WO2023097917A1 - 定子铁芯、电机、压缩机和制冷设备 - Google Patents

定子铁芯、电机、压缩机和制冷设备 Download PDF

Info

Publication number
WO2023097917A1
WO2023097917A1 PCT/CN2022/079188 CN2022079188W WO2023097917A1 WO 2023097917 A1 WO2023097917 A1 WO 2023097917A1 CN 2022079188 W CN2022079188 W CN 2022079188W WO 2023097917 A1 WO2023097917 A1 WO 2023097917A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
iron core
magnetically conductive
type
segment
Prior art date
Application number
PCT/CN2022/079188
Other languages
English (en)
French (fr)
Inventor
毛临书
邱小华
张肃
杨文权
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Publication of WO2023097917A1 publication Critical patent/WO2023097917A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present application relates to the technical field of motor equipment, in particular, to a stator core, a motor, a compressor and a refrigeration device.
  • stator core of the motor can be opened, and then coiled to a single core block respectively. After winding, multiple core blocks can be spliced to form a complete stator core.
  • Core where the splicing of adjacent core blocks can be connected in many ways, the commonly used solution is to set up a concave-convex structure at the splicing of adjacent core blocks for connection, the two are formed together by mosaic, and then along the The circumferential connection becomes an integral structure.
  • This application aims to solve at least one of the technical problems existing in the prior art or related art.
  • the first aspect of the present application is to propose a stator core.
  • a second aspect of the present application is to propose an electric machine.
  • the third aspect of the present application is to provide a compressor.
  • the fourth aspect of the present application is to provide a refrigeration device.
  • a stator core is provided, the stator core is used for a motor, the stator core includes a plurality of core blocks, and the plurality of core blocks are sequentially spliced along the circumference of the motor , each iron core block includes at least two iron core segments, and the at least two iron core segments are stacked along the axial direction of the motor.
  • At least two iron core segments are respectively provided with protrusions and recesses on both circumferential sides of each iron core segment, wherein, along the circumferential direction, the protrusions of any iron core segment in the plurality of core blocks are located at the corresponding In the concave portion of the adjacent core segment, along the axial direction, the adjacent core segment in each core block includes a first-type core segment and a second-type core segment, and the convex portion and the concave portion of the first-type core segment Distributed along the first direction, the protrusions and recesses of the second type of core segment are distributed along the second direction, and the first direction and the second direction are different.
  • the stator core provided by the present application is used for a motor, and the stator core includes a plurality of core blocks, and the plurality of core blocks are sequentially spliced along the circumferential direction to form a complete structure.
  • each core block includes at least two core segments, at least two core segments are stacked in the axial direction, and each core segment has a convex part and a concave part, and the convex part and the concave part are distributed on the iron core block. Circumferential sides of the core segment.
  • the convex part of any core segment in the multiple core blocks can be embedded in the concave part of the adjacent core segment, that is to say, at the same axial height and in the circumferential direction.
  • Two upwardly adjacent iron core segments are positioned and connected in the circumferential direction through the embedding of the convex part in the concave part, so that a plurality of iron core blocks are spliced and connected along the circumferential direction to form a complete stator core.
  • two adjacent core segments in each core block include a first-type core segment and a second-type core segment, and the protrusions and recesses on the first-type core segment are along the first Distributed in one direction, the protrusions and recesses on the second type of core segment are distributed along a second direction different from the first direction, and for each core segment, the protrusions and recesses are located on both sides of the core segment in the circumferential direction , then one of the first direction and the second direction is counterclockwise, and the other of the first direction and the second direction is clockwise, that is, for adjacent cores in a core block
  • the convex parts and the concave parts are alternately distributed at intervals, so for the adjacent core block, when it realizes the circumferential snap fit with the aforementioned one core block, it is The concave parts and the convex parts are alternately distributed at intervals.
  • any core segment among the multiple core blocks be the first core segment
  • the core block where the first core segment is located is the reference core block
  • the core blocks adjacent to the reference core block are adjacent iron core blocks
  • the reference iron core block and the adjacent iron core blocks are two adjacent iron core blocks in the circumferential direction.
  • the adjacent core block has a second core segment corresponding to the first core segment, and also has a third core segment adjacent to the second core segment in the axial direction, when the reference core block After being spliced with the adjacent core blocks, the convex part of the first core segment in the reference core block is embedded in the concave part of the second core segment of the adjacent core block, and can also abut against the third core segment segment, then for the first core segment, it not only has the circumferential limit given by the second core segment, but also has the axial limit given by the third core segment, and for multiple cores
  • any one of the at least two core segments in a plurality of core blocks can be the first core segment, that is to say, for each core segment, there can be If the second core segment is limited to the limit and the third core segment is limited axially, then the axial positioning of each core segment is accurate, which can ensure the splicing accuracy of multiple core segments in the axial direction, thereby enabling Effectively reduce the inter-
  • the first type of iron core segment includes at least one first magnetically conductive sheet
  • the second type of iron core segment includes at least one second magnetically conductive sheet, wherein, on the end surface perpendicular to the axial direction
  • the shape of the outline of the first magnetically permeable sheet is the same as the shape of the outline of the second magnetically permeable sheet.
  • each core block includes at least two core segments, and each core segment includes at least one magnetically conductive sheet.
  • each core segment includes at least one magnetically conductive sheet.
  • a core block it has a first type of iron core segment and a second type of iron core segment that are stacked in the axial direction and adjacent to each other, the first type of iron core segment includes at least one first magnetically permeable sheet, the second type of iron core segment The second type of iron core segment includes at least one second magnetically permeable piece. Since the difference between the first type of iron core segment and the second type of iron core segment is that the distribution directions of the convex parts and the concave parts are different, then it is possible to use a magnetically permeable sheet with the same outer contour. When the magnetic conductive sheets are stacked, it is only necessary to control the orientation of the structural features constituting the protrusions/recesses on the magnetic conductive sheets.
  • the use of magnetically conductive sheets with the same outer contour can reduce the complexity of the punching process and reduce production costs. It is worth noting that, during the preparation process of the magnetic permeable sheet, there may be slight differences in the outer contour of the magnetic permeable sheet caused by the deviation of the stamping operation, which fall within the scope of protection of the present application.
  • the number of the first magnetically conductive sheets is the same as that of the second magnetically conductive sheets.
  • one core segment on one core block includes adjacent core segments in the circumferential direction, and the axes of the two adjacent core segments in the circumferential direction
  • the height is consistent, so as to ensure the precise fit of circumferential concave and convex. That is to say, the iron core segments spliced sequentially in the circumferential direction are the same type of iron core segments, that is, for multiple iron core segments in the same axial height are of the same type, multiple first-type iron core segments are sequentially spliced along the circumferential direction , a plurality of second-type iron core segments are sequentially spliced along the circumferential direction.
  • the first-type iron core segments and the second-type iron core segments are arranged alternately.
  • the stacking type is: first-type iron core segments, second-type iron core segments, The first type of core segment distribution.
  • the stacking types are: the second-type core segment, the first-type core segment, and the second-type core segment.
  • the thickness of the first magnetically permeable sheet and the second magnetically permeable sheet is the same, when the number of the first magnetically permeable sheets constituting the first type of iron core segment is equal to When the number of the second magnetically permeable sheets constituting the second type of iron core segment is equal, it means that the axially adjacent first type of iron core segment and the second type of iron core segment have the same thickness, however, because the circumferentially adjacent two
  • the axial thicknesses of the first-type iron core segments or the second-type iron core segments are the same, that is, the axial thicknesses of the plurality of iron core segments constituting the plurality of iron core blocks are all the same, thereby simplifying the preparation process of the iron core blocks.
  • the number of the first magnetically conductive sheets and the number of the second magnetically conductive sheets are 4, 5, 6 and so on.
  • the number of the first magnetically conductive sheets is different from that of the second magnetically conductive sheets.
  • the number of the first magnetically permeable pieces is different from the number of the second magnetically permeable pieces, and the axial thicknesses of the axially adjacent first-type iron core segments and the second-type iron core segments are different, that is to say , for a core block, it can be composed of core segments with different axial heights in the axial direction, providing a variety of options for the composition of the stator core, thereby adapting to the needs of different usage scenarios.
  • the number of magnetically permeable pieces in at least two iron core segments may show an increasing trend, a decreasing trend, a trend of first increasing and then decreasing, or a trend of first decreasing and then increasing.
  • the first magnetically conductive sheet includes a connected yoke and a tooth, and the first magnetically conductive sheet can be axially aligned with the second magnetically conductive sheet after being turned over 180° along the centerline of the tooth. overlapping.
  • the structure of the first magnetically conductive sheet and the second magnetically conductive sheet is the same.
  • the same structure means that the two have the same thickness and the same structural features, but when the two are stacked according to the requirements of the motor, the two There are also differences in the relative positional relationship.
  • the first magnetically conductive sheet includes a connected yoke and a tooth
  • the tooth includes a tooth root and a tooth shoe
  • the tooth root is in a regular shape
  • the tooth root has a centerline passing through the central axis of the stator core, and the centerline is The symmetry line of the dedendum
  • the first magnetically conductive sheet can be overlapped with the second magnetically conductive sheet in the axial direction after being turned 180° along the center line of the tooth portion
  • the first magnetically conductive sheet includes a first flange and the first groove
  • the first flange of at least one first magnetically conductive sheet constitutes a convex portion of the first type of iron core segment
  • the first groove of at least one first magnetically conductive sheet constitutes a concave portion of the first type of iron core segment
  • the second flange of at least one second magnetically conductive sheet constitutes a convex portion of the second type of iron core segment
  • the second groove of at least one second magnetically conductive sheet constitute
  • the yoke includes a splicing wall, the splicing wall can be in contact with the adjacent core block, the splicing wall includes a first end point and a second end point opposite to each other, and the first end point is opposite to the second end point.
  • the end points are arranged close to the teeth, the line connecting the first end point and the second end point is a projection line, the length of the projection line is L1, and the projection line extends in the axial direction to form a projection plane.
  • the first magnetically conductive sheet also includes a first flange and a first groove, the first flange and the first groove are respectively arranged on both sides of the yoke in the circumferential direction, and the projection length of the flange on the projection plane is L2, wherein , 0.1L1 ⁇ L2 ⁇ 0.9L1, and/or the projection length of the groove on the projection plane is L3, wherein, 0.1L1 ⁇ L3 ⁇ 0.9L1.
  • the yoke includes a splicing wall, which is used to fit and contact with the adjacent iron core segments in the circumferential direction, and the splicing wall includes a first end point A and a second end point B oppositely arranged, and the first end point A If it is located inside the yoke and the second end point B is located outside the yoke, that is, the first end point A is located closer to the tooth than the second end point B.
  • the connecting line between the first end point A and the second end point B is a projection line, the length of the projection line is L1, and the projection line extends in the axial direction to form a projection plane.
  • the first guide groove piece includes a first flange and a first groove, the first flange and the first groove are respectively located on both sides of the yoke in the circumferential direction, the projected length of the first flange on the projection plane is L2, and the first The projected length of a groove on the projected plane is L3, wherein, the projected length of the first flange, the projected length L3 of the first groove and the length L1 of the projected line are associated, thereby being able to define the first flange,
  • the proportion of the first groove on the splicing wall makes the proportion of the first flange and the first groove on the splicing wall within a reasonable range, and on the basis of realizing the circumferential mosaic fit, minimize the impact on the performance of the motor Influence.
  • each of the at least two iron core segments includes at least one magnetically conductive sheet, wherein the number of iron core segments in one core block is less than the number of magnetically conductive sheets in one iron core block number of slices.
  • a core block for a core block, it includes at least two core segments, and each core segment includes at least one magnetic permeable sheet, so as to ensure that multiple core blocks are precise fit.
  • the number of iron core segments in one core block is 2, when one iron core segment includes 1 magnetically conductive sheet, then the other iron core segment includes at least 2 magnetically conductive sheets, at this time,
  • the number of magnetically conductive sheets in one core block is more than three.
  • the number of magnetically conductive sheets in one core block is at least two, each magnetically conductive sheet is provided with a riveting part, and two adjacent magnetically conductive sheets among at least two magnetically conductive sheets The riveted part is connected.
  • each magnetically conductive piece is provided with a riveting part, and the riveting parts of two adjacent magnetically conductive pieces are mated and connected, so that a core can be realized
  • the position of the block itself in the axial direction is defined.
