WO2023097950A1 - 一种高抗冲木塑头盔复合材料及制备方法 - Google Patents
一种高抗冲木塑头盔复合材料及制备方法 Download PDFInfo
- Publication number
- WO2023097950A1 WO2023097950A1 PCT/CN2022/088161 CN2022088161W WO2023097950A1 WO 2023097950 A1 WO2023097950 A1 WO 2023097950A1 CN 2022088161 W CN2022088161 W CN 2022088161W WO 2023097950 A1 WO2023097950 A1 WO 2023097950A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- screw extruder
- wood
- composite material
- twin
- stage
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 42
- 229920003023 plastic Polymers 0.000 title claims abstract description 39
- 239000004033 plastic Substances 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 239000000835 fiber Substances 0.000 claims abstract description 106
- 239000010875 treated wood Substances 0.000 claims abstract description 4
- 229920002522 Wood fibre Polymers 0.000 claims description 25
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 claims description 25
- 239000002025 wood fiber Substances 0.000 claims description 25
- 238000011282 treatment Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 17
- 239000007822 coupling agent Substances 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 239000012768 molten material Substances 0.000 claims description 12
- 239000003963 antioxidant agent Substances 0.000 claims description 10
- 230000003078 antioxidant effect Effects 0.000 claims description 10
- 239000011256 inorganic filler Substances 0.000 claims description 9
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 9
- WHHGLZMJPXIBIX-UHFFFAOYSA-N decabromodiphenyl ether Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1OC1=C(Br)C(Br)=C(Br)C(Br)=C1Br WHHGLZMJPXIBIX-UHFFFAOYSA-N 0.000 claims description 8
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 7
- 235000021355 Stearic acid Nutrition 0.000 claims description 7
- 150000004645 aluminates Chemical class 0.000 claims description 7
- 239000003063 flame retardant Substances 0.000 claims description 7
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical group CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 7
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 239000008117 stearic acid Substances 0.000 claims description 7
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims description 6
- 235000017491 Bambusa tulda Nutrition 0.000 claims description 6
- 235000004431 Linum usitatissimum Nutrition 0.000 claims description 6
- 239000006057 Non-nutritive feed additive Substances 0.000 claims description 6
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims description 6
- 239000011425 bamboo Substances 0.000 claims description 6
- 239000002270 dispersing agent Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- -1 polyethylene Polymers 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 244000198134 Agave sisalana Species 0.000 claims description 3
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 claims description 3
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 claims description 2
- 235000011624 Agave sisalana Nutrition 0.000 claims description 2
- 240000000491 Corchorus aestuans Species 0.000 claims description 2
- 235000011777 Corchorus aestuans Nutrition 0.000 claims description 2
- 235000010862 Corchorus capsularis Nutrition 0.000 claims description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 2
- 240000000797 Hibiscus cannabinus Species 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 238000005469 granulation Methods 0.000 claims description 2
- 230000003179 granulation Effects 0.000 claims description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 2
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 claims description 2
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 claims description 2
- WVJVHUWVQNLPCR-UHFFFAOYSA-N octadecanoyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC(=O)CCCCCCCCCCCCCCCCC WVJVHUWVQNLPCR-UHFFFAOYSA-N 0.000 claims description 2
- 238000005453 pelletization Methods 0.000 claims description 2
- 239000004615 ingredient Substances 0.000 claims 2
- 240000006240 Linum usitatissimum Species 0.000 claims 1
- 244000082204 Phyllostachys viridis Species 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 229920000578 graft copolymer Polymers 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 239000002023 wood Substances 0.000 abstract description 17
- 238000010008 shearing Methods 0.000 abstract description 8
- 230000003014 reinforcing effect Effects 0.000 abstract description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 47
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 47
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 47
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 12
- 239000006185 dispersion Substances 0.000 description 11
- 229920000049 Carbon (fiber) Polymers 0.000 description 10
- 239000004917 carbon fiber Substances 0.000 description 10
- 238000004898 kneading Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000011257 shell material Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 241001330002 Bambuseae Species 0.000 description 5
- 229920002633 Kraton (polymer) Polymers 0.000 description 5
- 241000208202 Linaceae Species 0.000 description 5
- 238000011221 initial treatment Methods 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000013019 agitation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229920001587 Wood-plastic composite Polymers 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000011155 wood-plastic composite Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000012661 block copolymerization Methods 0.000 description 1
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010128 melt processing Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L97/00—Compositions of lignin-containing materials
- C08L97/02—Lignocellulosic material, e.g. wood, straw or bagasse
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L55/00—Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
- C08L55/02—ABS [Acrylonitrile-Butadiene-Styrene] polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/16—Fibres; Fibrils
Definitions
- the invention relates to the field of functional polymer materials, in particular to the field of composite materials used for helmet shells, in particular to a high-impact wood-plastic helmet composite material and a preparation method.
- the structure of the helmet includes three parts such as an outer shell, a cushioning layer lining, and a suspension device.
- the shell is generally made of hard plastic such as ABS with good wear resistance and compression resistance.
- ABS is an acrylonitrile-butadiene-styrene copolymer. This material combines the rigidity of polyacrylonitrile and the impact resistance of polybutadiene, and has become the preferred material for most helmet shells.
- the outer layer of the helmet requires high hardness, wear resistance, not easy to deform, good rigidity, not easy to fracturing, and high impact resistance, so that it can well prevent deformation and cracking during impact and protect the head.
- ABS is actually used to make the helmet shell, it is difficult for the raw material to achieve a balance of rigidity and impact resistance. ABS with higher rigidity tends to have poor toughness, poor impact resistance, and is easy to break.
- Wood fiber is a natural and easy-to-obtain fiber. It not only has the strengthening and toughening properties of fibers, but also, as a natural biological fiber, wood fiber is low in cost and ecologically friendly. Using wood fiber in ABS to prepare helmet shell materials can greatly reduce The amount of ABS used is of great significance to carbon emission reduction.
- wooden materials such as wood flour and rice husk powder have been simply refined and modified by surface coupling and used for PP, PE, PVC, etc. as wood-plastic materials to reduce costs, and to produce various wood-plastic composite materials.
- Cisoka patent CN105482480A discloses a bamboo fiber reinforced thermoplastic, which is made by mixing the following raw materials in parts by weight: 30-60 parts of bamboo fiber, 30-80 parts of thermoplastics, 0.25-0.6 parts of coupling agent, and 0.3 parts of crosslinking agent -0.8 parts, 0.5-1.5 parts of lubricant, this technical scheme has positive significance to reinforced plastics through the coupling modification treatment of bamboo fibers.
- the wood powder in order to disperse the wood powder, the wood powder is usually refined to about 100 meshes, and this method of using wood powder for refinement destroys the long fiber structure of the wood powder, so that it is difficult to effectively reinforce it in plastics. effect. And if the wood fibers with long-fiber structure can be dispersed in the plastic, it will be of great significance to upgrade the performance of the current wood-plastic products.
- Wood fibers are compounded with ABS in the form of long fibers, which can not only reduce the cost, but also improve the impact resistance of the material. Used in helmet materials can improve impact resistance.
- the present invention proposes a high-impact wood-plastic helmet composite material, which uses a double-stage twin-screw extruder to carry out secondary treatment on long wooden fibers, and then undergoes secondary treatment after the ABS system is fully melted.
- the dispersion of long wood fibers not only makes the long wood fibers efficiently dispersed in the ABS system, but also keeps the long fibers intact, avoiding damage to the long fibers caused by over-shearing, and the resulting wood-plastic helmet composite material has excellent impact resistance.
- a preparation method of the high-impact wood-plastic helmet composite material is further provided.
