WO2023098126A1 - 含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法 - Google Patents

含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法 Download PDF

Info

Publication number
WO2023098126A1
WO2023098126A1 PCT/CN2022/109957 CN2022109957W WO2023098126A1 WO 2023098126 A1 WO2023098126 A1 WO 2023098126A1 CN 2022109957 W CN2022109957 W CN 2022109957W WO 2023098126 A1 WO2023098126 A1 WO 2023098126A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
steel
zinc
coating
magnesium alloy
Prior art date
Application number
PCT/CN2022/109957
Other languages
English (en)
French (fr)
Inventor
董学强
徐接旺
郭太雄
冉长荣
宋裕
靳阳
Original Assignee
攀钢集团攀枝花钢铁研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 攀钢集团攀枝花钢铁研究院有限公司 filed Critical 攀钢集团攀枝花钢铁研究院有限公司
Publication of WO2023098126A1 publication Critical patent/WO2023098126A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the invention relates to zinc-aluminum-magnesium alloy coated steel containing V, Ce, La and Mn and a preparation method thereof, belonging to the technical field of iron and steel metallurgy production.
  • the hot-dip Zn-Al-Mg alloy coated steel plate with Mg addition has better corrosion resistance, and the processing and application performance of the material ( Formability, weldability and coating performance) are excellent, and can replace the current corresponding hot-dip galvanized or zinc alloy coated steel sheets, and the market demand prospect is very broad.
  • Hot-dip Zn-Al-Mg alloy-coated steel sheets have been industrialized and applied in steel companies such as Nippon Steel, Nisshin Steel, and ThyssenKrupp in the early 21st century. At present, the main application fields are in the construction industry, and are gradually It is popularized and applied in industries such as home appliances and automobile manufacturing. my country's research on Zn-Al-Mg alloy coating is relatively late. At present, only Baosteel, Shougang, Jiugang, Panzhihua Iron and Steel and other enterprises have launched hot-dip Zn-Al-Mg alloy coated steel sheets.
  • Existing hot-dip Zn-Al-Mg alloy coated steel sheet can be divided into “low aluminum” (WAl ⁇ 5%), “medium aluminum” (5% ⁇ WAl ⁇ 13%) and “high aluminum” (47% ⁇ WAl ⁇ 57%) three types.
  • the content of Al and Mg in the coating is different, and the structure and quality of the coating are different, so the application fields are also different.
  • CN105063532A discloses a highly corrosion-resistant single-plated zinc-aluminum-magnesium rare-earth protective coating and a preparation process.
  • the single-plated zinc-aluminum-magnesium rare-earth protective coating process uses a single hot-dipping method to obtain a zinc-aluminum-magnesium alloy coating on a metal surface.
  • the coating and the metal substrate each maintain their original performance, but have more than 99.9% of the metallurgical bonding interface.
  • the coating has a dense structure, stable composition, no missing plating, excellent corrosion resistance, and salt spray corrosion up to 2060h.
  • the corrosion resistance of the alloy coating is better than that of ordinary hot-dip pure zinc coating, which improves the service life.
  • the single-plating process can be reused and industrialized, and overcomes the difficulties of metal and zinc-aluminum-magnesium alloy liquid plating, the difficulty of forming an excellent bonding interface between the two, and the lack of easy to produce missing plating. It can be widely used in the preparation of metal surfaces. 5%-12% Al, 1%-6% Mg content of zinc-aluminum-magnesium alloy plating solution, the prepared co-permeation layer forms Zn/Al/MgZn 2 ternary eutectic and various types of binary eutectic, is The main reason why the co-infiltration layer has high corrosion resistance.
  • the above-mentioned high-corrosion-resistant single-plated zinc-aluminum-magnesium rare earth protective coating adopts a medium-aluminum component system.
  • the CN109402547A provides a kind of hot-dip coated steel plate with excellent corrosion resistance and its manufacturing method.
  • the hot-dip coated steel plate includes a substrate and an Al-Zn-Si-Mg coating coated on the substrate.
  • the chemical composition quality of the coating is The percentages are: Al: 45% ⁇ 65%, Si: 0.1% ⁇ 3%, Mg: 0.2% ⁇ 5%, Mn: 0.001% ⁇ 0.15%, Cr: 0.001% ⁇ 0.5%, the balance is Zn and unavoidable of impurities.
  • the manufacturing method comprises steps: (1) pretreatment of the steel plate; (2) dipping the steel plate into a bath for hot-dip plating, and the temperature of the bath is 560-595° C.; (3) taking the steel plate out of the bath, and performing Sectional cooling.
  • the hot-dip-coated steel sheet has excellent corrosion resistance, and has a remarkable inhibitory effect on the occurrence of white rust, the development of red rust, and the propagation of failure of the treatment film originating from the cut.
  • the above-mentioned hot-dip coated steel sheet with excellent corrosion resistance adopts a high-aluminum composition system coating.
  • the zinc-aluminum-magnesium steel sheet with high corrosion resistance is mainly the zinc-aluminum-magnesium steel sheet with a medium-high aluminum composition system.
  • the corrosion resistance of the coating increases, but at the same time, the formability and weldability of the coating increase. Performance drops.
  • the Zn-Al-Mg alloy coated steel sheet meets the user's stamping forming requirements, it must have good formability.
  • the Zn-Al-Mg alloy coated steel sheet with a medium and high aluminum composition system cannot meet the user's requirements. .
  • the high-strength steel with higher strength has poor wettability between the plating solution and the steel base due to more alloying elements in the steel base, which seriously affects the use of zinc, aluminum and magnesium in high-strength steel. Therefore, it is of great significance to provide a Zn-Al-Mg alloy coated steel sheet with high formability and corrosion resistance.
  • the technical problem to be solved by the present invention is to provide a zinc-aluminum-magnesium alloy coated steel containing V, Ce, La and Mn with high formability and corrosion resistance and a preparation method thereof.
