝网印刷或钢板印刷。
  7. 根据权利要求6所述的电子烟雾化芯,其特征在于,所述多孔发热体的厚度范围为40-200μm。
  8. 一种电子烟雾化芯的制备方法,其特征在于,所述制备方法包括:
    (1)提供多孔陶瓷基体;
    (2)将导电粉与玻璃粉按照体积比(28-60):(40-72)与有机溶剂混合后得到浆料;
    (3)将所述浆料设置于所述多孔陶瓷基体表面进行烧结,所述烧结在氢气和/或氮气保护气氛下或在真空度<1Pa的真空条件下进行,所述烧结的温度为950-1200℃。
  9. 根据权利要求8所述的电子烟雾化芯的制备方法,其特征在于,所述烧结在氢气和氮气的混合气氛下进行,所述烧结的温度为1030-1200℃。
  10. 根据权利要求8至9中任意一项所述的电子烟雾化芯的制备方法,其特征在于,所述玻璃粉包括4%-15%Na 2O、0-2%Mg0、2%-15%Al 20 3、0%-7%K 2O、0%-15%CaO、20%-90%SiO 2;所述导电粉包括镍铬铁合金、镍铬合金、镍、银、钯中的一种或几种;所述有机溶剂包括松油醇,丁基卡必醇,丁基卡必醇醋酸酯、DBE中的一种或几种。
  11. 根据权利要求8至10中任意一项所述的电子烟雾化芯的制备方法,其特征在于,所述导电粉与所述玻璃粉的质量之和与所述有机溶剂的质量比为(40-90):(10-60)。
  12. 根据权利要求8至11中任意一项所述的电子烟雾化芯的制备方法,其特征在于,所述浆料通过印刷或涂覆的方式设置于所述多孔陶瓷基体表面,所述印刷包括丝网印刷或钢板印刷。
  13. 一种电子烟雾化芯,其特征在于,由权利要求8-12任意一项所述的制备方法制备得到。
  14. 一种电子烟雾化组件,其特征在于,所述电子烟雾化组件包括:
    壳体、设于所述壳体内的储油仓和权利要求1-7以及权利要求13任 意一项所述的电子烟雾化芯、下盖,所述壳体的一端设有出气通道,所述壳体的另一端为开口端;所述下盖盖设于所述壳体的开口端,所述下盖设置有进气通道;所述吸液面与所述储液仓连通,所述雾化面与下底座之间形成雾化室,所述进气通道、雾化室以及出气通道之间气体导通。
  15. 根据权利要求14所述的电子烟雾化组件,其特征在于,所述电子烟雾化组件还包括第一密封元件,所述第一密封元件套设在所述多孔陶瓷基体上,所述第一密封元件至少覆盖所述多孔陶瓷基体的部分外周面以及所述吸液面的边缘以形成密封。
  16. 根据权利要求15所述的电子烟雾化组件,其特征在于,所述电子烟雾化组件还包括:上支架、第二密封元件;所述上支架与所述下盖配合形成容纳腔,所述电子烟雾化芯位于所述容纳腔内且所述电子烟雾化芯支撑在所述下盖上,所述上支架上开设有导油孔和出气孔,所述多孔陶瓷基体的吸液面通过所述导油孔与所述储油仓连通,所述雾化室通过所述导气孔与出气通道连通;所述第二密封元件套设于所述上支架的外周,所述第二密封元件的外缘抵接所述壳体的内壁以合围形成所述储油仓,且所述第二密封元件上开设有用于导通所述储油仓和所述导油孔的第一连通孔,所述第二密封元件上开设有用于导通出气通道和出气孔的第二连通孔。
  17. 根据权利要求16所述的电子烟雾化组件,其特征在于,
    所述电子烟雾化组件还包括:
    下支架,
    所述上支架与下支架配合形成容纳腔,所述电子烟雾化芯设于所述容纳腔且所述电子烟雾化芯支撑在所述下支架上,所述多孔陶瓷基体的雾化面与所述下支架之间形成雾化室,所述下支架设有与所述进气孔连通的通气孔。
  18. 根据权利要求17所述的电子烟雾化组件,其特征在于,还包括有 第三密封元件,所述第三密封元件环绕设置于所述下盖的外周,且所述第三密封元件的外缘抵接所述壳体的内壁。
  19. 一种电子烟,其特征在于,包括权利要求14-18任意一项所述的电子烟雾化组件。
PCT/CN2021/130136 2021-07-26 2021-11-11 电子烟雾化芯、电子烟雾化芯的制备方法、电子烟雾化组件和电子烟 WO2023005059A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21951631.7A EP4349191A1 (en) 2021-07-26 2021-11-11 Electronic cigarette atomization core, preparation method for electronic cigarette atomization core, electronic cigarette atomization assembly, and electronic cigarette
US18/399,728 US20240138478A1 (en) 2021-07-26 2023-12-29 Electronic cigarette atomization core, preparation method for electronic cigarette atomization core, electronic cigarette atomization assembly, and electronic cigarette

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110846774 2021-07-26
CN202110846774.6 2021-07-26
CN202110957244.9A CN115670025A (zh) 2021-07-26 2021-08-19 电子烟雾化芯、电子烟雾化组件和电子烟
CN202110957244.9 2021-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/399,728 Continuation US20240138478A1 (en) 2021-07-26 2023-12-29 Electronic cigarette atomization core, preparation method for electronic cigarette atomization core, electronic cigarette atomization assembly, and electronic cigarette

Publications (1)

Publication Number Publication Date
WO2023005059A1 true WO2023005059A1 (zh) 2023-02-02

Family

ID=85059784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130136 WO2023005059A1 (zh) 2021-07-26 2021-11-11 电子烟雾化芯、电子烟雾化芯的制备方法、电子烟雾化组件和电子烟

Country Status (4)

Country Link
US (1) US20240138478A1 (zh)
EP (1) EP4349191A1 (zh)
CN (1) CN115670025A (zh)
WO (1) WO2023005059A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111000293A (zh) * 2019-12-05 2020-04-14 东莞市陶陶新材料科技有限公司 电子烟雾化芯及其制备方法
CN111728273A (zh) * 2020-05-15 2020-10-02 深圳麦克韦尔科技有限公司 梯度多孔材料及其制备方法、雾化器和电子雾化装置
CN212911666U (zh) * 2020-08-06 2021-04-09 常州市派腾电子技术服务有限公司 雾化器及气溶胶发生装置
CN112888093A (zh) * 2021-01-13 2021-06-01 深圳麦克韦尔科技有限公司 发热组件、电子雾化装置及发热组件的制备方法
WO2021143328A1 (zh) * 2020-01-17 2021-07-22 深圳麦克韦尔科技有限公司 发热体的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111000293A (zh) * 2019-12-05 2020-04-14 东莞市陶陶新材料科技有限公司 电子烟雾化芯及其制备方法
WO2021143328A1 (zh) * 2020-01-17 2021-07-22 深圳麦克韦尔科技有限公司 发热体的制造方法
CN111728273A (zh) * 2020-05-15 2020-10-02 深圳麦克韦尔科技有限公司 梯度多孔材料及其制备方法、雾化器和电子雾化装置
CN212911666U (zh) * 2020-08-06 2021-04-09 常州市派腾电子技术服务有限公司 雾化器及气溶胶发生装置
CN112888093A (zh) * 2021-01-13 2021-06-01 深圳麦克韦尔科技有限公司 发热组件、电子雾化装置及发热组件的制备方法

Also Published As

Publication number Publication date
US20240138478A1 (en) 2024-05-02
CN115670025A (zh) 2023-02-03
EP4349191A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
US11969013B2 (en) Electronic cigarette, atomizing assembly, and atomizing component for same
US20200359704A1 (en) Microporous ceramic thick-film heating element for electronic cigarette oil atomizing core, and manufacturing method thereof
CN110022622B (zh) 一种氧化铝蜂窝陶瓷发热体及其制备方法
CN112931952A (zh) 一种雾化芯及电子雾化装置
JP2019062895A (ja) 伝導性コーティングを有する焼結体
CN110710731A (zh) 一种电子烟雾化加热装置及其制备方法和电子烟
WO2020238607A1 (zh) 雾化件及电子烟
CN115159991B (zh) 多孔陶瓷发热结构及其制备方法
CN110477463A (zh) 一种多孔玻璃雾化装置及包含其的电子烟
CN113729300A (zh) 一种基于蜂窝渗透结构的发热片及包含其的电子烟
CN112790427A (zh) 用于电子烟的雾化组件、雾化组件的制备方法及电子烟
CN113729299A (zh) 一种基于多孔结构的发热硅片及包含其的电子烟
WO2023005059A1 (zh) 电子烟雾化芯、电子烟雾化芯的制备方法、电子烟雾化组件和电子烟
WO2021007776A1 (zh) 一种雾化器用发热片、雾化器及电子烟
CN216019085U (zh) 一种雾化芯及电子雾化装置
WO2024027365A1 (zh) 雾化芯及电子雾化装置
TW202214125A (zh) 霧化裝置及其霧化元件
EP4265136A1 (en) Ceramic, ceramic preparation method, atomization core, atomizer, and electronic atomization device
CN215736884U (zh) 电子烟雾化组件和电子烟
WO2022252479A1 (zh) 电子烟雾化芯和电子烟
CN114639502A (zh) 一种雾化芯用铬合金发热浆料及其制备、印刷成膜方法
CN210094680U (zh) 一种电子烟加热器用预加热装置
CN207285204U (zh) 一种金属纤维雾化芯、雾化器及电子烟
CN216493509U (zh) 一种基于蜂窝渗透结构的发热片及包含其的电子烟
CN116369596A (zh) 雾化芯及其制备方法、雾化器和电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021951631

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021951631

Country of ref document: EP

Effective date: 20240103

NENP Non-entry into the national phase

Ref country code: DE