- step (1) Heat the primary treated woody long fibers and styrene-butadiene-styrene block copolymer obtained in step (1) to 180-190°C in a kneader according to the mass ratio of 3:2, and knead for 3- 5min, put the material in the open mill, take out the sheet while it is hot, cool, fold and stack, and obtain the secondary treatment woody long fiber sheet;
- the long wood fiber, coupling agent, dispersant, and micron-sized spherical inorganic filler in step (1) are formulated according to a mass ratio of 100:1-2:2-3:3-5.
- the long wood fiber of step (1) is selected from at least one of flax, sisal hemp, kenaf, jute, bamboo fiber; the fiber length of the long wood fiber is 5-15mm, and the aspect ratio of the long wood fiber is ⁇ 20. Wooden long fibers are selected with longer fiber length and higher aspect ratio, which has a significant effect on improving the impact resistance of composite materials.
- the coupling agent in step (1) is selected from at least one of aluminate coupling agent and silane coupling agent.
- the dispersant in step (1) is selected from at least one of stearic acid, polyethylene wax, ethylene bisstearamide, stearic acid amide, and stearic monoanhydride.
- the micron-sized spherical inorganic filler in step (1) is a spherical inorganic powder with a sphericity greater than 0.80 and a particle size of 20-50 ⁇ m.
- spherical barium sulfate and spherical glass microspheres can be used.
- the kneader described in step (2) is a horizontal kneader, the rotating speed of the kneader is 10-15rpm, and the kneader styrene-butadiene-styrene block copolymerization
- the material is melted and blended with woody long fibers effectively;
- Styrene-butadiene-styrene block copolymer (SBS) has excellent toughness and impact resistance, and requires low shear rate during processing, so it does not need excessive Shear can be melt blended and dispersed with long wood fibers.
- the thickness is controlled at 10-15mm.
- the ABS, compatibilizer, antioxidant, flame retardant, and processing aid in step (3) are formulated in a mass ratio of 100:2-3:0.1-0.2:1-3:0.1-0.2.
- the compatibilizer in step (3) is a polymer grafted with maleic anhydride.
- the antioxidant in step (3) is selected from at least one of antioxidant 1010 and antioxidant 168 .
- At least one of the flame retardant decabromodiphenyl ether and tetrabromobisphenol A described in step (3) is provided.
- the processing aid in step (3) is selected from a fluorine-containing polymer, which is used to improve the processing fluidity and improve the surface finish when the composite material is injected into the helmet.
- a fluorine-containing polymer which is used to improve the processing fluidity and improve the surface finish when the composite material is injected into the helmet.
- PPA-ST3300 provided by Saitao Polymer Materials Co., Ltd.
- step (3) when the secondary treated woody long fiber flakes and the molten material enter the second-stage twin-screw extruder, they are fed according to a mass ratio of 1:1.
- the temperature of the first-stage twin-screw extruder of the two-stage twin-screw extruder described in step (3) is 220-230° C.
- the screw speed is 220-250 rpm.
- the temperature of the second-stage twin-screw extruder of the two-stage twin-screw extruder described in step (3) is 200-230° C., and the screw speed is 60-80 rpm.
- ABS When dispersing woody long fibers in ABS, ABS has a high viscosity during hot-melt processing, and strong shear dispersion is required to disperse wood fibers in it, and strong shearing will cause long woody fibers to be excessively sheared and shortened. Affect enhancements.
- the present invention has carried out secondary treatment to long wood fiber. First, the surface of the fiber is treated with a coupling agent.
- SBS styrene-butadiene-styrene block copolymer
- the woody long fibers that have been treated through the second stage do not need to be sheared and dispersed with ABS for a long time.
- the screw is used to perform strong shear dispersion on the ABS system to obtain a molten material.
- the second-stage twin-screw extruder is a counter-rotating twin-screw extruder with a low aspect ratio and low shear.
- the shear strength is low, and the mixing effect is good, so that the secondary treated woody long fibers are mixed and dispersed in the ABS system, thereby greatly reducing the damage to the long fibers caused by the shearing of the screw.
- the length of the material strip is 1cm, so that the long fibers are better preserved in the material strip.
- the present invention provides a high-impact wood-plastic helmet composite material prepared by the above method.
- the notable technical innovations are: through the secondary treatment of long wood fibers, the pre-dispersed wood long fiber long fiber structure is preserved and easy to disperse; further use of the double-stage twin-screw extruder, using the first-stage screw extruder The extruder fully melts the ABS system; the second-stage screw extruder disperses the woody long fibers treated with the ABS system, not only makes the woody long fibers efficiently dispersed in the ABS system, but also keeps the long fibers intact, avoiding over-shearing Cutting causes long fiber damage.
- the obtained wood-plastic helmet composite material has a wood fiber content of more than 20%.
- the helmet shell is prepared by injection molding, and the wood long fiber woods are crossed and entangled with each other, which has a good reinforcing effect, and the impact resistance performance is significantly improved.
- the technical solution of the present invention has outstanding characteristics and obvious practical value, and there is no related published technology in the prior art products, which is a significant improvement compared with the existing technology, and has a wide range of large-scale promotion production value.
- Fig. 1 Process flow diagram of the preparation method of the present invention.
- step (2) Heat the primary treated woody long fibers obtained in step (1) and styrene-butadiene-styrene block copolymer (Chimei SBS PB-5910) in a kneader at a mass ratio of 3:2 to 190 °C, kneading at 15 rpm for 5 minutes, feeding into the open mill, and releasing the sheet while it is hot, with the thickness of the sheet being controlled at 10 mm, cooling, folding and stacking, and obtaining the secondary treated long-fiber wood sheet for later use;
- styrene-butadiene-styrene block copolymer Chimei SBS PB-5910
- ABS (Chimei PA747) 50kg, SEBS-g-MAH (brand Kraton G1901X) 1.5kg, antioxidant 1010 0.08kg, antioxidant 0.02kg, decabromodiphenyl ether 1kg, PPA-ST3300 (Sai Tao (Provided by Polymer Materials Co., Ltd.) 0.1kg into a high-speed mixer and mixed evenly, extruded by the first-stage twin-screw extruder of the double-stage twin-screw extruder, the first-stage twin-screw extruder is a co-rotating twin-screw extruder Out of the machine, the length-to-diameter ratio is 48, the extrusion temperature is 230 ° C, and the screw speed is 250 rpm; when entering the second-stage twin-screw extruder, the second-stage treatment of step (2) wooden long fiber sheet is cut to a width of 5 cm The long strips and the molten material are fed according to the mass ratio of 1:1; enter the second-
- step (2) Heat the primary treated woody long fibers obtained in step (1) and styrene-butadiene-styrene block copolymer (Chimei SBS PB-5910) in a kneader at a mass ratio of 3:2 to 190 °C, kneading at 10 rpm for 3 minutes, feeding into the open mill, and releasing the sheet while it is hot, the thickness of the sheet is controlled at 10 mm, cooling, folding and stacking, and obtaining the secondary treated long-fiber wood sheet for later use;
- styrene-butadiene-styrene block copolymer Chimei SBS PB-5910
- ABS Chimei PA747) 50kg, SEBS-g-MAH (brand Taftec M)) 1.5kg, antioxidant 1010 0.08kg, antioxidant 168 0.02kg, flame retardant decabromodiphenyl ether 1kg, four 0.5kg of bromobisphenol A and 0.1kg of PPA-ST3300 (provided by Saitao Polymer Materials Co., Ltd.) were added into a high-speed mixer and mixed evenly, and extruded through the first-stage twin-screw extruder of the two-stage twin-screw extruder.