  • the second core segment at the same axial height in the adjacent core block forms a circumferential orientation with it, and the adjacent core segment
  • the iron core block also includes a third iron core segment, the first iron core segment can axially abut against the third iron core segment, thereby forming an axial limit between adjacent iron core blocks, then for one iron core block
  • the adjacent two magnetically conductive sheets are connected by riveting parts, and the first iron core segment can further obtain the axial limit provided by the riveting parts, so that the entire stator core can be further
  • the location accuracy offers the possibility.
  • the yoke includes an opposite inner edge surface and an outer edge surface, the inner edge surface is disposed close to the teeth relative to the outer edge surface, and the first flange and the first groove are disposed close to the outer edge surface.
  • the first flange and the first groove are set on the splicing wall on the outside. This is because the force on the outer edge of the stator core is relatively large, so that the concave-convex structure is set on the outside, which can improve the overall Stitching for reliable performance.
  • the number of core blocks is greater than or equal to 6 and less than or equal to 16.
  • stator core blocks can be spliced sequentially along the circumferential direction to form an integral stator core, that is to say, within the same axial height, six first-type iron core segments/second-type iron core segments The casings connected end to end constitute the stator core.
  • a motor including the stator core provided by any of the above-mentioned designs.
  • the motor provided by the present application includes the stator core provided by any of the above-mentioned designs, so it has all the beneficial effects of the stator core, and will not be repeated here.
  • a plurality of core blocks of the stator core are spliced to form a rotor cavity;
  • the motor also includes a stator winding and a rotor, and the stator winding is arranged on the stator core.
  • the rotor is arranged in the rotor cavity, and the rotor can rotate relative to the stator core.
  • a plurality of iron core blocks are spliced end to end in the circumferential direction to form an integral stator core, which can be enclosed to form a rotor cavity.
  • the stator winding is wound on the stator core, and the rotor is located in the rotor cavity. There is a clearance fit between the cores, and the rotor can rotate relative to the stator core.
  • a compressor including the motor provided by any of the above-mentioned designs.
  • the compressor provided by the present application includes the motor provided by any of the above-mentioned designs, so it has all the beneficial effects of the motor, and will not be repeated here.
  • the compressor further includes a crankshaft and a power part, and the first end of the crankshaft cooperates with the rotor of the electric motor.
  • the power part is arranged at the second end of the crankshaft, and the power part can drive the rotor to rotate relative to the stator core through the crankshaft.
  • the compressor includes a crankshaft and a power part, the first end of the crankshaft extends into the shaft hole of the rotor, and the crankshaft and the rotor are in interference fit.
  • the power part is connected to the second end of the crankshaft, and the power part can drive the rotor to rotate relative to the stator core through the crankshaft.
  • a refrigeration device including the motor or the compressor provided by any of the above-mentioned designs.
  • the refrigerating equipment provided by the present application includes the motor or compressor provided by any of the above-mentioned designs, so it has all the beneficial effects of the motor or compressor, and will not be repeated here.
  • Fig. 1 shows one of the structural schematic diagrams of two adjacent core blocks in a stator core according to an embodiment of the present application
  • Fig. 2 shows one of the structural schematic diagrams of the first magnetic conductive sheet of the stator core according to an embodiment of the present application
  • Fig. 3 shows the second structural schematic diagram of the first magnetic conductive sheet of the stator core according to an embodiment of the present application
  • Fig. 4 shows a schematic structural view of a second magnetically conductive sheet of a stator core according to an embodiment of the present application
  • Fig. 5 shows a schematic structural view of a core block in a stator core according to an embodiment of the present application
  • Fig. 6 shows a schematic structural view of another core block in the stator core according to an embodiment of the present application
  • Fig. 7 shows the second structural schematic diagram of two adjacent iron core blocks in the stator core according to an embodiment of the present application
  • Figure 8 shows a schematic structural diagram of a motor according to an embodiment of the present application.
  • Fig. 9 shows a comparison diagram of motor efficiency according to an embodiment of the present application and that of motors in related technologies
  • Fig. 10 shows a schematic structural diagram of a compressor according to an embodiment of the present application.
  • 300 compressor, 310 crankshaft, 320 power unit 300 compressor, 310 crankshaft, 320 power unit.
  • a stator core, a motor, a compressor and refrigeration equipment provided according to some embodiments of the present application are described below with reference to FIGS. 1 to 10 .
  • a stator core 100 is provided. As shown in FIG. 110 are sequentially spliced along the circumferential direction of the motor 200 , each core block 110 includes at least two core segments 120 , and at least two core segments 120 are stacked along the axial direction of the motor 200 .
  • At least two iron core segments 120 are provided with convex parts 121 and concave parts 122 on both sides of the circumferential direction of each iron core segment 120, wherein, along the circumferential direction, any core segment in the plurality of core blocks 110
  • the convex portion 121 of 120 is located in the concave portion 122 of the adjacent core segment 120, and in the axial direction, the adjacent core segment 120 in each core block 110 includes the first type core segment 130 and the second type core segment 140, the protrusions 121 and recesses 122 of the first type of iron core segment 130 are distributed along the first direction, the protrusions 121 and recesses 122 of the second type of iron core segment 140 are distributed along the second direction, and the first direction and the second direction are different .
  • the stator core 100 provided in this application is used in the motor 200.
  • the stator core 100 includes a plurality of iron core blocks 110, and the plurality of iron core blocks 110 are sequentially spliced along the circumferential direction to form a complete structure.
  • each core block 110 includes at least two core segments 120, at least two core segments 120 are stacked in the axial direction, and each core segment 120 has a convex part 121 and a concave part 122, the convex part 121 The portion 121 and the concave portion 122 are distributed on both sides of the iron core segment 120 in the circumferential direction.
  • the convex portion 121 of any one core segment 120 in the plurality of iron core blocks 110 can be embedded in the concave portion 122 of the adjacent iron core segment 120, that is to say, it is located in the same
  • Two iron core segments 120 that are axially high and adjacent in the circumferential direction are positioned and connected in the circumferential direction through the embedding of the convex part 121 in the concave part 122, so that a plurality of core blocks 110 are spliced and connected in the circumferential direction to form a complete stator Iron core 100.
  • two adjacent core segments 120 in each core block 110 include a first-type core segment 130 and a second-type core segment 140, and the first-type core segment 130 protrudes upward.
  • portion 121 and concave portion 122 are distributed along the first direction, and the convex portion 121 and concave portion 122 on the second type of core segment 140 are distributed along a second direction different from the first direction.
  • the convex portion 121 and the recesses 122 are located on both sides of the iron core segment 120 in the circumferential direction, then one of the first direction and the second direction is counterclockwise, and the other of the first direction and the second direction is clockwise, That is to say, for adjacent core segments 120 in one core block 110 , on one side in the circumferential direction, the protrusions 121 and recesses 122 are alternately distributed at intervals, then for the adjacent core blocks 110 , when it realizes the circumferential snap fit with the aforementioned core block 110, the concave parts 122 and the convex parts 121 are alternately distributed at intervals.
  • the inter-chip conduction between 110 improves the overall efficiency of the segmented motor 200 .
  • any iron core segment 120 in the plurality of iron core blocks 110 be the first iron core segment
  • the iron core block 110 where the first iron core segment is located is the reference core block 110, which is similar to the reference core block 110.
  • the adjacent core blocks 110 are adjacent core blocks 110
  • the reference core block 110 and the adjacent core blocks 110 are two adjacent core blocks 110 in the circumferential direction.
  • the adjacent core block 110 has a second core segment corresponding to the first core segment, and also has a third core segment adjacent to the second core segment in the axial direction, when the reference core After the block 110 is spliced with the adjacent core block 110, while the convex portion 121 of the first core segment in the reference core block 110 is embedded in the concave portion 122 of the second core segment of the adjacent core block 110, it can also Butt against the axial end face of the third core segment, then for the first core segment, it not only has the circumferential limit given by the second core segment, but also has the axial limit given by the third core segment , and for multiple core blocks 110, any core segment 120 of at least two core segments 120 in multiple core blocks 110 can be the first core segment, that is, for each iron core segment As far as the core segment 120 is concerned, there can be a second iron core segment limited in its circumferential direction and a third core segment limited in its axial direction, so the axial positioning of each core segment 120 is accurate, and multiple The splic
  • the conduction area between sheets in the related technology is relatively large, which is easy to generate eddy current between adjacent magnetic conductive sheets. After the eddy current forms a path, eddy current loss will be generated on the surface of the stator core, reducing the motor efficiency.
  • the present application ensures the high precision of the radial, circumferential and axial positioning of the stator core 100 by interlacing the concave parts 122 and the convex parts 121 in the adjacent core segments 120, so that the adjacent magnetic permeable sheets can be guaranteed The neatness between them will not cause conduction between adjacent magnetic conductive sheets, which greatly reduces the eddy current loss and improves the efficiency of block clicking.
  • the first type of iron core segment 130 includes at least one first magnetically conductive sheet 131
  • the second type of iron core segment 140 includes at least one second magnetically conductive sheet 141, wherein , on the end face perpendicular to the axial direction, the shape of the outline of the first magnetically permeable sheet 131 is the same as the shape of the outline of the second magnetically permeable sheet 141 .
  • each core block 110 includes at least two iron core segments 120, and each iron core segment 120 includes at least one magnetically conductive sheet.
  • each core segment 120 is formed by stacking in the axial direction.
  • the first-type core segment 130 includes at least one first guide
  • the second type iron core segment 140 includes at least one second magnetically permeable sheet 141, since the difference between the first type iron core segment 130 and the second type iron core segment 140 is that the distribution directions of the convex parts 121 and the concave parts 122 are different , then the magnetically conductive sheets with the same outer contour can be used, and the orientation of the structural features constituting the convex portion 121 /concave portion 122 on the magnetically conductive sheet can be controlled when the magnetically conductive sheets are stacked.
  • the first magnetically permeable piece 131 and the second magnetically permeable piece 141 are magnetically permeable with the same outer contour
  • the first magnetically conductive sheets 131 are controlled to be stacked forwardly
  • the second magnetically conductive sheets 141 are controlled to be stacked in reverse, so that the first type with different distribution directions of the convex parts 121 and the concave parts 122 can be obtained.
  • the iron core segment 130 and the second-type iron core segment 140 use magnetically conductive sheets with the same outer contour, which can reduce the complexity of the punching process and reduce production costs. It is worth noting that, during the preparation process of the magnetic permeable sheet, there may be slight differences in the outer contour of the magnetic permeable sheet caused by the deviation of the stamping operation, which fall within the scope of protection of the present application.
  • the number of the first magnetically conductive sheets 131 is the same as the number of the second magnetically conductive sheets 141 .
  • one core segment 120 on one core block 110 includes adjacent core segments 120 in the circumferential direction, and two adjacent core segments 120 in the circumferential direction
  • the axial heights of the iron core segments 120 are consistent, so as to ensure the precise fit of the concave and convex in the circumferential direction.
  • the iron core segments 120 spliced sequentially in the circumferential direction are the same type of iron core segments 120, that is, for the multiple iron core segments 120 in the same axial height to be of the same type, the multiple first-type iron core segments 130 along the Splicing in sequence in the circumferential direction, a plurality of second-type iron core segments 140 are spliced in sequence in the circumferential direction.
  • the first-type iron core segments 130 and the second-type iron core segments 140 are arranged alternately.
  • the stacking type is: first-type iron core segments 130, The iron core segments 140 and the first type of iron core segments 130 are distributed.
  • the stacking types are: the second-type core segment 140 , the first-type core segment 130 , and the second-type core segment 140 .
  • first magnetically conductive sheet 131 and the second magnetically conductive sheet 141 have the same structure, that is, the first magnetically conductive sheet 131 and the second magnetically conductive sheet 141 have the same thickness, when the first magnetically conductive sheet 130 of the first type of iron core segment 130 is formed
  • the number of slices 131 is equal to the number of second magnetically permeable slices 141 constituting the second-type iron core segment 140
  • the thickness is the same, however, since the axial thicknesses of the two first-type iron core segments 130 or second-type iron core segments 140 that are adjacent in the circumferential direction are consistent, that is to say, the axial The thicknesses are all the same, thereby simplifying the manufacturing process of the core block 110 .
  • the number of the first magnetically conductive sheets 131 and the number of the second magnetically conductive sheets 141 are 4, 5, 6 and so on.
  • the number of the first magnetically conductive sheets 131 is different from that of the second magnetically conductive sheets 141 .
