WO2023103638A1 - 定子、电机、压缩机和电器设备 - Google Patents

定子、电机、压缩机和电器设备 Download PDF

Info

Publication number
WO2023103638A1
WO2023103638A1 PCT/CN2022/128062 CN2022128062W WO2023103638A1 WO 2023103638 A1 WO2023103638 A1 WO 2023103638A1 CN 2022128062 W CN2022128062 W CN 2022128062W WO 2023103638 A1 WO2023103638 A1 WO 2023103638A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
piece
connecting piece
tooth
punching
Prior art date
Application number
PCT/CN2022/128062
Other languages
English (en)
French (fr)
Inventor
徐飞
程文
邱小华
张肃
江波
丁云霞
Original Assignee
安徽美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111494413.6A external-priority patent/CN114069906B/zh
Application filed by 安徽美芝精密制造有限公司 filed Critical 安徽美芝精密制造有限公司
Publication of WO2023103638A1 publication Critical patent/WO2023103638A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present application belongs to the technical field of motors, and in particular, relates to a stator, a motor, a compressor and an electrical device.
  • the segmented motor stator is usually composed of multiple stacked segmented stator punches.
  • multiple segmented stator punches are usually fixed through connectors on the housing or bracket of the motor, but this fixing method still has the problem of large losses between the segmented stator punches, which affects the motor. operating performance.
  • This application aims to solve the problem of eddy current loss caused by the connection between segmented stator punches.
  • This application aims to solve one of the technical problems existing in the prior art or related art.
  • the first aspect of the present application proposes a stator, including: a plurality of stacked stator punches, the stator punches include a plurality of segmented punches that can be joined together; any of the plurality of segmented punches
  • a sub-block punching piece includes: a tooth part, the first connecting part is arranged on the first surface of the tooth part, and the first matching part is arranged on the second surface of the tooth part; the yoke part is connected with the tooth part, and the second A second connecting piece is provided on one side, and a second matching piece is provided on the second surface of the yoke; wherein, the first connecting piece and the second connecting piece of a block punching piece can be respectively inserted in the axial direction of the stator The first matching piece and the second matching piece of another block punching piece adjacent in the direction to connect a plurality of block punching pieces in the axial direction; the center of the first connecting piece to the outer edge of the stator punching piece The distance is smaller than the
  • the stator provided by this application is a split structure.
  • the stator includes a plurality of stator punches, and the plurality of stator punches are stacked.
  • the shape and structure of each stator punch are the same.
  • the four stator punches together constitute the main body of the stator. Compared with designing the stator as an integral structure, the processing difficulty of the split stator composed of multiple stator punching plates is reduced, and it is also easier to maintain and replace.
  • the stator punching piece is also set as a split structure.
  • the stator punching sheet includes a plurality of block punching sheets, and the plurality of block punching sheets can be spliced and connected. Specifically, a plurality of block punching pieces are connected end to end, and spliced along the circumferential direction to form the stator punching pieces together.
  • a connecting device can be set between two adjacent block punches to connect the two block punches together, and a connecting structure can also be set at the end of the block punches to realize the connection between the two block punches. connection separation.
  • the block stampings By setting the block stampings as a structure that can be joined and connected with each other, when processing the stator stampings, only a plurality of block stampings can be processed, and then the multiple block stamping parts are assembled into the stator punching, which is relatively Compared with processing a complete stator punch, the difficulty of processing block punch parts is reduced, thereby reducing the production cost.
  • This kind of stator has a simple structure, and the automatic production of the stator can be realized through an automated production line, and the stator is designed as a split
  • the one-piece splicing structure is beneficial to improve the slot fullness of the motor.
  • each segmented stator punching piece is the same, and one of the multiple segmented stator punching pieces is used as an example for illustration.
  • the segmented stator laminations include teeth and yokes, wherein the yokes are connected to the teeth.
  • the yoke is arranged on a side close to the outer edge of the stator punch, and the teeth are arranged on a side close to the inner edge of the stator punch.
  • a first connecting piece is provided on the first surface of the tooth portion, and a first matching piece is provided on the second surface of the tooth portion.
  • the first surface of the tooth portion and the second surface of the tooth portion face away from each other.
  • the second side of the punch is opposite.
  • the first connecting piece is adapted to the first matching piece, and the first connecting piece of a block punching piece can be inserted into the first matching piece of another block punching piece adjacent in the axial direction of the stator, In this way, the connection of two adjacent block punching sheets along the axial direction of the stator is realized, and the connection of stacked stator punching sheets is further realized.
  • a second connection is also provided on the first surface of the yoke.
  • a second matching piece is also provided on the second surface of the yoke, so that the stacked stator punches are further limited by the interconnection between the second connecting piece and the second matching piece arranged on the yoke, Keep the stator connected stably.
  • this application sets two fixed points on the block punch, that is, the first connecting piece and the first matching piece set on the tooth part and the second fixed point set on the yoke.
  • the connecting piece and the second matching piece improve the reliability and stability of the connection between the stator punching pieces.
  • the stacked stator punches realize two-point positioning under the cooperation of the first connecting piece and the first matching piece, and the second connecting piece and the second matching piece, so that relative rotation between the two stator punching pieces cannot occur , thus avoiding the fragmentation phenomenon that may occur during the working process of the block punching, and improving the overall stability of the stator.
  • the centerlines of the first connecting piece and the first matching piece in the axial direction are collinear, and the first connecting piece is compatible with the first matching piece. Therefore, in the case where a plurality of block punching sheets are stacked along the axial direction of the stator, the first connecting piece on the block punching sheet can be inserted into the first matching piece of the adjacent block punching sheet along the axial direction, so as to connect The method realizes the interconnection of multiple stacked block punches.
  • the centerlines of the second connecting piece and the second matching piece in the axial direction are collinear, and the second connecting piece is compatible with the second matching piece.
  • the stacked block punching pieces can be further connected and positioned to improve the overall stability of the stator.
  • the setting position of the first connecting member is limited.
  • the first connecting piece is arranged on the yoke, and the distance from the center of the first connecting piece to the outer edge of the stator punch is smaller than the distance from the center of the first connecting piece to the inner edge of the stator punch, that is, the center of the first connecting piece is closer The side near the outer edge of the stator punching.
  • the first connecting piece is provided on the block punching piece, and the surface of the block punching piece at the position of the first connecting piece is deformed, which may easily lead to the formation of eddy currents, thereby causing eddy current loss.
  • the density of magnetic lines of force is different at different positions of the block punching piece. It can be understood that the lower the magnetic density at the position of the first connecting piece, the smaller the eddy current loss caused by it. Therefore, by adjusting the position of the first connecting piece, it can be reduced. Small eddy current loss. Specifically, the magnetic density near the outside of the stator in the motor is relatively low, that is, the magnetic density near the outer edge of the stator punch is relatively low. Therefore, setting the first connecting piece on the side closer to the outer edge of the stator punch can The eddy current loss caused by setting the first connecting piece is effectively reduced.
  • the present application reduces the number of connecting parts, and only the first connecting part and the second connecting part are provided. On the premise of ensuring the stability of the stator, the number of connecting ports is reduced, thereby effectively reducing the eddy current loss.
  • stator By designing the stator as a stator stamping assembly composed of multiple stacked stator stampings, and designing the structure of the stator stampings to include multiple segmented stampings that can be joined together, the processing difficulty of the stator is reduced, and the production cost is reduced.
  • the stator structure is easy to process, the automatic production of the stator can be realized through the automatic production line, the production cost can be further reduced and the production efficiency can be improved through the automatic production.
  • the stator is designed as a split splicing structure, which is also beneficial to improve the slot fill rate of the motor.
  • the two segment punches adjacent to each other along the axial direction of the stator can be connected to each other through the cooperation of the first connecting piece and the first matching piece, and the cooperation of the second connecting piece and the second matching piece, so that the stacked multiple The stator laminations can be connected to each other.
  • connection method realizes the two-point positioning between multiple stator punches, so that the relative rotation between the two stator punches cannot occur, thus avoiding the fragmentation phenomenon that may occur during the working process of the block punches , which improves the overall stability of the stator.
  • stator in the above technical solution provided by this application, it may also have the following additional technical features:
  • the first connecting part and the second connecting part are configured as protrusions
  • the first fitting part and the second fitting part are configured as grooves.
  • the first connecting piece and the second connecting piece are configured as protrusions
  • the first fitting and the second fitting are configured as grooves, so that the gap between the first connecting piece and the first fitting .
  • the connection between the second connecting piece and the second matching piece is through concave-convex fit.
  • first connecting part and the first matching part, the second connecting part and the second fitting part can be integrally formed, specifically, the protruding part is set as a hollow structure, and the hollow cavity in the protruding part forms a groove .
  • connection structure is easy to assemble, reliable in connection, and improves the assembly efficiency of the stator.
  • the outer diameter of the stator punch is ⁇ 1
  • the thickness of the yoke is L1
  • the distance from the center of the first connecting piece to the center of the stator punch is H1 wherein H1 satisfies: 0.5 ⁇ ( ⁇ 1-L1) ⁇ H1 ⁇ 1/2.
  • stator punching is fixedly arranged, but a rotating rotor can be arranged in the stator punching, and the rotation center of the rotor can be understood as the center of the stator punching.
  • the area where the first connecting piece is provided is further limited, and the position area where the center of the first connecting piece is located is specifically defined according to the outer diameter of the stator punch and the thickness of the yoke.
  • the outer diameter of the stator punch is ⁇ 1
  • the thickness of the yoke is L1
  • the distance from the center of the first connecting member to the center of the stator punch is H1, where H1 satisfies: 0.5 ⁇ (R1-L1) ⁇ H1 ⁇ 1/2.
  • the position area where the center of the first connecting piece is located is defined by the outer diameter dimension of the stator punching piece and the thickness dimension of the yoke, so that the position of the first connecting piece can be defined more precisely, and it is convenient to determine the position of the first connecting piece processing operations.
  • the distance from the center of the first connecting piece to the center of the stator punching piece is H1, which is limited to 0.5 ⁇ ( ⁇ 1-L1) ⁇ H1 ⁇ 1/2, so that the center of the first connecting piece is close to the outer edge of the stator punching piece
  • the first connecting piece is arranged in a region with low magnetic density, so as to effectively reduce the eddy current loss caused by the setting of the first connecting piece.
  • the distance from the center of the second connecting piece to the tooth root of the tooth portion is smaller than the distance from the center of the second connecting piece to the free end of the tooth portion.
  • the distance from the center of the second connecting piece to the root of the tooth is smaller than the distance from the center of the second connecting piece to the free end edge of the tooth, that is, the center of the second connecting piece is closer to the tooth side of the tooth root.
  • a second connecting piece is provided on the block punching piece, and the block punching piece at the position of the second connecting piece is deformed, which easily leads to the formation of eddy currents, thereby causing eddy current loss.
  • the density of magnetic lines of force is different at different positions of the block punching piece. It can be understood that the lower the magnetic density at the position of the second connecting piece, the smaller the eddy current loss caused by it. Therefore, by adjusting the position of the second connecting piece, it can be reduced. Small eddy current loss. Specifically, the position near the tooth root of the motor has a relatively low magnetic density. Therefore, placing the second connecting piece on the side closer to the tooth root of the tooth can effectively reduce the Eddy current loss.
  • the second connecting piece By making the distance from the center of the second connecting piece to the dedendum of the tooth portion smaller than the distance from the center of the second connecting piece to the free end edge of the tooth portion, the second connecting piece can be arranged in a region where the magnetic density is relatively low, thereby The eddy current loss caused by setting the second connecting piece is effectively reduced.
  • the outer diameter of the stator punch is ⁇ 1
  • the thickness of the yoke is L1
  • the inner diameter of the stator punch is ⁇ 2
  • the distance from the center of the second connecting piece to the center of the stator punch is H2 satisfies: ( ⁇ 1+ ⁇ 2-2 ⁇ L1)/4 ⁇ H2 ⁇ 0.5 ⁇ ( ⁇ 1-L1).
  • the area where the second connecting piece is set is further limited, and the position area where the center of the second connecting piece is specifically defined according to the outer diameter of the stator punching piece, the thickness of the yoke and the inner diameter of the stator punching piece .
  • the outer diameter of the stator punch is ⁇ 1
  • the thickness of the yoke is L1
  • the inner diameter of the stator punch is ⁇ 2
  • the distance from the center of the second connecting piece to the center of the stator punch is H2, where H2 satisfies: ( ⁇ 1+ ⁇ 2-2 ⁇ L1)/4 ⁇ H2 ⁇ 0.5 ⁇ ( ⁇ 1-L1).
  • the position area where the center of the second connecting piece is located is defined by the outer diameter dimension of the stator punching piece, the thickness dimension of the yoke and the inner diameter dimension of the stator punching piece, so that the position of the second connecting piece can be more precisely defined, Facilitate the processing operation of the second connecting piece.