- the first-stage twin-screw extruder is a co-rotating twin-screw extruder with an aspect ratio of 48, an extrusion temperature of 230°C, and a screw speed of 220rpm; when entering the second-stage twin-screw extruder, step (2) Secondary treatment Wooden long fiber flakes cut to a width of 3cm and the molten material are fed according to a mass ratio of 1:1, and enter the second-stage twin-screw extruder together, and the second-stage twin-screw extruder is counter-rotating Twin-screw extruder, the length-to-diameter ratio is 10, the temperature of the extruder is 230°C, and the screw speed is 80rpm; it is formed into strips through the extruder die head, sent to the chain for air cooling, hob cutting, and the length of the strip is 1cm.
- a high-impact wood-plastic helmet composite material was prepared.
- step (2) Heat the primary treated woody long fibers obtained in step (1) and styrene-butadiene-styrene block copolymer (Chimei SBS PB-5910) in a kneader at a mass ratio of 3:2 to 190 °C, kneading at 15 rpm for 5 minutes, feeding into the open mill, and releasing the sheet while it is hot, with the thickness of the sheet being controlled at 10 mm, cooling, folding and stacking, and obtaining the secondary treated long-fiber wood sheet for later use;
- styrene-butadiene-styrene block copolymer Chimei SBS PB-5910
- ABS (Chimei PA747) 50kg, SEBS-g-MAH (brand Kraton G1901X) 1.5kg, antioxidant 1010 0.08kg, antioxidant 0.02kg, decabromodiphenyl ether 1kg, PPA-ST3300 (Sai Tao (Provided by Polymer Materials Co., Ltd.) 0.1kg into a high-speed mixer and mixed evenly, extruded by the first-stage twin-screw extruder of the double-stage twin-screw extruder, the first-stage twin-screw extruder is a co-rotating twin-screw extruder Out of the machine, the length-to-diameter ratio is 48, the extrusion temperature is 230 ° C, and the screw speed is 250 rpm; when entering the second-stage twin-screw extruder, the second-stage treatment of step (2) wooden long fiber sheet is cut to a width of 5 cm The long strips and the molten material are fed according to the mass ratio of 1:1, and enter the second
- the second-stage twin-screw extruder is a counter-rotating twin-screw extruder with a ratio of length to diameter of 12.
- the exit temperature is 220°C
- the screw speed is 60rpm; it is formed into strips through the extruder die, sent to the chain for air cooling, hob cutting into pellets, and the length of the strip is 1cm, and a high-impact wood-plastic helmet composite material is produced.
- step (2) Heat the primary treated woody long fibers obtained in step (1) and styrene-butadiene-styrene block copolymer (Chimei SBS PB-5910) in a kneader at a mass ratio of 3:2 to 190 °C, kneading at 15 rpm for 5 minutes, feeding into the open mill, and releasing the sheet while it is hot, with the thickness of the sheet being controlled at 10 mm, cooling, folding and stacking, and obtaining the secondary treated long-fiber wood sheet for later use;
- styrene-butadiene-styrene block copolymer Chimei SBS PB-5910
- ABS Chimei PA747) 50kg, SEBS-g-MAH (brand Kraton G1901X) 1.5kg, antioxidant 1010 0.08kg, antioxidant 0.02kg, decabromodiphenyl ether 1kg, PPA-ST3300 (Sai Tao (Provided by Polymer Material Company) 0.1kg was added to a high-speed mixer and mixed evenly to obtain a mixture, and the secondary treated woody long fiber sheet was cut into strips with a width of 5 cm and fed together with the mixture according to a mass ratio of 1:1.
- the length-to-diameter ratio is 48, the extrusion temperature is 230°C, and the screw speed is 250rpm; it is formed into strips through the extruder die head, sent to the chain air cooling, hob cutting, and the length of the strip is 1cm.
- a high-impact wood-plastic helmet composite material was prepared.
- step (2) Heat the primary treated woody long fibers obtained in step (1) and styrene-butadiene-styrene block copolymer (Chimei SBS PB-5910) in a kneader at a mass ratio of 3:2 to 190 °C, kneading at 15 rpm for 5 minutes, feeding into the open mill, and releasing the sheet while it is hot, with the thickness of the sheet being controlled at 10 mm, cooling, folding and stacking, and obtaining the secondary treated long-fiber wood sheet for later use;
- styrene-butadiene-styrene block copolymer Chimei SBS PB-5910
- ABS (Chimei PA747) 50kg, SEBS-g-MAH (brand Kraton G1901X) 1.5kg, antioxidant 1010 0.08kg, antioxidant 0.02kg, decabromodiphenyl ether 1kg, PPA-ST3300 (Sai Tao (Provided by Polymer Materials Co., Ltd.) 0.1kg into a high-speed mixer and mixed evenly, extruded by the first-stage twin-screw extruder of the double-stage twin-screw extruder, the first-stage twin-screw extruder is a co-rotating twin-screw extruder Out of the machine, the length-to-diameter ratio is 48, the extrusion temperature is 230 ° C, and the screw speed is 250 rpm; when entering the second-stage twin-screw extruder, the second-stage treatment of step (2) wooden long fiber sheet is cut to a width of 5 cm The long strips and the molten material are fed according to the mass ratio of 1:1, and enter the second
- the second-stage twin-screw extruder is a counter-rotating twin-screw extruder with a ratio of length to diameter of 10.
- the exit temperature is 220°C
- the screw speed is 60rpm; it is formed into strips through the extruder die, sent to the chain for air cooling, hob cutting into pellets, and the length of the strip is 1cm, and a high-impact wood-plastic helmet composite material is produced.
- ABS (Chimei PA747) 50kg, SEBS-g-MAH (brand Kraton G1901X) 1.5kg, antioxidant 1010 0.08kg, antioxidant 0.02kg, decabromodiphenyl ether 1kg, PPA-ST3300 (Sai Tao (Provided by Polymer Materials Co., Ltd.) 0.1kg into a high-speed mixer and mixed evenly, extruded by the first-stage twin-screw extruder of the double-stage twin-screw extruder, the first-stage twin-screw extruder is a co-rotating twin-screw extruder Out of the machine, the length-to-diameter ratio is 48, the extrusion temperature is 230°C, and the screw speed is 250rpm; when entering the second-stage twin-screw extruder, the second-stage treatment of the woody long fiber material and the molten material in step (2) are combined according to the quality Ratio of 1:1 for feeding, into the second-stage twin-screw ex
- Impact resistance Dry the high-impact wood-plastic helmet composites obtained in Examples 1-3 and Comparative Examples 1-3 at 100°C for 1 hour, and then inject them into samples at 230°C. Refer to GB/T 1843 to test the impact strength, as shown in Table 1.
- the technical scheme of the present invention preserves the long fibers and has the property of being easy to disperse through the primary treatment of low-speed agitation and the secondary treatment of kneading with SBS.
- a two-stage twin-screw extruder is used to carry out strong shear dispersion and melting of the ABS system in the first-stage twin-screw extruder.
- the secondary treated woody long fibers are mixed into the dispersed In the ABS system, it reduces the damage to long fibers caused by screw shearing. It can effectively improve the impact resistance of ABS.
- Comparative Example 1 did not pre-melt the ABS during implementation, but directly processed the woody long fiber sheet with the secondary treatment in the same direction twin-screw extruder, and was affected by the shearing of the screw, and the long fiber was damaged by shearing more, resulting in Long fibers have no effect of increasing impact resistance in composite materials, but instead decrease.