  • the number of the first magnetically permeable pieces 131 is different from the number of the second magnetically permeable pieces 141, and the axial thicknesses of the axially adjacent first-type iron core segments 130 and second-type iron core segments 140
  • a core block 110 it can be composed of core segments 120 with different axial heights in the axial direction, providing a variety of options for the configuration of the stator core 100, so as to adapt to According to the needs of different usage scenarios.
  • the number of the magnetically permeable pieces in at least two iron core segments 120 may show an increasing trend, a decreasing trend, a trend of first increasing and then decreasing, or a trend of first decreasing and then increasing.
  • the first magnetically conductive sheet 131 includes a connected yoke portion 132 and a tooth portion 138, and the first magnetically conductive sheet 131 can be rotated 180° along the centerline of the tooth portion 138 to be able to be connected with the second conductive sheet.
  • the magnetic pieces 141 overlap in the axial direction.
  • the first magnetically conductive sheet 131 and the second magnetically conductive sheet 141 have the same structure, and the same structure means that the two have the same thickness and the same structural features, but when the two are stacked according to the requirements of the motor 200 , and there are differences in the relative positional relationship between the two.
  • the first magnetically conductive sheet 131 includes a connected yoke portion 132 and a tooth portion 138
  • the tooth portion 138 includes a tooth root and a tooth shoe
  • the tooth root is in a regular shape
  • the tooth root has a center line passing through the central axis of the stator core 100 , the center line is the line of symmetry of the dedendum
  • the first magnetically conductive sheet 131 can be overlapped with the second magnetically conductive sheet 141 in the axial direction after turning over 180° along the centerline of the tooth portion 138.
  • the magnetically conductive sheet 131 includes a first flange 134 and a first groove 135, the first flange 134 of at least one first magnetically conductive sheet 131 constitutes the convex portion 121 of the first type of iron core segment 130, and at least one first magnetically conductive sheet 131
  • the first groove 135 of the sheet 131 constitutes the concave portion 122 of the first type of iron core segment 130
  • the second flange 142 of at least one second magnetically conductive sheet 141 constitutes the convex portion 121 of the second type of iron core segment 140
  • the second groove 143 of at least one second magnetically conductive sheet 141 constitutes the recess 122 of the second type of core segment 140 .
  • the yoke 132 includes a joining wall 133, the joining wall 133 can be in contact with the adjacent core block 110, the joining wall 133 includes a first end point and a second end point opposite to each other, and the first end point is closer to the tooth than the second end point.
  • the portion 138 is configured, the line connecting the first end point and the second end point is a projection line, the length of the projection line is L1, and the projection line extends in the axial direction to form a projection plane.
  • the first magnetically permeable sheet 131 also includes a first flange 134 and a first groove 135, the first flange 134 and the first groove 135 are respectively arranged on both sides of the circumference of the yoke 132, and the projection surface of the flange is The projection length is L2, wherein 0.1L1 ⁇ L2 ⁇ 0.9L1, and/or the projection length of the groove on the projection plane is L3, wherein 0.1L1 ⁇ L3 ⁇ 0.9L1.
  • the yoke portion 132 includes a splicing wall 133, which is used for mating and contacting with the adjacent iron core segments 120 in the circumferential direction, and the splicing wall 133 includes a first end point A and a second end point B opposite to each other.
  • the first end point A is set inside the yoke portion 132
  • the second end point B is set outside the yoke portion 132 , that is, the first end point A is set closer to the tooth portion 138 relative to the second end point B.
  • the connecting line between the first end point A and the second end point B is a projection line, the length of the projection line is L1, and the projection line extends in the axial direction to form a projection plane.
  • the first groove piece includes a first flange 134 and a first groove 135, the first flange 134 and the first groove 135 are respectively located on both sides of the circumference of the yoke 132, the first flange 134 on the projection plane
  • the projection length is L2
  • the projection length of the first groove 135 on the projection plane is L3, wherein the projection length of the first flange 134, the projection length L3 of the first groove 135 and the length L1 of the projection line are related , so that the proportion of the first flange 134 and the first groove 135 on the joining wall 133 can be limited, so that the proportion of the first flange 134 and the first groove 135 on the joining wall 133 is within a reasonable range.
  • the impact on the performance of the motor 200 is minimized.
  • each core segment 120 in at least two core segments 120 includes at least one magnetically permeable sheet, wherein the number of core segments 120 in one core block 110 The number is less than the number of magnetic permeable pieces in one core block 110 .
  • one iron core block 110 it includes at least two iron core segments 120, and each iron core segment 120 includes at least one magnetic permeable sheet, so as to ensure that a plurality of iron core blocks 110 Precise fit in both circumferential and axial directions.
  • the number of iron core segments 120 in one iron core block 110 is 2, then when one iron core segment 120 includes 1 magnetically conductive sheet, then the other iron core segment 120 includes at least 2 magnetically conductive sheets , at this time, the number of magnetically permeable sheets in one core block 110 is greater than three.
  • each magnetically conductive sheet is provided with a riveting portion, and the riveting portions of two adjacent magnetically conductive sheets among the at least two magnetically conductive sheets are connected.
  • the number of magnetically conductive sheets in one core block 110 is at least two, and each magnetically conductive sheet is provided with a riveting portion, and the riveting portions of two adjacent magnetically conductive sheets are mated and connected, so that a The position of the core block 110 itself in the axial direction is defined.
  • Adjacent core blocks 110 also include a third core segment, the first core segment can axially abut against the third core segment, thereby forming an axial limit between adjacent core blocks 110 , then for For one core block 110 itself, two adjacent magnetic permeable pieces in the first core segment are connected by a riveting part, then the first core segment can further obtain the axial limit provided by the riveting part, so that further The possibility is provided for the precise position of the entire stator core 100 .
  • the yoke portion 132 includes an opposite inner edge surface 136 and an outer edge surface 137, the inner edge surface 136 is disposed close to the tooth portion 138 relative to the outer edge surface 137, the first flange 134 and the first groove 135 is disposed near the outer edge surface 137 .
  • the first flange 134 and the first groove 135 are arranged on the splicing wall 133 on the outside, because the force on the outer edge of the stator core 100 is relatively large, so that the concave-convex structure is arranged on the outside. , which can improve the overall splicing reliability performance.
  • the number of core blocks 110 is greater than or equal to 6 and less than or equal to 16.
  • iron core blocks 110 can be spliced sequentially along the circumferential direction to form an integral stator core 100, that is to say, within the same axial height, six first-type iron core segments 130/second The iron-like core segments 140 are connected end-to-end to the casing to form the stator core 100 .
  • a motor 200 is provided, including the stator core 100 provided by any of the above designs.
  • the motor 200 provided in the present application includes the stator core 100 provided by any of the above-mentioned designs, so it has all the beneficial effects of the stator core 100 and will not be repeated here.
  • a plurality of iron core blocks 110 of the stator core 100 are spliced to form a rotor cavity 210 ;
  • the rotor 230 is disposed in the rotor cavity 210 , and the rotor 230 can rotate relative to the stator core 100 .
  • a plurality of iron core blocks 110 are spliced end to end in the circumferential direction to form an integral stator core 100, which can surround and form a rotor cavity 210.
  • the stator winding 220 is wound on the stator core 100, and the rotor 230 is located on the rotor In the cavity 210 , the rotor 230 is in clearance fit with the stator core 100 , and the rotor 230 can rotate relative to the stator core 100 .
  • a compressor 300 is provided, including the motor 200 provided by any of the above designs.
  • the compressor 300 provided in the present application includes the motor 200 provided by any of the above-mentioned designs, and therefore has all the beneficial effects of the motor 200 , which will not be repeated here.
  • the compressor 300 also includes a crankshaft 310 and a power part 320 , the first end of the crankshaft 310 cooperates with the rotor 230 of the motor 200 .
  • the power part 320 is disposed at the second end of the crankshaft 310 , and the power part 320 can drive the rotor 230 to rotate relative to the stator core 100 through the crankshaft 310 .
  • the compressor 300 includes a crankshaft 310 and a power part 320 , the first end of the crankshaft 310 protrudes into the shaft hole of the rotor 230 , and the crankshaft 310 is in interference fit with the rotor 230 .
  • the power part 320 is connected to the second end of the crankshaft 310 , and the power part 320 can drive the rotor 230 to rotate relative to the stator core 100 through the crankshaft 310 .
  • a refrigeration device including the motor 200 or the compressor 300 provided by any of the above-mentioned designs.
  • the refrigerating equipment provided by the present application includes the motor 200 or the compressor 300 provided by any of the above-mentioned designs, so it has all the beneficial effects of the motor 200 or the compressor 300 , and will not be repeated here.
  • the motor 200 includes a stator core 100, and the stator core 100 includes a plurality of iron core blocks 110, and the plurality of iron core blocks 110 are sequentially spliced along the circumferential direction to form a complete structure.
  • each core block 110 includes at least two core segments 120, at least two core segments 120 are stacked in the axial direction, and each core segment 120 has a convex part 121 and a concave part 122, the convex part 121 The portion 121 and the concave portion 122 are distributed on both sides of the iron core segment 120 in the circumferential direction.
  • the convex portion 121 of any one core segment 120 in the plurality of iron core blocks 110 can be embedded in the concave portion 122 of the adjacent iron core segment 120, that is to say, it is located in the same
  • Two iron core segments 120 that are axially high and adjacent in the circumferential direction are positioned and connected in the circumferential direction through the embedding of the convex part 121 in the concave part 122, so that a plurality of core blocks 110 are spliced and connected in the circumferential direction to form a complete stator Iron core 100.
  • two adjacent core segments 120 in each core block 110 include a first-type core segment 130 and a second-type core segment 140, and the first-type core segment 130 protrudes upward.
  • portion 121 and concave portion 122 are distributed along the first direction, and the convex portion 121 and concave portion 122 on the second type of core segment 140 are distributed along a second direction different from the first direction.
  • the convex portion 121 and the recesses 122 are located on both sides of the iron core segment 120 in the circumferential direction, then one of the first direction and the second direction is counterclockwise, and the other of the first direction and the second direction is clockwise, That is to say, for adjacent core segments 120 in one core block 110 , on one side in the circumferential direction, the protrusions 121 and recesses 122 are alternately distributed at intervals, then for the adjacent core blocks 110 , when it realizes the circumferential snap fit with the aforementioned core block 110, the concave parts 122 and the convex parts 121 are alternately distributed at intervals.
  • the inter-chip conduction between 110 improves the overall efficiency of the segmented motor 200 .
  • any iron core segment 120 in the plurality of iron core blocks 110 be the first iron core segment
  • the iron core block 110 where the first iron core segment is located is the reference core block 110, which is similar to the reference core block 110.
  • the adjacent core blocks 110 are adjacent core blocks 110
  • the reference core block 110 and the adjacent core blocks 110 are two adjacent core blocks 110 in the circumferential direction.
  • the adjacent core block 110 has a second core segment corresponding to the first core segment, and also has a third core segment adjacent to the second core segment in the axial direction, when the reference core After the block 110 is spliced with the adjacent core block 110, while the convex portion 121 of the first core segment in the reference core block 110 is embedded in the concave portion 122 of the second core segment of the adjacent core block 110, it can also Butt against the axial end face of the third core segment, then for the first core segment, it not only has the circumferential limit given by the second core segment, but also has the axial limit given by the third core segment , and for multiple core blocks 110, any core segment 120 of at least two core segments 120 in multiple core blocks 110 can be the first core segment, that is, for each iron core segment As far as the core segment 120 is concerned, there can be a second iron core segment limited in its circumferential direction and a third core segment limited in its axial direction, so the axial positioning of each core segment 120 is accurate, and multiple The splic
  • the conduction area between sheets in the related technology is relatively large, which is easy to generate eddy current between adjacent magnetic conductive sheets. After the eddy current forms a path, eddy current loss will be generated on the surface of the stator core, reducing the motor efficiency.
  • the present application ensures the high precision of the radial, circumferential and axial positioning of the stator core 100 by interlacing the concave parts 122 and the convex parts 121 in the adjacent core segments 120, so that the adjacent magnetic permeable sheets can be guaranteed The neatness between them will not cause conduction between adjacent magnetic conductive sheets, which greatly reduces the eddy current loss and improves the efficiency of block clicking.
  • each iron core block 110 includes at least two iron core segments 120, and each iron core segment 120 includes at least one magnetically conductive sheet, when the number of magnetically conductive sheets is When multiple, multiple magnetic permeable sheets are stacked in the axial direction to form an iron core segment 120 .
  • the first-type core segment 130 includes at least one first guide
  • the second type iron core segment 140 includes at least one second magnetically permeable sheet 141, because the difference between the first type iron core segment 130 and the second type iron core segment 140 is only the distribution direction of the convex portion 121 and the concave portion 122 If it is different, then the same structure of the magnetic permeable sheet can be used, and it is only necessary to control the orientation of the structural features of the convex part 121 / concave part 122 on the magnetic permeable sheet when the magnetic permeable sheet is stacked.
  • the first magnetically conductive sheet 131 and the second magnetically conductive sheet 141 are punched sheets of the same size, the first magnetically conductive sheet 131 and the second magnetically conductive sheet 141 have the same structure, and at least one first magnetically conductive sheet 131
  • the first magnetically conductive sheet 131 is controlled to be stacked forward, and the second magnetically conductive sheet 141 is controlled to be stacked in reverse, whereby, the first-type iron core segment 130 and the second-type iron core segment 140 with different distribution directions of the protrusions 121 and the concave parts 122 can be obtained.
  • Using the same structure of the magnetic permeable sheet can reduce the complexity of the stamping process and reduce the production cost.
  • one core segment 120 on one core block 110 includes adjacent iron core blocks 110 in the circumferential direction.
  • the axial heights of two adjacent core segments 120 in the circumferential direction are consistent, so that the precise fit of concave and convex in the circumferential direction can be ensured.
  • the iron core segments 120 spliced sequentially in the circumferential direction are the same type of iron core segments 120, that is, for the multiple iron core segments 120 in the same axial height to be of the same type, the multiple first-type iron core segments 130 along the Splicing in sequence in the circumferential direction, a plurality of second-type iron core segments 140 are spliced in sequence in the circumferential direction.
  • the first-type iron core segments 130 and the second-type iron core segments 140 are arranged alternately.
  • the stacking type is: first-type iron core segments 130, The iron core segments 140 and the first type of iron core segments 130 are distributed.
  • the stacking types are: the second-type core segment 140 , the first-type core segment 130 , and the second-type core segment 140 .
  • first magnetically conductive sheet 131 and the second magnetically conductive sheet 141 have the same structure, that is, the first magnetically conductive sheet 131 and the second magnetically conductive sheet 141 have the same thickness, when the first magnetically conductive sheet 130 of the first type of iron core segment 130 is formed
  • the number of slices 131 is equal to the number of second magnetically permeable slices 141 constituting the second-type iron core segment 140
  • the thickness is the same, however, since the axial thicknesses of the two first-type iron core segments 130 or second-type iron core segments 140 that are adjacent in the circumferential direction are consistent, that is to say, the axial The thicknesses are all the same, thereby simplifying the manufacturing process of the core block 110 .
  • the number of the first magnetically conductive sheets 131 and the number of the second magnetically conductive sheets 141 are 4, 5, 6 and so on.
  • the number of the first magnetically permeable pieces 131 is different from the number of the second magnetically permeable pieces 141, and the axially adjacent first-type core segments 130 and the second-type
  • the axial thickness of the iron core segment 140 is different, that is to say, for an iron core block 110, it can be composed of iron core segments 120 with different axial heights in the axial direction, which provides for the configuration of the stator core 100. Diversified range of options to adapt to the needs of different usage scenarios.
  • the number of the magnetically permeable pieces in at least two iron core segments 120 may show an increasing trend, a decreasing trend, a trend of first increasing and then decreasing, or a trend of first decreasing and then increasing.
  • the first magnetically permeable sheet 131 and the second magnetically permeable sheet 141 have the same structure, and the same structure means that the two have the same thickness and the same structural features, but when the two are in accordance with When the motors 200 need to be stacked, there are differences in the relative positional relationship between the two.
  • the first magnetically conductive sheet 131 includes a connected yoke portion 132 and a tooth portion 138
  • the tooth portion 138 includes a tooth root and a tooth shoe
  • the tooth root is in a regular shape
  • the tooth root has a center line passing through the central axis of the stator core 100 , the center line is the line of symmetry of the dedendum
  • the first magnetically conductive sheet 131 can be overlapped with the second magnetically conductive sheet 141 in the axial direction after turning over 180° along the centerline of the tooth portion 138.
  • the magnetically conductive sheet 131 includes a first flange 134 and a first groove 135, the first flange 134 of at least one first magnetically conductive sheet 131 constitutes the convex portion 121 of the first type of iron core segment 130, and at least one first magnetically conductive sheet 131
  • the first groove 135 of the sheet 131 constitutes the concave portion 122 of the first type of iron core segment 130
  • the second flange 142 of at least one second magnetically conductive sheet 141 constitutes the convex portion 121 of the second type of iron core segment 140
  • the second groove 143 of at least one second magnetically conductive sheet 141 constitutes the recess 122 of the second type of core segment 140 .
  • the yoke 132 includes a joining wall 133, the joining wall 133 can be in contact with the adjacent core block 110, the joining wall 133 includes a first end point and a second end point opposite to each other, and the first end point is closer to the tooth than the second end point.
  • the portion 138 is configured, the line connecting the first end point and the second end point is a projection line, the length of the projection line is L1, and the projection line extends in the axial direction to form a projection plane.
  • the first magnetically permeable sheet 131 also includes a first flange 134 and a first groove 135, the first flange 134 and the first groove 135 are respectively arranged on both sides of the circumference of the yoke 132, and the projection surface of the flange is The projection length is L2, wherein 0.1L1 ⁇ L2 ⁇ 0.9L1, and/or the projection length of the groove on the projection plane is L3, wherein 0.1L1 ⁇ L3 ⁇ 0.9L1.
  • the yoke portion 132 includes a splicing wall 133, which is used for mating and contacting with the adjacent iron core segments 120 in the circumferential direction, and the splicing wall 133 includes a first end point A and a second end point B opposite to each other.
  • the first end point A is set inside the yoke portion 132
  • the second end point B is set outside the yoke portion 132 , that is, the first end point A is set closer to the tooth portion 138 relative to the second end point B.
  • the connection line between the first end point A and the second end point B is a projection line, the length of the projection line is L1, and the projection line extends in the axial direction to form a projection plane.
  • the first groove piece includes a first flange 134 and a first groove 135, the first flange 134 and the first groove 135 are respectively located on both sides of the circumference of the yoke 132, the first flange 134 on the projection plane
  • the projection length is L2
  • the projection length of the first groove 135 on the projection plane is L3, wherein the projection length of the first flange 134, the projection length L3 of the first groove 135 and the length L1 of the projection line are related , so that the proportion of the first flange 134 and the first groove 135 on the joining wall 133 can be limited, so that the proportion of the first flange 134 and the first groove 135 on the joining wall 133 is within a reasonable range.
  • the impact on the performance of the motor 200 is minimized.
  • a core block 110 for a core block 110, it includes at least two core segments 120, and each core segment 120 includes at least one magnetically conductive sheet, so that Only in this way can the precise fit of the plurality of iron core blocks 110 in the circumferential and axial directions be ensured.
  • the number of iron core segments 120 in one iron core block 110 is 2, then when one iron core segment 120 includes 1 magnetically conductive sheet, then the other iron core segment 120 includes at least 2 magnetically conductive sheets , at this time, the number of magnetically permeable sheets in one core block 110 is greater than three.
  • the number of magnetically conductive sheets in one core block 110 is at least two, each magnetically conductive sheet is provided with a riveting portion, and the riveting portions of two adjacent magnetically conductive sheets are mated and connected, so that a core block can be realized
  • the position of 110 itself in the axial direction is defined.
  • Adjacent core blocks 110 also include a third core segment, the first core segment can axially abut against the third core segment, thereby forming an axial limit between adjacent core blocks 110 , then for For one core block 110 itself, two adjacent magnetic permeable pieces in the first core segment are connected by a riveting part, then the first core segment can further obtain the axial limit provided by the riveting part, so that further The possibility is provided for the precise position of the entire stator core 100 .
  • the first flange 134 and the first groove 135 are arranged on the splicing wall 133 on the outside. This is due to the fact that the outer edge of the stator core 100 is subjected to a relatively large force, so that the concave-convex structure The outer setting can improve the overall splicing reliability.
  • connection means two or more, unless otherwise clearly defined.
  • connection can be fixed connection, detachable connection, or integral connection; “connection” can be directly or indirectly through an intermediary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提供了一种定子铁芯、电机、压缩机和制冷设备,其中,定子铁芯用于电机,定子铁芯包括多个铁芯块,多个铁芯块沿电机的周向依次拼接,每个铁芯块包括至少两个铁芯段,至少两个铁芯段沿电机的轴向堆叠设置。其中,至少两个铁芯段中每个铁芯段的周向两侧分别设有凸部和凹部,其中,沿周向方向,多个铁芯块中任一铁芯段的凸部位于相邻铁芯段的凹部中,沿轴向方向,每个铁芯块中相邻铁芯段包括第一类铁芯段和第二类铁芯段,第一类铁芯段的凸部和凹部沿第一方向分布,第二类铁芯段的凸部和凹部沿第二方向分布,第一方向和第二方向不同,提升多个铁芯段在轴向上的拼接精度,有效减少铁芯块之间的片间导通,提高分块式电机的整机效率。

Description

定子铁芯、电机、压缩机和制冷设备
本申请要求于2021年12月03日提交中国专利局、申请号为“202111468799.3”、发明名称为“定子铁芯、电机、压缩机和制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机设备技术领域,具体而言,涉及一种定子铁芯、一种电机、一种压缩机和一种制冷设备。
背景技术
目前,通过分割的形式,可以将电机的定子铁芯打开,然后再分别向单个铁芯块进行卷线,卷线完后可以通过拼接工艺,将多个铁芯块拼接构成一个完整的定子铁芯,其中在相邻铁芯块的拼接处可以通过很多方式进行连接,常采用的方案是在相邻铁芯块的拼接处设置凹凸结构进行连接,两者通过镶嵌的方式组成一起,然后沿着周向连接成为一个整体结构。
然而,此种方式往往会带来一个问题,就是定子铁芯整体装配后的精度不高,同时在轴向上因为没有特殊限位,容易出现轴向相互移位,从而导致相邻铁芯块的片间导通,降低电机效率。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一个方面在于,提出一种定子铁芯。
本申请的第二个方面在于,提出一种电机。
本申请的第三个方面在于,提出一种压缩机。
本申请的第四个方面在于,提出一种制冷设备。
有鉴于此,根据本申请的第一个方面,提供了一种定子铁芯,定子铁芯用于电机,定子铁芯包括多个铁芯块,多个铁芯块沿电机的周向依次拼接,每个铁芯块包括至少两个铁芯段,至少两个铁芯段沿电机的轴向堆叠设置。 其中,至少两个铁芯段中每个铁芯段的周向两侧分别设有凸部和凹部,其中,沿周向方向,多个铁芯块中任一铁芯段的凸部位于相邻铁芯段的凹部中,沿轴向方向,每个铁芯块中相邻铁芯段包括第一类铁芯段和第二类铁芯段,第一类铁芯段的凸部和凹部沿第一方向分布,第二类铁芯段的凸部和凹部沿第二方向分布,第一方向和第二方向不同。
本申请提供的定子铁芯用于电机,定子铁芯包括多个铁芯块,多个铁芯块沿周向依次拼接形成一个完整的结构。其中,每个铁芯块包括至少两个铁芯段,至少两个铁芯段沿轴向堆叠设置,对于每个铁芯段而言,均具有凸部和凹部,凸部和凹部分布在铁芯段的周向两侧。当多个铁芯块沿周向拼接时,多个铁芯块中任一个铁芯段的凸部能够镶嵌于相邻铁芯段的凹部内,也就是说,位于同一轴向高度并在周向上相邻的两个铁芯段通过凸部嵌设于凹部内实现周向定位连接,使得多个铁芯块沿着周向拼接连成一个完整的定子铁芯。
进一步地,沿轴向方向上,每个铁芯块中相邻两个铁芯段包括第一类铁芯段和第二类铁芯段,第一类铁芯段上凸部和凹部沿第一方向分布,第二类铁芯段上凸部和凹部沿不同于第一方向的第二方向分布,对于每个铁芯段而言,凸部和凹部均位于铁芯段的周向两侧,那么第一方向和第二方向中的一者为逆时针方向,第一方向和第二方向中的另一者则为顺时针方向,也就是说,对于一个铁芯块中相邻铁芯段而言,在周向的一侧,凸部和凹部间隔交替分布,那么对于与之相邻的铁芯块而言,在其与前述的一个铁芯块实现周向咬合配合中,其为凹部和凸部间隔交替分布,此时,周向相邻的铁芯块之间不仅存在有周向凹凸配合,还具有轴向方向上的相互抵接配合,从而可以实现每个铁芯段的轴向定位精准,能够保证多个铁芯段在轴向上的拼接精度,从而能够有效减少铁芯块之间的片间导通,提升了分块式电机的整机效率。
具体而言,令多个铁芯块中任一铁芯段为第一铁芯段,第一铁芯段所在的铁芯块为基准铁芯块,与基准铁芯块相邻的铁芯块为相邻铁芯块,基准铁芯块与相邻铁芯块为周向方向上的相邻的两个铁芯块。对于相邻铁芯块而言,其具有与第一铁芯段对应的第二铁芯段,也具有在轴向方向上与 第二铁芯段相邻的第三铁芯段,当基准铁芯块与相邻铁芯块拼接后,基准铁芯块中的第一铁芯段的凸部镶嵌于相邻铁芯块的第二铁芯段的凹部的同时,还能够抵接在第三铁芯段的轴向端面,那么对于第一铁芯段而言,不仅具有第二铁芯段给予的周向限位,还具有第三铁芯段给予的轴向限位,而对于多个铁芯块而言,多个铁芯块中至少两个铁芯段中任一铁芯段均可以为第一铁芯段,也就是说,对于每个铁芯段而言,均能够存在对其周向限位的第二铁芯段和轴向限位的第三铁芯段,那么每个铁芯段的轴向定位精准,能够保证多个铁芯段在轴向上的拼接精度,从而能够有效减少铁芯块之间的片间导通,提升了分块式电机的整机效率。
在一种可能的设计中,进一步地,第一类铁芯段包括至少一个第一导磁片,第二类铁芯段包括至少一个第二导磁片,其中,在垂直于轴向的端面上,第一导磁片的轮廓线的形状与第二导磁片轮廓线的形状相同。
在该设计中,每个铁芯块包括至少两个铁芯段,每个铁芯段包括至少一个导磁片,当导磁片的数量为多个时,多个导磁片沿轴向堆叠形成一个铁芯段。
其中,对于一个铁芯块而言,其具有沿轴向堆叠并相邻的第一类铁芯段和第二类铁芯段,第一类铁芯段包括至少一个第一导磁片,第二类铁芯段包括至少一个第二导磁片,由于第一类铁芯段和第二类铁芯段的区别在于凸部和凹部的分布方向不同,那么就能够采用外轮廓相同的导磁片,在导磁片堆叠时控制导磁片上构成凸部/凹部结构特征的朝向即可。
因此,当第一导磁片和第二导磁片为同一外轮廓的导磁片时,在至少一个第一导磁片形成第一类铁芯段时,至少一个第二导磁片形成第二类铁芯段时,控制第一导磁片正向堆叠,控制第二导磁片反向堆叠,从而可以获得凸部、凹部分布方向不同的第一类铁芯段、第二类铁芯段,采用同一外轮廓的导磁片能够减少冲片过程的复杂程度,降低生产成本。值得说明的是,在导磁片的制备过程中,可能存在冲压操作的偏差所引起的导磁片外轮廓的细小差异,均属于本申请的保护范围内。
在一种可能的设计中,进一步地,第一导磁片的数量与第二导磁片的数量相同。
在该设计中,对于沿周向依次拼接的多个铁芯块而言,一个铁芯块上的一 个铁芯段包括在周向上相邻的铁芯段,周向相邻两个铁芯段的轴向高度一致,从而可以保证周向凹凸配合精准。也就是说,周向上依次拼接的铁芯段为同一类型的铁芯段,即对于同一轴向高度内的多个铁芯段为同一类型,多个第一类铁芯段沿周向依次拼接,多个第二类铁芯段沿周向依次拼接。
在轴向方向上,第一类铁芯段和第二类铁芯段交替设置,比如,对于一个铁芯块而言,堆叠类型为:第一类铁芯段、第二类铁芯段、第一类铁芯段分布。那么与该铁芯块相邻的另一铁芯块而言,堆叠类型为:第二类铁芯段、第一类铁芯段、第二类铁芯段。
由于第一导磁片和第二导磁片的结构相同,即第一导磁片和第二导磁片的厚度相同,当构成第一类铁芯段的第一导磁片的数量,与构成第二类铁芯段的第二导磁片的数量相等时,则意味着轴向相邻的第一类铁芯段和第二类铁芯段的厚度相同,然而,由于周向相邻的两个第一类铁芯段或第二类铁芯段的轴向厚度一致,即构成多个铁芯块中多个铁芯段的轴向厚度均相同,从而简化铁芯块的制备过程。
比如,第一导磁片的数量和第二导磁片的数量均为4、5、6等等。
在一种可能的设计中,进一步地,第一导磁片的数量与第二导磁片的数量不同。
在该设计中,第一导磁片的数量不同于第二导磁片的数量,则轴向相邻的第一类铁芯段和第二类铁芯段的轴向厚度不同,也就是说,对于一个铁芯块而言,其在轴向上可以由不同轴向高度的铁芯段构成,为定子铁芯的构成方式提供多样化的选择范围,从而适应于不同使用场景的需求。
比如,在轴向方向上,至少两个铁芯段中导磁片的数量可以呈递增趋势、递减趋势、先增大后减小的趋势或者是先减小后增大的趋势等。
在一种可能的设计中,进一步地,第一导磁片包括相连的轭部和齿部,第一导磁片沿齿部中心线翻转180°后能够与第二导磁片在轴向上重叠。
在该设计中,第一导磁片和第二导磁片的结构相同,结构相同是指二者具有相同的厚度、相同的结构特征,但是当二者按照电机需求进行堆叠时,二者的相对位置关系又存在不同之处。其中,第一导磁片包括相连的轭部和齿部,齿部包括齿根和齿靴,齿根为规则形状,齿根具有穿过定子铁芯的中心轴线的 中心线,该中心线为齿根的对称线,第一导磁片沿齿部的中心线翻转180°后即能够实现与第二导磁片在轴向上重叠,具体而言,第一导磁片包括第一凸缘和第一凹槽,至少一个第一导磁片的第一凸缘构成第一类铁芯段的凸部,至少一个第一导磁片的第一凹槽构成第一类铁芯段的凹部,同样地,至少一个第二导磁片的第二凸缘构成第二类铁芯段的凸部,至少一个第二导磁片的第二凹槽构成第二类铁芯段的凹部。
其中,第一导磁片的第一凸缘和第一凹槽沿逆时针分布时,则第二导磁片的第二凸缘和第二凹槽沿顺时针分布。
在一种可能的设计中,进一步地,轭部包括拼接壁,拼接壁能够与相邻铁芯块接触,拼接壁包括相对的第一端点和第二端点,第一端点相对于第二端点靠近齿部设置,第一端点和第二端点的连线为投影线,投影线的长度为L1,投影线在轴向上延伸形成投影面。第一导磁片还包括第一凸缘和第一凹槽,第一凸缘和第一凹槽分别设在轭部的周向两侧,凸缘在投影面上的投影长度为L2,其中,0.1L1≤L2≤0.9L1,和/或凹槽在投影面上的投影长度为L3,其中,0.1L1≤L3≤0.9L1。
在该设计中,轭部包括拼接壁,拼接壁用于与周向上相邻的铁芯段配合接触,拼接壁上包括相对设置的第一端点A和第二端点B,第一端点A设于轭部的内侧,第二端点B设在轭部的外则,即第一端点A相对第二端点B靠近齿部设置。第一端点A和第二端点B之间的连线为投影线,投影线的长度为L1,投影线在轴向上延伸能够形成投影面。第一导槽片包括第一凸缘和第一凹槽,第一凸缘和第一凹槽分别位于轭部的周向两侧,第一凸缘在投影面上的投影长度为L2,第一凹槽在投影面上的投影长度为L3,其中,第一凸缘的投影长度、第一凹槽的投影长度L3与投影线的长度L1之间相关联,从而能够限定第一凸缘、第一凹槽在拼接壁上的占比,令第一凸缘和第一凹槽在拼接壁上的占比处于合理范围内,在实现周向镶嵌配合的基础上,尽量减少对电机性能的影响。
在一种可能的设计中,进一步地,至少两个铁芯段中每个铁芯段包括至少一个导磁片,其中,一个铁芯块中铁芯段的数量小于一个铁芯块中导磁片的数量。
在该设计中,对于一个铁芯块而言,其包括至少两个铁芯段,而每个铁芯段均包括至少一个导磁片,从而才能确保多个铁芯块在周向和轴向上的精准配合。
具体而言,在一个铁芯块内铁芯段的数量为2个时,则一个铁芯段包括1个导磁片时,则另一个铁芯段包括至少2个导磁片,此时,一个铁芯块内导磁片的数量则大于3个。
在一种可能的设计中,进一步地,一个铁芯块中导磁片的数量为至少两个,每个导磁片上设有铆接部,至少两个导磁片中相邻两个导磁片的铆接部相连。
在该设计中,一个铁芯块中导磁片的数量为至少两个,每个导磁片上均设有铆接部,相邻两个导磁片的铆接部配合连接,从而能够实现一个铁芯块自身在轴向上的位置限定。
也就是说,对于一个铁芯块的第一铁芯段而言,与之相邻的铁芯块中同一轴向高度上的第二铁芯段与之形成周向定位,在与之相邻铁芯块中还包括第三铁芯段,第一铁芯段能够与第三铁芯段轴向抵接,从而形成相邻铁芯块之间的轴向限位,那么对于一个铁芯块自身而言,第一铁芯段中相邻两个导磁片之间通过铆接部连接,则第一铁芯段进一步能够获得铆接部提供的轴向限位,从而能够进一步为整个定子铁芯的位置精准提供可能性。
在一种可能的设计中,进一步地,轭部包括相对的内缘面和外缘面,内缘面相对外缘面靠近齿部设置,第一凸缘和第一凹槽靠近外缘面设置。
在该设计中,第一凸缘和第一凹槽靠外设在拼接壁上,这是由于定子铁芯的外缘处受到的作用力较大,令凹凸结构靠外设置,能够提升整体的拼接可靠性能。
在一种可能的设计中,进一步地,铁芯块的数量大于等于6,小于等于16。
在该设计中,6个铁芯块沿周向依次拼接能够形成一个整体的定子铁芯,也就是说,在同一轴向高度内,6个第一类铁芯段/第二类铁芯段首尾相连机壳构成定子铁芯。
根据本申请的第二个方面,提供了一种电机,包括上述任一设计所提供的定子铁芯。
本申请提供的电机,包括上述任一设计所提供的定子铁芯,因此具有 该定子铁芯的全部有益效果,在此不再赘述。
在一种可能的设计中,进一步地,定子铁芯的多个铁芯块拼接形成转子腔;电机还包括定子绕组和转子,定子绕组设在定子铁芯上。转子设在转子腔内,转子能够相对于定子铁芯旋转。
在该设计中,多个铁芯块沿周向首尾拼接构成一个整体定子铁芯,并能够围合形成转子腔,定子绕组绕设在定子铁芯上,转子位于转子腔内,转子与定子铁芯之间间隙配合,转子能够相对于定子铁芯旋转。
根据本申请的第三个方面,提供了一种压缩机,包括上述任一设计所提供的电机。
本申请提供的压缩机,包括上述任一设计所提供的电机,因此具有该电机的全部有益效果,在此不再赘述。
在一种可能的设计中,进一步地,压缩机还包括曲轴和动力部,曲轴的第一端与电机的转子配合。动力部设于曲轴的第二端,动力部能够通过曲轴带动转子相对定子铁芯旋转。
在该设计中,压缩机包括曲轴和动力部,曲轴的第一端伸入转子的轴孔内,曲轴与转子过盈配合。动力部连接在曲轴的第二端,动力部可以通过曲轴带动转子相对定子铁芯旋转。
根据本申请的第四个方面,提供了一种制冷设备,包括上述任一设计所提供的电机或压缩机。
本申请提供的制冷设备,包括上述任一设计所提供的电机或压缩机,因此具有该电机或压缩机的全部有益效果,在此不再赘述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的一个实施例中定子铁芯中相邻两个铁芯块的结构示意图之一;
图2示出了根据本申请的一个实施例中定子铁芯的第一导磁片的结构示意图之一;
图3示出了根据本申请的一个实施例中定子铁芯的第一导磁片的结构示意图之二;
图4示出了根据本申请的一个实施例中定子铁芯的第二导磁片的结构示意图;
图5示出了根据本申请的一个实施例中定子铁芯中一个铁芯块的结构示意图;
图6示出了根据本申请的一个实施例中定子铁芯中又一个铁芯块的结构示意图;
图7示出了根据本申请的一个实施例中定子铁芯中相邻两个铁芯块的结构示意图之二;
图8示出了根据本申请的一个实施例中电机的结构示意图;
图9示出了根据本申请的一个实施例中电机与相关技术中电机效率对比图;
图10示出了根据本申请的一个实施例中压缩机的结构示意图。
其中,图1至图10中附图标记与部件名称之间的对应关系为:
100定子铁芯,
110铁芯块,
120铁芯段,121凸部,122凹部,
130第一类铁芯段,131第一导磁片,
132轭部,133拼接壁,134第一凸缘,135第一凹槽,136内缘面,137外缘面,
138齿部,
140第二类铁芯段,141第二导磁片,142第二凸缘,143第二凹槽,
200电机,210转子腔,220定子绕组,230转子,
300压缩机,310曲轴,320动力部。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图10描述根据本申请一些实施例所提供的定子铁芯、电机、压缩机和制冷设备。
根据本申请的第一个方面,提供了一种定子铁芯100,如图1所示,定子铁芯100用于电机200,定子铁芯100包括多个铁芯块110,多个铁芯块110沿电机200的周向依次拼接,每个铁芯块110包括至少两个铁芯段120,至少两个铁芯段120沿电机200的轴向堆叠设置。其中,至少两个铁芯段120中每个铁芯段120的周向两侧分别设有凸部121和凹部122,其中,沿周向方向,多个铁芯块110中任一铁芯段120的凸部121位于相邻铁芯段120的凹部122中,沿轴向方向,每个铁芯块110中相邻铁芯段120包括第一类铁芯段130和第二类铁芯段140,第一类铁芯段130的凸部121和凹部122沿第一方向分布,第二类铁芯段140的凸部121和凹部122沿第二方向分布,第一方向和第二方向不同。
本申请提供的定子铁芯100用于电机200,定子铁芯100包括多个铁芯块110,多个铁芯块110沿周向依次拼接形成一个完整的结构。其中,每个铁芯块110包括至少两个铁芯段120,至少两个铁芯段120沿轴向堆叠设置,对于每个铁芯段120而言,均具有凸部121和凹部122,凸部121和凹部122分布在铁芯段120的周向两侧。当多个铁芯块110沿周向拼接时,多个铁芯块110中任一个铁芯段120的凸部121能够镶嵌于相邻铁芯段120的凹部122内,也就是说,位于同一轴向高度并在周向上相邻的两个铁芯段120通过凸部121嵌设于凹部122内实现周向定位连接,使得多个铁芯块110沿着周向拼接连成一个完整的定子铁芯100。
进一步地,沿轴向方向上,每个铁芯块110中相邻两个铁芯段120包 括第一类铁芯段130和第二类铁芯段140,第一类铁芯段130上凸部121和凹部122沿第一方向分布,第二类铁芯段140上凸部121和凹部122沿不同于第一方向的第二方向分布,对于每个铁芯段120而言,凸部121和凹部122均位于铁芯段120的周向两侧,那么第一方向和第二方向中的一者为逆时针方向,第一方向和第二方向中的另一者则为顺时针方向,也就是说,对于一个铁芯块110中相邻铁芯段120而言,在周向的一侧,凸部121和凹部122间隔交替分布,那么对于与之相邻的铁芯块110而言,在其与前述的一个铁芯块110实现周向咬合配合中,其为凹部122和凸部121间隔交替分布,此时,周向相邻的铁芯块110之间不仅存在有周向凹凸配合,还具有轴向方向上的相互抵接配合,从而可以实现每个铁芯段120的轴向定位精准,能够保证多个铁芯段120在轴向上的拼接精度,从而能够有效减少铁芯块110之间的片间导通,提升了分块式电机200的整机效率。
具体而言,令多个铁芯块110中任一铁芯段120为第一铁芯段,第一铁芯段所在的铁芯块110为基准铁芯块110,与基准铁芯块110相邻的铁芯块110为相邻铁芯块110,基准铁芯块110与相邻铁芯块110为周向方向上的相邻的两个铁芯块110。对于相邻铁芯块110而言,其具有与第一铁芯段对应的第二铁芯段,也具有在轴向方向上与第二铁芯段相邻的第三铁芯段,当基准铁芯块110与相邻铁芯块110拼接后,基准铁芯块110中的第一铁芯段的凸部121镶嵌于相邻铁芯块110的第二铁芯段的凹部122的同时,还能够抵接在第三铁芯段的轴向端面,那么对于第一铁芯段而言,不仅具有第二铁芯段给予的周向限位,还具有第三铁芯段给予的轴向限位,而对于多个铁芯块110而言,多个铁芯块110中至少两个铁芯段120中任一铁芯段120均可以为第一铁芯段,也就是说,对于每个铁芯段120而言,均能够存在对其周向限位的第二铁芯段和轴向限位的第三铁芯段,那么每个铁芯段120的轴向定位精准,能够保证多个铁芯段120在轴向上的拼接精度,从而能够有效减少铁芯块110之间的片间导通,提升了分块式电机200的整机效率。如图7和图9所示,相关技术中片间导通面积比较大,容易产生相邻导磁片之间的涡流,涡流形成路径后,会在定子铁芯的表面产生涡流损耗,降低电机效率。然而,本申请通过在相邻铁芯段120中凹 部122和凸部121交错连接,保证了定子铁芯100径向、周向和轴向上定位的高精度,从而可以保证相邻导磁片之间的整齐,不会出现相邻导磁片之间导通的情况,从而大大降低了涡流损耗,提升了分块点击的效率。
进一步地,如图2、图3和图4所示,第一类铁芯段130包括至少一个第一导磁片131,第二类铁芯段140包括至少一个第二导磁片141,其中,在垂直于轴向的端面上,第一导磁片131的轮廓线的形状与第二导磁片141的轮廓线的形状相同。
在该实施例中,每个铁芯块110包括至少两个铁芯段120,每个铁芯段120包括至少一个导磁片,当导磁片的数量为多个时,多个导磁片沿轴向堆叠形成一个铁芯段120。
其中,对于一个铁芯块110而言,其具有沿轴向堆叠并相邻的第一类铁芯段130和第二类铁芯段140,第一类铁芯段130包括至少一个第一导磁片131,第二类铁芯段140包括至少一个第二导磁片141,由于第一类铁芯段130和第二类铁芯段140的区别在于凸部121和凹部122的分布方向不同,那么就能够采用外轮廓相同的导磁片,在导磁片堆叠时控制导磁片上构成凸部121/凹部122结构特征的朝向即可。
因此,当第一导磁片131和第二导磁片141为同一外轮廓的导磁时,在至少一个第一导磁片131形成第一类铁芯段130时,至少一个第二导磁片141形成第二类铁芯段140时,控制第一导磁片131正向堆叠,控制第二导磁片141反向堆叠,从而可以获得凸部121、凹部122分布方向不同的第一类铁芯段130、第二类铁芯段140,采用同一外轮廓的导磁片能够减少冲片过程的复杂程度,降低生产成本。值得说明的是,在导磁片的制备过程中,可能存在冲压操作的偏差所引起的导磁片外轮廓的细小差异,均属于本申请的保护范围内。
根据本申请的一些实施例,如图5所示,第一导磁片131的数量与第二导磁片141的数量相同。
在该实施例中,对于沿周向依次拼接的多个铁芯块110而言,一个铁芯块110上的一个铁芯段120包括在周向上相邻的铁芯段120,周向相邻两个铁芯段120的轴向高度一致,从而可以保证周向凹凸配合精准。也就是说,周向上 依次拼接的铁芯段120为同一类型的铁芯段120,即对于同一轴向高度内的多个铁芯段120为同一类型,多个第一类铁芯段130沿周向依次拼接,多个第二类铁芯段140沿周向依次拼接。
在轴向方向上,第一类铁芯段130和第二类铁芯段140交替设置,比如,对于一个铁芯块110而言,堆叠类型为:第一类铁芯段130、第二类铁芯段140、第一类铁芯段130分布。那么与该铁芯块110相邻的另一铁芯块110而言,堆叠类型为:第二类铁芯段140、第一类铁芯段130、第二类铁芯段140。
由于第一导磁片131和第二导磁片141的结构相同,即第一导磁片131和第二导磁片141的厚度相同,当构成第一类铁芯段130的第一导磁片131的数量,与构成第二类铁芯段140的第二导磁片141的数量相等时,则意味着轴向相邻的第一类铁芯段130和第二类铁芯段140的厚度相同,然而,由于周向相邻的两个第一类铁芯段130或第二类铁芯段140的轴向厚度一致,即构成多个铁芯块110中多个铁芯段120的轴向厚度均相同,从而简化铁芯块110的制备过程。
比如,第一导磁片131的数量和第二导磁片141的数量均为4、5、6等等。
根据本申请的一些实施例,如图6所示,第一导磁片131的数量与第二导磁片141的数量不同。
在该实施例中,第一导磁片131的数量不同于第二导磁片141的数量,则轴向相邻的第一类铁芯段130和第二类铁芯段140的轴向厚度不同,也就是说,对于一个铁芯块110而言,其在轴向上可以由不同轴向高度的铁芯段120构成,为定子铁芯100的构成方式提供多样化的选择范围,从而适应于不同使用场景的需求。
比如,在轴向方向上,至少两个铁芯段120中导磁片的数量可以呈递增趋势、递减趋势、先增大后减小的趋势或者是先减小后增大的趋势等。
进一步地,如图2和图3所示,第一导磁片131包括相连的轭部132和齿部138,第一导磁片131沿齿部138中心线翻转180°后能够与第二导磁片141在轴向上重叠。
在该实施例中,第一导磁片131和第二导磁片141的结构相同,结构相同是指二者具有相同的厚度、相同的结构特征,但是当二者按照电机200需求进 行堆叠时,二者的相对位置关系又存在不同之处。其中,第一导磁片131包括相连的轭部132和齿部138,齿部138包括齿根和齿靴,齿根为规则形状,齿根具有穿过定子铁芯100的中心轴线的中心线,该中心线为齿根的对称线,第一导磁片131沿齿部138的中心线翻转180°后即能够实现与第二导磁片141在轴向上重叠,具体而言,第一导磁片131包括第一凸缘134和第一凹槽135,至少一个第一导磁片131的第一凸缘134构成第一类铁芯段130的凸部121,至少一个第一导磁片131的第一凹槽135构成第一类铁芯段130的凹部122,同样地,至少一个第二导磁片141的第二凸缘142构成第二类铁芯段140的凸部121,至少一个第二导磁片141的第二凹槽143构成第二类铁芯段140的凹部122。
其中,如图2、图3和图4所示,第一导磁片131的第一凸缘134和第一凹槽135沿逆时针分布时,则第二导磁片141的第二凸缘142和第二凹槽143沿顺时针分布。
进一步地,轭部132包括拼接壁133,拼接壁133能够与相邻铁芯块110接触,拼接壁133包括相对的第一端点和第二端点,第一端点相对于第二端点靠近齿部138设置,第一端点和第二端点的连线为投影线,投影线的长度为L1,投影线在轴向上延伸形成投影面。第一导磁片131还包括第一凸缘134和第一凹槽135,第一凸缘134和第一凹槽135分别设在轭部132的周向两侧,凸缘在投影面上的投影长度为L2,其中,0.1L1≤L2≤0.9L1,和/或凹槽在投影面上的投影长度为L3,其中,0.1L1≤L3≤0.9L1。
在该实施例中,轭部132包括拼接壁133,拼接壁133用于与周向上相邻的铁芯段120配合接触,拼接壁133上包括相对设置的第一端点A和第二端点B,第一端点A设于轭部132的内侧,第二端点B设在轭部132的外则,即第一端点A相对第二端点B靠近齿部138设置。第一端点A和第二端点B之间的连线为投影线,投影线的长度为L1,投影线在轴向上延伸能够形成投影面。第一导槽片包括第一凸缘134和第一凹槽135,第一凸缘134和第一凹槽135分别位于轭部132的周向两侧,第一凸缘134在投影面上的投影长度为L2,第一凹槽135在投影面上的投影长度为L3,其中,第一凸缘134的投影长度、第一凹槽135的投影长度L3与投影线的长度L1之间相关联,从而能 够限定第一凸缘134、第一凹槽135在拼接壁133上的占比,令第一凸缘134和第一凹槽135在拼接壁133上的占比处于合理范围内,在实现周向镶嵌配合的基础上,尽量减少对电机200性能的影响。
进一步地,如图1、图5和图6所示,至少两个铁芯段120中每个铁芯段120包括至少一个导磁片,其中,一个铁芯块110中铁芯段120的数量小于一个铁芯块110中导磁片的数量。
在该实施例中,对于一个铁芯块110而言,其包括至少两个铁芯段120,而每个铁芯段120均包括至少一个导磁片,从而才能确保多个铁芯块110在周向和轴向上的精准配合。
具体而言,在一个铁芯块110内铁芯段120的数量为2个时,则一个铁芯段120包括1个导磁片时,则另一个铁芯段120包括至少2个导磁片,此时,一个铁芯块110内导磁片的数量则大于3个。
进一步地,一个铁芯块110中导磁片的数量为至少两个,每个导磁片上设有铆接部,至少两个导磁片中相邻两个导磁片的铆接部相连。
在该实施例中,一个铁芯块110中导磁片的数量为至少两个,每个导磁片上均设有铆接部,相邻两个导磁片的铆接部配合连接,从而能够实现一个铁芯块110自身在轴向上的位置限定。
也就是说,对于一个铁芯块110的第一铁芯段而言,与之相邻的铁芯块110中同一轴向高度上的第二铁芯段与之形成周向定位,在与之相邻铁芯块110中还包括第三铁芯段,第一铁芯段能够与第三铁芯段轴向抵接,从而形成相邻铁芯块110之间的轴向限位,那么对于一个铁芯块110自身而言,第一铁芯段中相邻两个导磁片之间通过铆接部连接,则第一铁芯段进一步能够获得铆接部提供的轴向限位,从而能够进一步为整个定子铁芯100的位置精准提供可能性。
进一步地,如图3所示,轭部132包括相对的内缘面136和外缘面137,内缘面136相对外缘面137靠近齿部138设置,第一凸缘134和第一凹槽135靠近外缘面137设置。
在该实施例中,第一凸缘134和第一凹槽135靠外设在拼接壁133上,这是由于定子铁芯100的外缘处受到的作用力较大,令凹凸结构靠外设置,能够 提升整体的拼接可靠性能。
进一步地,铁芯块110的数量大于等于6,小于等于16。
在该实施例中,6个铁芯块110沿周向依次拼接能够形成一个整体的定子铁芯100,也就是说,在同一轴向高度内,6个第一类铁芯段130/第二类铁芯段140首尾相连机壳构成定子铁芯100。
根据本申请的第二个方面的实施例,如图8所示,提供了一种电机200,包括上述任一设计所提供的定子铁芯100。
本申请提供的电机200,包括上述任一设计所提供的定子铁芯100,因此具有该定子铁芯100的全部有益效果,在此不再赘述。
进一步地,定子铁芯100的多个铁芯块110拼接形成转子腔210;电机200还包括定子绕组220和转子230,定子绕组220设在定子铁芯100上。转子230设在转子腔210内,转子230能够相对于定子铁芯100旋转。
在该实施例中,多个铁芯块110沿周向首尾拼接构成一个整体定子铁芯100,并能够围合形成转子腔210,定子绕组220绕设在定子铁芯100上,转子230位于转子腔210内,转子230与定子铁芯100之间间隙配合,转子230能够相对于定子铁芯100旋转。
根据本申请的第三个方面的实施例,如图10所示,提供了一种压缩机300,包括上述任一设计所提供的电机200。
本申请提供的压缩机300,包括上述任一设计所提供的电机200,因此具有该电机200的全部有益效果,在此不再赘述。
进一步地,压缩机300还包括曲轴310和动力部320,曲轴310的第一端与电机200的转子230配合。动力部320设于曲轴310的第二端,动力部320能够通过曲轴310带动转子230相对定子铁芯100旋转。
在该实施例中,压缩机300包括曲轴310和动力部320,曲轴310的第一端伸入转子230的轴孔内,曲轴310与转子230过盈配合。动力部320连接在曲轴310的第二端,动力部320可以通过曲轴310带动转子230相对定子铁芯100旋转。
根据本申请的第四个方面,提供了一种制冷设备,包括上述任一设计所提供的电机200或压缩机300。
本申请提供的制冷设备,包括上述任一设计所提供的电机200或压缩机300,因此具有该电机200或压缩机300的全部有益效果,在此不再赘述。
其中,电机200包括定子铁芯100,定子铁芯100包括多个铁芯块110,多个铁芯块110沿周向依次拼接形成一个完整的结构。其中,每个铁芯块110包括至少两个铁芯段120,至少两个铁芯段120沿轴向堆叠设置,对于每个铁芯段120而言,均具有凸部121和凹部122,凸部121和凹部122分布在铁芯段120的周向两侧。当多个铁芯块110沿周向拼接时,多个铁芯块110中任一个铁芯段120的凸部121能够镶嵌于相邻铁芯段120的凹部122内,也就是说,位于同一轴向高度并在周向上相邻的两个铁芯段120通过凸部121嵌设于凹部122内实现周向定位连接,使得多个铁芯块110沿着周向拼接连成一个完整的定子铁芯100。
进一步地,沿轴向方向上,每个铁芯块110中相邻两个铁芯段120包括第一类铁芯段130和第二类铁芯段140,第一类铁芯段130上凸部121和凹部122沿第一方向分布,第二类铁芯段140上凸部121和凹部122沿不同于第一方向的第二方向分布,对于每个铁芯段120而言,凸部121和凹部122均位于铁芯段120的周向两侧,那么第一方向和第二方向中的一者为逆时针方向,第一方向和第二方向中的另一者则为顺时针方向,也就是说,对于一个铁芯块110中相邻铁芯段120而言,在周向的一侧,凸部121和凹部122间隔交替分布,那么对于与之相邻的铁芯块110而言,在其与前述的一个铁芯块110实现周向咬合配合中,其为凹部122和凸部121间隔交替分布,此时,周向相邻的铁芯块110之间不仅存在有周向凹凸配合,还具有轴向方向上的相互抵接配合,从而可以实现每个铁芯段120的轴向定位精准,能够保证多个铁芯段120在轴向上的拼接精度,从而能够有效减少铁芯块110之间的片间导通,提升了分块式电机200的整机效率。
具体而言,令多个铁芯块110中任一铁芯段120为第一铁芯段,第一铁芯段所在的铁芯块110为基准铁芯块110,与基准铁芯块110相邻的铁芯块110为相邻铁芯块110,基准铁芯块110与相邻铁芯块110为周向方向上的相邻的两个铁芯块110。对于相邻铁芯块110而言,其具有与第一 铁芯段对应的第二铁芯段,也具有在轴向方向上与第二铁芯段相邻的第三铁芯段,当基准铁芯块110与相邻铁芯块110拼接后,基准铁芯块110中的第一铁芯段的凸部121镶嵌于相邻铁芯块110的第二铁芯段的凹部122的同时,还能够抵接在第三铁芯段的轴向端面,那么对于第一铁芯段而言,不仅具有第二铁芯段给予的周向限位,还具有第三铁芯段给予的轴向限位,而对于多个铁芯块110而言,多个铁芯块110中至少两个铁芯段120中任一铁芯段120均可以为第一铁芯段,也就是说,对于每个铁芯段120而言,均能够存在对其周向限位的第二铁芯段和轴向限位的第三铁芯段,那么每个铁芯段120的轴向定位精准,能够保证多个铁芯段120在轴向上的拼接精度,从而能够有效减少铁芯块110之间的片间导通,提升了分块式电机200的整机效率。如图7和图9所示,相关技术中片间导通面积比较大,容易产生相邻导磁片之间的涡流,涡流形成路径后,会在定子铁芯的表面产生涡流损耗,降低电机效率。然而,本申请通过在相邻铁芯段120中凹部122和凸部121交错连接,保证了定子铁芯100径向、周向和轴向上定位的高精度,从而可以保证相邻导磁片之间的整齐,不会出现相邻导磁片之间导通的情况,从而大大降低了涡流损耗,提升了分块点击的效率。
进一步地,如图2、图3和图4所示,每个铁芯块110包括至少两个铁芯段120,每个铁芯段120包括至少一个导磁片,当导磁片的数量为多个时,多个导磁片沿轴向堆叠形成一个铁芯段120。
其中,对于一个铁芯块110而言,其具有沿轴向堆叠并相邻的第一类铁芯段130和第二类铁芯段140,第一类铁芯段130包括至少一个第一导磁片131,第二类铁芯段140包括至少一个第二导磁片141,由于第一类铁芯段130和第二类铁芯段140的区别仅在于凸部121和凹部122的分布方向不同,那么就能够采用同一结构的导磁片,仅在导磁片堆叠时控制导磁片上构成凸部121/凹部122结构特征的朝向即可。
因此,当第一导磁片131和第二导磁片141为同一尺寸的冲片时,第一导磁片131和第二导磁片141的结构相同,在至少一个第一导磁片131形成第一类铁芯段130时,至少一个第二导磁片141形成第二类铁芯段140时,控制第一导磁片131正向堆叠,控制第二导磁片141反向堆叠,从而 可以获得凸部121、凹部122分布方向不同的第一类铁芯段130、第二类铁芯段140,采用同一结构的导磁片能够减少冲片过程的复杂程度,降低生产成本。
根据本申请的一些实施例,如图5所示,对于沿周向依次拼接的多个铁芯块110而言,一个铁芯块110上的一个铁芯段120包括在周向上相邻的铁芯段120,周向相邻两个铁芯段120的轴向高度一致,从而可以保证周向凹凸配合精准。也就是说,周向上依次拼接的铁芯段120为同一类型的铁芯段120,即对于同一轴向高度内的多个铁芯段120为同一类型,多个第一类铁芯段130沿周向依次拼接,多个第二类铁芯段140沿周向依次拼接。
在轴向方向上,第一类铁芯段130和第二类铁芯段140交替设置,比如,对于一个铁芯块110而言,堆叠类型为:第一类铁芯段130、第二类铁芯段140、第一类铁芯段130分布。那么与该铁芯块110相邻的另一铁芯块110而言,堆叠类型为:第二类铁芯段140、第一类铁芯段130、第二类铁芯段140。
由于第一导磁片131和第二导磁片141的结构相同,即第一导磁片131和第二导磁片141的厚度相同,当构成第一类铁芯段130的第一导磁片131的数量,与构成第二类铁芯段140的第二导磁片141的数量相等时,则意味着轴向相邻的第一类铁芯段130和第二类铁芯段140的厚度相同,然而,由于周向相邻的两个第一类铁芯段130或第二类铁芯段140的轴向厚度一致,即构成多个铁芯块110中多个铁芯段120的轴向厚度均相同,从而简化铁芯块110的制备过程。
比如,第一导磁片131的数量和第二导磁片141的数量均为4、5、6等等。
根据本申请的一些实施例,如图6所示,第一导磁片131的数量不同于第二导磁片141的数量,则轴向相邻的第一类铁芯段130和第二类铁芯段140的轴向厚度不同,也就是说,对于一个铁芯块110而言,其在轴向上可以由不同轴向高度的铁芯段120构成,为定子铁芯100的构成方式提供多样化的选择范围,从而适应于不同使用场景的需求。
比如,在轴向方向上,至少两个铁芯段120中导磁片的数量可以呈递增趋势、递减趋势、先增大后减小的趋势或者是先减小后增大的趋势等。
进一步地,如图2和图3所示,第一导磁片131和第二导磁片141的结构相同,结构相同是指二者具有相同的厚度、相同的结构特征,但是当二者按照电机200需求进行堆叠时,二者的相对位置关系又存在不同之处。其中,第一导磁片131包括相连的轭部132和齿部138,齿部138包括齿根和齿靴,齿根为规则形状,齿根具有穿过定子铁芯100的中心轴线的中心线,该中心线为齿根的对称线,第一导磁片131沿齿部138的中心线翻转180°后即能够实现与第二导磁片141在轴向上重叠,具体而言,第一导磁片131包括第一凸缘134和第一凹槽135,至少一个第一导磁片131的第一凸缘134构成第一类铁芯段130的凸部121,至少一个第一导磁片131的第一凹槽135构成第一类铁芯段130的凹部122,同样地,至少一个第二导磁片141的第二凸缘142构成第二类铁芯段140的凸部121,至少一个第二导磁片141的第二凹槽143构成第二类铁芯段140的凹部122。
其中,如图2、图3和图4所示,第一导磁片131的第一凸缘134和第一凹槽135沿逆时针分布时,则第二导磁片141的第二凸缘142和第二凹槽143沿顺时针分布。
进一步地,轭部132包括拼接壁133,拼接壁133能够与相邻铁芯块110接触,拼接壁133包括相对的第一端点和第二端点,第一端点相对于第二端点靠近齿部138设置,第一端点和第二端点的连线为投影线,投影线的长度为L1,投影线在轴向上延伸形成投影面。第一导磁片131还包括第一凸缘134和第一凹槽135,第一凸缘134和第一凹槽135分别设在轭部132的周向两侧,凸缘在投影面上的投影长度为L2,其中,0.1L1≤L2≤0.9L1,和/或凹槽在投影面上的投影长度为L3,其中,0.1L1≤L3≤0.9L1。
在该实施例中,轭部132包括拼接壁133,拼接壁133用于与周向上相邻的铁芯段120配合接触,拼接壁133上包括相对设置的第一端点A和第二端点B,第一端点A设于轭部132的内侧,第二端点B设在轭部132的外则,即第一端点A相对第二端点B靠近齿部138设置。第一端点A和第二端点B之间的连线为投影线,投影线的长度为L1,投影线在轴向上延 伸能够形成投影面。第一导槽片包括第一凸缘134和第一凹槽135,第一凸缘134和第一凹槽135分别位于轭部132的周向两侧,第一凸缘134在投影面上的投影长度为L2,第一凹槽135在投影面上的投影长度为L3,其中,第一凸缘134的投影长度、第一凹槽135的投影长度L3与投影线的长度L1之间相关联,从而能够限定第一凸缘134、第一凹槽135在拼接壁133上的占比,令第一凸缘134和第一凹槽135在拼接壁133上的占比处于合理范围内,在实现周向镶嵌配合的基础上,尽量减少对电机200性能的影响。
进一步地,如图1、图5和图6所示,对于一个铁芯块110而言,其包括至少两个铁芯段120,而每个铁芯段120均包括至少一个导磁片,从而才能确保多个铁芯块110在周向和轴向上的精准配合。
具体而言,在一个铁芯块110内铁芯段120的数量为2个时,则一个铁芯段120包括1个导磁片时,则另一个铁芯段120包括至少2个导磁片,此时,一个铁芯块110内导磁片的数量则大于3个。
进一步地,一个铁芯块110中导磁片的数量为至少两个,每个导磁片上均设有铆接部,相邻两个导磁片的铆接部配合连接,从而能够实现一个铁芯块110自身在轴向上的位置限定。
也就是说,对于一个铁芯块110的第一铁芯段而言,与之相邻的铁芯块110中同一轴向高度上的第二铁芯段与之形成周向定位,在与之相邻铁芯块110中还包括第三铁芯段,第一铁芯段能够与第三铁芯段轴向抵接,从而形成相邻铁芯块110之间的轴向限位,那么对于一个铁芯块110自身而言,第一铁芯段中相邻两个导磁片之间通过铆接部连接,则第一铁芯段进一步能够获得铆接部提供的轴向限位,从而能够进一步为整个定子铁芯100的位置精准提供可能性。
进一步地,如图3所示,第一凸缘134和第一凹槽135靠外设在拼接壁133上,这是由于定子铁芯100的外缘处受到的作用力较大,令凹凸结构靠外设置,能够提升整体的拼接可靠性能。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理 解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种定子铁芯,其中,所述定子铁芯用于电机,所述定子铁芯包括:
    多个铁芯块,多个所述铁芯块沿所述电机的周向依次拼接,每个所述铁芯块包括:
    至少两个铁芯段,沿所述电机的轴向堆叠设置,所述至少两个铁芯段中每个铁芯段的周向两侧分别设有凸部和凹部,其中,
    沿周向方向,多个所述铁芯块的任一铁芯段的凸部位于相邻铁芯段的凹部中;
    沿轴向方向,每个所述铁芯块中相邻铁芯段包括第一类铁芯段和第二类铁芯段,所述第一类铁芯段的凸部和凹部沿第一方向分布,所述第二类铁芯段的凸部和凹部沿第二方向分布,所述第一方向和所述第二方向不同。
  2. 根据权利要求1所述的定子铁芯,其中,
    所述第一类铁芯段包括至少一个第一导磁片,所述第二类铁芯段包括至少一个第二导磁片,
    其中,在垂直于轴向的端面上,所述第一导磁片的轮廓线的形状与所述第二导磁片的轮廓线的形状相同。
  3. 根据权利要求2所述的定子铁芯,其中,
    所述第一导磁片的数量与所述第二导磁片的数量相同。
  4. 根据权利要求2所述的定子铁芯,其中,
    所述第一导磁片的数量与所述第二导磁片的数量不同。
  5. 根据权利要求2所述的定子铁芯,其中,
    所述第一导磁片包括相连的轭部和齿部,所述第一导磁片沿所述齿部中心线翻转180°后能够与所述第二导磁片在轴向上重叠。
  6. 根据权利要求5所述的定子铁芯,其中,
    所述轭部包括拼接壁,所述拼接壁能够与相邻所述铁芯块接触,所述拼接壁包括相对的第一端点和第二端点,所述第一端点相对于所述第二端点靠近所述齿部设置,所述第一端点和所述第二端点的连线为投影线,所述投影线的长 度为L1,所述投影线在轴向上延伸形成投影面;
    所述第一导磁片还包括:
    第一凸缘和第一凹槽,分别设在所述轭部的周向两侧,所述第一凸缘在所述投影面上的投影长度为L2,其中,0.1L1≤L2≤0.9L1,和/或
    所述第一凹槽在所述投影面上的投影长度为L3,其中,0.1L1≤L3≤0.9L1。
  7. 根据权利要求1至6中任一项所述的定子铁芯,其中,
    至少两个所述铁芯段中每个铁芯段包括至少一个导磁片,其中,一个所述铁芯块中铁芯段的数量小于一个所述铁芯块中导磁片的数量。
  8. 根据权利要求7所述的定子铁芯,其中,
    一个所述铁芯块中导磁片的数量为至少两个,每个所述导磁片上设有铆接部,至少两个所述导磁片中相邻两个导磁片的铆接部相连。
  9. 根据权利要求6所述的定子铁芯,其中,
    所述轭部包括相对的内缘面和外缘面,所述内缘面相对所述外缘面靠近所述齿部设置,所述第一凸缘和所述第一凹槽靠近所述外缘面设置。
  10. 根据权利要求1至6中任一项所述的定子铁芯,其中,
    所述铁芯块的数量大于等于6,小于等于16。
  11. 一种电机,其中,包括:如权利要求1至10中任一项所述的定子铁芯。
  12. 根据权利要求11所述的电机,其中,
    所述定子铁芯的多个铁芯块拼接形成转子腔;
    所述电机还包括:
    定子绕组,设在所述定子铁芯上;
    转子,设在所述转子腔内,并能够相对于所述定子铁芯旋转。
  13. 一种压缩机,其中,包括:如权利要求11或12所述的电机。
  14. 根据权利要求13所述的压缩机,其中,所述压缩机还包括:
    曲轴,所述曲轴的第一端与所述电机的转子配合;
    动力部,设于所述曲轴的第二端,所述动力部能够通过所述曲轴带动所述转子相对所述定子铁芯旋转。
  15. 一种制冷设备,其中,包括:
    如权利要求11或12所述的电机;或者
    如权利要求13或14所述的压缩机。
PCT/CN2022/079188 2021-12-03 2022-03-04 定子铁芯、电机、压缩机和制冷设备 WO2023097917A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111468799.3A CN114157056A (zh) 2021-12-03 2021-12-03 定子铁芯、电机、压缩机和制冷设备
CN202111468799.3 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023097917A1 true WO2023097917A1 (zh) 2023-06-08

Family

ID=80452556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079188 WO2023097917A1 (zh) 2021-12-03 2022-03-04 定子铁芯、电机、压缩机和制冷设备

Country Status (2)

Country Link
CN (1) CN114157056A (zh)
WO (1) WO2023097917A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101523696A (zh) * 2006-10-13 2009-09-02 株式会社三井高科技 层叠铁芯及其制造方法
CN101841193A (zh) * 2009-03-13 2010-09-22 马渊马达株式会社 芯块以及用于电机的使用芯块的磁极芯
CN204012961U (zh) * 2014-07-24 2014-12-10 广东威灵电机制造有限公司 定子铁芯及定子、永磁电机
JP2018182840A (ja) * 2017-04-07 2018-11-15 三菱電機株式会社 回転電機のステータコアおよび回転電機のステータコアの製造方法
CN108900015A (zh) * 2018-08-30 2018-11-27 珠海格力电器股份有限公司 用于电机的铁芯拼块、定子铁芯及其制作方法、定子、电机以及家用电器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183512A (ja) * 2012-03-01 2013-09-12 Jtekt Corp 電動モータ
JP2014072988A (ja) * 2012-09-28 2014-04-21 Yaskawa Electric Corp 固定子コア、分割コアブロック、固定子の製造方法、および回転電機
JP6498536B2 (ja) * 2015-06-10 2019-04-10 日立オートモティブシステムズエンジニアリング株式会社 コアおよび回転電機
CN108390478A (zh) * 2018-05-31 2018-08-10 广东美芝制冷设备有限公司 定子铁芯、定子和电机
CN108471178A (zh) * 2018-05-31 2018-08-31 广东美芝制冷设备有限公司 定子铁芯和具有其的电机、压缩机
CN113300498B (zh) * 2021-05-17 2023-04-07 安徽威灵汽车部件有限公司 定子、电机、压缩机、车辆和定子的制造方法
CN113300501A (zh) * 2021-05-17 2021-08-24 安徽威灵汽车部件有限公司 定子铁芯、电机、压缩机和车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101523696A (zh) * 2006-10-13 2009-09-02 株式会社三井高科技 层叠铁芯及其制造方法
CN101841193A (zh) * 2009-03-13 2010-09-22 马渊马达株式会社 芯块以及用于电机的使用芯块的磁极芯
CN204012961U (zh) * 2014-07-24 2014-12-10 广东威灵电机制造有限公司 定子铁芯及定子、永磁电机
JP2018182840A (ja) * 2017-04-07 2018-11-15 三菱電機株式会社 回転電機のステータコアおよび回転電機のステータコアの製造方法
CN108900015A (zh) * 2018-08-30 2018-11-27 珠海格力电器股份有限公司 用于电机的铁芯拼块、定子铁芯及其制作方法、定子、电机以及家用电器

Also Published As

Publication number Publication date
CN114157056A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
EP2587632B1 (en) Laminated core for dynamo-electric machine
US9136735B2 (en) Rotary electric machine laminated core
JP5324673B2 (ja) 分割式コアを有する電動機の回転子及びその製造方法
JP5603437B2 (ja) 回転電機の積層鉄心及びその製造方法
JP5859112B2 (ja) 回転電機の電機子、及び回転電機の電機子の製造方法
WO2016185829A1 (ja) 回転子、回転電機および回転子の製造方法
JP6026021B2 (ja) 磁気誘導子型電動機およびその製造方法
TWI482397B (zh) Rotor laminated core
JP2002272027A (ja) コ ア
JP2017060394A (ja) 単相永久磁石モータ
TWI443938B (zh) 定子單元、其繞線方法、及使用其之定子結構及製造方法
KR20040018984A (ko) 토오크 모터의 스테이터 코어
TW201642552A (zh) 馬達定子結構及其定子單元與製造方法
WO2023097917A1 (zh) 定子铁芯、电机、压缩机和制冷设备
JP2010178426A (ja) ステータコア
WO2023045264A1 (zh) 转子结构、电机结构和电子装置
JP4295691B2 (ja) 回転電機の電機子
JP2003319578A (ja) 回転電機のアーマチュアおよびその製造方法
JP2018029420A (ja) 回転電機とその製造方法
CN210957940U (zh) 一种组合式电机铁芯结构
CN109661759B (zh) 旋转电机的定子及旋转电机的定子的制造方法
CN111064293A (zh) 一种组合式电机铁芯结构
WO2023097920A1 (zh) 定子铁芯、电机、压缩机和制冷设备
KR102228411B1 (ko) 모터용 스테이터 및 그 제조방법
JP2002247829A (ja) リニアモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899740

Country of ref document: EP

Kind code of ref document: A1