  • the distance from the center of the second connecting piece to the center of the stator punching piece is defined as H2 ( ⁇ 1+ ⁇ 2-2 ⁇ L1)/4 ⁇ H2 ⁇ 0.5 ⁇ ( ⁇ 1-L1), so that the center of the second connecting piece Close to the dedendum side of the tooth portion, the second connecting piece is arranged in a region where the magnetic density is relatively low, so as to effectively reduce the eddy current loss caused by the second connecting piece.
  • the stator further includes: a first connection part arranged on an edge of the yoke extending radially along the stator punch; a second connection part is arranged on an edge of the yoke extending radially along the stator punch On the other edge, the first connection portion of one segment punch can be splicably connected to the second connection portion of an adjacent segment punch.
  • a first connecting portion and a second connecting portion are also provided on the segmented stator.
  • the first connecting portion is arranged on one edge of the yoke extending radially along the stator punch
  • the second connecting portion is arranged on the other edge of the yoke extending radially along the stator punching, that is, the first connecting portion and
  • the second connecting portion is respectively arranged on both sides of the segmented punching piece along the circumferential direction of the stator punching piece.
  • the first connecting portion of one block punching sheet cooperates with the second connecting portion of another adjacent block punching sheet, so as to realize the connection of the two block punching sheets.
  • a plurality of block punching pieces are arranged along the circumferential direction of the stator, so that any two adjacent block punching pieces are matched through the first connecting part and the second connecting part, so as to realize the connection between the multiple block punching pieces. Connected to form a stator punch.
  • the first connection part and the second connection part can also be separated from each other.
  • two adjacent block punching pieces are separated from each other, so as to realize the decomposition of the stator punching pieces .
  • the damaged piece punching piece can be separated from the stator punching piece by separating the first connecting part from the second connecting part. Take it out from the middle, and only replace and repair the damaged block punching sheet alone, without replacing the stator punching sheet as a whole, which reduces maintenance costs.
  • the first connection part and the second connection part can be connected to each other or separated from each other, realizing the joint connection between the blocks, and easy to separate the block punching pieces in the stator, making the product more Easy to repair, reducing product maintenance costs.
  • the first connecting part is configured as a protruding part
  • the second connecting part is configured as a groove adapted to the protruding part
  • the first connecting part is configured as a protrusion
  • the second connecting part is configured as a groove
  • the first connecting part and the second connecting part are a concave-convex structure
  • the groove and the second connecting part are configured as grooves.
  • the protrusions are adapted to realize the connection and cooperation between the first connecting part and the second connecting part.
  • first connecting part As a protruding part and setting the second connecting part as a groove matching with the protruding part, a concave-convex fit structure is formed between the first connecting part and the second connecting part, which improves the Connection reliability reduces processing difficulty.
  • the yoke includes an inner profile segment extending along the circumference of the stator punch, the inner profile segment includes a first profile segment and a second profile segment connected, and one end of the first profile segment is connected to the The dedendums of the teeth are connected, and the other end of the first contour segment is connected to the second contour segment; wherein, the first contour segment is a straight line segment, and the second contour segment is an arc segment.
  • the yoke is provided with an inner contour section extending along the circumferential direction of the stator punching piece toward the inner side of the stator.
  • the inner contour section starts from the root of the tooth and ends at the yoke along the stator punching piece.
  • the radially extending edge, the segment punching piece is respectively provided with inner contour segments on both sides of the tooth portion.
  • the inner contour segment includes a first contour segment and a second contour segment, and the first contour segment is connected to the second contour segment.
  • one end of the first profile segment is connected to the root of the tooth
  • the other end of the first profile segment is connected to the second profile segment
  • one end of the second profile segment is connected to the first profile segment
  • the other end of the second profile segment It is connected to the edge of the yoke extending radially along the stator lamination.
  • the shapes of the first contour segment and the second contour segment are different, specifically, the first contour segment is a straight line segment, and the second contour segment is an arc segment.
  • the inner contour segment as a contour composed of the first contour segment of the straight line segment and the second contour segment of the arc segment, it is beneficial to limit the size of the yoke and avoid magnetic density saturation.
  • the stator can cooperate with the rotor; the length of the first profile segment is L2, the length of the second profile segment is L3, and the number of pole pairs of the rotor is P, where L2, L3 and The relationship of P satisfies: 0.4 ⁇ (L2/L3)/P ⁇ 1.9.
  • the ratio of the first contour section to the second contour section will also affect the magnetic density saturation, so the ratio of the first contour section to the second contour section and the number of pole pairs of the rotor are combined to define 0.4 ⁇ (L2/L3 )/P ⁇ 1.9, to avoid the problem of magnetic density saturation.
  • the outer diameter of the stator punch is ⁇ 1
  • the inner diameter of the stator punch is ⁇ 2
  • the relationship between ⁇ 1 and ⁇ 2 satisfies: 0.57 ⁇ 2/ ⁇ 1 ⁇ 0.5.
  • the relationship between the outer diameter and the inner diameter of the stator punch is further defined. It can be understood that the ratio between the inner diameter of the stator punching and the outer diameter of the stator punching will have a certain impact on the performance of the motor, specifically, it will have an impact on the heat dissipation, magnetic flux density and overall weight of the motor. In order to balance the motor The various parameters of the motor make the motor have a high cost performance, and the ratio between the inner diameter of the stator punch and the outer diameter of the stator punch is limited within a certain range.
  • the outer diameter of the stator punch is ⁇ 1
  • the inner diameter of the stator punch is ⁇ 2
  • the relationship between ⁇ 1 and ⁇ 2 satisfies: 0.57 ⁇ 2/ ⁇ 1 ⁇ 0.5.
  • the ratio between the inner diameter of the stator punch and the outer diameter of the stator punch is greater than or equal to 0.5 and less than or equal to 0.57, so that the motor Each parameter can reach the ideal range, so that the motor has a high cost performance.
  • the stator further includes: an avoidance notch, which is arranged on the surface of the tooth portion to face the rotor, and the distance between the avoidance notch and the first tooth shoe of the tooth portion is smaller than the distance between the avoidance notch and the second tooth shoe of the tooth portion. The distance between the tooth shoes; wherein, along the rotation direction of the rotor, the rotor passes through the first tooth shoe and the second tooth shoe in sequence.
  • the stator further includes avoidance notches, and the avoidance notches are arranged on the surface of the teeth facing the rotor.
  • the tooth part includes a first tooth shoe and a second tooth shoe, and along the rotation direction of the rotor, the rotor passes through the first tooth shoe and the second tooth shoe in sequence.
  • the distance between the avoidance notch and the first tooth shoe is smaller than the distance between the avoidance notch and the second tooth shoe, that is, the avoidance notch is close to the side of the first tooth shoe.
  • the protrusions on the rotor can be avoided by the avoidance gaps to avoid assembly interference.
  • the second aspect of the present application proposes a motor, which includes: a stator assembly, the stator assembly includes a stator as provided in any of the above possible designs and a winding wound on the stator; a rotor is arranged in the stator.
  • the motor provided by the present application includes a stator assembly, and the stator assembly includes a stator, a rotor, and a winding wound on the stator.
  • a stator slot is provided inside the stator, and the rotor is arranged in the stator slot, specifically, the stator and the rotor are arranged through a shaft, and the rotor can rotate relative to the stator.
  • windings are also provided on the stator, specifically, the windings are provided on the teeth of the stator.
  • the stator includes stacked stator punches.
  • the stator punches are provided with a plurality of teeth.
  • the teeth of the stator punches are stacked to form a plurality of stator teeth.
  • the stator teeth are arranged on the inner side of the stator, facing the rotor.
  • the windings are wound on the stator teeth, and the windings are used to generate magnetic induction lines in the energized state.
  • the rotor rotates relative to the stator, it is equivalent to rotating relative to the windings.
  • the rotor rotating relative to the windings cuts the magnetic induction lines to generate the driving rotor. The force of rotation, and then realize the operation of the motor.
  • the winding can be an aluminum wire, which has the advantages of high conductivity, low heat generation, low density, and low cost.
  • Using aluminum wire as the winding can not only ensure that the performance of the motor meets the use requirements, but also reduce product costs.
  • the outer contour of the rotor may be circular. It can be understood that, during the working process of the motor, the rotor is in a rotating state, and setting the outer contour of the rotor as a circle can effectively reduce wind-milling loss generated during the rotation of the rotor and improve the working efficiency of the motor.
  • the motor proposed in this application includes the stator in any of the above possible designs, so the motor has all the beneficial effects of the stator provided in any of the above possible designs.
  • the motor further includes: a plurality of magnetic flux guide slots disposed through the rotor along the axial direction of the motor.
  • a number of flux guide slots are also provided on the rotor.
  • the rotor is formed by stacking a plurality of rotor laminations, and any rotor lamination is provided with a plurality of flux guide grooves, and the flux guide grooves are distributed through the rotor laminations along the axial direction of the motor, that is, along the axis of the motor Distributed through the rotor punching. Understandably, during the operation of the motor, radial electromagnetic force waves will be generated, and the electromagnetic force waves will cause increased noise.
  • a plurality of flux guide slots are provided through the rotor along the axial direction of the motor, so that the lowest order radial electromagnetic force wave of the motor can be reduced, thereby reducing the noise caused by the radial electromagnetic force wave.
  • the lowest order radial electromagnetic force wave of the motor can be reduced, thereby reducing the damage caused by the radial electromagnetic force wave. noise.
  • the rated torque of the motor is T1
  • the inner diameter of the stator punch is ⁇ 2
  • the torque per unit volume of the rotor is T2, where T1, ⁇ 2 and T2 satisfy: 5.18 ⁇ 10 -7 ⁇ T1 ⁇ 1 -3 ⁇ T2 -1 ⁇ 1.17 ⁇ 10 -6 , 5kN•m•m -3 ⁇ T2 ⁇ 45kN•m•m -3 .
  • the range of the combination variable among the rated torque of the motor, the inner diameter of the stator punching plate and the torque per unit volume of the rotor is limited. It can be understood that the combined variable among the rated torque of the motor, the inner diameter of the stator punch and the torque per unit volume of the rotor affects the output torque of the motor. By limiting the range of the combined variable, the motor can be The output torque meets the needs of the equipment the motor is set on.
  • the rated torque of the motor is T1
  • the inner diameter of the stator punch is ⁇ 2
  • the torque per unit volume of the rotor is T2, where T1, ⁇ 2 and T2 satisfy:
  • the combined variable between the rated torque of the motor, the inner diameter of the stator punch and the torque per unit volume of the rotor it is greater than or equal to 5.18 ⁇ 10 -7 and less than or equal to 1.17 ⁇ 10 -6 , and the rotation per unit volume of the rotor is limited.
  • the torque is greater than or equal to 5kN•m•m -3 and less than or equal to 45kN•m•m -3 , so that the output torque of the motor can meet the requirements of the equipment set by the motor.
  • the third aspect of the present application provides a compressor, including the motor as proposed in the second aspect of the present application; and a compression component, the motor is connected to the compression component.
  • the compressor proposed in the present application includes a motor and a compression component, wherein the compression component is connected to the motor, and the motor provides power for the compression component to operate the compression component.
  • the compressor proposed in this application includes the motor proposed in the second aspect of the application, the compressor has all the beneficial effects of the motor provided in the second aspect of the application.
  • a fourth aspect of the present application provides an electrical device, including: a device main body; and a compressor as provided in the fourth aspect of the present application, and the compressor is connected to the device main body.
  • the electrical equipment proposed in this application includes a main body of the equipment and a compressor, wherein the compressor is connected to the main body of the equipment.
  • the compressor and the main body of the equipment work together to make the electrical equipment operate normally.
  • the electrical equipment proposed in this application includes the compressor proposed in the third aspect of the application, the electrical equipment has all the beneficial effects of the compressor provided in the third aspect of the application.
  • Fig. 1 shows a schematic structural view of a stator punching sheet according to an embodiment of the present application
  • FIG. 2 shows a schematic structural view of a block punching according to an embodiment of the present application
  • Fig. 3 shows a schematic structural view of a rotor punch according to an embodiment of the present application
  • Fig. 4 shows a schematic structural diagram of a compressor according to another embodiment of the present application.
  • stator 110 sub-block punching, 111 teeth, 1111 first tooth shoe, 1112 second tooth shoe, 1113 avoidance gap, 112 yoke, 113 first connecting piece, 114 second connecting piece, 115 first connecting part , 116 second connecting part, 117 first contour section, 118 second contour section, 120 stator punching piece, 200 rotor, 210 rotor punching piece, 300 compressor, 310 compression part, 311 cylinder, 312 piston, 320 crankshaft, 330 Main bearings, 340 secondary bearings.
  • stator 100 a motor
  • compressor 300 electrical equipment provided according to some embodiments of the present application with reference to FIGS. 1 to 4 .
  • the embodiment of the first aspect of the present application proposes a stator 100, including: a plurality of stacked stator punches 120, and the stator punches 120 include a plurality of segmented punches that can be spliced and connected.
  • any block punching sheet 110 in the plurality of block punching sheets 110 includes: a tooth portion 111, a first connecting member 113 is provided on the first surface of the tooth portion 111, and a second surface of the tooth portion 111 is provided There is a first matching part; the yoke part 112 is connected with the tooth part 111, the second connecting part 114 is provided on the first surface of the yoke part 112, and the second matching part is provided on the second surface of the yoke part 112; wherein, one The first connecting piece 113 and the second connecting piece 114 of the block punching piece 110 can be respectively inserted into the first matching piece and the second matching piece of another block punching piece 110 adjacent in the axial direction of the stator 100, so as to A plurality of segment punching pieces 110 are connected in the axial direction; the distance from the center of the first connecting piece 113 to the outer edge of the stator punching piece 120 is smaller than the distance from the center of the first connecting piece 113 to the inner edge of the stator punching