- Comparative Example 3 when the woody long fibers were subjected to secondary treatment, the primary treatment of woody long fibers was directly mixed with styrene-butadiene-styrene block copolymer, without pre-kneading and dispersion, although in the final compound
- the long fibers remain intact, but because there is no pre-dispersion of the SBS for the long fibers, their dispersion in the second-stage screw is limited, resulting in a large amount of accumulation and agglomeration of the long fibers in the composite material, and the impact resistance of the composite material decreases.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Reinforced Plastic Materials (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明属于复合材料领域,涉及一种高抗冲木塑头盔复合材料及制备方法。通过对木质长纤维进行二级预处理,预先分散的木质长纤维长纤维结构得到保留,易于分散;进一步利用双阶式双螺杆挤出机,利用第一阶的螺杆挤出机对ABS体系充分熔融;在第二阶螺杆挤出机使二级处理的木质长纤维与ABS体系分散,不但使木质长纤维高效分散在ABS体系中,而且长纤维保留完整,避免过剪切造成长纤维损伤。得到的木塑头盔复合材料木质长纤维木之间相互交叉、缠结,具有良好的增强作用,且抗冲击性能提升明显。
Description
本发明涉及功能高分子材料领域,具体涉及到用于头盔外壳的复合材料领域,特别是涉及一种高抗冲木塑头盔复合材料及制备方法。
随着一盔一带的推进,安全头盔成为摩托车、自行车、电动自行车必不可少的需求。而且在各种滑轮、平衡车、滑板的大量使用,对头盔需求快速增加。由于塑料易于加工成型的特点,常规的头盔均是以塑料为主要材质,头盔的的结构包含外壳、缓冲层衬里、悬挂装置等三个部分组成。外壳一般采用耐磨损、抗压缩性好的ABS等硬质塑料。ABS是丙烯腈-丁二烯-苯乙烯共聚物,这种材料聚集了聚丙烯晴的刚性和聚丁二烯的抗冲击性,成为目前大部分头盔外壳的优选材料。头盔的外层要求硬度大、耐磨、不易变形、刚性好、不易压裂、有较高的抗冲击性,这样才能够很好的防止在撞击时变形开裂从而防护头部。
在实际选用ABS制作头盔外壳时,原材料很难达到刚性和抗冲击性的平衡。往往刚性较高的ABS韧性较差、抗冲击性较差,容易摔裂。
为了改进ABS的抗冲击性,使其具有刚性的同时兼具韧性和抗冲击性,已有技术采用合金的方式对ABS进行改进。例如在ABS中加入PA会大幅提升合金材料的韧性和抗冲击性。
也有通过碳纤维、玻璃纤维来改进ABS的抗冲击性能。中国发明专利公开号CN109867904B公开了一种碳纤维增强ABS复合材料及其制备方法。该方法采用长的碳纤维,在ABS熔融时引入长碳纤维强制浸渍,使碳纤维增强ABS复合材料中,碳纤维保留长度。根据相关测试,碳纤维增强的ABS悬臂梁缺口冲击强度可以提高150%以上。碳纤维对增加ABS的抗冲性极为显著。然而,碳纤维的成本较高,超过20%的碳纤维用于ABS会造成成本的大幅升高。
木纤维是一种天然易得的纤维,其不但具有纤维的增强增韧性能,而且,木纤维作为天然生物纤维,成本低、生态环保,将木纤维用于ABS制备头盔外壳材料,可以大幅降低ABS的使用量,这对碳减排具有重要的意义。
而长期以来,木粉、稻壳粉等木质材料都是简单的细化处理、表面偶联改性处理后用于PP、PE、PVC等作为降低成本的木塑材质,生产各种木塑复合的地板、装饰护墙板、壁板、装饰边框、楼梯扶手等。
中国专利CN105482480A公开了一种竹纤维增强热塑性塑料,由以下重量份计的原料混合制成:竹纤维30-60份,热塑性塑料30-80份,偶联剂0.25-0.6份,交联剂0.3-0.8份,润滑剂0.5-1.5份,该技术方案通过对竹纤维的偶联改性处理,对增强塑料有积极意义。
我们尝试将木纤维用于ABS制备复合材料,用于头盔的外壳材质,尽管成本降低,但性能提升有限,甚至在木质纤维添加量大于20%时会出现抗冲击强度降低。
究其原因,为了分散木质粉,通常将木粉细化至100目左右使用,而这种细化使用木粉的方法破坏了木粉的长纤维结构,以致于难以在塑料中起到高效增强作用。而如果能够使长纤维结构的木纤维分散在塑料中,这对升级目前木塑制品性能意义重大。
为此,我们希望保持良好的木纤维长纤维结构,用于处理ABS,从而得到满足头盔外壳需要的高抗冲木塑复合材料。
发明内容
木纤维以长纤维的形式与ABS复合,不但可以降低成本,而且可以提高材料的抗冲击性。用于头盔材料可以提升抗冲击能力。但如何有效的使长纤维的木质纤维有效分散结合在ABS体系,是目前存在的技术难题。针对此问题,本发明提出一种高抗冲木塑头盔复合材料,通过对木质长纤维进行二级处理,利用双阶式双螺杆挤出机,在ABS体系充分熔融后再将经二级处理的木质长纤维分散,不但使木质长纤维高效分散在ABS体系中,而且长纤维保留完整,避免过剪切造成长纤维损伤,得到的木塑头盔复合材料抗冲击性能优异。进一步提供所述高抗冲木塑头盔复合材料的制备方法。
为了实现上述的有益效果,本发明采用了以下具体的技术方案:
首先,一种高抗冲木塑头盔复合材料的制备方法,其特征在于:具体制备方法如下:
(1)将木质长纤维与偶联剂、分散剂、微米级球形无机填料加入搅拌器,在80-120℃、20-30rpm转速下低速搅拌分散5-15min,放料,得一级处理木质长纤维粉料;
(2)将步骤(1)得到的一级处理木质长纤维与苯乙烯-丁二烯-苯乙烯嵌段共聚物按照质量比例3:2在捏合机中加热至180-190℃,捏合3-5min,放料于开炼机,趁热出片,冷却、折叠堆放,得到二级处理木质长纤维片料;
(3)将ABS、相容剂、抗氧剂、阻燃剂、加工助剂加入高速混合机混合均匀,经双阶式双螺杆挤出机的第一阶双螺杆挤出机挤出得到熔融料,在进入第二阶双螺杆挤出机时,将步骤(2)二级处理木质长纤维片料裁切至3-5cm宽的长条与熔融料一起进入第二阶双螺杆挤出机,经挤出机模头成条,送至链条风冷、滚刀切粒,制得一种高抗冲木塑头盔复合材料;其中,所述双阶式双螺杆挤出机的第一阶双螺杆挤出机为同向双螺杆挤出机,长径比在36-48之间;所述双阶式双螺杆挤出机的第二阶双螺杆挤出机为异向双螺杆挤出机,长径比在10-15之间;所述滚刀切粒的料条长度为1cm。
优选的,步骤(1)所述木质长纤维、偶联剂、分散剂、微米级球形无机填料按照质量比100:1-2:2-3:3-5配料。
优选的,步骤(1)所述木质长纤维选用亚麻、剑麻、洋麻、黄麻、竹纤维中的至少一种;木质长纤维的纤维长度为5-15mm,木质长纤维的长径比≥20。木质长纤维选用较的纤维长度和较高的长径比,对提升复合材料的抗冲击效果显著。
优选的,步骤(1)所述偶联剂选用铝酸酯偶联剂、硅烷偶联剂中的至少一种。
优选的,步骤(1)所述分散剂选用硬脂酸、聚乙烯蜡、乙撑双硬脂酰胺、硬脂酸酰胺、硬脂酸单酐酯中的至少一种。