  • the technical scheme that the present invention adopts for solving the above-mentioned technical problems is: at first a kind of zinc-aluminum-magnesium alloy coating steel material containing V, Ce, La, Mn is provided, and the chemical composition of coating is counted as: aluminum 0.5 ⁇ 5%, Magnesium 0.5-3.0%, vanadium 0.05-1%, cerium 0.01-0.50%, lanthanum 0.01%-0.30%, manganese 0.025%-1.0%, other trace alloy elements ⁇ 0.3%, the rest is zinc and unavoidable impurities; Al/Mg is 1.0-1.5, and the total amount of vanadium+cerium+lanthanum is 0.3-1.0%.
  • the chemical composition of the coating satisfies at least one of the following:
  • the coating contains 0.8-3.2% of aluminum, 0.8-2.5% of magnesium, 0.05-0.40% of vanadium, 0.03-0.30% of cerium, 0.02%-0.20% of lanthanum, and 0.10%-1.0% of manganese;
  • Al/Mg 1 ⁇ 1.2
  • the total amount of vanadium + cerium + lanthanum is 0.10-0.35%.
  • the sum of the inevitable impurities is ⁇ 0.010%, among which lead ⁇ 0.002%, antimony ⁇ 0.002%, tin ⁇ 0.002%, arsenic ⁇ 0.002%, tellurium ⁇ 0.002%, cadmium ⁇ 0.002%.
  • the weight of the coating is 30-400g/m 2 , calculated on both sides; preferably, the weight of the coating is 150-320g/m 2 , calculated on both sides.
  • the steel base of the steel is selected from at least one of IF steel, low-carbon aluminum killed steel, bake-hardened steel, QP steel, DP steel, TRIP steel, and TWIP steel.
  • the above-mentioned manufacturing method of zinc-aluminum-magnesium alloy coated steel includes the following steps: degreasing and cleaning the steel base, continuous annealing, hot-dip plating, and air knife purging.
  • the hydrogen in the furnace is controlled to be ⁇ 3.5% by volume; preferably, the hydrogen in the furnace is controlled to be 4.0-8.0% by volume during the continuous annealing process.
  • the temperature of the steel-based galvanizing pot is controlled at 420-520°C
  • the temperature of the plating solution during hot-dip galvanizing is 410-520°C
  • the temperature difference between the galvanizing pot temperature and the plating solution temperature is controlled at ⁇ 10°C.
  • the temperature at which the steel strip reaches the top turning roll is controlled to be ⁇ 260°C; preferably, after quick cooling after plating, the temperature at which the strip steel reaches the top turning roll is controlled to be 200-260°C.
  • the beneficial effects of the present invention are: the zinc-aluminum-magnesium alloy coated steel provided by the present invention adopts a low-aluminum component system, and the Zn-Al-Mg alloy coated steel plate with high corrosion resistance and formability can be produced by controlling the components of the coating.
  • the zinc-aluminum-magnesium alloy coated steel of the present invention can appear red rust for as long as 600 hours or even more than 3200 hours under the neutral salt spray test conditions. Under certain conditions, the time for red rust to appear is more than 500h or even 3000h, and the adhesion of the sprayed coating after spraying is excellent.
  • the zinc-aluminum-magnesium alloy coated steel is especially suitable for the fields of home appliances and automobiles, and has good prospects for popularization and application.
  • the invention provides a zinc-aluminum-magnesium alloy coated steel material containing V, Ce, La, and Mn.
  • the chemical composition of the coating is calculated by mass percentage: 0-5% of aluminum, 0.5-3.0% of magnesium, 0.05-1% of vanadium, and 0.01% of cerium ⁇ 0.50%, lanthanum 0.01% ⁇ 0.30%, manganese 0.025% ⁇ 1.0%, other trace alloy elements ⁇ 0.3%, the rest is zinc and unavoidable impurities; of which Al/Mg is 1.0 ⁇ 1.5, the total of vanadium + cerium + lanthanum The amount is 0.3-1.0%, and the other trace alloy elements are selected from at least one of boron, silicon, titanium, calcium, manganese, molybdenum, chromium, niobium, yttrium and bismuth.
  • the current field mainly adopts a medium-high aluminum composition system, but with the increase of Al and Mg content, the formability and welding performance of the steel decrease significantly, and it is difficult to meet the requirements of home appliances, automobiles, etc. Requirements for stamping performance in other fields.
  • the present invention refines and reduces the grain size of the coating by optimizing the addition of Mg, Al content (content ratio) and other alloying elements in the coating, wherein V provides heterogeneous nucleation points during the formation of the coating , in the case of improving the ductility of the coating, the corrosion resistance of the coating is improved; Ce and La increase the fluidity of the plating solution, reduce the surface tension of the plating solution, increase the wettability of the plating solution to the steel substrate, and improve the coating
  • Mn can enhance the combination between the coating and the steel base (especially high-strength steel containing Mn), forming a Mn-rich intermetallic compound, so that the coating can obtain good plasticity and toughness, which is easy for subsequent processing, and then meets Users require high corrosion resistance and high formability.
  • excessive V, Ce, La, and Mn contents will form oxide scales on the surface of the alloy plating solution, resulting in increased zinc slag and affecting the surface quality of the coating.
  • the thickness of the coating should be controlled within a certain range.
  • the weight of the coating is too large and the pressure of the air knife is small, the surface quality and thickness of the coating are not easy to control; while the flow of the air knife is limited and the fluidity of the plating solution is constant, the thickness of the coating is too thin to be controllable.
  • the wettability of the plating solution on the surface of different steel plates is different, and it can only form a coating with excellent adhesion on the steel plate with good wettability; while the annealing atmosphere is to improve the good reducibility of the steel base surface, generally the H2 content The higher the better, but the higher the H2 content, the higher the risk of explosion; the temperature of the plating solution must ensure that the plating solution is in a molten state and has good fluidity.
  • V and Mn can increase the temperature range of the plating solution, but if the temperature is too high, the Easy to oxidize zinc slag increases; in order to ensure that the coating is completely solidified, the temperature of the steel plate must be lowered below the freezing point before the first turning roll, and zinc, aluminum and magnesium are easy to oxidize, and rapid cooling can make the surface quality better.