  • the stator 100 provided in this application is a split structure.
  • the stator 100 includes a plurality of stator punches 120, and the plurality of stator punches 120 are stacked.
  • the shape and structure of each stator punch 120 are the same. 120 are stacked so that a plurality of stator punches 120 together constitute the main body of the stator 100 .
  • the split stator 100 formed by a plurality of stator punches 120 is less difficult to process and easier to maintain and replace.
  • the stator stamping 120 is also configured as a split structure.
  • the stator punching sheet 120 includes a plurality of block punching sheets 110 , and the plurality of block punching sheets 110 can be spliced and connected. Specifically, a plurality of segment punching pieces 110 are connected end to end, and spliced along the circumferential direction to form the stator punching piece 120 together.
  • a connecting device can be set between two adjacent block punches 110, and the two block punches 110 can be connected together, and a connecting structure can also be provided at the ends of the block punches 110 to realize two block punches. Connections between punches 110 are separated.
  • stator punches 110 By setting the sub-block punches 110 into a structure that can be joined and connected with each other, when processing the stator punches 120, only a plurality of sub-block punches 110 can be processed, and then the parts of the plurality of sub-block punches 110 are assembled into a stator Punching sheet 120, compared with processing a complete stator punching sheet 120, the difficulty of processing parts of block punching sheet 110 is reduced, thereby reducing the production cost.
  • This kind of stator 100 has a simple structure, and the automation of stator 100 can be realized through an automated production line production, and the stator 100 is designed as a split splicing structure, which is beneficial to improve the slot fill rate of the motor.
  • each segmented stator punching piece 120 The shape and structure of each segmented stator punching piece 120 are the same, and one of the multiple segmented stator punching pieces 120 is taken as an example for illustration.
  • the segmented stator punch 120 includes a tooth portion 111 and a yoke portion 112 , wherein the yoke portion 112 is connected to the tooth portion 111 .
  • the yoke 112 is disposed near the outer edge of the stator punch 120
  • the teeth 111 are disposed near the inner edge of the stator punch 120 .
  • a first connecting member 113 is provided on the first surface of the tooth part 111, and a first connecting member 113 is provided on the second surface of the tooth part 111. Fittings. Specifically, the first surface of the tooth part 111 and the second surface of the tooth part 111 are away from each other. The second surface of the other block punching sheet 110 is opposite to each other. Further, the first connecting piece 113 is adapted to the first matching piece, and the first connecting piece 113 of one block punching sheet 110 can be inserted into the second block punching sheet 110 of another block punching sheet 110 adjacent in the axial direction of the stator 100. In a matching piece, the connection of two segment punching pieces 110 adjacent to each other along the axial direction of the stator 100 is realized, thereby realizing the connection of the stacked stator punching pieces 120 .
  • the first surface of the yoke 112 is also provided with The second connecting piece 114 is also provided with a second matching piece on the second surface of the yoke 112, so that the interconnection between the second connecting piece 114 on the yoke 112 and the second matching piece can further improve the stacking arrangement.
  • the stator punching piece 120 is positioned to keep the stator 100 in a stable connection state.
  • the present application sets two fixed points on the block punch 110, that is, the first connecting piece 113 and the first fitting piece set on the tooth portion 111 and the first fitting piece set on the yoke portion.
  • the second connecting piece 114 and the second matching piece on 112 improve the reliability and stability of the connection between the stator punching pieces 120 .
  • the stacked stator punches 120 realize two-point positioning under the cooperation of the first connecting piece 113 and the first matching piece, the second connecting piece 114 and the second matching piece, so that the two stator punching pieces 120 Relative rotation cannot occur, thereby avoiding the fragmentation phenomenon that may occur in the working process of the block punching sheet 110 , and improving the overall stability of the stator 100 .
  • the centerlines of the first connecting piece 113 and the first matching piece in the axial direction are collinear, and the first connecting piece 113 is adapted to the first matching piece. Therefore, when a plurality of segment punches 110 are stacked along the axial direction of the stator 100, the first connecting piece 113 on the segment punch 110 can be inserted into the first matching piece of the adjacent segment punch 110 along the axis direction. In this way, the mutual connection of multiple stacked block punches 110 is realized.
  • the centerlines of the second connecting piece 114 and the second matching piece in the axial direction are collinear, and the second connecting piece 114 is compatible with the second matching piece.
  • the stacked block punching pieces 110 can be further connected and positioned to improve the overall stability of the stator 100. stability.
  • the setting position of the first connecting member 113 is limited.
  • the first connecting piece 113 is disposed on the yoke 112, and the distance from the center of the first connecting piece 113 to the outer edge of the stator punch 120 is smaller than the distance from the center of the first connecting piece 113 to the inner edge of the stator punch 120, that is, the first The center of a connecting piece 113 is closer to the outer edge side of the stator punching piece 120 .
  • the first connecting piece 113 is provided on the block punching piece 110 , and the surface of the block punching piece 110 is deformed at the position of the first connecting piece 113 , which may easily lead to the formation of eddy currents, thereby causing eddy current loss.
  • the density of magnetic lines of force is different at different positions of the block punching piece 110. It can be understood that the lower the magnetic density at the position of the first connecting piece 113, the smaller the eddy current loss caused by it. Therefore, by adjusting the setting of the first connecting piece 113 location can reduce eddy current losses.
  • the magnetic density near the outer edge of the stator 100 in the motor is relatively low, that is, the magnetic density at the position near the outer edge of the stator punching piece 120 is relatively low. On the one hand, it can effectively reduce the eddy current loss caused by setting the first connecting piece 113 .
  • the present application reduces the number of connecting parts, and only the first connecting part 113 and the second connecting part 114 are provided. On the premise of ensuring the stability of the stator 100, the number of connecting ports is reduced, thereby effectively reducing the eddy current loss .
  • stator 100 By designing the stator 100 as an assembly of a plurality of stacked stator punches 120, and designing the structure of the stator punch 120 to include a plurality of segmented punches 110 that can be spliced and connected, the processing difficulty of the stator 100 is reduced. Reduce the production cost, the structure of the stator 100 is easy to process, the automatic production of the stator 100 can be realized through the automatic production line, the production cost can be further reduced and the production efficiency can be improved through the automatic production. Furthermore, the design of the stator 100 as a split splicing structure is also beneficial to improve the slot fill ratio of the motor.
  • this connection method realizes the two-point positioning between the plurality of stator punches 120, so that the relative rotation between the two stator punches 120 cannot occur, thereby avoiding the possibility that the block punches 110 may occur during the working process. Fragmentation improves the overall stability of the stator 100 .
  • the first connecting piece 113 can be arranged at a position where the magnetic density is relatively low. Low area, so as to effectively reduce the eddy current loss caused by setting the first connecting piece 113 .
  • the first connecting piece 113 and the second connecting piece 114 are configured as protrusions, and the first fitting and the second fitting are configured as groove.
  • the first connecting part 113 and the second connecting part 114 are configured as protrusions, and the first fitting part and the second fitting part are configured as grooves, so that the first connecting part 113 and the first fitting
  • the parts, the second connecting part 114 and the second matching part are connected by concave-convex fit.
  • first connecting piece 113 and the first matching piece, the second connecting piece 114 and the second matching piece can be integrally formed, specifically, the protruding piece is set as a hollow structure, and the hollow cavity in the protruding piece constitutes groove.
  • the first connecting piece 113 and the second connecting piece 114 are protrusions, and configuring the first fitting and the second fitting as grooves, the first connecting piece 113 is connected with the first fitting and the second fitting.
  • a concave-convex fit structure is formed between the part 114 and the second matching part. This connection structure is easy to assemble, reliable in connection, and improves the assembly efficiency of the stator 100 .
  • the outer diameter of the stator punch 120 is ⁇ 1
  • the thickness of the yoke 112 is L1
  • the distance from the center of the first connecting member 113 to the center of the stator punch 120 is H1, wherein H1 satisfies: 0.5 ⁇ ( ⁇ 1- L1) ⁇ H1 ⁇ 1/2.
  • the area where the first connecting piece 113 is provided is further limited, and the position area where the center of the first connecting piece 113 is located is specifically defined according to the outer diameter of the stator punch 120 and the thickness of the yoke 112 .
  • the outer diameter of the stator punch 120 is ⁇ 1
  • the thickness of the yoke 112 is L1
  • the distance from the center of the first connecting member 113 to the center of the stator punch 120 is H1, wherein H1 satisfies: 0.5 ⁇ ( ⁇ 1- L1) ⁇ H1 ⁇ 1/2.
  • the position area where the center of the first connecting piece 113 is located is defined by the outer diameter dimension of the stator punching piece 120 and the thickness dimension of the yoke portion 112, so that the position of the first connecting piece 113 can be defined more precisely, and it is convenient to define the position of the first connecting piece 113.
  • a processing operation of the connector 113 is defined by the outer diameter dimension of the stator punching piece 120 and the thickness dimension of the yoke portion 112, so that the position of the first connecting piece 113 can be defined more precisely, and it is convenient to define the position of the first connecting piece 113.
  • the distance from the center of the first connecting piece 113 to the center of the stator punching piece 120 is defined as H1 to be 0.5 ⁇ ( ⁇ 1-L1) ⁇ H1 ⁇ 1/2, so that the center of the first connecting piece 113 is close to the stator punching piece 120
  • the first connecting piece 113 is arranged in a region where the magnetic density is relatively low, so as to effectively reduce the eddy current loss caused by the setting of the first connecting piece 113.
  • the distance from the center of the second connecting piece 114 to the tooth root of the tooth portion 111 is smaller than the distance from the center of the second connecting piece 114 to the free end of the tooth portion 111 edge distance.
  • the distance from the center of the second connecting piece 114 to the tooth root of the tooth portion 111 is smaller than the distance from the center of the second connecting piece 114 to the free end edge of the tooth portion 111, that is, the distance of the second connecting piece 114 The center is closer to the tooth root side of the tooth portion 111 .
  • the second connecting piece 114 is provided on the block punching piece 110 , and the block punching piece 110 is deformed at the position of the second connecting piece 114 , which easily leads to the formation of eddy currents, thereby causing eddy current loss.
  • the density of magnetic lines of force is different at different positions of the block punching piece 110. It can be understood that the lower the magnetic density at the position of the second connecting member 114, the smaller the eddy current loss caused by it. Therefore, by adjusting the setting of the second connecting member 114 location can reduce eddy current losses.
  • the position near the tooth root of the tooth portion 111 in the motor has a relatively low magnetic density. Therefore, setting the second connecting piece 114 on the side closer to the tooth root of the tooth portion 111 can effectively reduce the 114 caused by eddy current loss.
  • the second connecting piece 114 can be arranged at a relatively close magnetic density. Low area, so as to effectively reduce the eddy current loss caused by setting the second connecting piece 114 .
  • the outer diameter of the stator punch 120 is ⁇ 1
  • the thickness of the yoke 112 is L1
  • the inner diameter of the stator punch 120 is ⁇ 2
  • the distance from the center of the second connecting piece 114 to the center of the stator punch 120 is H2, wherein , H2 satisfies: ( ⁇ 1+ ⁇ 2-2 ⁇ L1)/4 ⁇ H2 ⁇ 0.5 ⁇ ( ⁇ 1-L1).
  • the area where the second connecting piece 114 is provided is further limited, and the center of the second connecting piece 114 is specifically defined according to the outer diameter of the stator punching piece 120 , the thickness of the yoke portion 112 and the inner diameter of the stator punching piece 120 The location area you are in.
  • the outer diameter of the stator punch 120 is R1
  • the thickness of the yoke 112 is L1
  • the inner diameter of the stator punch 120 is R2
  • the distance from the center of the second connecting member 114 to the center of the stator punch 120 is H2, wherein , H2 satisfies:
  • the outer diameter dimension of the stator punching piece 120, the thickness dimension of the yoke portion 112, and the inner diameter dimension of the stator punching piece 120 define the position area where the center of the second connecting piece 114 is located, so that the second connecting piece 114 can be aligned more accurately.
  • the position is defined to facilitate the processing operation of the second connecting member 114 .
  • the distance from the center of the second connecting piece 114 to the center of the stator punching piece 120 is defined as H2 ( ⁇ 1+ ⁇ 2-2 ⁇ L1)/4 ⁇ H2 ⁇ 0.5 ⁇ ( ⁇ 1-L1), so that the second connecting piece The center of 114 is close to the dedendum side of the tooth portion 111 , and the second connecting piece 114 is arranged in a region with low magnetic density, thereby effectively reducing the eddy current loss caused by the second connecting piece 114 .
  • the stator 100 further includes: a first connecting portion 115 disposed on an edge of the yoke portion 112 extending radially along the stator punching piece 120 ;
  • the connecting portion 116 is arranged on the other edge of the yoke portion 112 extending radially along the stator punching sheet 120 , the first connecting portion 115 of a block punching sheet 110 can be connected to the second connecting portion 116 of the adjacent block punching sheet 110 Connects flat.
  • a first connecting portion 115 and a second connecting portion 116 are also provided on the segmented stator 100 .
  • the first connecting portion 115 is arranged on one edge of the yoke portion 112 extending radially along the stator punching piece 120
  • the second connecting portion 116 is arranged on the other edge of the yoke portion 112 extending radially along the stator punching piece 120 , that is, , the first connecting portion 115 and the second connecting portion 116 are respectively provided on both sides of the segmented punching piece 110 along the circumferential direction of the stator punching piece 120 .
  • the first connecting portion 115 of one block punching sheet 110 cooperates with the second connecting portion 116 of another adjacent block punching sheet 110 , so as to realize the connection of the two block punching sheets 110 .