优选的,步骤(1)所述微米级球形无机填料选用球度大于0.80,粒径在20-50μm的球形无机粉体。如球形的硫酸钡、球形玻璃微珠均可。通过加入微米级球形无机填料可以防止在搅拌器中分散在处理木质长纤维时长纤维缠绕结团。
优选的,步骤(2)所述捏合机为卧式捏合机,捏合机的转速为10-15rpm,捏合机在低转速、低剪切中下将苯乙烯-丁二烯-苯乙烯嵌段共聚物熔融与木质长纤维有效共混;苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)具有优异的有韧性和抗冲击性能,加工时要求剪切速率较低,因此不需要过度的剪切可以熔融与木质长纤维共混分散。
优选的,步骤(2)中开炼机出片时,厚度控制在10-15mm。
优选的,步骤(3)所述ABS、相容剂、抗氧剂、阻燃剂、加工助剂按照质量比100:2-3:0.1-0.2:1-3:0.1-0.2配料。
优选的,步骤(3)所述相容剂选用马来酸酐接枝就聚合物。
优选的,步骤(3)所述抗氧剂选用抗氧剂1010、抗氧剂168中的至少一种。
优选的,步骤(3)所述阻燃剂十溴联苯醚、四溴双酚A中的至少一种。
优选的,步骤(3)所述加工助剂选用含氟聚合物,用于提高加工流动性和复合材料注塑头盔时提升表面光洁度。进一步优选赛陶高分子材料公司提供的PPA-ST3300。
优选的,步骤(3)中二级处理木质长纤维片料与熔融料一起进入第二阶双螺杆挤出机时按照质量比1:1进行送料。
优选的,步骤(3)所述双阶式双螺杆挤出机的第一阶双螺杆挤出机温度为220-230℃,螺杆转速220-250rpm。
优选的,步骤(3)所述双阶式双螺杆挤出机的第二阶双螺杆挤出机温度为200-230℃,螺杆转速60-80rpm。
将木质长纤维分散于ABS时,ABS在热熔加工时粘度较大,需要较强的剪切分散才能够将木纤维分散其中,而强剪切会造成木质长纤维被过度剪切变短,影响增强效果。为了解决此问题,本发明对木质长纤维进行了二级处理。首先,利用偶联剂处理纤维的表面,为了防止长纤维缠绕结团,采用了低搅拌,同时添加了一定量的微米级球形无机填料进行分散;在二级处理时,将一级处理的木质长纤维分散在苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)中,SBS具有优异的有韧性和抗冲击性能,而且加工时要求剪切速率较低,通过捏合机的低剪切捏合,可以将木质长纤维与分散在SBS体系中。通过二级分散处理木质长纤维,使木纤维得到了分散,且保留了长纤维的特性。
更为重要的是,通过二级处理的木质长纤维,不需要与ABS长时间剪切分散,采用双阶式双螺杆挤出机的第一阶双螺杆挤出机是同向高长径比螺杆,对ABS体系进行强剪切分散,得到熔融料,在进入第二阶双螺杆挤出机时,第二阶双螺杆挤出机为异向双螺杆挤出机,长径比低,剪切强度低,混合效果好,使二级处理木质长纤维混入分散在ABS体系中,从而大幅减少螺杆剪切对长纤维的破坏。且在滚刀切粒时,料条长度为1cm,使长纤维在料条中较好的保留。
再者,本发明提供由上述方法制备获取的一种高抗冲木塑头盔复合材料。显著的技术创新点是:通过对木质长纤维进行二级处理,预先分散的木质长纤维长纤维结构得到保留,易于分散;进一步利用双阶式双螺杆挤出机,利用第一阶的螺杆挤出机对ABS体系充分熔融;在第二阶螺杆挤出机使二级处理的木质长纤维与ABS体系分散,不但使木质长纤维高效分散在ABS体系中,而且长纤维保留完整,避免过剪切造成长纤维损伤。得到的木塑头盔复合材料木质纤维含量超过20%,经注塑制备头盔外壳,木质长纤维木之间相互交叉、缠结,具有良好的增强作用,且抗冲击性能提升明显。
一种高抗冲木塑头盔复合材料及制备方法,与现有技术相比具有如下有益效果:
(1)通过对木质长纤维的低速搅拌一级处理以及与SBS捏合的二级处理,使长纤维得到了保留,且具有易于分散的性能。
(2)采用双阶式双螺杆挤出机在第一阶双螺杆挤出机对ABS体系进行强剪切分散熔融,在进入第二阶双螺杆挤出机时,将二级处理木质长纤维混入分散在ABS体系中,减少螺杆剪切对长纤维的破坏。能够有效提升ABS的抗冲击性能。
(3)本发明制备工艺简单,无需特制设备,适合工业化大规模生产。
综上所述,本发明的技术方案特质突出,实用价值明显,并在现有技术产品中未见有相关公开发表的技术,较现有的技术具有显著的进步,并具有广泛的规模化推广生产价值。
为了更清楚地说明本发明的技术方案,下面以工艺流程示意图明示本发明的技术思路。
图1:本发明的制备方法工艺流程图。
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)将长度为5-15mm、长径比≥20的亚麻纤维50kg、铝酸酯偶联剂1kg、硬脂酸1kg、球度大于0.80,粒径在20-50μm的球形的硫酸钡2.5kg加入搅拌器,在100℃、20rpm转速下低速搅拌分散10min,放料,得一级处理木质长纤维粉料;
(2)将步骤(1)得到的一级处理木质长纤维与苯乙烯-丁二烯-苯乙烯嵌段共聚物(奇美SBS PB-5910)按照质量比例3:2在捏合机中加热至190℃,在转速15rpm下捏合5min,放料于开炼机,趁热出片,出片厚度控制在10mm,冷却、折叠堆放,得到二级处理木质长纤维片料备用;
(3)将ABS(奇美PA747)50kg、SEBS-g-MAH(牌号Kraton G1901X)1.5kg、抗氧剂1010 0.08kg、抗氧剂0.02kg、十溴联苯醚1kg、PPA-ST3300(赛陶高分子材料公司提供)0.1kg加入高速混合机混合均匀,经双阶式双螺杆挤出机的第一阶双螺杆挤出机挤出,第一阶双螺杆挤出机为同向双螺杆挤出机,长径比为48,挤出温度为230℃,螺杆转速250rpm;在进入第二阶双螺杆挤出机时,将步骤(2)二级处理木质长纤维片料裁切至5cm宽的长条与熔融料一起按照质量比1:1进行送料;进入第二阶双螺杆挤出机,第二阶双螺杆挤出机为异向双螺杆挤出机,长径比为10,挤出机温度为220℃,螺杆转速60rpm;经挤出机模头成条,送至链条风冷、滚刀切粒,料条长度为1cm,制得一种高抗冲木塑头盔复合材料。
实施例2
(1)将长度为5-15mm、长径比≥20的竹纤维50kg、硅烷偶联剂1kg、聚乙烯蜡、1.5kg、球度大于0.80,粒径在20-50μm的球形玻璃微珠2.5kg加入搅拌器,在120℃、30rpm转速下低速搅拌分散15min,放料,得一级处理木质长纤维粉料;
(2)将步骤(1)得到的一级处理木质长纤维与苯乙烯-丁二烯-苯乙烯嵌段共聚物(奇美SBS PB-5910)按照质量比例3:2在捏合机中加热至190℃,在转速10rpm下捏合3min,放料于开炼机,趁热出片,出片厚度控制在10mm,冷却、折叠堆放,得到二级处理木质长纤维 片料备用;
(3)将ABS(奇美PA747)50kg、SEBS-g-MAH(牌号Taftec M))1.5kg、抗氧剂1010 0.08kg、抗氧剂168 0.02kg、阻燃剂十溴联苯醚1kg、四溴双酚A 0.5kg、PPA-ST3300(赛陶高分子材料公司提供)0.1kg加入高速混合机混合均匀,经双阶式双螺杆挤出机的第一阶双螺杆挤出机挤出,第一阶双螺杆挤出机为同向双螺杆挤出机,长径比为48,挤出温度为230℃,螺杆转速220rpm;在进入第二阶双螺杆挤出机时,将步骤(2)二级处理木质长纤维片料裁切至3cm宽的长条与熔融料按照质量比1:1进行送料,一起进入第二阶双螺杆挤出机,第二阶双螺杆挤出机为异向双螺杆挤出机,长径比为10,挤出机温度为230℃,螺杆转速80rpm;经挤出机模头成条,送至链条风冷、滚刀切粒,料条长度为1cm,制得一种高抗冲木塑头盔复合材料。
实施例3
(1)将长度为5-15mm、长径比≥20的剑麻纤维50kg、铝酸酯偶联剂1kg、硬脂酸1kg、球度大于0.80,粒径在20-50μm的球形的硫酸钡2.5kg加入搅拌器,在100℃、20rpm转速下低速搅拌分散10min,放料,得一级处理木质长纤维粉料;