  • Coating weight 50g/ m2 double-sided
  • the main components of the coating are: aluminum 0.8%, magnesium 0.6%, vanadium 0.10%, lanthanum 0.05%, cerium 0.15%, manganese 0.20%, lead 0.002%, antimony 0.001%, chromium 0.001%, cadmium 0.001%, tin 0.001%, the rest is zinc; steel base is DP steel.
  • the preparation method is: degreasing cleaning, continuous annealing, hot-dip plating, air knife purging, cooling, wherein the degreasing cleaning is rinsed after degreasing treatment, the continuous annealing process controls the hydrogen in the furnace to 5.0% in terms of volume percentage, and the steel plate is filled with zinc
  • the pot temperature is 450°C
  • the bath temperature is 440°C during the hot-dip plating process
  • the temperature is 260°C when the strip steel reaches the top turning roll after rapid cooling.
  • Corrosion resistance neutral salt spray accelerated corrosion test is adopted.
  • the test conditions and methods are carried out according to GB/T10125-2012 "Artificial Atmosphere Corrosion Test Salt Spray Test".
  • the NaCl deionized aqueous solution with a value of 6.5 is the corrosive medium, and the test temperature is 35 ⁇ 2°C; the sample size is 75mm ⁇ 150mm ⁇ 0.8mm, and the edge is sealed with a size of 5mm with scotch tape to prevent the end corrosion from affecting the results;
  • the sample is placed at an angle of 15° to 25° with the vertical direction. Observe the time when red rust occurs on the surface of the sample.
  • Paintability After degreasing, cleaning, vitrification or phosphating, the coated steel plate after oiling is sprayed and dried, and then the degree of bonding between the sprayed coating and the steel plate is tested by the cross-hatch method. If there is no coating peeling off, it is Good adhesion.
  • the zinc-aluminum-magnesium alloy coated steel prepared in this example has good surface quality and excellent corrosion resistance, formability and coating properties.
  • the time for red rust to appear is more than 70h.
  • the time for the bent part to appear red rust under neutral salt spray test conditions is more than 600h.
  • Spray after spraying The coating has excellent adhesion and meets user requirements.
  • Coating weight 150g/ m2 double-sided
  • the main components of the coating are: aluminum 1.5%, magnesium 1.5%, vanadium 0.15%, cerium 0.10%, lanthanum 0.10%, manganese 0.15%, lead 0.001%, antimony 0.002%, chromium 0.001%, cadmium 0.001%, tin 0.001%, the rest is zinc; the steel base is TWIP steel.
  • the preparation method is: degreasing cleaning, continuous annealing, hot-dip plating, air knife purging, cooling, wherein the degreasing cleaning is rinsed after degreasing treatment, the continuous annealing process controls the hydrogen in the furnace to 6.0% in terms of volume percentage, and the steel plate is filled with zinc
  • the pot temperature is 470°C
  • the bath temperature is 460°C during the hot-dip plating process
  • the temperature is 200°C when the strip steel reaches the top turning roll after rapid cooling.
  • Test method is the same as embodiment 1.
  • the zinc-aluminum-magnesium alloy coated steel prepared in this example has good surface quality and excellent corrosion resistance, formability and coating properties.
  • the time for red rust to appear is more than 1800h.
  • the time for the bent part to appear red rust under neutral salt spray test conditions is more than 1700h.
  • Spray after spraying The coating has excellent adhesion and meets user requirements.
  • Coating weight 320g/ m2 double-sided
  • the main components of the coating are: aluminum 3.2%, magnesium 2.5%, vanadium 0.10%, lanthanum 0.15%, cerium 0.20%, manganese 0.05%, lead 0.002%, antimony 0.001%, chromium 0.001%, cadmium 0.002%, tin 0.002%, the rest is zinc; the steel base is QP steel.
  • the preparation method is: degreasing cleaning, continuous annealing, hot-dip plating, air knife purging, cooling, wherein the degreasing cleaning is rinsed after degreasing treatment, the continuous annealing process controls the hydrogen in the furnace to 4.5% in terms of volume percentage, and the steel plate is filled with zinc
  • the pot temperature is 510°C
  • the bath temperature is 500°C during the hot-dip plating process
  • the temperature is 200°C when the strip steel reaches the top turning roll after rapid cooling.
  • Test method is the same as embodiment 1.
  • the zinc-aluminum-magnesium alloy coated steel prepared in this example has good surface quality and excellent corrosion resistance, formability and coating properties.
  • the time for red rust to appear is more than 3200h.
  • the time for the bent part to appear red rust under neutral salt spray test conditions is more than 3000h.
  • Spray after spraying The coating has excellent adhesion and meets user requirements.
  • the weight of the coating is 180g/m2 (double-sided).
  • the main components of the coating are: aluminum 1.6%, magnesium 1.6%, lead 0.001%, antimony 0.001%, chromium 0.001%, cadmium 0.001%, tin 0.001%, and the rest is zinc; steel base For QP steel.
  • the preparation method is: degreasing cleaning, continuous annealing, hot-dip plating, air knife purging, cooling, wherein the degreasing cleaning is rinsed after degreasing treatment, the continuous annealing process controls the hydrogen in the furnace to 3.5% in terms of volume percentage, and the steel plate is filled with zinc
  • the pot temperature is 470°C
  • the bath temperature is 470°C during the hot-dip plating process
  • the temperature is 300°C when the strip steel reaches the top turning roll after rapid cooling.
  • Test method is the same as embodiment 1. After testing, the surface quality of the zinc-aluminum-magnesium alloy coated steel prepared in this comparative example is poor, there are bright spot defects, and the corrosion resistance, formability and coating performance are slightly poor. Under the neutral salt spray test conditions, the time for red rust to appear is more than 1400h. After 0T bending, there are slight cracks to the naked eye and the time for the bent part to appear red rust under neutral salt spray test conditions is more than 1100h.

Abstract

本发明涉及含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法,属于钢铁冶金生产技术领域。本发明提供了含V、Ce、La、Mn的锌铝镁合金镀层钢材,镀层的化学成分按质量百分比计为:铝0.5~5%,镁0.5~3.0%,钒0.05~1%,铈0.01~0.50%,镧0.01%~0.30%,Mn0.025%~1.0%,其余为锌及不可避免的杂质;其中Al/Mg为1.0~1.5,钒+铈+镧总量为0.03~1.0%。本发明提供的锌铝镁合金镀层钢材不仅满足了用户对于钢材高耐蚀性的要求,也可满足用户优异的冲压成形性或高强钢的要求,尤其适用于家电和汽车领域,具有良好的推广应用前景。

Description

含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法 技术领域
本发明涉及含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法,属于钢铁冶金生产技术领域。
背景技术
Zn-Al-Mg合金镀层于20世纪80年代在国外引起广泛关注,成为热浸镀锌及锌合金镀层专业领域的研究重点。从国内外同行的研究结果来看,在镀层Zn、Al含量同等水平条件下,添加Mg的热浸镀Zn-Al-Mg合金镀层钢板具有更优的耐蚀性,且材料的加工应用性能(成形性、焊接性及涂装性)优良,可替代现行相应的热浸镀锌或锌合金镀层钢板,市场需求前景十分广阔。
热浸镀Zn-Al-Mg合金镀层钢板于21世纪初期先后在新日铁、日新制钢、蒂森克虏伯等钢铁公司实现了工业化生产及应用,目前主要应用领域在建筑行业,正逐步在向家电、汽车制造等行业推广应用。我国对Zn-Al-Mg合金镀层的研究较晚,目前仅宝钢、首钢、酒钢、攀钢等企业推出了热浸镀Zn-Al-Mg合金镀层钢板。
现有热浸镀Zn-Al-Mg合金镀层钢板可分为“低铝”(WAl<5%)、“中铝”(5%≤WAl<13%)和“高铝”(47%≤WAl≤57%)三种类型。对于不同品种的Zn-Al-Mg合金镀层钢板,其镀层中的Al、Mg含量不同,镀层组织结构和质量性能存在差异,因而应用领域也有所不同。CN105063532A公开了一种高耐蚀性单镀型锌铝镁稀土防护镀层及制备工艺,该单镀型锌铝镁稀土防护镀层工艺利用单次热浸镀方法在金属表面获得锌铝镁合金镀层。镀层与金属基体各自保持原有的性能,但是拥有99.9%以上冶金结合界面,同时镀层结构致密、成分稳定、无漏镀,耐蚀性能优异,盐雾腐蚀达2060h。合金镀层耐蚀性能较普通热浸镀纯锌层好,提高了使用寿命。该单镀型工艺,可重复使用和工业化生产,克服了金属与锌铝镁合金液助镀困难、两者之间难形成优异结合界面、易产生漏镀等不足,能广泛适用于金属表面制备5%-12%Al、1%-6%Mg含量的锌铝镁合金镀液,所制备的共渗层形成Zn/Al/MgZn 2三元共晶以及多种类型的二元共晶体,是共渗层具有高耐蚀性能的主要原因。上述高耐蚀性单镀型锌铝镁稀土防护镀层采用的是中铝成分体系。
CN109402547A提供了一种抗腐蚀性能优良的热浸镀层钢板及其制造方法,所述热浸镀层钢板包括基板和镀覆于基板上的Al-Zn-Si-Mg镀层,所述镀层的化学成分质量百分比为:Al:45%~65%,Si:0.1%~3%,Mg:0.2%~5%,Mn:0.001%~0.15%,Cr:0.001%~0.5%, 余量为Zn和不可避免的杂质。其制造方法包括步骤:(1)钢板预处理;(2)将钢板浸入镀液池热浸镀,所述镀液池的温度为560~595℃;(3)将钢板从镀液取出,进行分段冷却。该热浸镀层钢板抗腐蚀性能优良,对白锈发生及红锈的发展、对抗源自切口的处理膜失效蔓延的抑制效果显著。上述抗腐蚀性能优良的热浸镀层钢板采用的是高铝成分体系镀层。
可以看出,高耐蚀性的锌铝镁钢板主要为中高铝成分体系的锌铝镁钢板,随着Al和Mg含量的增多,镀层的耐蚀性升高,但同时会导致成形性能和焊接性能下降。在家电、汽车应用领域,为保证Zn-Al-Mg合金镀层钢板满足用户的冲压成型要求,要具有良好的成形性,目前中高铝成分体系的Zn-Al-Mg合金镀层钢板尚不能满足用户要求。在汽车板方面,强度越高的高强钢由于钢基中合金元素较多造成镀液与钢基的浸润性不好,严重影响了锌铝镁在高强钢方面的使用。因此,提供一种成形性和耐蚀性双高的Zn-Al-Mg合金镀层钢板,具有重要意义。
发明内容
本发明所要解决的技术问题是:提供一种成形性和耐蚀性双高的含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法。