  • a plurality of block punching pieces 110 are arranged along the circumferential direction of the stator 100, so that any two adjacent block punching pieces 110 are matched through the first connecting portion 115 and the second connecting portion 116, thereby realizing multiple block
  • the connection between the stamping pieces 110 forms the stator stamping piece 120 .
  • the first connection part 115 and the second connection part 116 can also be separated from each other. In the state where the first connection part 115 and the second connection part 116 are separated, two adjacent block punches 110 are separated from each other, thereby realizing Disassembly of the stator punching 120 . It can be understood that, during the working process of the stator 100, a certain block punching sheet 110 may be damaged. At this time, the damaged block punching sheet can be removed by separating the first connecting part 115 and the second connecting part 116. 110 is taken out from the stator punching plate 120, and only the damaged sub-block punching plate 110 is replaced and repaired separately, without replacing the stator punching plate 120 as a whole, which reduces the maintenance cost.
  • first connection part 115 and the second connection part 116 By setting the first connection part 115 and the second connection part 116 respectively on the two edges of the yoke 112 extending radially along the stator punching piece 120, any two block punching pieces 110 that are connected randomly The slices 110 are connected to each other, and then surround and form the stator punching slice 120 .
  • the first connection part 115 and the second connection part 116 can be connected to each other or separated from each other, so that the splittable connection between the blocks is realized, and it is easy to separately disassemble the block punches 110 in the stator 100 , making the product easier to repair and reducing product maintenance costs.
  • the first connecting part 115 is configured as a protruding part
  • the second connecting part 116 is configured as a groove adapted to the protruding part.
  • the first connecting part 115 is configured as a protrusion
  • the second connecting part 116 is configured as a groove, that is, the first connecting part 115 and the second connecting part 116 are a concave-convex structure.
  • the groove is matched with the protrusion to realize the connection and fit between the first connecting part 115 and the second connecting part 116 .
  • first connecting part 115 As a protruding part and setting the second connecting part 116 as a groove matched with the protruding part, a concave-convex fit is formed between the first connecting part 115 and the second connecting part 116.
  • the structure improves the connection reliability and reduces the difficulty of processing.
  • the yoke 112 includes an inner contour segment extending along the circumference of the stator punch 120 , and the inner contour segment includes a connecting first contour segment 117 and In the second contour segment 118, one end of the first contour segment 117 is connected to the dedendum of the tooth portion 111, and the other end of the first contour segment 117 is connected to the second contour segment 118; wherein, the first contour segment 117 is a straight line segment, and The second contour segment 118 is an arc segment.
  • the yoke portion 112 is provided with an inner contour segment extending along the circumferential direction of the stator punching plate 120, specifically, the inner contour segment starts from the tooth root of the tooth portion 111 and ends at the yoke portion 112 is along the radially extending edge of the stator punching plate 120 , and the block punching plate 110 is respectively provided with inner contour segments on both sides of the tooth portion 111 .
  • the inner contour segment includes a first contour segment 117 and a second contour segment 118 , and the first contour segment 117 is connected to the second contour segment 118 .
  • one end of the first contour segment 117 is connected to the dedendum of the tooth portion 111
  • the other end of the first contour segment 117 is connected to the second contour segment 118
  • one end of the second contour segment 118 is connected to the first contour segment 117.
  • the other end of the two profile segments 118 is connected to the edge of the yoke 112 extending radially along the stator punching plate 120 .
  • the shapes of the first contour segment 117 and the second contour segment 118 are different, specifically, the first contour segment 117 is a straight line segment, and the second contour segment 118 is an arc segment.
  • the inner contour segment As a contour composed of the first contour segment 117 of the straight line segment and the second contour segment 118 of the arc segment, it is beneficial to limit the size of the yoke portion 112 and avoid magnetic density saturation.
  • stator 100 can cooperate with the rotor 200; the length of the first contour segment 117 is L2, the length of the second contour segment 118 is L3, and the number of pole pairs of the rotor 200 is P, wherein the relationship between L2, L3 and P Satisfy: 0.4 ⁇ (L2/L3)/P ⁇ 1.9.
  • the length of the second profile segment 118 when the length of the second profile segment 118 is too large, the length of the first profile segment 117 is small, and the space of the stator slot will be reduced at this time.
  • the length of the second contour section 118 is too small, the length of the first contour section 117 is relatively large, and at this time, the yoke 112 will appear in a position with a small width. Therefore, it is necessary to adjust the length ratio of the first profile segment 117 and the second profile segment 118 to avoid the position of the yoke 112 having a smaller width on the basis of ensuring the slot space of the stator.
  • the ratio of the first contour segment 117 to the second contour segment 118 will also affect the magnetic density saturation, so combining the ratio of the first contour segment 117 to the second contour segment 118 and the number of pole pairs of the rotor, it is defined that 0.4 ⁇ (L2/L3)/P ⁇ 1.9, to avoid the problem of magnetic density saturation.
  • the outer diameter of the stator punching piece 120 is ⁇ 1
  • the inner diameter of the stator punching piece 120 is ⁇ 2
  • the relationship between ⁇ 1 and ⁇ 2 satisfies: 0.57 ⁇ 2/ ⁇ 1 ⁇ 0.5.
  • the relationship between the outer diameter and the inner diameter of the stator punching plate 120 is further defined. It can be understood that the ratio between the inner diameter of the stator punching piece 120 and the outer diameter of the stator punching piece 120 will have a certain impact on the performance of the motor, specifically, it will have an impact on the heat dissipation, magnetic flux density and overall weight of the motor. Various parameters of the motor are balanced to make the motor have a higher cost performance, and the ratio between the inner diameter of the stator punch 120 and the outer diameter of the stator punch 120 is limited within a certain range.
  • the outer diameter of the stator blank 120 is ⁇ 1
  • the inner diameter of the stator blank 120 is ⁇ 2
  • the relationship between L2 and L3 satisfies: 0.57 ⁇ 2/ ⁇ 1 ⁇ 0.5.
  • the outer diameter of the stator punch 120 may be between 100 mm and 102 mm, and the inner diameter of the stator punch 120 may be between 53 mm and 55 mm. Specifically, the outer diameter of the stator punch 120 may be 101.15 mm, and the inner diameter of the stator punch 120 may be 53.3 mm.
  • the ratio between the inner diameter of the stator punching piece 120 and the outer diameter of the stator punching piece 120 is greater than or equal to 0.5 and less than or equal to 0.57 , so that the various parameters of the motor can reach the ideal range, so that the motor has a high cost performance.
  • the stator 100 further includes: an escape notch 1113 , which is arranged on the surface of the tooth portion 111 to face the rotor 200 , and the avoidance notch 1113 and the tooth portion 111
  • the distance between the first tooth shoe 1111 is smaller than the distance between the escape gap 1113 and the second tooth shoe 1112 of the tooth portion 111 ; wherein, along the rotation direction of the rotor 200 , the rotor 200 passes through the first tooth shoe 1111 and the second tooth shoe 1112 in sequence.
  • the stator 100 further includes avoidance notches 1113 , and the avoidance notches 1113 are disposed on the surface of the tooth portion 111 facing the rotor 200 .
  • the tooth portion 111 includes a first tooth shoe 1111 and a second tooth shoe 1112 , and along the rotation direction of the rotor 200 , the rotor 200 passes through the first tooth shoe 1111 and the second tooth shoe 1112 in sequence.
  • the distance between the escape notch 1113 and the first tooth shoe 1111 is smaller than the distance between the avoidance notch 1113 and the second tooth shoe 1112 , that is, the avoidance notch 1113 is close to the side of the first tooth shoe 1111 .
  • avoidance notches 1113 By setting avoidance notches 1113 on the surface of the teeth 111 facing the rotor 200 , during the assembly process of the stator 100 and the rotor 200 , the protrusions on the rotor 200 can be avoided by the avoidance notches 1113 to avoid assembly interference.
  • the second aspect of the present application proposes a motor, the motor includes: a stator 100 assembly, the stator 100 assembly includes the stator 100 provided in any of the above possible designs and the windings wound on the stator 100; the rotor 200 is arranged on Inside the stator 100.
  • the motor provided in this application includes a stator 100 assembly, and the stator 100 assembly includes a stator 100 , a rotor 200 and a winding wound on the stator 100 .
  • the stator 100 is provided with slots of the stator 100 inside, and the rotor 200 is disposed in the slots of the stator 100 , specifically, the stator 100 and the rotor 200 are coaxially arranged, and the rotor 200 can rotate relative to the stator 100 . Further, the stator 100 is also provided with windings, specifically, the windings are arranged on the teeth of the stator 100 .
  • the stator 100 includes stacked stator punches 120 .
  • the stator punches 120 are provided with a plurality of teeth 111 .
  • the teeth 111 of the plurality of stator punches 120 are stacked to form a plurality of teeth of the stator 100 .
  • the teeth of the stator 100 are disposed inside the stator 100 and facing the rotor 200 .
  • the windings are wound on the teeth of the stator 100, and the windings are used to generate magnetic induction lines in the energized state.
  • the rotor 200 rotates relative to the stator 100, it is equivalent to rotating relative to the windings, and the rotor 200 rotating relative to the windings cuts the magnetic induction lines. , to generate a force to drive the rotor 200 to rotate, thereby realizing the operation of the motor.
  • the winding can be an aluminum wire, which has the advantages of high conductivity, low heat generation, low density, and low cost.
  • Using aluminum wire as the winding can not only ensure that the performance of the motor meets the use requirements, but also reduce product costs.
  • the outer contour of the rotor 200 may be circular. It can be understood that during the working process of the motor, the rotor 200 is in a rotating state, and setting the outer contour of the rotor 200 as a circle can effectively reduce the wind loss generated by the rotor 200 during rotation and improve the working efficiency of the motor.
  • the motor proposed in this application includes the stator 100 in any of the above-mentioned possible designs, so the motor has all the beneficial effects of the stator 100 provided in any of the above-mentioned possible designs.
  • the motor further includes: a plurality of magnetic flux guide slots, which are arranged through the rotor 2 along the axial direction of the motor.
  • the rotor is formed by stacking a plurality of rotor punches 210, and any rotor punch 210 is provided with a plurality of flux guide grooves, and the flux guide grooves are distributed through the rotor punch along the axial direction of the motor.
  • 210 that is, distributed through the rotor punching plate 210 along the axial direction of the motor. Understandably, during the operation of the motor, radial electromagnetic force waves will be generated, and the electromagnetic force waves will cause increased noise.
  • a plurality of flux guide slots are provided through the rotor along the axial direction of the motor, so that the lowest order radial electromagnetic force wave of the motor can be reduced, thereby reducing the noise caused by the radial electromagnetic force wave.
  • the lowest order radial electromagnetic force wave of the motor can be reduced, thereby reducing the damage caused by the radial electromagnetic force wave. noise.
  • the rated torque of the motor is T1
  • the inner diameter of the stator punch 120 is ⁇ 2
  • the torque per unit volume of the rotor 200 is T2, wherein, between T1, ⁇ 2 and T2 satisfy:
  • the range of the combined variable among the rated torque of the motor, the inner diameter of the stator punching plate 120 and the torque per unit volume of the rotor 200 is limited. It can be understood that the combined variable among the rated torque of the motor, the inner diameter of the stator punching plate 120 and the torque per unit volume of the rotor 200 affects the output torque of the motor. By limiting the range of the combined variable, it can be Make the output torque of the motor meet the needs of the equipment set by the motor.
  • the rated torque of the motor is T1
  • the inner diameter of the stator punch 120 is ⁇ 2
  • the torque per unit volume of the rotor 200 is T2, where T1, ⁇ 2 and T2 satisfy:
  • the inner diameter of the stator punching plate 120 and the torque per unit volume of the rotor 200 is greater than or equal to 5.18 ⁇ 10 -7 and less than or equal to 1.17 ⁇ 10 -6 , and to define the rotor 200
  • the torque per unit volume is greater than or equal to 5kN•m•m -3 and less than or equal to 45kN•m•m -3 , so that the output torque of the motor can meet the requirements of the equipment set by the motor.
  • the third aspect of the present application proposes a compressor 300 , including the motor as proposed in the second aspect of the present application; and a compression component 310 , and the motor is connected to the compression component 310 .
  • the compressor 300 proposed in this application includes a motor and a compression component 310 , wherein the compression component 310 is connected to the motor, and the motor provides power for the compression component 310 to make the compression component 310 operate.
  • the compression part 310 includes a cylinder 311 and a piston 312.
  • some connecting parts are also provided in the compressor 300, specifically including a crankshaft 320 and a main bearing 330.
  • the motor is connected with the piston 312 through the crankshaft 320 to drive the piston 312 to move in the cylinder 311.
  • the main bearing 330 and the auxiliary bearing 340 are arranged on the outside of the crankshaft 320 to support and limit the crankshaft 320, so that the crankshaft 320 can Turn normally.
  • the compressor 300 proposed in this application includes the motor proposed in the second aspect of the application, the compressor 300 has all the beneficial effects of the motor provided in the second aspect of the application.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • the fourth aspect of the present application provides an electrical device, including: a device main body; and a compressor 300 as proposed in the fourth aspect of the present application, and the compressor 300 is connected to the device main body.
  • the electrical equipment proposed in this application includes a main body of the equipment and a compressor 300, wherein the compressor 300 is connected to the main body of the equipment. When the electrical equipment is running, the compressor 300 cooperates with the main body of the equipment to make the electrical equipment operate normally.
  • the electrical equipment proposed in this application includes the compressor 300 proposed in the third aspect of the application, the electrical equipment has all the beneficial effects of the compressor 300 provided in the third aspect of the application.
  • connection means two or more, unless otherwise clearly defined.
  • connection can be fixed connection, detachable connection, or integral connection; “connection” can be directly or indirectly through an intermediary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提供了一种定子、电机、压缩机和电器设备。该定子包括:多个层叠设置的定子冲片,定子冲片包括多个可拼合连接的分块冲片;多个分块冲片中的任一分块冲片包括:齿部,齿部的第一面上设置有第一连接件,齿部的第二面上设置有第一配合件;轭部,与齿部连接,轭部的第一面上设置有第二连接件轭部的第二面上设置有第二配合件;其中,一个分块冲片的第一连接件和第二连接件能够分别插入在定子的轴向方向相邻的另一分块冲片的第一配合件和第二配合件,以将多个分块冲片在轴向方向上连接;定子冲片的外径为Φ1,内径为Φ2,轭部的厚度为L1,第一连接件的中心至定子冲片的中心的距离H1满足:0.5× (Φ1-L1)<H1<Φ1/2。

Description

定子、电机、压缩机和电器设备
本申请要求于2021年12月08日提交中国专利局、申请号为“202111494413.6”、发明名称为“定子、电机、压缩机和电器设备”,提交中国专利局的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电机技术领域,具体而言,涉及一种定子、一种电机、一种压缩机和一种电器设备。
背景技术
分块电机定子,通常由多个层叠设置的分块定子冲片构成。现有技术中,多个分块定子冲片通常通过与电机的壳体或者支架上的连接件进行固定,但是这种固定方式仍然存在分块定子冲片之间损耗大的问题,从而影响电机的运行性能。
技术问题
本申请旨在解决分块定子冲片之间连接而产生的涡流损耗的问题。
技术解决方案
本申请旨在解决现有技术或相关技术中存在的技术问题之一。
有鉴于此,本申请第一方面提出了一种定子,包括:多个层叠设置的定子冲片,定子冲片包括多个可拼合连接的分块冲片;多个分块冲片中的任一分块冲片包括:齿部,齿部的第一面上设置有第一连接件,齿部的第二面上设置有第一配合件;轭部,与齿部连接,轭部的第一面上设置有第二连接件,轭部的第二面上设置有第二配合件;其中,一个分块冲片的第一连接件和第二连接件,能够分别插入在定子的轴向方向相邻的另一分块冲片的第一配合件和第二配合件,以将多个分块冲片在轴向方向上连接;第一连接件的中心到定子冲片的外边缘的距离小于第一连接件的中心到定子冲片内边缘的距离。
本申请提供的定子为分体结构,具体地,定子包括多个定子冲片,多个定子冲片层叠设置,各个定子冲片的形状以及结构相同,将多个定子冲片层叠设置,使多个定子冲片共同构成了定子的主体。相对于将定子设计为整体结构,通过多个定子冲片构成的分体式定子的加工难度降低,也更加易于维修更换。
为了进一步降低定子铁芯的加工难度,以及提高电机的槽满率,将定子冲片也设置为分体式结构。定子冲片包括多个分块冲片,多个分块冲片之间可拼合地连接。具体地,多个分块冲片相互之间首尾连接,沿周向拼接共同构成了定子冲片。相邻的两个分块冲片之间可设置连接装置,将两个分块冲片可拼合地连接,也可在分块冲片端部设置连接结构,以实现两个分块冲片之间的连接分离。通过将分块冲片设置为可相互拼合连接的结构,从而在加工定子冲片时,仅加工多个分块冲片即可,再将多个分块冲片零件装配成定子冲片,相较于加工一个完整的定子冲片,加工分块冲片零件的难度降低,从而降低了生产成本,此种定子结构简单,可通过自动化生产线实现对定子的自动化生产,并且,将定子设计为分体式的拼接结构,有利于提高电机的槽满率。
各个分块定子冲片的形状以及结构相同,以多个分块定子冲片中的一个为例进行说明。
分块定子冲片包括齿部和轭部,其中,轭部与齿部相连。在多个分块定子拼接成定子冲片的状态下,轭部设置于靠近定子冲片外边缘的一侧,齿部设置于靠近定子冲片内边缘的一侧。
进一步地,为了实现多个层叠设置的分块冲片之间的连接,在齿部的第一面上设置有第一连接件,在齿部的第二面上设置有第一配合件。具体地,齿部的第一面和齿部的第二面相互背离,在多个分块冲片层叠放置的情况下,一个分块冲片的第一面和与其相邻的另一个分块冲片的第二面相对。进一步地,第一连接件与第一配合件相适配,一个分块冲片的第一连接件能够插入在定子的轴向方向相邻的另一个分块冲片的第一配合件中,从而实现沿定子轴向方向相邻的两个分块冲片的连接,进而实现层叠设置的定子冲片的连接。
进一步地,为了进一步提高多个层叠设置的分块冲片之间连接的牢固性,防止分块冲片在工作过程中出现分片现象,在轭部的第一面上还设置了第二连接件,在轭部的第二面上还设置了第二配合件,从而通过设置于轭部上的第二连接件和第二配合件的相互连接进一步对层叠设置的定子冲片进行限位,使定子保持稳定连接状态。
可以理解地,相对于一点固定的方式,本申请通过在分块冲片上设置两个固定点,即设置于齿部上的第一连接件和第一配合件以及设置于轭部上的第二连接件和第二配合件,提高了定子冲片相互之间连接的可靠性及稳定性。层叠设置的定子冲片在第一连接件与第一配合件、第二连接件与第二配合件的配合的作用下,实现了两点定位,使两个定子冲片之间无法出现相对转动,从而避免了分块冲片在工作过程中可能会出现的分片现象,提升了定子整体的稳定性。
进一步地,第一连接件和第一配合件在轴线方向的中心线共线,且第一连接件与第一配合件相适配。从而在多个分块冲片沿定子的轴线方向层叠设置的情况下,分块冲片上的第一连接件可沿轴线方向插入相邻分块冲片的第一配合件中,以如此的连接方式实现多个层叠设置的分块冲片的相互连接。
进一步地,第二连接件和第二配合件在轴线方向的中心线共线,且第二连接件与第二配合件相适配。与第一连接件和第一配合件的连接方式相同,通过第二连接件和第二配合件的连接配合,可进一步对层叠设置的分块冲片进行连接定位,提高定子整体的稳定性。进一步地,对第一连接件的设置位置进行限定。第一连接件设置于轭部,第一连接件的中心到定子冲片的外边缘的距离小于第一连接件的中心到定子冲片内边缘的距离,也即,第一连接件的中心更加靠近定子冲片的外边缘一侧。
在分块冲片上开设第一连接件,第一连接件的位置分块冲片的表面出现形变,容易导致涡流的形成,进而带来涡流损耗。分块冲片的不同位置磁力线的密度不同,可以理解地,第一连接件所处的位置磁密越低,其所导致的涡流损耗越小,因此通过调整第一连接件设置的位置可以减小涡流损耗。具体地,电机中靠近定子外侧的磁密相对较低,即定子冲片靠近外边缘的位置磁密较低,因此,将第一连接件设置于更加靠定子冲片外边缘的一侧,可以有效降低由于设置第一连接件所导致的涡流损耗。
进一步地,由于涡流损耗是由于设置连接件而导致形成的涡流所造成的,可以理解地,连接件的数量越多,所导致的涡流损耗越大。因此,本申请减少了连接件的设置数量,仅设置了第一连接件和第二连接件,在保证定子稳定性的前提下,将连接口的数量减少,从而有效降低了涡流损耗。
通过将定子设计为由多个层叠设置的定子冲片组件,并将定子冲片的结构设计为包括多个可拼合连接的分块冲片,从而降低了定子的加工难度,降低生产成本,此种定子结构易于加工,可通过自动化生产线实现对定子的自动化生产,通过自动化生产进一步降低生产成本,提高生产效率。进一步地,将定子设计为分体式的拼接结构,还有利于提高电机的槽满率。通过在齿部的第一面和第二面上分别设置第一连接件和第一配合件,并在轭部的第一面和第二面上分别设置第二连接件和第二配合件,使得沿定子轴向相邻的两个分块冲片可通过第一连接件与第一配合件的配合,以及第二连接件与第二配合件的配合实现相互连接,进而使层叠设置的多个定子冲片能够相互连接。并且此种连接方式实现了多个定子冲片之间的两点定位,使两个定子冲片之间无法出现相对转动,从而避免了分块冲片在工作过程中可能会出现的分片现象,提升了定子整体的稳定性。通过使第一连接件的中心到定子冲片的外边缘的距离小于第一连接件的中心到定子冲片内边缘的距离,可以将第一连接件设置于磁密相抵较低的区域,从而有效降低由于设置第一连接件所导致的涡流损耗。
另外,根据本申请提供的上述技术方案中的定子,还可以具有如下附加技术特征:
在上述技术方案中,进一步地,第一连接件和第二连接件被构造为凸起件,第一配合件和第二配合件被构造为凹槽。在该技术方案中,第一连接件和第二连接件被构造为凸起件,第一配合件和第二配合件被构造为凹槽,从而使第一连接件与第一配合件之间、第二连接件与第二配合件之间通过凹凸配合的方式连接。具体地,凸起件与凹槽之间为过盈配合,凸起件在插入凹槽后,凹槽的内壁挤压凸起件的外壁,从而使凸起件与凹槽之间产生一定的相互作用力,防止相互连接的两个分块冲片分离。
其中,第一连接件和第一配合件、第二连接件和第二配合件可以为一体成型结构,具体地,将凸出件设置为中空结构,凸出件内中空的空腔构成凹槽。
通过将第一连接件和第二连接件构造为凸起件,将第一配合件和第二配合件构造为凹槽,从而使得第一连接件与第一配合件、第二连接件与第二配合件之间形成凹凸配合的结构,此种连接结构易于装配,连接可靠,提升了定子的装配效率。
在上述技术方案中,进一步地,定子冲片的外径为Φ1,轭部的厚度为L1,第一连接件的中心至定子冲片的中心的距离为H1,其中,H1满足:0.5×(Φ1-L1)<H1<Φ1/2。
需要说明的是,定子冲片是固定设置的,但定子冲片中可以设置转动的转子,该转子的转动中心可以理解为定子冲片的中心。
在该技术方案中,对第一连接件所设置的区域进行进一步限定,根据定子冲片的外径和轭部的厚度具体限定第一连接件的中心所处的位置区域。具体地,定子冲片的外径为Φ1,轭部的厚度为L1,第一连接件的中心至定子冲片的中心的距离为H1,其中,H1满足:0.5×(R1-L1)<H1<Φ1/2。
通过定子冲片的外径尺寸和轭部的厚度尺寸,限定第一连接件的中心所处的位置区域,从而能够更加精确地对第一连接件的位置进行限定,便于对第一连接件的加工操作。并且,将第一连接件的中心至定子冲片的中心的距离为H1限定为0.5×(Φ1-L1)<H1<Φ1/2,使第一连接件的中心靠近定子冲片的外边缘一侧,将第一连接件设置于磁密相抵较低的区域,从而有效降低由于设置第一连接件所导致的涡流损耗。
在上述技术方案中,进一步地,第二连接件的中心到齿部的齿根的距离小于第二连接件的中心到齿部的自由端的距离。在该技术方案中,第二连接件的中心到齿部的齿根的距离小于第二连接件的中心到齿部的自由端边缘的距离,也即,第二连接件的中心更加靠近齿部的齿根一侧。
在分块冲片上开设第二连接件,第二连接件的位置分块冲片发生形变,容易导致涡流的形成,进而带来涡流损耗。分块冲片的不同位置磁力线的密度不同,可以理解地,第二连接件所处的位置磁密越低,其所导致的涡流损耗越小,因此通过调整第二连接件设置的位置可以减小涡流损耗。具体地,电机中靠近齿部的齿根的位置磁密较低,因此,将第二连接件设置于更加靠齿部的齿根的一侧,可以有效降低由于设置第二连接件所导致的涡流损耗。
通过使第二连接件的中心到齿部的齿根的距离小于第二连接件的中心到齿部的自由端边缘的距离,可以将第二连接件设置于磁密相抵较低的区域,从而有效降低由于设置第二连接件所导致的涡流损耗。
在上述技术方案中,进一步地,定子冲片的外径为Φ1,轭部的厚度为L1,定子冲片的内径为Φ2,第二连接件的中心至定子冲片的中心的距离为H2,其中,H2满足:(Φ1+Φ2-2×L1)/4<H2<0.5×(Φ1-L1)。
在该技术方案中,对第二连接件所设置的区域进行进一步限定,根据定子冲片的外径、轭部的厚度以及定子冲片的内径具体限定第二连接件的中心所处的位置区域。具体地,定子冲片的外径为Φ1,轭部的厚度为L1,定子冲片的内径为Φ2,第二连接件的中心至定子冲片的中心的距离为H2,其中,H2满足:(Φ1+Φ2-2×L1)/4<H2<0.5×(Φ1-L1)。
通过定子冲片的外径尺寸、轭部的厚度尺寸以及定子冲片的内径尺寸,限定第二连接件的中心所处的位置区域,从而能够更加精确地对第二连接件的位置进行限定,便于对第二连接件的加工操作。并且,将第二连接件的中心至定子冲片的中心的距离为H2限定为(Φ1+Φ2-2×L1)/4<H2<0.5×(Φ1-L1),使第二连接件的中心靠近齿部的齿根一侧,将第二连接件设置于磁密相抵较低的区域,从而有效降低由于设置第二连接件所导致的涡流损耗。
在上述技术方案中,进一步地,定子还包括:第一连接部,设置于轭部沿定子冲片径向延伸的一边缘;第二连接部,设置于轭部沿定子冲片径向延伸的另一边缘,一个分块冲片的第一连接部能够与相邻的分块冲片的第二连接部可拼合地连接。
在该技术方案中,为了实现分块冲片之间的连接,在分块定子上还设置了第一连接部和第二连接部。具体地,第一连接部设置于轭部沿定子冲片径向延伸的一边缘,第二连接部设置于轭部沿定子冲片径向延伸的另一边缘,也即,第一连接部和第二连接部沿定子冲片的周向分别设于分块冲片的两侧。一个分块冲片的第一连接部与相邻的另一个分块冲片的第二连接部配合,从而实现两个分块冲片的连接。将多个分块冲片沿定子的周向设置,使任意相邻的两个分块冲片之间通过第一连接部和第二连接部配合,从而实现多个分块冲片之间的连接,从而合围构成定子冲片。
第一连接部和第二连接部之间也可以相互分离,在第一连接部和第二连接部分离的状态下,相邻的两个分块冲片相互分离,从而实现定子冲片的分解。可以理解地,定子在工作过程中,可能出现某一块分块冲片损伤的现象,此时可以通过将第一连接部和第二连接部分离,从而将破损的分块冲片从定子冲片中取出,只单独对破损的分块冲片进行更换维修,而无需将定子冲片整体更换,降低了维护成本。
通过在轭部沿定子冲片径向延伸的两个边缘上分别设置第一连接部和第二连接部,从而使多个分块冲片中任意相连的两个分块冲片相互连接,进而合围构成定子冲片。而第一连接部和第二连接部之间既可以相互连接,也可相互分离,实现了分块之间的可拼合连接,易于对定子中的分块冲片进行单独拆分,使产品更加易于维修,降低了产品维护成本。
在上述任一技术方案中,进一步地,第一连接部被构造为凸出件,第二连接部被构造为与凸出件适配的凹槽。
在该技术方案中,第一连接部被构造为凸出件,第二连接部被构造为凹槽,也即,第一连接部与第二连接部之间为凹凸配合的结构,凹槽与凸出相适配,实现第一连接部与第二连接部的连接配合。
通过将第一连接部设置为凸出件,将第二连接部设置为与凸出件相配合的凹槽,使第一连接部与第二连接部之间形成了凹凸配合的结构,提升了连接可靠性,降低了加工难度。
在上述任一技术方案中,进一步地,轭部包括沿定子冲片的周向延伸的内轮廓段,内轮廓段包括相连接第一轮廓段和第二轮廓段,第一轮廓段的一端与齿部的齿根连接,第一轮廓段的另一端与第二轮廓段连接;其中,第一轮廓段为直线段,第二轮廓段为弧线段。
在该技术方案中,轭部朝向定子的内侧设有沿定子冲片的周向延伸的内轮廓段,具体地,内轮廓段起始于齿部的齿根,终止于轭部沿定子冲片径向延伸的边,分块冲片在齿部的两侧分别设有内轮廓段。
具体地,内轮廓段包括第一轮廓段和第二轮廓段,第一轮廓段与第二轮廓段相连。其中,第一轮廓段的一端与齿部的齿根连接,第一轮廓段的另一端与第二轮廓段连接,第二轮廓段的一端与第一轮廓段连接,第二轮廓段的另一端与轭部沿定子冲片径向延伸的边连接。第一轮廓段与第二轮廓段的形状不同,具体地,第一轮廓段为直线段,第二轮廓段为弧线段。
通过将内轮廓段设置为由直线段的第一轮廓段和弧线段的第二轮廓段构成的轮廓,有利于对轭部的尺寸进行限制,避免磁密饱和。
在上述任一技术方案中,进一步地,定子能够与转子配合工作;第一轮廓段的长度为L2,第二轮廓段的长度为L3,转子的极对数为P,其中,L2、L3和P的关系满足:0.4≤(L2/L3)/P≤1.9。
在该技术方案中,当第二轮廓段的长度过大时,第一轮廓段的长度较小,此时定子槽的空间会减小。当第二轮廓段的长度过小时,第一轮廓段的长度较大,此时轭部会出现宽度较小的位置。因此需要调整第一轮廓段和第二轮廓段的长度比例,在保证定子槽空间的基础上,避免轭部出现宽度较小的位置。另外,第一轮廓段和第二轮廓段的比例还会影响磁密饱和度,因此将第一轮廓段和第二轮廓段的比例以及转子的极对数相结合,限定0.4≤(L2/L3)/P≤1.9,避免发生磁密饱和的问题。
在上述任一技术方案中,进一步地,定子冲片的外径为Φ1,定子冲片的内径为Φ2,Φ1和Φ2的关系满足:0.57≥Φ2/Φ1≥0.5。
在该技术方案中,对定子冲片的外径与内径之间的关系进行进一步限定。可以理解地,定子冲片的内径与定子冲片的外径之间的比值对电机的性能会产生一定影响,具体地,对电机的散热、磁通密度以及整体重量都会产生影响,为了平衡电机的各个参数,使电机具有较高的性价比,将定子冲片的内径与定子冲片的外径之间的比值限定在一定的范围内。
具体地,定子冲片的外径为Φ1,定子冲片的内径为Φ2,Φ1和Φ2的关系满足:0.57≥Φ2/Φ1≥0.5。
通过对定子冲片的内径与定子冲片的外径之间的比值范围进行限定,使定子冲片的内径与定子冲片的外径之间的比值大于等于0.5,小于等于0.57,从而使电机的各个参数能够达到理想范围,使电机具有较高的性价比。
在上述任一技术方案中,进一步地,定子还包括:避让缺口,设置于齿部用于朝向转子的表面,避让缺口与齿部的第一齿靴的距离小于避让缺口与齿部的第二齿靴的距离;其中,沿转子的转动方向,转子依次经过第一齿靴和第二齿靴。
在该技术方案中,定子还包括避让缺口,避让缺口设置于齿部用于朝向转子的表面。齿部包括第一齿靴和第二齿靴,沿转子的转动方向,转子依次经过第一齿靴和第二齿靴。避让缺口与第一齿靴的距离小于避让缺口与第二齿靴之间的距离,即避让缺口靠近第一齿靴一侧。
通过在齿部朝向转子的表面上设置避让缺口,从而可以在定子与转子装配的过程中,通过避让缺口避让转子上的凸出件,避免装配干涉。
本申请的第二方面提出了一种电机,电机包括:定子组件,定子组件包括如上述任一可能设计中所提供的定子和绕设在定子上的绕组;转子,设置在定子内。
本申请提供的电机,包括定子组件,定子组件包括定子、转子以及绕设在定子上的绕组。
其中,定子内部设有定子槽,转子设置于定子槽中,具体地,定子与转子通轴设置,转子可相对于定子转动。进一步地,定子上还设有绕组,具体地,绕组设置于定子齿上。定子包括层叠设置的定子冲片,定子冲片上设有多个齿部,多个定子冲片的齿部层叠设置,构成了多个定子齿。定子齿设置于定子的内侧,朝向转子设置。绕组绕设在定子齿上,绕组用于在通电状态下产生磁感线,转子在相对于定子转动过程中,即相当于相对于绕组转动,相对绕组转动的转子切割磁感线,产生驱动转子转动的力,进而实现电机的运行。
具体地,绕组可以为铝线,铝线具有导电效率高,发热量低、密度小、成本低廉等优点,采用铝线作为绕组,既可以保证电机的性能满足使用要求,又能够降低产品成本。
进一步地,转子的外轮廓可以为圆形。可以理解地,在电机工作过程中,转子为转动的状态,将转子的外轮廓设置为圆形,可以有效降低转子在旋转过程中所产生的风磨损耗,提高电机的工作效率。
本申请提出的电机因包括如上述任一可能设计中的定子,因此电机具有上述任一可能设计中所提供的定子的全部有益效果。
在一种可能的设计中,电机还包括:多个磁通导槽,沿电机的轴向贯通设置于转子。
在该设计中,转子上还设置有多个磁通导槽。具体地,转子由多个转子冲片层叠设置而成,任一转子冲片上设有多个磁通导槽,磁通导槽沿电机的轴向贯通分布于转子冲片,即沿电机的轴向贯通分布于转子冲片。可以理解地,在电机运行过程中,会产生径向的电磁力波,电磁力波会导致噪音增大。为了改善电机的噪音问题,沿电机的轴向在转子上贯通设置多个磁通导槽,从而可以削减电机最低阶次径向电磁力波,进而降低由径向电磁力波所导致的噪音。
通过在转子上设置多个磁通导槽,并使磁通导槽沿电机的轴向贯通分布于转子,可以削减电机最低阶次径向电磁力波,进而降低由径向电磁力波所导致的噪音。
在上述任一技术方案中,进一步地,电机的额定转矩为T1,定子冲片的内径为Φ2,转子的单位体积转矩为T2,其中,T1、Φ2和T2之间满足:5.18×10 -7≤T1×Φ1 -3×T2 -1≤1.17×10 -6,5kN•m•m -3≤T2≤45kN•m•m -3
在该技术方案中,对电机的额定转矩、定子冲片的内径以及转子的单位体积转矩三者之间组合变量的范围进行限定。可以理解地,电机的额定转矩、定子冲片的内径以及转子的单位体积转矩三者之间组合变量对电机的输出转矩产生影响,通过对该组合变量的范围进行限定,可以使电机的输出转矩满足电机所设置的设备的需求。
具体地,电机的额定转矩为T1,定子冲片的内径为Φ2,转子的单位体积转矩为T2,其中,T1、Φ2和T2之间满足:
5.18×10 -7≤T1×Φ2 -3×T2 -1≤1.17×10 -6
5kN•m•m -3≤T2≤45kN•m•m -3
通过限定电机的额定转矩、定子冲片的内径以及转子的单位体积转矩三者之间组合变量大于等于5.18×10 -7,且小于等于1.17×10 -6,以及限定转子的单位体积转矩大于等于5kN•m•m -3,且小于等于45kN•m•m -3,可以使电机的输出转矩满足电机所设置的设备的需求。
本申请的第三方面提出了一种压缩机,包括如本申请第二方面提出的电机;和压缩部件,电机与压缩部件相连。
本申请提出的压缩机,包括电机和压缩部件,其中压缩部件与电机相连,电机为压缩部件提供动力,以使压缩部件运行。
本申请提出的压缩机因包括本申请第二方面提出的电机,因此压缩机具有本申请第二方面所提供的电机的全部有益效果。
本申请的第四方面提出了一种电器设备,包括:设备主体;和如本申请第四方面提出的压缩机,压缩机与设备主体相连。
本申请提出的电器设备包括设备主体和压缩机,其中压缩机与设备主体相连,在电器设备运行时,压缩机与设备主体共同配合运行以使电器设备正常运行。
本申请提出的电器设备因包括本申请第三方面提出的压缩机,因此电器设备具有本申请第三方面所提供的压缩机的全部有益效果。
有益效果
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的一个实施例的定子冲片的结构示意图;
图2示出了本申请的一个实施例的分块冲片的结构示意图;
图3示出了本申请的一个实施例的转子冲片的结构示意图;
图4示出了本申请的另一个实施例的压缩机的结构示意图。
其中,图1至图4中附图标记与部件名称之间的对应关系为:
100定子,110分块冲片,111齿部,1111第一齿靴,1112第二齿靴,1113避让缺口,112轭部,113第一连接件,114第二连接件,115第一连接部,116第二连接部,117第一轮廓段,118第二轮廓段,120定子冲片,200转子,210转子冲片,300压缩机,310压缩部件,311气缸,312活塞,320曲轴,330主轴承,340副轴承。
本发明的实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图4描述根据本申请的一些实施例提供的定子100、电机、压缩机300和电器设备。
实施例一:
结合图1和图2所示,本申请第一方面的实施例提出了一种定子100,包括:多个层叠设置的定子冲片120,定子冲片120包括多个可拼合连接的分块冲片110;多个分块冲片110中的任一分块冲片110包括:齿部111,齿部111的第一面上设置有第一连接件113,齿部111的第二面上设置有第一配合件;轭部112,与齿部111连接,轭部112的第一面上设置有第二连接件114,轭部112的第二面上设置有第二配合件;其中,一个分块冲片110的第一连接件113和第二连接件114,能够分别插入在定子100的轴向方向相邻的另一分块冲片110的第一配合件和第二配合件,以将多个分块冲片110在轴向方向上连接;第一连接件113的中心到定子冲片120的外边缘的距离小于第一连接件113的中心到定子冲片120内边缘的距离。
本申请提供的定子100为分体结构,具体地,定子100包括多个定子冲片120,多个定子冲片120层叠设置,各个定子冲片120的形状以及结构相同,将多个定子冲片120层叠设置,使多个定子冲片120共同构成了定子100的主体。相对于将定子100设计为整体结构,通过多个定子冲片120构成的分体式定子100的加工难度降低,也更加易于维修更换。
为了进一步降低定子100铁芯的加工难度,以及提高电机的槽满率,将定子冲片120也设置为分体式结构。定子冲片120包括多个分块冲片110,多个分块冲片110之间可拼合地连接。具体地,多个分块冲片110相互之间首尾连接,沿周向拼接共同构成了定子冲片120。相邻的两个分块冲片110之间可设置连接装置,将两个分块冲片110可拼合地连接,也可在分块冲片110端部设置连接结构,以实现两个分块冲片110之间的连接分离。通过将分块冲片110设置为可相互拼合连接的结构,从而在加工定子冲片120时,仅加工多个分块冲片110即可,再将多个分块冲片110零件装配成定子冲片120,相较于加工一个完整的定子冲片120,加工分块冲片110零件的难度降低,从而降低了生产成本,此种定子100结构简单,可通过自动化生产线实现对定子100的自动化生产,并且,将定子100设计为分体式的拼接结构,有利于提高电机的槽满率。
各个分块定子冲片120的形状以及结构相同,以多个分块定子冲片120中的一个为例进行说明。
分块定子冲片120包括齿部111和轭部112,其中,轭部112与齿部111相连。在多个分块定子100拼接成定子冲片120的状态下,轭部112设置于靠近定子冲片120外边缘的一侧,齿部111设置于靠近定子冲片120内边缘的一侧。
进一步地,为了实现多个层叠设置的分块冲片110之间的连接,在齿部111的第一面上设置有第一连接件113,在齿部111的第二面上设置有第一配合件。具体地,齿部111的第一面和齿部111的第二面相互背离,在多个分块冲片110层叠放置的情况下,一个分块冲片110的第一面和与其相邻的另一个分块冲片110的第二面相对。进一步地,第一连接件113与第一配合件相适配,一个分块冲片110的第一连接件113能够插入在定子100的轴向方向相邻的另一个分块冲片110的第一配合件中,从而实现沿定子100轴向方向相邻的两个分块冲片110的连接,进而实现层叠设置的定子冲片120的连接。
进一步地,为了进一步提高多个层叠设置的分块冲片110之间连接的牢固性,防止分块冲片110在工作过程中出现分片现象,在轭部112的第一面上还设置了第二连接件114,在轭部112的第二面上还设置了第二配合件,从而通过设置于轭部112上的第二连接件114和第二配合件的相互连接进一步对层叠设置的定子冲片120进行限位,使定子100保持稳定连接状态。
可以理解地,相对于一点固定的方式,本申请通过在分块冲片110上设置两个固定点,即设置于齿部111上的第一连接件113和第一配合件以及设置于轭部112上的第二连接件114和第二配合件,提高了定子冲片120相互之间连接的可靠性及稳定性。层叠设置的定子冲片120在第一连接件113与第一配合件、第二连接件114与第二配合件的配合的作用下,实现了两点定位,使两个定子冲片120之间无法出现相对转动,从而避免了分块冲片110在工作过程中可能会出现的分片现象,提升了定子100整体的稳定性。
进一步地,第一连接件113和第一配合件在轴线方向的中心线共线,且第一连接件113与第一配合件相适配。从而在多个分块冲片110沿定子100的轴线方向层叠设置的情况下,分块冲片110上的第一连接件113可沿轴线方向插入相邻分块冲片110的第一配合件中,以如此的连接方式实现多个层叠设置的分块冲片110的相互连接。
进一步地,第二连接件114和第二配合件在轴线方向的中心线共线,且第二连接件114与第二配合件相适配。与第一连接件113和第一配合件的连接方式相同,通过第二连接件114和第二配合件的连接配合,可进一步对层叠设置的分块冲片110进行连接定位,提高定子100整体的稳定性。
进一步地,对第一连接件113的设置位置进行限定。第一连接件113设置于轭部112,第一连接件113的中心到定子冲片120的外边缘的距离小于第一连接件113的中心到定子冲片120内边缘的距离,也即,第一连接件113的中心更加靠近定子冲片120的外边缘一侧。
在分块冲片110上开设第一连接件113,第一连接件113的位置分块冲片110的表面出现形变,容易导致涡流的形成,进而带来涡流损耗。分块冲片110的不同位置磁力线的密度不同,可以理解地,第一连接件113所处的位置磁密越低,其所导致的涡流损耗越小,因此通过调整第一连接件113设置的位置可以减小涡流损耗。具体地,电机中靠近定子100外侧的磁密相对较低,即定子冲片120靠近外边缘的位置磁密较低,因此,将第一连接件113设置于更加靠定子冲片120外边缘的一侧,可以有效降低由于设置第一连接件113所导致的涡流损耗。
进一步地,由于涡流损耗是由于设置连接件而导致形成的涡流所造成的,可以理解地,连接件的数量越多,所导致的涡流损耗越大。因此,本申请减少了连接件的设置数量,仅设置了第一连接件113和第二连接件114,在保证定子100稳定性的前提下,将连接口的数量减少,从而有效降低了涡流损耗。
通过将定子100设计为由多个层叠设置的定子冲片120组件,并将定子冲片120的结构设计为包括多个可拼合连接的分块冲片110,从而降低了定子100的加工难度,降低生产成本,此种定子100结构易于加工,可通过自动化生产线实现对定子100的自动化生产,通过自动化生产进一步降低生产成本,提高生产效率。进一步地,将定子100设计为分体式的拼接结构,还有利于提高电机的槽满率。通过在齿部111的第一面和第二面上分别设置第一连接件113和第一配合件,并在轭部112的第一面和第二面上分别设置第二连接件114和第二配合件,使得沿定子100轴向相邻的两个分块冲片110可通过第一连接件113与第一配合件的配合,以及第二连接件114与第二配合件的配合实现相互连接,进而使层叠设置的多个定子冲片120能够相互连接。并且此种连接方式实现了多个定子冲片120之间的两点定位,使两个定子冲片120之间无法出现相对转动,从而避免了分块冲片110在工作过程中可能会出现的分片现象,提升了定子100整体的稳定性。通过使第一连接件113的中心到定子冲片120的外边缘的距离小于第一连接件113的中心到定子冲片120内边缘的距离,可以将第一连接件113设置于磁密相抵较低的区域,从而有效降低由于设置第一连接件113所导致的涡流损耗。
实施例二:
结合图2所示,在实施例一的基础上的一个具体实施例中,第一连接件113和第二连接件114被构造为凸起件,第一配合件和第二配合件被构造为凹槽。
在该实施例中,第一连接件113和第二连接件114被构造为凸起件,第一配合件和第二配合件被构造为凹槽,从而使第一连接件113与第一配合件之间、第二连接件114与第二配合件之间通过凹凸配合的方式连接。具体地,凸起件与凹槽之间为过盈配合,凸起件在插入凹槽后,凹槽的内壁挤压凸起件的外壁,从而使凸起件与凹槽之间产生一定的相互作用力,防止相互连接的两个分块冲片110分离。
其中,第一连接件113和第一配合件、第二连接件114和第二配合件可以为一体成型结构,具体地,将凸出件设置为中空结构,凸出件内中空的空腔构成凹槽。
通过将第一连接件113和第二连接件114构造为凸起件,将第一配合件和第二配合件构造为凹槽,从而使得第一连接件113与第一配合件、第二连接件114与第二配合件之间形成凹凸配合的结构,此种连接结构易于装配,连接可靠,提升了定子100的装配效率。
进一步地,定子冲片120的外径为Φ1,轭部112的厚度为L1,第一连接件113的中心至定子冲片120的中心的距离为H1,其中,H1满足:0.5×(Φ1-L1)<H1<Φ1/2。
在该实施例中,对第一连接件113所设置的区域进行进一步限定,根据定子冲片120的外径和轭部112的厚度具体限定第一连接件113的中心所处的位置区域。具体地,定子冲片120的外径为Φ1,轭部112的厚度为L1,第一连接件113的中心至定子冲片120的中心的距离为H1,其中,H1满足:0.5×(Φ1-L1)<H1<Φ1/2。
通过定子冲片120的外径尺寸和轭部112的厚度尺寸,限定第一连接件113的中心所处的位置区域,从而能够更加精确地对第一连接件113的位置进行限定,便于对第一连接件113的加工操作。并且,将第一连接件113的中心至定子冲片120的中心的距离为H1限定为0.5×(Φ1-L1)<H1<Φ1/2,使第一连接件113的中心靠近定子冲片120的外边缘一侧,将第一连接件113设置于磁密相抵较低的区域,从而有效降低由于设置第一连接件113所导致的涡流损耗。
实施例三:
如图2所示,在实施例一的基础上的一个具体实施例中第二连接件114的中心到齿部111的齿根的距离小于第二连接件114的中心到齿部111的自由端边缘的距离。
在该实施例中,第二连接件114的中心到齿部111的齿根的距离小于第二连接件114的中心到齿部111的自由端边缘的距离,也即,第二连接件114的中心更加靠近齿部111的齿根一侧。
在分块冲片110上开设第二连接件114,第二连接件114的位置分块冲片110发生形变,容易导致涡流的形成,进而带来涡流损耗。分块冲片110的不同位置磁力线的密度不同,可以理解地,第二连接件114所处的位置磁密越低,其所导致的涡流损耗越小,因此通过调整第二连接件114设置的位置可以减小涡流损耗。具体地,电机中靠近齿部111的齿根的位置磁密较低,因此,将第二连接件114设置于更加靠齿部111的齿根的一侧,可以有效降低由于设置第二连接件114所导致的涡流损耗。
通过使第二连接件114的中心到齿部111的齿根的距离小于第二连接件114的中心到齿部111的自由端边缘的距离,可以将第二连接件114设置于磁密相抵较低的区域,从而有效降低由于设置第二连接件114所导致的涡流损耗。
进一步地,定子冲片120的外径为Φ1,轭部112的厚度为L1,定子冲片120的内径为Φ2,第二连接件114的中心至定子冲片120的中心的距离为H2,其中,H2满足:(Φ1+Φ2-2×L1)/4<H2<0.5×(Φ1-L1)。
在该实施例中,对第二连接件114所设置的区域进行进一步限定,根据定子冲片120的外径、轭部112的厚度以及定子冲片120的内径具体限定第二连接件114的中心所处的位置区域。具体地,定子冲片120的外径为R1,轭部112的厚度为L1,定子冲片120的内径为R2,第二连接件114的中心至定子冲片120的中心的距离为H2,其中,H2满足:
(Φ1+Φ2-2×L1)/4<H2<0.5×(Φ1-L1)。
通过定子冲片120的外径尺寸、轭部112的厚度尺寸以及定子冲片120的内径尺寸,限定第二连接件114的中心所处的位置区域,从而能够更加精确地对第二连接件114的位置进行限定,便于对第二连接件114的加工操作。并且,将第二连接件114的中心至定子冲片120的中心的距离为H2限定为(Φ1+Φ2-2×L1)/4<H2<0.5×(Φ1-L1),使第二连接件114的中心靠近齿部111的齿根一侧,将第二连接件114设置于磁密相抵较低的区域,从而有效降低由于设置第二连接件114所导致的涡流损耗。
实施例四:
如图2所示,在上述实施例的基础上的一个具体实施例中,定子100还包括:第一连接部115,设置于轭部112沿定子冲片120径向延伸的一边缘;第二连接部116,设置于轭部112沿定子冲片120径向延伸的另一边缘,一个分块冲片110的第一连接部115能够与相邻的分块冲片110的第二连接部116可拼合地连接。
在该实施例中,为了实现分块冲片110之间的连接,在分块定子100上还设置了第一连接部115和第二连接部116。具体地,第一连接部115设置于轭部112沿定子冲片120径向延伸的一边缘,第二连接部116设置于轭部112沿定子冲片120径向延伸的另一边缘,也即,第一连接部115和第二连接部116沿定子冲片120的周向分别设于分块冲片110的两侧。一个分块冲片110的第一连接部115与相邻的另一个分块冲片110的第二连接部116配合,从而实现两个分块冲片110的连接。将多个分块冲片110沿定子100的周向设置,使任意相邻的两个分块冲片110之间通过第一连接部115和第二连接部116配合,从而实现多个分块冲片110之间的连接,从而合围构成定子冲片120。
第一连接部115和第二连接部116之间也可以相互分离,在第一连接部115和第二连接部116分离的状态下,相邻的两个分块冲片110相互分离,从而实现定子冲片120的分解。可以理解地,定子100在工作过程中,可能出现某一块分块冲片110损伤的现象,此时可以通过将第一连接部115和第二连接部116分离,从而将破损的分块冲片110从定子冲片120中取出,只单独对破损的分块冲片110进行更换维修,而无需将定子冲片120整体更换,降低了维护成本。
通过在轭部112沿定子冲片120径向延伸的两个边缘上分别设置第一连接部115和第二连接部116,从而使多个分块冲片110中任意相连的两个分块冲片110相互连接,进而合围构成定子冲片120。而第一连接部115和第二连接部116之间既可以相互连接,也可相互分离,实现了分块之间的可拼合连接,易于对定子100中的分块冲片110进行单独拆分,使产品更加易于维修,降低了产品维护成本。进一步地,第一连接部115被构造为凸出件,第二连接部116被构造为与凸出件适配的凹槽。
在该实施例中,第一连接部115被构造为凸出件,第二连接部116被构造为凹槽,也即,第一连接部115与第二连接部116之间为凹凸配合的结构,凹槽与凸出相适配,实现第一连接部115与第二连接部116的连接配合。
通过将第一连接部115设置为凸出件,将第二连接部116设置为与凸出件相配合的凹槽,使第一连接部115与第二连接部116之间形成了凹凸配合的结构,提升了连接可靠性,降低了加工难度。
实施例五:
如图2所示,在上述实施例的基础上的一个具体实施例中,轭部112包括沿定子冲片120的周向延伸的内轮廓段,内轮廓段包括相连接第一轮廓段117和第二轮廓段118,第一轮廓段117的一端与齿部111的齿根连接,第一轮廓段117的另一端与第二轮廓段118连接;其中,第一轮廓段117为直线段,第二轮廓段118为弧线段。
在该实施例中,轭部112朝向定子100的内侧设有沿定子冲片120的周向延伸的内轮廓段,具体地,内轮廓段起始于齿部111的齿根,终止于轭部112沿定子冲片120径向延伸的边,分块冲片110在齿部111的两侧分别设有内轮廓段。
具体地,内轮廓段包括第一轮廓段117和第二轮廓段118,第一轮廓段117与第二轮廓段118相连。其中,第一轮廓段117的一端与齿部111的齿根连接,第一轮廓段117的另一端与第二轮廓段118连接,第二轮廓段118的一端与第一轮廓段117连接,第二轮廓段118的另一端与轭部112沿定子冲片120径向延伸的边连接。第一轮廓段117与第二轮廓段118的形状不同,具体地,第一轮廓段117为直线段,第二轮廓段118为弧线段。
通过将内轮廓段设置为由直线段的第一轮廓段117和弧线段的第二轮廓段118构成的轮廓,有利于对轭部112的尺寸进行限制,避免磁密饱和。
进一步地,定子100能够与转子200配合工作;第一轮廓段117的长度为L2,第二轮廓段118的长度为L3,转子200的极对数为P,其中,L2、L3和P的关系满足:0.4≤(L2/L3)/P≤1.9。
在该实施例中,当第二轮廓段118的长度过大时,第一轮廓段117的长度较小,此时定子槽的空间会减小。当第二轮廓段118的长度过小时,第一轮廓段117的长度较大,此时轭部112会出现宽度较小的位置。因此需要调整第一轮廓段117和第二轮廓段118的长度比例,在保证定子槽空间的基础上,避免轭部112出现宽度较小的位置。另外,第一轮廓段117和第二轮廓段118的比例还会影响磁密饱和度,因此将第一轮廓段117和第二轮廓段118的比例以及转子的极对数相结合,限定0.4≤(L2/L3)/P≤1.9,避免发生磁密饱和的问题。
实施例六:
在上述实施例的基础上的一个具体实施例中,定子冲片120的外径为Φ1,定子冲片120的内径为Φ2,Φ1和Φ2的关系满足:0.57≥Φ2/Φ1≥0.5。
在该实施例中,对定子冲片120的外径与内径之间的关系进行进一步限定。可以理解地,定子冲片120的内径与定子冲片120的外径之间的比值对电机的性能会产生一定影响,具体地,对电机的散热、磁通密度以及整体重量都会产生影响,为了平衡电机的各个参数,使电机具有较高的性价比,将定子冲片120的内径与定子冲片120的外径之间的比值限定在一定的范围内。
具体地,定子冲片120的外径为Φ1,定子冲片120的内径为Φ2,L2和L3的关系满足:0.57≥Φ2/Φ1≥0.5。
定子冲片120的外径可以为100mm至102mm之间,定子冲片120的内径可以为53mm至55mm之间。具体地,定子冲片120的外径可以为101.15mm,定子冲片120的内径可以为53.3mm。
通过对定子冲片120的内径与定子冲片120的外径之间的比值范围进行限定,使定子冲片120的内径与定子冲片120的外径之间的比值大于等于0.5,小于等于0.57,从而使电机的各个参数能够达到理想范围,使电机具有较高的性价比。
实施例七:
如图2所示,在上述实施例的基础上的一个具体实施例中,定子100还包括:避让缺口1113,设置于齿部111用于朝向转子200的表面,避让缺口1113与齿部111的第一齿靴1111的距离小于避让缺口1113与齿部111的第二齿靴1112的距离;其中,沿转子200的转动方向,转子200依次经过第一齿靴1111和第二齿靴1112。
在该技术方案中,定子100还包括避让缺口1113,避让缺口1113设置于齿部111用于朝向转子200的表面。齿部111包括第一齿靴1111和第二齿靴1112,沿转子200的转动方向,转子200依次经过第一齿靴1111和第二齿靴1112。避让缺口1113与第一齿靴1111的距离小于避让缺口1113与第二齿靴1112之间的距离,即避让缺口1113靠近第一齿靴1111一侧。
通过在齿部111朝向转子200的表面上设置避让缺口1113,从而可以在定子100与转子200装配的过程中,通过避让缺口1113避让转子200上的凸出件,避免装配干涉。
实施例八:
本申请的第二方面提出了一种电机,电机包括:定子100组件,定子100组件包括如上述任一可能设计中所提供的定子100和绕设在定子100上的绕组;转子200,设置在定子100内。
本申请提供的电机,包括定子100组件,定子100组件包括定子100、转子200以及绕设在定子100上的绕组。
其中,定子100内部设有定子100槽,转子200设置于定子100槽中,具体地,定子100与转子200通轴设置,转子200可相对于定子100转动。进一步地,定子100上还设有绕组,具体地,绕组设置于定子100齿上。定子100包括层叠设置的定子冲片120,定子冲片120上设有多个齿部111,多个定子冲片120的齿部111层叠设置,构成了多个定子100齿。定子100齿设置于定子100的内侧,朝向转子200设置。绕组绕设在定子100齿上,绕组用于在通电状态下产生磁感线,转子200在相对于定子100转动过程中,即相当于相对于绕组转动,相对绕组转动的转子200切割磁感线,产生驱动转子200转动的力,进而实现电机的运行。
具体地,绕组可以为铝线,铝线具有导电效率高,发热量低、密度小、成本低廉等优点,采用铝线作为绕组,既可以保证电机的性能满足使用要求,又能够降低产品成本。
进一步地,转子200的外轮廓可以为圆形。可以理解地,在电机工作过程中,转子200为转动的状态,将转子200的外轮廓设置为圆形,可以有效降低转子200在旋转过程中所产生的风磨损耗,提高电机的工作效率。
本申请提出的电机因包括如上述任一可能设计中的定子100,因此电机具有上述任一可能设计中所提供的定子100的全部有益效果。
实施例九:
在上述实施例的基础上的一个具体实施例中,电机还包括:多个磁通导槽,沿电机的轴向贯通设置于转子2。
如图3所示,转子由多个转子冲片210层叠设置而成,任一转子冲片210上设有多个磁通导槽,磁通导槽沿电机的轴向贯通分布于转子冲片210,即沿电机的轴向贯通分布于转子冲片210。可以理解地,在电机运行过程中,会产生径向的电磁力波,电磁力波会导致噪音增大。为了改善电机的噪音问题,沿电机的轴向在转子上贯通设置多个磁通导槽,从而可以削减电机最低阶次径向电磁力波,进而降低由径向电磁力波所导致的噪音。
通过在转子上设置多个磁通导槽,并使磁通导槽沿电机的轴向贯通分布于转子,可以削减电机最低阶次径向电磁力波,进而降低由径向电磁力波所导致的噪音。
实施例十:
在上述实施例的基础上的一个具体实施例中,电机的额定转矩为T1,定子冲片120的内径为Φ2,转子200的单位体积转矩为T2,其中,T1、Φ2和T2之间满足:
5.18×10 -7≤T1×Φ2 -3×T2 -1≤1.17×10 -6
5kN•m•m -3≤T2≤45kN•m•m -3
在该实施例中,对电机的额定转矩、定子冲片120的内径以及转子200的单位体积转矩三者之间组合变量的范围进行限定。可以理解地,电机的额定转矩、定子冲片120的内径以及转子200的单位体积转矩三者之间组合变量对电机的输出转矩产生影响,通过对该组合变量的范围进行限定,可以使电机的输出转矩满足电机所设置的设备的需求。
具体地,电机的额定转矩为T1,定子冲片120的内径为Φ2,转子200的单位体积转矩为T2,其中,T1、Φ2和T2之间满足:
5.18×10 -7≤T1×Φ2 -3×T2 -1≤1.17×10 -6
5kN•m•m -3≤T2≤45kN•m•m -3
通过限定电机的额定转矩、定子冲片120的内径以及转子200的单位体积转矩三者之间组合变量大于等于5.18×10 -7,且小于等于1.17×10 -6,以及限定转子200的单位体积转矩大于等于5kN•m•m -3,且小于等于  45kN•m•m -3,可以使电机的输出转矩满足电机所设置的设备的需求。
实施例十一:
如图4所示,本申请的第三方面提出了一种压缩机300,包括如本申请第二方面提出的电机;和压缩部件310,电机与压缩部件310相连。
本申请提出的压缩机300,包括电机和压缩部件310,其中压缩部件310与电机相连,电机为压缩部件310提供动力,以使压缩部件310运行。
具体地,压缩部件310包括气缸311和活塞312,为了使电机能够与压缩部件310相连,并驱动压缩部件310运行,在压缩机300中还设置了一些连接件,具体包括曲轴320、主轴承330和副轴承340,电机通过曲轴320与活塞312相连,以驱动活塞312在气缸311中移动,主轴承330和副轴承340设置于曲轴320外侧,对曲轴320起到支撑限位作用,使曲轴320可以正常转动。
本申请提出的压缩机300因包括本申请第二方面提出的电机,因此压缩机300具有本申请第二方面所提供的电机的全部有益效果。
实施例十二:
本申请的第四方面提出了一种电器设备,包括:设备主体;和如本申请第四方面提出的压缩机300,压缩机300与设备主体相连。
本申请提出的电器设备包括设备主体和压缩机300,其中压缩机300与设备主体相连,在电器设备运行时,压缩机300与设备主体共同配合运行以使电器设备正常运行。
本申请提出的电器设备因包括本申请第三方面提出的压缩机300,因此电器设备具有本申请第三方面所提供的压缩机300的全部有益效果。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种定子,其中,包括:
    多个层叠设置的定子冲片,所述定子冲片包括多个可拼合连接的分块冲片;
    所述多个分块冲片中的任一分块冲片包括:
    齿部,所述齿部的第一面上设置有第一连接件,所述齿部的第二面上设置有第一配合件;
    轭部,与所述齿部连接,所述轭部的第一面上设置有第二连接件所述轭部的第二面上设置有第二配合件;
    其中,一个所述分块冲片的所述第一连接件和所述第二连接件能够分别插入在定子的轴向方向相邻的另一所述分块冲片的第一配合件和第二配合件,以将多个所述分块冲片在轴向方向上连接;所述定子冲片的外径为Φ1,所述定子冲片的内径为Φ2,所述轭部的厚度为L1,所述第一连接件的中心至所述定子冲片的中心的距离为H1,其中,H1满足:0.5× (Φ1-L1)<H1<Φ1/2。
  2. 根据权利要求1所述的定子,其中,
    所述第二连接件的中心到所述齿部的齿根的距离小于所述第二连接件的中心到所述齿部的自由端的距离。
  3. 根据权利要求2所述的定子,其中,
    所述第二连接件的中心至所述定子冲片的中心的距离为H2,其中,H2满足:(Φ1+Φ2-2×L1) /4<H2<0.5×(Φ1-L1)。
  4. 根据权利要求1所述的定子,其中,
    所述第一连接件和所述第二连接件被构造为凸起件,所述第一配合件和所述第二配合件被构造为凹槽。
  5. 根据权利要求1至4中任一项所述的定子,其中,所述定子还包括:
    第一连接部,设置于所述轭部沿所述定子冲片径向延伸的一边缘;
    第二连接部,设置于所述轭部沿所述定子冲片径向延伸的另一边缘,一个所述分块冲片的所述第一连接部能够与相邻的所述分块冲片的所述第二连接部可拼合地连接。
  6. 根据权利要求5所述的定子,其中,
    所述第一连接部被构造为凸出件,所述第二连接部被构造为与所述凸出件适配的凹槽。
  7. 根据权利要求1至4中任一项所述的定子,其中,
    所述轭部包括沿所述定子冲片的周向延伸的内轮廓段,所述内轮廓段包括相连接第一轮廓段和第二轮廓段,所述第一轮廓段的一端与所述齿部的齿根连接,所述第一轮廓段的另一端与所述第二轮廓段连接;
    其中,所述第一轮廓段为直线段,所述第二轮廓段为弧线段。
  8. 根据权利要求7所述的定子,其中,
    所述定子能够与转子配合工作;
    所述第一轮廓段的长度为L2,所述第二轮廓段的长度为L3,所述转子的极对数为P,其中,L2、L3和P的关系满足:0.4≤(L2/L3)/P≤1.9。
  9. 根据权利要求1至4中任一项所述的定子,其中,
    Φ1和Φ2的关系满足:0.57≥Φ2/Φ1≥0.5。
  10. 根据权利要求1至4中任一项所述的定子,其中,所述定子还包括:
    避让缺口,设置于所述齿部用于朝向转子的表面,所述避让缺口与所述齿部的第一齿靴的距离小于所述避让缺口与所述齿部的第二齿靴的距离;
    其中,沿所述转子的转动方向,所述转子依次经过所述第一齿靴和所述第二齿靴。
  11. 一种电机,其中,所述电机包括:
    定子组件,所述定子组件包括如权利要求1至10中任一项所述的定子和绕设在所述定子上的绕组;
    转子,设置在所述定子内。
  12. 根据权利要求11所述的电机,其中,
    所述电机的额定转矩为T1,所述转子的单位体积转矩为T2,其中,T1、Φ2和T2之间满足:
    5.18×10 -7≤T1×Φ2 -3×T2 -1≤1.17×10 -6
    5kN•m•m -3≤T2≤45kN•m•m -3
  13. 一种压缩机,其中,包括:
    如权利要求11或12所述的电机;和
    压缩部件,所述电机与所述压缩部件相连。
  14. 一种电器设备,其中,包括:
    设备主体;和
    如权利要求13所述的压缩机,所述压缩机与所述设备主体相连。
PCT/CN2022/128062 2021-12-08 2022-10-27 定子、电机、压缩机和电器设备 WO2023103638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111494413.6A CN114069906B (zh) 2021-12-08 定子、电机、压缩机和电器设备
CN202111494413.6 2021-12-08

Publications (1)

Publication Number Publication Date
WO2023103638A1 true WO2023103638A1 (zh) 2023-06-15

Family

ID=80228942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128062 WO2023103638A1 (zh) 2021-12-08 2022-10-27 定子、电机、压缩机和电器设备

Country Status (1)

Country Link
WO (1) WO2023103638A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254086A (ja) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp 分割固定子鉄心の製造方法及び電動機
CN102893498A (zh) * 2010-06-02 2013-01-23 爱信精机株式会社 旋转电机
WO2015063871A1 (ja) * 2013-10-29 2015-05-07 三菱電機株式会社 永久磁石埋込型電動機、圧縮機、および冷凍空調装置
JP2018061319A (ja) * 2016-10-03 2018-04-12 新日鐵住金株式会社 ステータコアおよび回転電機
WO2018138864A1 (ja) * 2017-01-27 2018-08-02 三菱電機株式会社 固定子、電動機、圧縮機、および冷凍空調装置
CN109155544A (zh) * 2016-05-30 2019-01-04 三菱电机株式会社 定子、电动机、压缩机以及制冷空调装置
CN112564319A (zh) * 2020-11-30 2021-03-26 安徽美芝精密制造有限公司 定子冲片、定子铁芯、电机、压缩机和制冷设备
CN114069906A (zh) * 2021-12-08 2022-02-18 安徽美芝精密制造有限公司 定子、电机、压缩机和电器设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254086A (ja) * 2008-04-04 2009-10-29 Mitsubishi Electric Corp 分割固定子鉄心の製造方法及び電動機
CN102893498A (zh) * 2010-06-02 2013-01-23 爱信精机株式会社 旋转电机
WO2015063871A1 (ja) * 2013-10-29 2015-05-07 三菱電機株式会社 永久磁石埋込型電動機、圧縮機、および冷凍空調装置
CN109155544A (zh) * 2016-05-30 2019-01-04 三菱电机株式会社 定子、电动机、压缩机以及制冷空调装置
JP2018061319A (ja) * 2016-10-03 2018-04-12 新日鐵住金株式会社 ステータコアおよび回転電機
WO2018138864A1 (ja) * 2017-01-27 2018-08-02 三菱電機株式会社 固定子、電動機、圧縮機、および冷凍空調装置
CN112564319A (zh) * 2020-11-30 2021-03-26 安徽美芝精密制造有限公司 定子冲片、定子铁芯、电机、压缩机和制冷设备
CN114069906A (zh) * 2021-12-08 2022-02-18 安徽美芝精密制造有限公司 定子、电机、压缩机和电器设备

Also Published As

Publication number Publication date
CN114069906A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN113346644A (zh) 一种永磁电机
CN113346652A (zh) 一种永磁电机
WO2023103666A1 (zh) 定子、电机、压缩机和电器设备
WO2023103694A1 (zh) 定子、电机、压缩机和电器设备
WO2023103668A1 (zh) 定子、电机、压缩机和电器设备
WO2023087574A1 (zh) 电机骨架、定子组件、电机、压缩机和制冷设备
KR20150035511A (ko) 전기 모터 세그먼트화 스테이터를 위한 판상 세그먼트
WO2023103696A1 (zh) 电机、压缩机和电器设备
WO2023097916A1 (zh) 电机、压缩机和制冷设备
WO2023103638A1 (zh) 定子、电机、压缩机和电器设备
CN114069905B (zh) 定子、电机、压缩机和电器设备
CN114069906B (zh) 定子、电机、压缩机和电器设备
CN114629258A (zh) 定子铁芯、定子、电机、压缩机和电器设备
CN216356120U (zh) 定子、电机、压缩机和电器设备
CN216649339U (zh) 定子、电机、压缩机和电器设备
CN216290376U (zh) 电机、压缩机和电器设备
CN114079333B (zh) 电机、压缩机和电器设备
WO2023092888A1 (zh) 定子铁芯、定子、电机、压缩机和空调器
CN114069905A (zh) 定子、电机、压缩机和电器设备
CN110797993A (zh) 一种定子轭分段拼块式电机
CN219436722U (zh) 定子、电机、压缩机和制冷设备
CN219436721U (zh) 定子、电机、压缩机和制冷设备
WO2022110305A1 (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
CN219554688U (zh) 转子铁芯、转子、电机、压缩机和车辆
CN215911958U (zh) 一种电机转子、驱动电机和电动汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903062

Country of ref document: EP

Kind code of ref document: A1