(2)将步骤(1)得到的一级处理木质长纤维与苯乙烯-丁二烯-苯乙烯嵌段共聚物(奇美SBS PB-5910)按照质量比例3:2在捏合机中加热至190℃,在转速15rpm下捏合5min,放料于开炼机,趁热出片,出片厚度控制在10mm,冷却、折叠堆放,得到二级处理木质长纤维片料备用;
(3)将ABS(奇美PA747)50kg、SEBS-g-MAH(牌号Kraton G1901X)1.5kg、抗氧剂1010 0.08kg、抗氧剂0.02kg、十溴联苯醚1kg、PPA-ST3300(赛陶高分子材料公司提供)0.1kg加入高速混合机混合均匀,经双阶式双螺杆挤出机的第一阶双螺杆挤出机挤出,第一阶双螺杆挤出机为同向双螺杆挤出机,长径比为48,挤出温度为230℃,螺杆转速250rpm;在进入第二阶双螺杆挤出机时,将步骤(2)二级处理木质长纤维片料裁切至5cm宽的长条与熔融料一起按照质量比1:1进行送料,进入第二阶双螺杆挤出机,第二阶双螺杆挤出机为异向双螺杆挤出机,长径比为12,挤出机温度为220℃,螺杆转速60rpm;经挤出机模头成条,送至链条风冷、滚刀切粒,料条长度为1cm,制得一种高抗冲木塑头盔复合材料。
对比例1
(1)将长度为5-15mm、长径比≥20的亚麻纤维50kg、铝酸酯偶联剂1kg、硬脂酸1kg、球度大于0.80,粒径在20-50μm的球形的硫酸钡2.5kg加入搅拌器,在100℃、20rpm转速下低速搅拌分散10min,放料,得一级处理木质长纤维粉料;
(2)将步骤(1)得到的一级处理木质长纤维与苯乙烯-丁二烯-苯乙烯嵌段共聚物(奇美SBS PB-5910)按照质量比例3:2在捏合机中加热至190℃,在转速15rpm下捏合5min,放料于开炼机,趁热出片,出片厚度控制在10mm,冷却、折叠堆放,得到二级处理木质长纤维片料备用;
(3)将ABS(奇美PA747)50kg、SEBS-g-MAH(牌号Kraton G1901X)1.5kg、抗氧剂1010 0.08kg、抗氧剂0.02kg、十溴联苯醚1kg、PPA-ST3300(赛陶高分子材料公司提供)0.1kg加入高速混合机混合均匀,得到混合料,将二级处理木质长纤维片料裁切至5cm宽的长条与混合料一起按照质量比1:1进行送料经同向双螺杆挤出机,长径比为48,挤出温度为230℃,螺杆转速250rpm;经挤出机模头成条,送至链条风冷、滚刀切粒,料条长度为1cm,制得一种高抗冲木塑头盔复合材料。
对比例2
(1)将长度为5-15mm、长径比≥20的亚麻纤维50kg、铝酸酯偶联剂1kg、硬脂酸1kg加入搅拌器,在100℃、20rpm转速下低速搅拌分散10min,放料,得一级处理木质长纤维粉料;
(2)将步骤(1)得到的一级处理木质长纤维与苯乙烯-丁二烯-苯乙烯嵌段共聚物(奇美SBS PB-5910)按照质量比例3:2在捏合机中加热至190℃,在转速15rpm下捏合5min,放料于开炼机,趁热出片,出片厚度控制在10mm,冷却、折叠堆放,得到二级处理木质长纤维片料备用;
(3)将ABS(奇美PA747)50kg、SEBS-g-MAH(牌号Kraton G1901X)1.5kg、抗氧剂1010 0.08kg、抗氧剂0.02kg、十溴联苯醚1kg、PPA-ST3300(赛陶高分子材料公司提供)0.1kg加入高速混合机混合均匀,经双阶式双螺杆挤出机的第一阶双螺杆挤出机挤出,第一阶双螺杆挤出机为同向双螺杆挤出机,长径比为48,挤出温度为230℃,螺杆转速250rpm;在进入第二阶双螺杆挤出机时,将步骤(2)二级处理木质长纤维片料裁切至5cm宽的长条与熔融料一起按照质量比1:1进行送料,进入第二阶双螺杆挤出机,第二阶双螺杆挤出机为异向双螺杆挤出机,长径比为10,挤出机温度为220℃,螺杆转速60rpm;经挤出机模头成条,送至链条风冷、滚刀切粒,料条长度为1cm,制得一种高抗冲木塑头盔复合材料。
对比例3
(1)将长度为5-15mm、长径比≥20的亚麻纤维50kg、铝酸酯偶联剂1kg、硬脂酸1kg、球度大于0.80,粒径在20-50μm的球形的硫酸钡2.5kg加入搅拌器,在100℃、20rpm转速下低速搅拌分散10min,放料,得一级处理木质长纤维粉料;
(2)将步骤(1)得到的一级处理木质长纤维与苯乙烯-丁二烯-苯乙烯嵌段共聚物(奇美SBS PB-5910)按照质量比例3:2混合均匀,得到二级处理木质长纤维片料备用;
(3)将ABS(奇美PA747)50kg、SEBS-g-MAH(牌号Kraton G1901X)1.5kg、抗氧剂1010 0.08kg、抗氧剂0.02kg、十溴联苯醚1kg、PPA-ST3300(赛陶高分子材料公司提供)0.1kg加入高速混合机混合均匀,经双阶式双螺杆挤出机的第一阶双螺杆挤出机挤出,第一阶双螺杆挤出机为同向双螺杆挤出机,长径比为48,挤出温度为230℃,螺杆转速250rpm;在进入第二阶双螺杆挤出机时,将步骤(2)二级处理木质长纤维料与熔融料一起按照质量比1:1进行送料,进入第二阶双螺杆挤出机,第二阶双螺杆挤出机为异向双螺杆挤出机,长径比为10,挤出机温度为220℃,螺杆转速60rpm;经挤出机模头成条,送至链条风冷、滚刀切粒,料条长度为1cm,制得一种高抗冲木塑头盔复合材料。
对述实施例1-3、对比例1-3得到的高抗冲木塑头盔复合材料进行性能评价(参照样品为纯ABS(奇美PA747):
1、抗冲击性能:将实施例1-3、对比例1-3得到的高抗冲木塑头盔复合材料在100℃干燥1h,然后在230℃注塑制样。参考GB/T 1843测试冲击强度,如表1所示。
2、参照GB/T 1040《塑料拉伸性能试验方法》测试,对注塑裁切标样进行拉伸强度的测试,在20mm/min的试验速度测试,测试结果如表1所示。
表1:
通过上述的测试和对比分析,本发明的技术方案通过对木质长纤维的低速搅拌一级处理以及与SBS捏合的二级处理,使长纤维得到了保留,且具有易于分散的性能。采用双阶式双 螺杆挤出机在第一阶双螺杆挤出机对ABS体系进行强剪切分散熔融,在进入第二阶双螺杆挤出机时,将二级处理木质长纤维混入分散在ABS体系中,减少螺杆剪切对长纤维的破坏。能够有效提升ABS的抗冲击性能。
对比例1在实施时没有对ABS预先熔融,而是直接与二级处理木质长纤维片料在同向双螺杆挤出机,受螺杆剪切的影响,长纤维被剪切损伤较多,造成长纤维在复合料中没有增抗冲性效果,反而下降。
对比例2在实施时,木质长纤维进行一级处理时没有加入球形的硫酸钡,在搅拌进行表面处理时长线维缠绕结团较多,影响长纤维的后续分散,复合料抗冲性提升有限。
对比例3在实施时,木质长纤维进行二级处理时一级处理木质长纤维与苯乙烯-丁二烯-苯乙烯嵌段共聚物直接混合,没有预先捏合分散,尽管在最终的复合料中长纤维保留完整,但由于没有对长纤维的SBS预先分散,因此其在第二阶螺杆的分散有限,导致复合料中的长纤维出现大量堆积和结团,复合料抗冲性出现下降。
Claims (10)
- 一种高抗冲木塑头盔复合材料的制备方法,其特征在于:具体制备方法如下:(1)将木质长纤维与偶联剂、分散剂、微米级球形无机填料加入搅拌器,在80-120℃、20-30rpm转速下低速搅拌分散5-15min,放料,得一级处理木质长纤维粉料;(2)将步骤(1)得到的一级处理木质长纤维与苯乙烯-丁二烯-苯乙烯嵌段共聚物按照质量比例3:2在捏合机中加热至180-190℃,捏合3-5min,放料于开炼机,趁热出片,冷却、折叠堆放,得到二级处理木质长纤维片料;(3)将ABS、相容剂、抗氧剂、阻燃剂、加工助剂加入高速混合机混合均匀,经双阶式双螺杆挤出机的第一阶双螺杆挤出机挤出得到熔融料,在进入第二阶双螺杆挤出机时,将步骤(2)二级处理木质长纤维片料裁切至3-5cm宽的长条与熔融料一起进入第二阶双螺杆挤出机,经挤出机模头成条,送至链条风冷、滚刀切粒,制得一种高抗冲木塑头盔复合材料;其中,所述双阶式双螺杆挤出机的第一阶双螺杆挤出机为同向双螺杆挤出机,长径比在36-48之间;所述双阶式双螺杆挤出机的第二阶双螺杆挤出机为异向双螺杆挤出机,长径比在10-15之间;所述滚刀切粒的料条长度为1cm。