本发明为解决上述技术问题采用的技术方案是:首先提供了一种含V、Ce、La、Mn的锌铝镁合金镀层钢材,镀层的化学成分按质量百分比计为:铝0.5~5%,镁0.5~3.0%,钒0.05~1%,铈0.01~0.50%,镧0.01%~0.30%,锰0.025%~1.0%,其它微量合金元素≤0.3%,其余为锌及不可避免的杂质;其中Al/Mg为1.0~1.5,钒+铈+镧总量为0.3~1.0%。
进一步的是:镀层的化学成分满足以下至少一项:
镀层中含有铝0.8~3.2%,镁0.8~2.5%,钒0.05~0.40%,铈0.03~0.30%,镧0.02%~0.20%,锰0.10%~1.0%;
Al/Mg为1~1.2;
钒+铈+镧总量为0.10~0.35%。
进一步的是:所述不可避免的杂质总和≤0.010%,其中铅≤0.002%,锑≤0.002%,锡≤0.002%,砷≤0.002%,碲≤0.002%、镉≤0.002%。
进一步的是:所述镀层的重量为30~400g/m 2,以双面计;优选地,所述镀层的重量为150~320g/m 2,以双面计。
进一步的是:所述钢材的钢基选自IF钢、低碳铝镇静钢、烘烤硬化钢、QP钢、DP钢、TRIP钢、TWIP钢中至少一种。
上述的锌铝镁合金镀层钢材的制作方法,包括以下步骤:包括以下步骤:钢基脱脂清洗,连续退火,热浸镀,气刀吹扫。
进一步的是:连续退火过程控制炉内氢气≥3.5%,以体积百分含量计;优选地,连续退火过程控制炉内氢气4.0~8.0%,以体积百分含量计。
进一步的是:钢基入锌锅温度控制在420~520℃,热浸镀过程镀液温度为410~520℃,入锌锅温度与镀液温度的温差控制在±10℃。
进一步的是:镀后快冷,控制带钢到达顶部转向辊的温度≤260℃;优选地,镀后快冷,控制带钢到达顶部转向辊的温度为200~260℃。
本发明的有益效果是:本发明提供的锌铝镁合金镀层钢材采用低铝成分体系,通过对镀层成分的控制生产出耐蚀性和成形性双高的Zn-Al-Mg合金镀层钢板。经检测,本发明锌铝镁合金镀层钢材在中性盐雾试验条件下出现红锈的时间长达600h甚至3200h以上,0T折弯后肉眼未见有明显裂纹且弯曲部位在中性盐雾试验条件下出现红锈的时间在500h甚至3000h以上,喷涂后喷涂涂层的附着性优良。该锌铝镁合金镀层钢材尤其适用于家电和汽车领域,具有良好的推广应用前景。
具体实施方式
本发明提供了含V、Ce、La、Mn的锌铝镁合金镀层钢材,镀层的化学成分按质量百分比计为:铝0~5%,镁0.5~3.0%,钒0.05~1%,铈0.01~0.50%,镧0.01%~0.30%,锰0.025%~1.0%,其它微量合金元素≤0.3%,其余为锌及不可避免的杂质;其中Al/Mg为1.0~1.5,钒+铈+镧总量为0.3~1.0%,所述的其它微量合金元素选自硼、硅、钛、钙、锰、钼、铬、铌、钇、铋中至少一种。
为了保证Zn-Al-Mg合金镀层钢材的耐蚀性能,目前本领域主要采用中高铝成分体系,但随着Al和Mg含量的增多,钢材的成形性能和焊接性能下降明显,难以满足家电、汽车等领域对冲压成型性能的要求。针对上述问题,本发明通过优化镀层中Mg、Al含量(含量比)和其他合金元素的添加,其中V在镀层形成过程中提供了异质形核点,细化并降低了镀层的晶粒尺寸,在改善了镀层的延展性的情况下提高了镀层的耐蚀性;Ce和La增加镀液的流动性,降低了镀液的表面张力,增加了镀液对钢材基体的浸润性,提高镀层与钢基的结合作用;Mn可增强镀层与钢基(尤其是是含Mn的高强钢)的结合作用,形成富Mn的金属间化合物,使镀层获得良好的塑韧性,易于后续加工,进而满足用户对高耐蚀性和高成形性的使用要求。但V、Ce、La、Mn含量过多会使合金镀液表面形成氧化皮,造成锌渣增多,影响镀层表面质量。
在镀层制备过程中,为保证镀层具有良好的表面质量和性能,需进行工艺的限制。考虑气刀能力和镀液流动性,镀层厚度需控制在一定的范围内。镀层重量太大且气刀压力小的情况下,则镀层的表面质量和厚度不易控制;而气刀流量有限且镀液流动性一定的情况下,则镀层厚度无法控制的过于薄了。镀液在不同钢板表面的润湿性不同,其仅能在润湿性好的钢板上形成附着力优良的镀层;而退火的气氛则是为了提升钢基表面良好的还原性,一般H 2含量越高越好,但H 2含量越高爆炸危险增高;镀液温度需保证镀液处于熔融状态且流动性好,V、Mn的加入使镀液温度范围有所提升,但温度太高,则易氧化锌渣增多;为保证镀层凝固完全,则需在第一个转向辊前将钢板温度降至凝固点以下,且锌铝镁易氧化,快冷可使其表面质量更佳。
下面将结合实施例对本发明的方案进行解释。本领域技术人员将会理解,下面的实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1 本发明锌铝镁合金镀层钢材的制备
镀层重量50g/m 2(双面),镀层的主要成分为:铝0.8%,镁0.6%,钒0.10%,镧0.05%,铈0.15%,锰0.20%,铅0.002%,锑0.001%,铬0.001%,镉0.001%,锡0.001%,其余为锌;钢基为DP钢。
制备方法为:脱脂清洗、连续退火、热浸镀、气刀吹扫、冷却,其中脱脂清洗是脱脂处理后漂洗干净,连续退火过程以体积百分含量计控制炉内氢气5.0%,钢板入锌锅温度为450℃,热浸镀过程镀液温度为440℃,镀后快冷,带钢到达顶部转向辊的温度260℃。
测试方法:
耐蚀性能:采用中性盐雾加速腐蚀试验,试验条件及方法按GB/T10125-2012《人造气氛腐蚀试验盐雾试验》执行,试验仪器为盐雾腐蚀试验箱,以浓度50g/L、pH值6.5的NaCl去离子水溶液为腐蚀介质,试验温度为35±2℃;试样规格为75mm×150mm×0.8mm,且用透明胶带进行尺寸为5mm的封边,以防止端部锈蚀影响结果;试样采取与竖直方向呈15°~25°角放置。观测试样表面产生红色锈蚀的时间。
成形性:将试样进行0T折弯(180°折弯,弯心半径为0),肉眼观测是否出现裂纹,并对弯曲部位在中性盐雾试验条件下测试出现红锈的时间,中性盐雾试验条件及方法按GB/T10125-2012《人造气氛腐蚀试验盐雾试验》执行。
涂装性:对涂油后的镀层钢板经脱脂清洗、陶化或磷化后进行喷涂烘干,然后采用划格法测试喷涂涂层与钢板的结合程度,若未有涂层脱落,则为附着性良好。
经检测,本实施例制备的锌铝镁合金镀层钢材表面质量良好,具有优良的耐蚀性、成形性和涂装性。在中性盐雾试验条件下出现红锈的时间在70h以上,0T折弯后肉眼未见有明显裂纹且弯曲部位在中性盐雾试验条件下出现红锈的时间在600h以上,喷涂后喷涂涂层的附着性优良,满足用户要求。
实施例2 本发明锌铝镁合金镀层钢材的制备
镀层重量150g/m 2(双面),镀层的主要成分为:铝1.5%,镁1.5%,钒0.15%,铈0.10%,镧0.10%,锰0.15%,铅0.001%,锑0.002%,铬0.001%,镉0.001%,锡0.001%,其余为锌;钢基为TWIP钢。
制备方法为:脱脂清洗、连续退火、热浸镀、气刀吹扫、冷却,其中脱脂清洗是脱脂处理后漂洗干净,连续退火过程以体积百分含量计控制炉内氢气6.0%,钢板入锌锅温度为470℃,热浸镀过程镀液温度为460℃,镀后快冷,带钢到达顶部转向辊的温度200℃。
测试方法同实施例1。经检测,本实施例制备的锌铝镁合金镀层钢材表面质量良好,具有优良的耐蚀性、成形性和涂装性。在中性盐雾试验条件下出现红锈的时间在1800h以上,0T折弯后肉眼未见有明显裂纹且弯曲部位在中性盐雾试验条件下出现红锈的时间在1700h以上,喷涂后喷涂涂层的附着性优良,满足用户要求。
实施例3 本发明锌铝镁合金镀层钢材的制备
镀层重量320g/m 2(双面),镀层的主要成分为:铝3.2%,镁2.5%,钒0.10%,镧0.15%,铈0.20%,锰0.05%,铅0.002%,锑0.001%,铬0.001%,镉0.002%,锡0.002%,其余为锌;钢基为QP钢。
制备方法为:脱脂清洗、连续退火、热浸镀、气刀吹扫、冷却,其中脱脂清洗是脱脂处理后漂洗干净,连续退火过程以体积百分含量计控制炉内氢气4.5%,钢板入锌锅温度为510℃,热浸镀过程镀液温度为500℃,镀后快冷,带钢到达顶部转向辊的温度200℃。
测试方法同实施例1。经检测,本实施例制备的锌铝镁合金镀层钢材表面质量良好,具有优良的耐蚀性、成形性和涂装性。在中性盐雾试验条件下出现红锈的时间在3200h以上,0T折弯后肉眼未见有明显裂纹且弯曲部位在中性盐雾试验条件下出现红锈的时间在3000h以上,喷涂后喷涂涂层的附着性优良,满足用户要求。
对比例
镀层重量180g/m2(双面),镀层的主要成分为:铝1.6%,镁1.6%,铅0.001%,锑0.001%,铬0.001%,镉0.001%,锡0.001%,其余为锌;钢基为QP钢。
制备方法为:脱脂清洗、连续退火、热浸镀、气刀吹扫、冷却,其中脱脂清洗是脱脂处理后漂洗干净,连续退火过程以体积百分含量计控制炉内氢气3.5%,钢板入锌锅温度为470℃,热浸镀过程镀液温度为470℃,镀后快冷,带钢到达顶部转向辊的温度300℃。
测试方法同实施例1。经检测,本对比例制备的锌铝镁合金镀层钢材表面质量较差,存在亮点缺陷,耐蚀性、成形性和涂装性略差。在中性盐雾试验条件下出现红锈的时间在1400h以上,0T折弯后肉眼有轻微裂纹且弯曲部位在中性盐雾试验条件下出现红锈的时间在1100h以上。
需要说明的是,本说明书中描述的具体特征、结构、材料或者特点可以在任一个或多个实施例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例以及不同实施例的特征进行结合和组合。

Claims (10)

  1. 含V、Ce、La、Mn的锌铝镁合金镀层钢材,其特征是:镀层的化学成分按质量百分比计为:铝0.5~5%,镁0.5~3.0%,钒0.05~1%,铈0.01~0.50%,镧0.01%~0.30%,锰0.025%~1.0%,其它微量合金元素≤0.3%,其余为锌及不可避免的杂质;其中Al/Mg为1.0~1.5,钒+铈+镧总量为0.3~1.0%。
  2. 如权利要求1所述的锌铝镁合金镀层钢材,其特征是:镀层的化学成分满足以下至少一项:
    镀层中含有铝0.8~3.2%,镁0.8~2.5%,钒0.05~0.40%,铈0.03~0.30%,镧0.02%~0.20%,锰0.10%~1.0%;
    Al/Mg为1~1.2;
    钒+铈+镧总量为0.10~0.35%。
  3. 如权利要求1所述的锌铝镁合金镀层钢材,其特征是:所述不可避免的杂质总和≤0.010%,其中铅≤0.002%,锑≤0.002%,锡≤0.002%,砷≤0.002%,碲≤0.002%、镉≤0.002%。
  4. 如权利要求1所述的锌铝镁合金镀层钢材,其特征是:所述镀层的重量为30~400g/m 2,以双面计;优选地,所述镀层的重量为150~320g/m 2,以双面计。
  5. 如权利要求1所述的锌铝镁合金镀层钢材,其特征是:所述钢材的钢基选自IF钢、低碳铝镇静钢、烘烤硬化钢、QP钢、DP钢、TRIP钢、TWIP钢中至少一种。
  6. 权利要求1~5任意一项所述含V、Ce、La、Mn的锌铝镁合金镀层钢材的制备方法,其特征是:包括以下步骤:钢基脱脂清洗,连续退火,热浸镀,气刀吹扫。
  7. 如权利要求6所述的制备方法,其特征是:连续退火过程控制炉内氢气≥3.5%,以体积百分含量计;优选地,连续退火过程控制炉内氢气4.0~8.0%,以体积百分含量计。
  8. 如权利要求6所述的制备方法,其特征是:钢基入锌锅温度控制在420~520℃,热浸镀过程镀液温度为410~520℃,入锌锅温度与镀液温度的温差控制在±10℃。
  9. 如权利要求6所述的制备方法,其特征是:镀后快冷,控制带钢到达顶部转向辊的温度≤260℃;优选地,镀后快冷,控制带钢到达顶部转向辊的温度为200~260℃。
  10. 按照权利要求6~9任意一项所述制备方法得到的锌铝镁合金镀层钢材。
PCT/CN2022/109957 2021-11-30 2022-08-03 含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法 WO2023098126A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111440098.9A CN114107737A (zh) 2021-11-30 2021-11-30 含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法
CN202111440098.9 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023098126A1 true WO2023098126A1 (zh) 2023-06-08

Family

ID=80368287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109957 WO2023098126A1 (zh) 2021-11-30 2022-08-03 含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法

Country Status (2)

Country Link
CN (1) CN114107737A (zh)
WO (1) WO2023098126A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107737A (zh) * 2021-11-30 2022-03-01 攀钢集团攀枝花钢铁研究院有限公司 含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法
CN116162824B (zh) * 2023-03-07 2024-04-12 保定奥琦圣新型金属材料制造有限公司 一种含Mo、Cr的锌铝镁合金及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103507324A (zh) * 2012-06-20 2014-01-15 鞍钢股份有限公司 一种合金化锌铝镁镀层钢板及其生产方法
CN106222593A (zh) * 2016-08-29 2016-12-14 甘肃酒钢集团宏兴钢铁股份有限公司 一种高耐蚀热镀锌铝镁镍稀土合金镀层钢板及其生产方法
CN108588491A (zh) * 2018-06-05 2018-09-28 马鞍山钢铁股份有限公司 一种浸镀性优良的热浸镀Zn-Al-Mg镀层钢板及生产方法
CN108913950A (zh) * 2018-08-07 2018-11-30 鞍钢股份有限公司 热冲压成型用锌镁镀层钢板及其制造和热冲压方法
CN112575276A (zh) * 2020-12-03 2021-03-30 攀钢集团研究院有限公司 超深冲用热浸镀锌铝镁合金镀层钢板及其制备方法
CN114107737A (zh) * 2021-11-30 2022-03-01 攀钢集团攀枝花钢铁研究院有限公司 含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3728298B2 (ja) * 2003-05-28 2005-12-21 新日本製鐵株式会社 溶融Zn−Al系合金めっき鋼材およびその製造方法
CN103614592A (zh) * 2013-12-17 2014-03-05 葫芦岛锌业股份有限公司 一种热浸镀用锌铝锰镁合金的生产方法
CN104498850A (zh) * 2014-12-15 2015-04-08 中国钢研科技集团有限公司 一种用于钢带连续热浸镀的镀液及其浸镀方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103507324A (zh) * 2012-06-20 2014-01-15 鞍钢股份有限公司 一种合金化锌铝镁镀层钢板及其生产方法
CN106222593A (zh) * 2016-08-29 2016-12-14 甘肃酒钢集团宏兴钢铁股份有限公司 一种高耐蚀热镀锌铝镁镍稀土合金镀层钢板及其生产方法
CN108588491A (zh) * 2018-06-05 2018-09-28 马鞍山钢铁股份有限公司 一种浸镀性优良的热浸镀Zn-Al-Mg镀层钢板及生产方法
CN108913950A (zh) * 2018-08-07 2018-11-30 鞍钢股份有限公司 热冲压成型用锌镁镀层钢板及其制造和热冲压方法
CN112575276A (zh) * 2020-12-03 2021-03-30 攀钢集团研究院有限公司 超深冲用热浸镀锌铝镁合金镀层钢板及其制备方法
CN114107737A (zh) * 2021-11-30 2022-03-01 攀钢集团攀枝花钢铁研究院有限公司 含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法

Also Published As

Publication number Publication date
CN114107737A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US9771636B2 (en) Method of production of an aluminum plated steel sheet having excellent corrosion resistance with respect to alcohol or mixed gasoline of same and appearance
JP4136286B2 (ja) 耐食性に優れたZn−Al−Mg−Si合金めっき鋼材およびその製造方法
WO2023098126A1 (zh) 含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法
CN109402547B (zh) 一种抗腐蚀性能优良的热浸镀层钢板及其制造方法
CN111270182A (zh) 热浸镀Zn-Al-Mg合金镀层钢板及其制备方法
CN111519117B (zh) 一种耐黑变性能优异的高表面质量锌铝镁钢板及生产方法
CN112575275A (zh) 高成形性的热浸镀锌铝镁合金镀层钢板及其制备方法
JP2014058741A (ja) 生産性とプレス成形性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
WO2023098125A1 (zh) 含v、b的锌铝镁合金镀层钢材及其制备方法
JP4537599B2 (ja) 外観に優れた高耐食性Al系めっき鋼板
JP4940813B2 (ja) TS×Elの値が21000MPa・%以上である溶融亜鉛めっき鋼板の製造方法
JP7315634B2 (ja) 超深絞り用溶融Zn-Al-Mg合金めっき鋼板及びその製造方法
JP2001131725A (ja) 耐熱性、耐食性に優れた溶融アルミめっき鋼板及びその製造法
CN116685706B (zh) 镀覆钢材
JP4264157B2 (ja) 耐食性に優れた燃料タンク用溶融アルミめっき鋼板
JPH0328359A (ja) 溶融アルミニウムめっきクロム含有鋼板の製造方法
CN110205522B (zh) 一种热镀用锌铝铬钙硅合金及热镀锌的方法
JP2001081539A (ja) 高温耐食性に優れた溶融アルミめっき鋼板及びその製造法
CN114086096A (zh) 含V、Ti、Nb的锌铝镁合金镀层钢材及其制备方法
JP3383125B2 (ja) 耐食性、耐熱性に優れた溶融アルミめっき鋼板及びその製造法
CN110241369B (zh) 一种热镀用锌铝镍钽合金及热镀锌的方法
CN114107864A (zh) 含Ti、Bi的锌铝镁合金镀层钢材及其制备方法
JP2756547B2 (ja) 難めっき鋼板の溶融Znベースめっき法
JP3383121B2 (ja) 耐食性、耐熱性に優れたステンレス系溶融アルミめっき鋼板及びその製造法
TWI682041B (zh) 鍍鋅鋼片及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899946

Country of ref document: EP

Kind code of ref document: A1