- 根据权利要求1所述一种高抗冲木塑头盔复合材料的制备方法,其特征在于:步骤(1)所述木质长纤维、偶联剂、分散剂、微米级球形无机填料按照质量比100:1-2:2-3:3-5配料。
- 根据权利要求1所述一种高抗冲木塑头盔复合材料的制备方法,其特征在于:步骤(1)所述木质长纤维长度为5-15mm,木质长纤维的长径比≥20,选用亚麻、剑麻、洋麻、黄麻、竹纤维中的至少一种;所述偶联剂选用铝酸酯偶联剂、硅烷偶联剂中的至少一种;所述分散剂选用硬脂酸、聚乙烯蜡、乙撑双硬脂酰胺、硬脂酸酰胺、硬脂酸单酐酯中的至少一种;所述微米级球形无机填料选用球度大于0.80,粒径在20-50μm的球形无机粉体。
- 根据权利要求1所述一种高抗冲木塑头盔复合材料的制备方法,其特征在于:步骤(2)所述捏合机为卧式捏合机,捏合机的转速为10-15rpm。
- 根据权利要求1所述一种高抗冲木塑头盔复合材料的制备方法,其特征在于:步骤(2)中开炼机出片时,厚度控制在10-15mm。
- 根据权利要求1所述一种高抗冲木塑头盔复合材料的制备方法,其特征在于:步骤(3)所述ABS、相容剂、抗氧剂、阻燃剂、加工助剂按照质量比100:2-3:0.1-0.2:1-3:0.1-0.2配料。
- 根据权利要求1所述一种高抗冲木塑头盔复合材料的制备方法,其特征在于:步骤(3)所述相容剂选用马来酸酐接枝就聚合物;所述抗氧剂选用抗氧剂1010、抗氧剂168中的至少一种;所述阻燃剂十溴联苯醚、四溴双酚A中的至少一种;所述加工助剂选用含氟聚合物。
- 根据权利要求1所述一种高抗冲木塑头盔复合材料的制备方法,其特征在于:步骤(3)中二级处理木质长纤维片料与熔融料一起进入第二阶双螺杆挤出机时按照质量比1:1进行送料。
- 根据权利要求1所述一种高抗冲木塑头盔复合材料的制备方法,其特征在于:步骤(3)所述双阶式双螺杆挤出机的第一阶双螺杆挤出机温度为220-230℃,螺杆转速220-250rpm;所述双阶式双螺杆挤出机的第二阶双螺杆挤出机温度为200-230℃,螺杆转速60-80rpm。
- 一种高抗冲木塑头盔复合材料,其特征是由权利要求1-9任一项所述的方法制备得到。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111446068.9A CN114045043B (zh) | 2021-11-30 | 2021-11-30 | 一种高抗冲木塑头盔复合材料及制备方法 |
CN202111446068.9 | 2021-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023097950A1 true WO2023097950A1 (zh) | 2023-06-08 |
Family
ID=80212049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/088161 WO2023097950A1 (zh) | 2021-11-30 | 2022-04-21 | 一种高抗冲木塑头盔复合材料及制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114045043B (zh) |
WO (1) | WO2023097950A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114045043B (zh) * | 2021-11-30 | 2022-11-04 | 浙江远景体育用品股份有限公司 | 一种高抗冲木塑头盔复合材料及制备方法 |
CN117946492B (zh) * | 2024-01-30 | 2024-07-09 | 广东威武实业有限公司 | 一种高强高韧abs材料 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103849019A (zh) * | 2012-12-03 | 2014-06-11 | 合肥杰事杰新材料股份有限公司 | 一种天然纤维复合材料板材及其制作方法和应用 |
CN106009162A (zh) * | 2016-06-22 | 2016-10-12 | 常州厚德再生资源科技有限公司 | 一种pe脂塑材料及其制备方法 |
CN106810748A (zh) * | 2017-02-07 | 2017-06-09 | 常州厚德再生资源科技有限公司 | 一种pe发泡木塑复合材料及其制备方法 |
US20180072889A1 (en) * | 2016-08-04 | 2018-03-15 | Nanjing Tech University | Lignin Enhanced Wood-Plastic Material and Preparation Method thereof |
CN114045043A (zh) * | 2021-11-30 | 2022-02-15 | 浙江远景体育用品有限公司 | 一种高抗冲木塑头盔复合材料及制备方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB550504A (en) * | 1940-07-09 | 1943-01-12 | Bakelite Ltd | Improvements in or relating to the manufacture and moulding of resinous compositions |
US5041258A (en) * | 1989-04-28 | 1991-08-20 | Polyplastics Co., Ltd. | Injection process for long fiber-containing resin |
GB2332872B (en) * | 1998-01-06 | 2002-05-15 | Nat Science Council | Method for preparing oriented discontinuous long fiber reinforced thermoplastic resin composite sheet product |
US6284098B1 (en) * | 1998-07-20 | 2001-09-04 | Wwj, Llc | Lignocellulose fiber filler for thermoplastic composite compositions |
CN1294203C (zh) * | 2002-10-09 | 2007-01-10 | 上海杰事杰新材料股份有限公司 | 长纤维增强聚对苯二甲酸乙二醇酯材料 |
CA2553193A1 (en) * | 2004-03-16 | 2005-09-29 | Daniel P. Dekock | Method for preparing long glass fiber-reinforced composition and fabricated articles therefrom |
KR100921332B1 (ko) * | 2007-08-31 | 2009-10-13 | 지에스칼텍스 주식회사 | 착색 장섬유 강화 펠렛 및 이를 이용하여 제조된 착색 수지성형품 |
CN101747644A (zh) * | 2008-12-16 | 2010-06-23 | 金发科技股份有限公司 | 一种植物粉改性热塑性木塑复合材料及其制备方法与应用 |
CN101875746B (zh) * | 2010-05-14 | 2013-07-31 | 广州金发绿可木塑科技有限公司 | 苯乙烯系无卤阻燃型注塑级木塑复合材料及其制备方法 |
CN104693593A (zh) * | 2013-12-06 | 2015-06-10 | 上海杰事杰新材料(集团)股份有限公司 | 一种长纤维增强热塑性树脂复合材料安全鞋保护包头及其制备方法 |
KR101775201B1 (ko) * | 2014-05-15 | 2017-09-06 | (주)엘지하우시스 | 장섬유 보강 플라스틱 복합재 및 장섬유 보강 플라스틱 복합재의 제조 방법 |
CN104448803B (zh) * | 2014-12-01 | 2017-01-25 | 贵州凯科特材料有限公司 | 无卤阻燃长纤维增强尼龙6复合材料及其制备方法 |
CN105713403A (zh) * | 2014-12-02 | 2016-06-29 | 中国科学院宁波材料技术与工程研究所 | 一种木塑复合材料及其异型模压制件的制备方法 |
CN106009246A (zh) * | 2015-04-01 | 2016-10-12 | 合肥杰事杰新材料股份有限公司 | 一种有机纤维增强聚丙烯复合材料及其lft-d成型工艺 |
EP3277751B1 (en) * | 2015-04-03 | 2019-03-20 | Mica S.R.L. | Composite material comprising at least one thermoplastic resin and granular shive from hemp and / or flax |
CN106543625A (zh) * | 2016-10-18 | 2017-03-29 | 安徽省卓煜新材料科技有限公司 | 一种天然纤维增强聚乳酸复合材料及其制备方法 |
CN109203405A (zh) * | 2018-08-17 | 2019-01-15 | 山东泰氏新材料科技有限责任公司 | 一种长纤维在线增强聚丙烯直接注塑的方法 |
CN113459466A (zh) * | 2018-08-17 | 2021-10-01 | 山东泰氏新材料科技有限责任公司 | 利用连续长纤维在线增强聚丙烯材料的生产装置及工艺 |
KR102352358B1 (ko) * | 2019-10-30 | 2022-01-20 | 금오공과대학교 산학협력단 | Lft용 abs수지 복합재료 및 그 제조방법 |
-
2021
- 2021-11-30 CN CN202111446068.9A patent/CN114045043B/zh active Active
-
2022
- 2022-04-21 WO PCT/CN2022/088161 patent/WO2023097950A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103849019A (zh) * | 2012-12-03 | 2014-06-11 | 合肥杰事杰新材料股份有限公司 | 一种天然纤维复合材料板材及其制作方法和应用 |
CN106009162A (zh) * | 2016-06-22 | 2016-10-12 | 常州厚德再生资源科技有限公司 | 一种pe脂塑材料及其制备方法 |
US20180072889A1 (en) * | 2016-08-04 | 2018-03-15 | Nanjing Tech University | Lignin Enhanced Wood-Plastic Material and Preparation Method thereof |
CN106810748A (zh) * | 2017-02-07 | 2017-06-09 | 常州厚德再生资源科技有限公司 | 一种pe发泡木塑复合材料及其制备方法 |
CN114045043A (zh) * | 2021-11-30 | 2022-02-15 | 浙江远景体育用品有限公司 | 一种高抗冲木塑头盔复合材料及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114045043B (zh) | 2022-11-04 |
CN114045043A (zh) | 2022-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023097950A1 (zh) | 一种高抗冲木塑头盔复合材料及制备方法 | |
JP2872466B2 (ja) | 複合強化ポリプロピレン樹脂組成物の製造方法 | |
JPH08269228A (ja) | 繊維および特定のカーボンブラックを均一に含有する繊維強化熱可塑性複合体 | |
CA2606611A1 (en) | Cloth-like fiber reinforced polypropylene compositions and method of making thereof | |
CN103030885B (zh) | 一种低散发、高性能长玻璃纤维增强聚丙烯材料及其制造方法 | |
WO2022242298A1 (zh) | 一种玻纤增强聚丙烯组合物及其制备方法和应用 | |
CN107973985A (zh) | 一种聚丙烯-尼龙6的塑料合金及其制造方法 | |
CN110655708A (zh) | 一种综合性能优异的低密度聚丙烯复合材料及其制备方法 | |
CN102320117B (zh) | 一种玻纤增强as树脂的制备方法 | |
CN109486156B (zh) | 一种阻燃挤出级pc/abs复合材料 | |
CN107501719A (zh) | 一种由聚丙烯回收料制成的聚合物填充母粒及其制备方法 | |
JP6353691B2 (ja) | ガラスウール複合熱可塑性樹脂組成物及びその製造法、成形物。 | |
CN105733231B (zh) | 以硫酸钙晶须改性的聚碳酸酯合金材料及其制法 | |
CN113372653B (zh) | 一种bopp薄膜用增挺母料和制备方法及bopp薄膜 | |
WO2020162488A1 (ja) | 熱可塑性樹脂組成物の成形機、および製造方法、ならびに複合樹脂組成物の成形品の製造方法、射出成形品 | |
CN114854164A (zh) | 一种耐高温聚丙烯芯线料及其制备方法和应用 | |
CN100532451C (zh) | 一种高冲击性增强pet组合物及其制备方法 | |
CN109467814B (zh) | 一种复合矿物纤维填充聚丙烯复合材料及其制备方法 | |
JPH10258424A (ja) | ガラス繊維強化ポリプロピレン樹脂及びその製造方法 | |
CN112029260A (zh) | 一种麻纤维增强pc/abs复合材料、其制备方法及应用 | |
JP3824402B2 (ja) | ガラス繊維強化ポリプロピレン成形体の製造方法 | |
KR20210119701A (ko) | 자동차 부품용 재생 폴리프로필렌 복합소재의 제조방법 | |
JPH08176350A (ja) | ゴム組成物の連続的製造方法 | |
CN116199975B (zh) | 一种聚丙烯改性材料及其制备方法和应用 | |
CN110218431A (zh) | 高韧性耐化学性抗菌性热塑性塑料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22899773 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |