WO2023097623A1 - 一种微透镜结构、其制作方法及显示装置 - Google Patents

一种微透镜结构、其制作方法及显示装置 Download PDF

Info

Publication number
WO2023097623A1
WO2023097623A1 PCT/CN2021/135156 CN2021135156W WO2023097623A1 WO 2023097623 A1 WO2023097623 A1 WO 2023097623A1 CN 2021135156 W CN2021135156 W CN 2021135156W WO 2023097623 A1 WO2023097623 A1 WO 2023097623A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
microlens
sub
microlenses
layer
Prior art date
Application number
PCT/CN2021/135156
Other languages
English (en)
French (fr)
Inventor
顾仁权
吴慧利
李士佩
徐胜
何伟
张立震
姚琪
张锋
郭康
袁广才
董学
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180003772.9A priority Critical patent/CN116547569A/zh
Priority to PCT/CN2021/135156 priority patent/WO2023097623A1/zh
Publication of WO2023097623A1 publication Critical patent/WO2023097623A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present disclosure relates to the technical field of 3D display, and in particular to a microlens structure, a manufacturing method thereof, and a display device.
  • Microlens has the function of refracting light and focusing light, and can be applied to various optical components, such as 3D light field display, augmented reality (Augmented Reality, AR), virtual reality (Virtual Reality, VR), sensor, optical functional film wait.
  • 3D light field display augmented reality (Augmented Reality, AR), virtual reality (Virtual Reality, VR), sensor, optical functional film wait.
  • AR Augmented Reality
  • VR Virtual Reality
  • sensor optical functional film wait.
  • a plurality of microlenses are located on one side of the base substrate; wherein, the material of the microlenses includes a product cross-linked by a non-photosensitive resin monomer.
  • the transmittance of the non-photosensitive resin is greater than or equal to 50% in the 400nm-600nm wavelength band.
  • the material of the microlens does not have a photosensitive group.
  • the cross-linked product of the non-photosensitive resin monomer includes at least one of polyacrylic resin, polyimide resin and phenolic resin.
  • the surface shape accuracy of the microlens is less than 10 nm, and the roughness of the microlens is less than 1 nm.
  • a light-shielding layer located between the base substrate and the microlens is further included, and the light-shielding layer has a plurality of sub-light-shielding parts arranged at intervals, each The sub-shielding parts are located in gaps between adjacent microlenses.
  • the microlens covers the edge of the sub-shielding portion.
  • an embodiment of the present disclosure further provides a display device, including: a display panel, and the microlens structure as described in any one of the above on the light-emitting side of the display panel.
  • the base substrate of the microlens structure is a spacer layer
  • the display device further includes a flat surface on the side of the microlens away from the base substrate. layer, the refractive index of the planar layer is smaller than the refractive index of the microlens.
  • the alignment deviation between the microlens structure and the display panel is less than or equal to 5 ⁇ m.
  • the display panel includes: a driving backplane, and a plurality of sub-pixels located between the driving backplane and the base substrate; the plurality of sub-pixels A pixel is divided into a plurality of pixel islands, each pixel island includes a plurality of sub-pixels, and the sub-pixels in the same pixel island display the same color; wherein,
  • one of the pixel islands corresponds to at least one of the microlenses, and the number of sub-pixels included in each of the pixel islands is greater than or equal to that of the microlenses corresponding to the pixel islands. Number of lenses.
  • the display panel has a display area and a peripheral area arranged around the display area, and the peripheral area includes: The first sub-area and the second sub-area in the direction, and the third sub-area and the fourth sub-area along the extending direction of one of the microlenses; wherein,
  • the number of the microlenses set in the first sub-region and the second sub-region is greater than or equal to 5, respectively.
  • an embodiment of the present disclosure also provides a method for manufacturing the microlens structure described in any one of the above, including:
  • a plurality of microlenses are fabricated on the base substrate; wherein, the material of the microlenses is a product crosslinked by a non-photosensitive resin.
  • the manufacturing of a plurality of microlenses on the base substrate specifically includes:
  • a thermal reflow process is performed on the non-photosensitive resin pattern to form a plurality of microlenses.
  • the non-photosensitive resin layer is formed on the base substrate, and the side of the non-photosensitive resin layer facing away from the base substrate is coated with photo Before the resist layer, it also includes:
  • a passivation layer is formed on a side of the non-photosensitive resin layer away from the base substrate.
  • Also after forming the photoresist pattern and before using the photoresist pattern as a mask to etch the non-photosensitive resin layer ,Also includes:
  • the passivation layer is etched to form a passivation layer pattern.
  • the non-photosensitive resin layer is etched using the photoresist pattern as a mask to form a non-photosensitive resin pattern, specifically:
  • the non-photosensitive resin layer is etched to form the non-photosensitive resin pattern.
  • the passivation layer pattern and the photoresist pattern are stripped.
  • the manufacturing of the plurality of microlenses on the base substrate before the manufacturing of the plurality of microlenses on the base substrate, further includes:
  • a light-shielding layer is formed on the base substrate; wherein the light-shielding layer includes a plurality of sub-light-shielding parts arranged at intervals, and each of the sub-light-shielding parts is located at a gap between adjacent microlenses.
  • Fig. 1 is the schematic diagram of the reaction principle of the photosensitive resin provided by the related art under thermal initiation
  • FIG. 2 is a schematic diagram of the transmittance of the photosensitive resin provided by the related art
  • FIG. 3A is a schematic diagram of a microlens structure provided by an embodiment of the present disclosure.
  • Fig. 3B is a scanning electron micrograph of the microlens and the sub-shading part in Fig. 3A;
  • FIG. 4 is a schematic diagram of the comparison of the transmittance between the non-photosensitive resin provided by the embodiment of the present disclosure and the photosensitive resin in the related art;
  • FIG. 5A is a schematic top view of a microlens in FIG. 3A;
  • FIG. 5B is a schematic top view of another microlens in FIG. 3A;
  • FIG. 6 is a schematic flowchart of a method for manufacturing a microlens structure provided by an embodiment of the present disclosure
  • FIGS. 7A-7G are structural schematic diagrams of the microlens structure provided by the embodiments of the present disclosure after each manufacturing step;
  • FIGS 8A-8F are structural schematic diagrams of the microlens structure provided by the embodiments of the present disclosure after each manufacturing step;
  • FIG. 9 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • FIG. 10A is a schematic top view of the display device shown in FIG. 9;
  • FIG. 10B is a schematic diagram of the specific structure of the display device shown in FIG. 9;
  • FIG. 11 is a three-dimensional schematic diagram of the microlens structure and the display panel in FIG. 9;
  • FIG. 12 is another schematic top view of the display device.
  • the implementation methods of 3D display technology include glasses type, light shielding type, light refraction type, etc., and the light refraction type 3D display can not only realize the naked eye 3D display, but also avoid the loss of brightness of the display device, so the light refraction type 3D display is 3D Important research directions for display technology development.
  • the photorefractive 3D display mainly uses the combination of pixel islands and micro lenses (Micro Lens) to achieve the effect of 3D light field display.
  • the common methods for making microlenses include injection molding and nanoimprinting, and then the prepared microlenses are bonded with light-emitting devices to form a 3D display device. This method is difficult to process, high in cost, and low in alignment accuracy, so the thermal reflow process is currently the mainstream solution for making microlenses.
  • the solution of using thermal reflow to make microlenses is to use photosensitive resin to form patterned microlens regions under photolithography, and then heat reflow to form microlens structures.
  • DNQ diazonaphthoquinone
  • (A) among Fig. 1 is the structure of diazonaphthoquinone sulfonate
  • Diazonaphthoquinone sulfonate is a commonly used photosensitive resin.
  • Diazonaphthoquinone sulfonate has azidoquinone group, and the azidoquinone group has a lone pair of nitrogen atoms.
  • the structure of (A) in Figure 1 becomes the structure shown in (B) in Figure 1, and becomes the structure in Figure 1 after wolff rearrangement
  • the structure shown in (C) then meets water to form a carboxylic acid group, as shown in (D) in Figure 1, the electron cloud inside the molecule is in a large conjugated system, the structure tends to be stable, and the absorption spectrum is blue-shifted, so it is photosensitive Resin has low transmittance in the blue light region. Since the photosensitive groups still remain in the resin after the microlens structure is fabricated, the microlenses made of the photosensitive resin are prone to yellowing.
  • Figure 2 is the test result of the inventor of this case on the transmittance of the photosensitive resin in the visible light band. It can be seen that the transmittance of the photosensitive resin in the blue light region is low, so the microlens made of photosensitive resin Yellowing is prone to occur.
  • a photobleaching process is generally required after development, but the improvement of the transmittance through the photobleaching process is also limited.
  • an embodiment of the present disclosure provides a microlens structure, as shown in FIG. 3A , including:
  • a plurality of microlenses 2 are located on one side of the base substrate 1; wherein, the material of the microlenses 2 includes a product cross-linked by a non-photosensitive resin monomer.
  • the non-photosensitive resin monomer can be understood as: no photosensitive group is attached to the resin monomer, or the photosensitive resin monomer is not mixed with a photosensitizer.
  • the photosensitizer may include a photosensitive group.
  • Non-photosensitive resin monomers or prepolymers of non-photosensitive resin monomers cannot be patterned by direct photolithography.
  • the material of the microlens 2 may include a thermally induced resin cross-linked product, and the material of the microlens provided in the embodiment of the present disclosure does not have a photosensitive group.
  • non-photosensitive resin After the non-photosensitive resin monomer is thermally induced to form a cross-linked resin (hereinafter referred to as "non-photosensitive resin"), the transmittance will be greatly improved;
  • the cross-linked product of the resin monomer is a comparison chart of the transmittance.
  • Curve A is the transmittance of the non-photosensitive resin in the visible light band
  • curve B is the transmittance of the photosensitive resin in the visible light band. It can be seen that at 400nm ⁇ In the 550nm band, the transmittance of non-photosensitive resins is significantly greater than that of photosensitive resins, especially in the blue light region, where the transmittance of photosensitive resins is even lower.
  • the photosensitive resin monomer can be understood as: the photosensitive group is connected to the resin monomer, or the photosensitive resin monomer is mixed with a photosensitizer.
  • the photosensitizer may include a photosensitive group.
  • microlens structure provided by the embodiments of the present disclosure, by using non-photosensitive resin to form the microlens structure through thermal induction, the transmittance of the microlens can be greatly improved, and the occurrence of microlenses made of photosensitive resin in the related art can be avoided. Yellowing problem.
  • the above-mentioned thermal initiation may be a heating process in a thermal reflow process.
  • the process of manufacturing the microlens structure in the embodiment of the present disclosure can be mainly divided into four steps: 1. Form a whole lens on the side of the non-photosensitive resin layer (the film layer with the prepolymer of the non-photosensitive resin) away from the substrate.
  • the photoresist is exposed under the cover of the mask, and the exposure pattern can be but not limited to a rectangle; 2, the photoresist after exposure is developed to form a photoresist pattern; 3, the photoresist is formed by photolithography
  • the glue pattern is a mask, and the non-photosensitive resin is etched to form a microlens pattern; 4.
  • the structure formed with the microlens pattern is placed on a heating platform, and the microlens structure is formed through a thermal reflow process.
  • the transmittance (A) of the non-photosensitive resin is greater than or equal to 50% in the 400nm-600nm wavelength band. Specifically, in the 400nm-600nm band, the transmittance (A) of the non-photosensitive resin is greater than or equal to 75%.
  • the transmittance (A) of the non-photosensitive resin is greater than 75%.
  • the microlens made of non-photosensitive resin with high transmittance will not affect the luminous color of the display device Coordinates can reduce the yellowing problem of the microlens structure, thereby improving the white balance of the overall display device.
  • the heating temperature of thermal reflow process is generally higher than 200°C.
  • the heating temperature in the thermal reflow process is only required to be less than 150°C.
  • the microlens structure When the microlens structure is used in conjunction with the display panel (such as OLED display panel, QLED display panel), the high heating temperature may affect the luminous efficiency and reliability of the display device in the display panel, so non-photosensitive resin is used to make the microlens structure. The display effect and reliability of the display panel can be improved.
  • the display panel such as OLED display panel, QLED display panel
  • Photosensitive groups may include, but are not limited to, quinone azido groups, benzophenone groups, sulfonic acid groups, or alkenyl ether groups. Therefore, the non-photosensitive resin provided by the embodiments of the present disclosure does not have a photosensitive group such as azidoquinone group, benzophenone group, sulfonic acid group or alkenyl ether group, and can form a resin after thermal initiation,
  • the network cross-linked resin has high transmittance, so the transmittance of the microlens structure is relatively high, and there will be no yellowing problem when the microlens structure is applied to 3D light field display.
  • the products of non-photosensitive resin monomers that are thermally induced to cross-link may include, but are not limited to, polyacrylic resins, polyimide resins, and phenolic resins. at least one.
  • the cross-linked product can be in a network structure, presenting a cross-linked state.
  • the surface accuracy PV of the microlens formed by using the thermal reflow process is less than or equal to 10nm; further, the microlens formed by the thermal reflow process has a The surface accuracy PV is less than or equal to 5nm; the roughness Ra of the microlenses formed by the thermal reflow process is less than or equal to 1nm, further, the roughness Ra of the microlenses formed by the thermal reflow process is less than or equal to 0.5nm .
  • the surface precision PV of the microlens is in the range of 1nm to 10nm, and the roughness Ra of the microlens is in the range of 0.1nm to 1.0nm, which is in line with the application of the microlens structure in light field display devices. standard.
  • the roughness Ra of microlenses formed by etching is greater than 10nm, and the surface precision PV is greater than 10nm; the roughness Ra of microlenses formed by nanoimprinting is greater than 1nm, and the surface precision PV is greater than Therefore, a microlens structure with good performance can be formed by using the non-photosensitive resin provided by the embodiments of the present disclosure through a thermal reflow process.
  • the gap between adjacent microlenses 2 is in the range of 0 ⁇ m ⁇ 2.5 ⁇ m.
  • FIG. 3B which is a scanning electron microscope (SEM) photo of the microlenses 2 and sub-shielding parts in FIG. 3A , it can be seen that sub-shielding parts 31 are arranged between adjacent microlenses 2 .
  • the width of the sub-shielding portion 31 may be in the range of 2 ⁇ m ⁇ 4.5 ⁇ m.
  • the microlens 2 covers the edge of the sub-shielding portion 31 .
  • the light-shielding layer 3 can be fabricated on the base substrate 1 first, and then a plurality of microlenses 2 can be formed on the side of the light-shielding layer 3 facing away from the base substrate 1, so that the sub-shading parts 31 can completely fill the gaps between the microlenses 2 , completely blocking the problem of light crosstalk.
  • the microlens structure when the microlens structure is combined with the display device to realize 3D light field display, in order to improve the 3D display effect, reduce light crosstalk, and reduce dizziness caused by binocular radiation, the microlens provided in the embodiment of the present disclosure
  • the diameter D of the microlens 2 can be in the range of 5 ⁇ m to 300 ⁇ m
  • the crown height H of the microlens 2 can be in the range of 2 ⁇ m to 30 ⁇ m.
  • the embodiment of the present disclosure does not specifically limit the shape and size of the microlens.
  • the microlens has a converging effect on light, as shown in FIG. 5A, which is a part of the microlens 2 in FIG. 3A.
  • 5A is an example of a cylindrical lens with microlens; as shown in FIG. 5B, FIG. 5B is another schematic diagram of a top view of microlens 2 in FIG. 3A, and FIG. 5B is a circular lens with microlens as an example.
  • the top view of the microlens may also be in other shapes (such as ellipse or rounded rectangle, etc.).
  • an embodiment of the present disclosure also provides a method for manufacturing the above-mentioned microlens structure, including:
  • a plurality of microlenses are fabricated on the base substrate; wherein, the material of the microlenses is a cross-linked product of a non-photosensitive resin induced by heat.
  • the manufacturing method of the microlens structure provided by the embodiment of the present disclosure can greatly improve the transmittance of the microlens by using non-photosensitive resin to form the microlens structure through thermal induction, and avoid yellowing of the microlens made of photosensitive resin in the related art The problem.
  • the light-shielding material may be a black matrix (BM), and expose, develop and etch the light-shielding material film layer to form a light-shielding layer 3 including a plurality of sub-light-shielding parts 31, as shown in Figure 7A shown.
  • BM black matrix
  • a plurality of microlenses are manufactured on the substrate substrate, as shown in FIG. 6 , which may specifically include:
  • a non-photosensitive resin layer 2' is formed on the base substrate 1 on which the light-shielding layer 3 is formed.
  • the non-photosensitive resin layer in this step includes a prepolymer of the non-photosensitive resin, and the prepolymer of the non-photosensitive resin is a prepolymerized product of the monomer of the non-photosensitive resin.
  • a photoresist layer 4 is coated on the side of the non-photosensitive resin layer 2' away from the base substrate 1, and the photoresist of the photoresist layer 4 is a positive photoresist as an example. .
  • the photoresist layer 4 is exposed (shown by the arrow) using a mask plate 00 having a light-shielding region CC and a light-transmitting region DD, wherein the light-shielding region DD and the sub-shielding region 31 corresponds, and the light-shielding area CC corresponds to the adjacent sub-light-shielding portion 31; as shown in FIG.
  • the photoresist corresponding to the light-shielding region CC remains, thereby forming a photoresist pattern 4'.
  • the non-photosensitive resin layer 2' is etched using the photoresist pattern 4' as a mask to form a non-photosensitive resin pattern 2".
  • the photoresist pattern 4' is removed.
  • a thermal reflow process is performed on the non-photosensitive resin pattern 2 ′′ to form a plurality of microlenses 2 , wherein each sub-shielding portion 31 is located in the gap between adjacent microlenses 2 .
  • the prepolymer of the non-photosensitive resin undergoes a heat-induced cross-linking reaction to form a cross-linked product.
  • the microlens structure shown in FIG. 3A of the present application can be fabricated through the fabrication steps of FIG. 7A to FIG. 7G .
  • the relevant content of the microlens structure reference may be made to the aforementioned embodiment of the microlens structure, and details are not repeated here.
  • step S601 in order to prevent the photoresist from remaining on the non-photosensitive resin pattern 2" when removing the photoresist pattern in the above step S605, in the above manufacturing method provided by the embodiment of the present disclosure, after step S601, and Before step S602, it may also include: forming a passivation layer 5 on the side of the non-photosensitive resin layer 2' away from the base substrate 1, as shown in Figure 8A.
  • Figure 7C correspondingly becomes the structure shown in Figure 8B
  • Fig. 7D correspondingly becomes the structure shown in Fig. 8C
  • Fig. 7E correspondingly becomes the structure shown in Fig. 8D.
  • the passivation layer 5 is formed on the side of the non-photosensitive resin layer 2' facing away from the base substrate 1 after step S601 and before step S602, in the above manufacturing method provided by the embodiment of the present disclosure After step S603, and before step S604 using the photoresist pattern as a mask to etch the non-photosensitive resin layer, it also includes: using the photoresist pattern 4' as a mask to etch the passivation layer 5 etch to form a passivation layer pattern 5', as shown in FIG. 8E.
  • the embodiment of the present disclosure provides in the above-mentioned manufacturing method, the above-mentioned step S604 can specifically be: use the photoresist pattern 4' and the passivation layer pattern 5' as a mask at the same time, etch the non-photosensitive resin layer 2' to form the non-photosensitive resin pattern 2" , as shown in Figure 8F.
  • the passivation layer pattern 5' and the photoresist pattern 4' shown in FIG. 8F are peeled off at the same time, as shown in FIG. 7G is shown.
  • the microlens structure shown in FIG. 3A of the present application can be produced through FIG. 7A, FIG. 7B, FIG. 8A-8F, and FIG. 7G. 7A, 7B, 8A-8F, and 7G can avoid the problem of photoresist remaining on the non-photosensitive resin pattern 2" when removing the photoresist compared with Fig. 7A-7G.
  • an embodiment of the present disclosure also provides a display device, as shown in FIG. 9 , comprising: a display panel 100 , and the above-mentioned microlens structure 200 provided by the embodiment of the present disclosure located on the light-emitting side of the display panel 100 .
  • the display panel 100 may be an OLED (Organic Light-Emitting Diode, Organic Light-Emitting Diode) display panel.
  • OLED Organic Light-Emitting Diode
  • the microlens structure 200 By applying the microlens structure on the light-emitting side of the display panel 100 and refracting the light emitted by the display panel 100 through the microlens structure 200, people can see objects with different depths of field. Field display effect.
  • the refractive index of the flat layer 400 is smaller than that of the microlens 2 .
  • the high refractive index microlens 2 and the low refractive index flat layer 400 form a convex lens structure, which can increase the light extraction effect of the microlens 2 .
  • the microlens 2 is a cylindrical lens.
  • the refractive index of the general microlens structure is designed to be greater than or equal to the refractive index of the light-emitting device in the display panel and the spacer layer between the micro-lens structure and the light-emitting device, which can Ensure that almost all the light emitted by the light-emitting device is emitted to improve luminous efficiency.
  • the refractive index of the photosensitive resin used in the related art is greater than the refractive index of the spacer layer, and the refractive index of the non-photosensitive resin used in this application is generally higher than that of the photosensitive resin.
  • a non-photosensitive resin with a high refractive index is used to make the microlens structure, which can further ensure that the refractive index of the microlens is higher than that of the spacer layer, so that the thickness of the spacer layer can also be reduced. Therefore, the microlens structure provided by the embodiments of the present disclosure can solve the problems of high temperature, low transmittance and low refractive index when making microlenses in the existing thermal reflow process.
  • the material of the spacer layer 300 may be at least one of organic transparent materials or inorganic transparent materials, for example, including glass.
  • the material of the planar layer 400 may be resin.
  • the refractive index of the non-photosensitive resin should be greater than the refractive index of the selected resin for the flat layer.
  • FIG. 10A is a schematic top view of the display device
  • FIG. 10B is a cross-section along the CC' direction in FIG. 10A
  • FIG. 11 is a three-dimensional schematic diagram of the microlens structure 200 and the display panel 100 in FIG. 10B
  • the display panel 100 includes: a driving backplane BP, and a plurality of sub-pixels 500 located between the driving backplane BP and the base substrate 1, FIG. 10B only shows one sub-pixel 500 ;
  • FIG. 10A is a schematic top view of the display device
  • FIG. 10B is a cross-section along the CC' direction in FIG. 10A Schematic diagram
  • FIG. 11 is a three-dimensional schematic diagram of the microlens structure 200 and the display panel 100 in FIG. 10B
  • the display panel 100 includes: a driving backplane BP, and a plurality of sub-pixels 500 located between the driving backplane BP and the base substrate 1, FIG. 10B only shows one sub-pixel 500 ;
  • the multiple sub-pixels 500 included in the display panel 100 can be divided into multiple pixel islands P (for example, pixel island P1 and pixel island P2 are schematically shown in FIG. 10A ), and one pixel island P1 can include m sub-pixels 500 , the sub-pixels 500 in the same pixel island P1 display the same color, for example, the sub-pixel 500 includes a red sub-pixel (R), a green sub-pixel (G) and a blue sub-pixel (B), and the sub-pixels included in the same pixel island P1
  • the pixels are all red sub-pixels (R), or the sub-pixels included in the same pixel island P1 are all green sub-pixels (G), or the sub-pixels included in the same pixel island P1 are all blue sub-pixels (B).
  • the values of m and n can be set according to actual needs. It is worth noting that, for pixel islands on the same display panel, the number of pixel islands at different positions may be different for the purpose of 3D display, and the number of microlenses n corresponding to different pixel islands may also be different. However, for a pixel island, m is greater than or equal to n.
  • the light emitting regions 501 of the outermost sub-pixels 500 at least partially overlap.
  • the light emitted by each sub-pixel in the pixel island is refracted by the microlens structure to disperse to different pixel areas, so that the human eyes can watch different images, thereby realizing 3D display Effect.
  • the driving backplane BP includes a buffer layer 20 , an active layer 30 , a first gate insulating layer 40 , a first gate layer 50 , a second gate insulating layer 60 , and a Two gate layers 70, an interlayer insulating layer 80, a first source-drain metal layer 90, a passivation layer 100, a first planar layer 110, a second source-drain metal layer 120, and a second planar layer 130, each sub-pixel includes The anode 140, light-emitting layer 160, and cathode 170 disposed on the second flat layer 130, the display panel 100 also includes a pixel defining layer 150 defining sub-pixels and an encapsulation layer 180 between the cathode 170 and the spacer layer 300; wherein, the first The first source-drain metal layer 90 and the second source-drain metal layer 120 are electrically connected through the first via hole V1 penetrating the first planar layer 110 and the passivation layer 100
  • the alignment deviation between the microlens structure and the display panel can be less than or equal to 5 ⁇ m.
  • the alignment deviation between the microlens structure and the display panel is greater than or equal to 10 ⁇ m.
  • the angle deviation between the microlens structure and the display panel is less than or equal to 0.2°. Therefore, when the microlens manufactured by the thermal reflow method is used for 3D display, it can reduce the interference of the alignment deviation on the display effect, and can achieve a better light output effect.
  • the display panel 100 has a display area AA, and the edge of the AA area is defined by the edge of the light-emitting area of the outermost sub-pixel.
  • the alignment deviation between the microlens structure and the display panel can be defined in the following manner: as shown in FIG.
  • the distance from the midpoint is the first midpoint A1, between the edge of the microlens 2 corresponding to the outermost sub-pixel 500 in P1 near the edge of the AA area and the side of the microlens 2 corresponding to the outermost sub-pixel 500 in P2 near the edge of the AA area
  • the midpoint of the distance between them is the second midpoint A2, and the distance d between the first midpoint A1 and the second midpoint A2 along the direction perpendicular to the extending direction of the microlens 2 is less than or equal to 5 ⁇ m.
  • the angular deviation between the microlens 2 and the pixel island P1 can be made less than or equal to 0.2°, which meets the requirements of 3D display; It can be less than or equal to 0.008°. Therefore, the microlens structure fabricated on the light-emitting side of the display panel 100 by using the thermal reflow process provided by the embodiments of the present disclosure can greatly improve the alignment accuracy between the microlens and the pixel island, reduce processing costs, and realize the direct integration of the microlens structure into the display panel. Processing methods in the factory.
  • the above specific embodiments provide a microlens structure and a form of alignment deviation measurement of a display panel. According to the differences in the form and combination form of the display panel and the microlens structure, a corresponding measurement method can be given. Generally, the midpoint of the distance between the edges of the light-emitting region corresponding to the sub-pixel closest to the edge of the AA region can be measured, and the midpoint of the distance between the edges of the microlens corresponding to the sub-pixel closest to the edge of the AA region can be calculated.
  • the alignment deviation is obtained by the horizontal distance along the direction in which the microlenses are arranged (for example, in the above embodiment, perpendicular to the extending direction of one microlens).
  • the display panel 100 has a display area AA and a peripheral area BB arranged around the display area AA.
  • the display area AA is provided with the display area shown in FIG. A plurality of pixel islands P
  • the peripheral area BB includes: the first sub-area B1 and the second sub-area B2 along the extension direction (i.e. X direction) perpendicular to a microlens 2, and along the extension direction of a microlens (i.e. Y direction) the third sub-area B3 and the fourth sub-area B4; wherein,
  • the number of microlenses 2 arranged in the first sub-area B1 and the second sub-area B2 is greater than or equal to 5, in order to avoid the non-display area being too wide, 5-10 microlenses 2 are arranged It is advisable to take 5 as an example in Figure 12.
  • the width of the microlenses 2 is the first width W1
  • the distance between the microlenses 2 is the second width W2
  • the microlenses 2 extend to the third sub-area B3 and the fourth sub-region B4 are k times the length of (W1+W2), or kW1+(k-1)W2, where k is greater than or equal to 5.
  • the microlens structure, its manufacturing method, and display device provided by the embodiments of the present disclosure can greatly improve the transmittance of the microlens by using non-photosensitive resin to form the microlens structure through thermal induction, and avoid the microlens structure made of photosensitive resin in the related art.
  • the lens is yellowing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

本公开实施例提供的一种微透镜结构、其制作方法及显示装置,该微透镜结构,包括:衬底基板;多个微透镜,位于衬底基板的一侧;其中,微透镜的材料包括通过非感光树脂单体交联后的产物。

Description

一种微透镜结构、其制作方法及显示装置 技术领域
本公开涉及3D显示技术领域,尤其涉及一种微透镜结构、其制作方法及显示装置。
背景技术
微透镜具有折射光线与聚焦光线的功能,可应用于各种光学元器件中,例如3D光场显示、增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)、传感器、光学功能薄膜等。
发明内容
本公开实施例提供的一种微透镜结构,包括:
衬底基板;
多个微透镜,位于所述衬底基板的一侧;其中,所述微透镜的材料包括通过非感光树脂单体交联后的产物。
可选地,在本公开实施例提供的上述微透镜结构中,在400nm~600nm波段,所述非感光树脂的透过率大于或等于50%。
可选地,在本公开实施例提供的上述微透镜结构中,所述微透镜的材料不具有光敏基团。
可选地,在本公开实施例提供的上述微透镜结构中,所述非感光树脂单体交联后的产物包括聚丙烯酸树脂、聚酰亚胺树脂和酚醛树脂中的至少一种。
可选地,在本公开实施例提供的上述微透镜结构中,所述微透镜的面形精度小于10nm,所述微透镜的粗糙度小于1nm。
可选地,在本公开实施例提供的上述微透镜结构中,还包括位于所述衬底基板和所述微透镜之间的遮光层,所述遮光层具有间隔设置的多个子遮光 部,各所述子遮光部位于相邻所述微透镜之间的间隙处。
可选地,在本公开实施例提供的上述微透镜结构中,所述微透镜覆盖所述子遮光部的边缘。
相应地,本公开实施例还提供了一种显示装置,包括:显示面板,以及位于所述显示面板出光侧的如上述任一项所述的微透镜结构。
可选地,在本公开实施例提供的上述显示装置中,所述微透镜结构的衬底基板为间隔层,所述显示装置还包括位于所述微透镜背离所述衬底基板一侧的平坦层,所述平坦层的折射率小于所述微透镜的折射率。
可选地,在本公开实施例提供的上述显示装置中,所述微透镜结构和所述显示面板的对位偏差小于或等于5μm。
可选地,在本公开实施例提供的上述显示装置中,所述显示面板包括:驱动背板,以及位于所述驱动背板和所述衬底基板之间的多个子像素;所述多个子像素划分为多个像素岛,每一所述像素岛包括多个子像素,同一所述像素岛内的子像素显示的颜色相同;其中,
沿垂直于一个所述微透镜的延伸方向,一个所述像素岛与至少一个所述微透镜对应,并且每一个所述像素岛包括的子像素数量大于或等于所述像素岛对应的所述微透镜数量。
可选地,在本公开实施例提供的上述显示装置中,所述显示面板具有显示区域以及围绕所述显示区域设置的周边区域,所述周边区域包括:沿垂直于一个所述微透镜的延伸方向的第一子区和第二子区,以及沿一个所述微透镜的延伸方向的第三子区和第四子区;其中,
沿垂直于一个所述微透镜的延伸方向,所述第一子区和所述第二子区分别设置所述微透镜的数量大于或等于5。
相应地,本公开实施例还提供了一种用于制作如上述任一项所述的微透镜结构的制作方法,包括:
在衬底基板上制作多个微透镜;其中,所述微透镜的材料为通过非感光树脂交联后的产物。
可选地,在本公开实施例提供的上述制作方法中,所述在衬底基板上制作多个微透镜,具体包括:
在所述衬底基板上形成非感光树脂层;
在所述非感光树脂层背离所述衬底基板的一侧涂覆光刻胶层;
对所述光刻胶层进行曝光显影,形成光刻胶图形;
以所述光刻胶图形为掩膜,对所述非感光树脂层进行刻蚀,形成非感光树脂图形;
去除所述光刻胶图形;
对所述非感光树脂图形进行热回流工艺,形成多个微透镜。
可选地,在本公开实施例提供的上述制作方法中,在所述衬底基板上形成非感光树脂层之后,且在所述非感光树脂层背离所述衬底基板的一侧涂覆光刻胶层之前,还包括:
在所述非感光树脂层背离所述衬底基板的一侧形成钝化层。
可选地,在本公开实施例提供的上述制作方法中,在形成所述光刻胶图形之后,且在以所述光刻胶图形为掩膜,对所述非感光树脂层进行刻蚀之前,还包括:
以所述光刻胶图形为掩膜,对所述钝化层进行刻蚀,形成钝化层图形。
可选地,在本公开实施例提供的上述制作方法中,以所述光刻胶图形为掩膜,对所述非感光树脂层进行刻蚀,形成非感光树脂图形,具体为:
以所述光刻胶图形和所述钝化层图形同时为掩膜,对所述非感光树脂层进行刻蚀,形成所述非感光树脂图形。
可选地,在本公开实施例提供的上述制作方法中,在形成所述非感光树脂图形之后,且在对所述非感光树脂图形进行热回流工艺之前,还包括:
同时剥离所述钝化层图形和光刻胶图形。
可选地,在本公开实施例提供的上述制作方法中,所述在衬底基板上制作多个微透镜之前,还包括:
在所述衬底基板上形成遮光层;其中,所述遮光层包括间隔设置的多个 子遮光部,各所述子遮光部位于相邻所述微透镜之间的间隙处。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术提供的感光树脂在热引发下的反应原理示意图;
图2为相关技术提供的感光树脂的透过率示意图;
图3A为本公开实施例提供的一种微透镜结构的示意图;
图3B为图3A中微透镜和子遮光部的扫描电子显微镜照片;
图4为本公开实施例提供的非感光树脂与相关技术中的感光树脂的透过率对比示意图;
图5A为图3A中的一种微透镜的俯视示意图;
图5B为图3A中的又一种微透镜的俯视示意图;
图6为本公开实施例提供的一种微透镜结构的制作方法流程示意图;
图7A-图7G为本公开实施例提供的微透镜结构在每一制作步骤之后的结构示意图;
图8A-图8F为本公开实施例提供的微透镜结构在每一制作步骤之后的结构示意图;
图9为本公开实施例提供的一种显示装置的结构示意图;
图10A为图9所示的显示装置的俯视示意图;
图10B为图9所示的显示装置的具体结构示意图;
图11为图9中微透镜结构和显示面板的立体示意图;
图12为显示装置的又一种俯视示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
随着显示技术的不断发展,市场及用户对显示技术的观感要求越来越高,3D显示技术逐渐进入人们的视野中。目前3D显示技术的实现方式包括眼镜式、光遮挡型、光折射型等,而光折射型3D显示不但可以实现裸眼3D显示,而且可以避免显示器件的亮度损失,因此光折射型3D显示是3D显示技术发展的重要研究方向。
目前,光折射型3D显示主要采用像素岛与微透镜(Micro Lens)的组合实现3D光场显示的效果。但微透镜模组的加工工艺难度极大,制作微透镜的常用方法有注塑、纳米压印的方式,然后制得的微透镜与发光器件贴合形成3D显示装置,但是注塑、纳米压印等方式加工难度大、成本高、贴合对位精度较低,因此采用热回流工艺是目前制作微透镜的主流方案。相关技术中,采 用热回流制作微透镜的方案是利用感光树脂在光刻下形成图案化的微透镜区域,然后加热回流形成微透镜结构。感光树脂中一般含有光敏基团,最常见的如重氮萘醌(DNQ),如图1中的(A)所示,图1中的(A)为重氮萘醌磺酸酯的结构,重氮萘醌磺酸酯为一种常用的感光树脂,重氮萘醌磺酸酯具有叠氮醌基团,叠氮醌基团具有氮原子孤对电子对,由于感光树脂本身在i线处(365nm)感光,因此采用i线对感光树脂进行曝光处理,图1中的(A)的结构变成图1中的(B)所示的结构,通过wolff重排后变成图1中的(C)所示的结构,然后遇水生成羧酸基团,如图1中的(D)所示,分子内部电子云处于大共轭体系,结构趋于稳定,吸收光谱蓝移,所以感光树脂在蓝光区域的透过率较低。由于微透镜结构在制作完成后,光敏基团仍然会存留在树脂中,导致感光树脂制作得的微透镜容易出现发黄现象。如图2所示,图2为本案的发明人对感光树脂在可见光波段透过率的测试结果,可以看出感光树脂在蓝光区域的透过率较低,因此采用感光树脂制作得的微透镜容易出现发黄现象。相关技术中为了提高感光树脂的透过率,通常在显影后需要进行光漂白工艺,但通过光漂白工艺提升透过率也有限。
有鉴于此,为了解决相关技术中由于采用透过率较低的感光树脂制作的微透镜出现发黄现象的问题,本公开实施例提供了一种微透镜结构,如图3A所示,包括:
衬底基板1;
多个微透镜2,位于衬底基板1的一侧;其中,微透镜2的材料包括通过非感光树脂单体交联后的产物。
其中,非感光树脂单体可以理解为:树脂单体上没有连接光敏基团,或者感光树脂单体未与感光剂混合。其中感光剂可以包括光敏基团。非感光树脂单体或者非感光树脂单体的预聚体不能够通过直接光刻的方法进行图案化。
具体地,微透镜2的材料可以包括通过热引发树脂交联后的产物,并且本公开实施例提供的微透镜的材料中不具有光敏基团。
在非感光树脂单体通过热引发形成交联树脂(下面称之为“非感光树脂”) 后,透过率会大大提高;如图4所示,图4为非感光树脂与感光树脂(感光树脂单体交联后的产物)的透过率对比图,曲线A为非感光树脂在可见光波段的透过率,曲线B为感光树脂在可见光波段的透过率,可以看出,在400nm~550nm波段,非感光树脂的透过率明显大于感光树脂的透过率,尤其是在蓝光区域,感光树脂的透过率更低。对应的,感光树脂单体可以理解为:树脂单体上连接光敏基团,或者感光树脂单体与感光剂混合。其中感光剂可以包括光敏基团。需要说明的是,在光照条件下(例如紫外光照射),感光树脂单体或者感光树脂的预聚体(即感光树脂单体预聚合后的产物)会产生化学反应,在显影液(例如碱性溶液)中的溶解度升高,从而容易被清洗掉,因此可以利用直接光刻的方法进行图案化。
因此,在本公开实施例提供的上述微透镜结构中,通过采用非感光树脂通过热引发形成微透镜结构,可以大大提高微透镜的透过率,避免相关技术中采用感光树脂制作的微透镜出现发黄的问题。
需要说明的是,上述热引发可以是热回流工艺中的加热过程。具体地,本公开实施例制作微透镜结构的过程主要可以分为四步:1、在非感光树脂层(具有非感光树脂的预聚体的膜层)背离衬底基板的一侧形成一整层的光刻胶,在掩模的遮蔽下对光刻胶进行曝光,曝光图案可以为但不限于矩形;2、对曝光后的光刻胶进行显影形成光刻胶图案;3、以光刻胶图案为掩膜,对非感光树脂进行刻蚀,形成微透镜图案;4、将形成有微透镜图案的结构放置于加热平台上,通过热回流工艺形成微透镜结构。
在具体实施时,在本公开实施例提供的上述微透镜结构中,如图4所示,在400nm~600nm波段,非感光树脂的透过率(A)大于或等于50%。具体地,在400nm~600nm波段,非感光树脂的透过率(A)大于或等于75%,当本公开实施例提供的微透镜结构应用于3D光场显示时,可以提高整体显示器件的白平衡。进一步具体地,在可见光波段(400nm~780nm),非感光树脂的透过率(A)均大于75%。通过采用透过率高的非感光树脂,当本公开实施例提供的微透镜结构应用于3D光场显示时,透过率高的非感光树脂制得的微透镜 不会影响显示器件的发光色坐标,可以减少微透镜结构的发黄问题,从而提高整体显示器件的白平衡。
需要说明的是,相关技术中通过热回流工艺形成由感光树脂制作微透镜时,热回流工艺的加热温度一般大于200℃,当微透镜结构应用于3D光场显示时,由于微透镜结构直接在显示器件出光侧制作,高温制程工艺严重影响显示器件的发光效率以及信赖性,而本公开实施例提供的微透镜结构,热回流工艺中加热温度小于150℃即可。当微透镜结构和显示面板(例如OLED显示面板、QLED显示面板)配合使用时,加热温度较高可能会影响显示面板中显示器件的发光效率和信赖性,因此使用非感光树脂制作微透镜结构,可以提升显示面板的显示效果和信赖性。
光敏基团可以包括但不限于叠氮醌基团、二苯甲酮基团、磺酸基团或烯基醚基团。因此,本公开实施例提供的非感光树脂不具有叠氮醌基团、二苯甲酮基团、磺酸基团或烯基醚基团等光敏基团,在通过热引发后可以形成树脂,该网状的交联树脂的透过率较高,因此微透镜结构的透过率较高,在将微透镜结构应用到3D光场显示中时不会出现发黄问题。
在具体实施时,在本公开实施例提供的上述微透镜结构中,非感光树脂单体通过热引发交联后的产物可以包括但不限于聚丙烯酸树脂、聚酰亚胺树脂和酚醛树脂中的至少一种。具体地,交联后的产物可以为网状结构,呈现交联态。
在具体实施时,在本公开实施例提供的上述微透镜结构中,通过采用热回流工艺形成的微透镜的面形精度PV小于或等于10nm;进一步地,通过采用热回流工艺形成的微透镜的面形精度PV均小于或等于5nm;通过采用热回流工艺形成的微透镜的粗糙度Ra均小于或等于1nm,进一步的,通过采用热回流工艺形成的微透镜的粗糙度Ra小于或等于0.5nm。具体地,通过原子力显微镜可以测得,微透镜的面形精度PV在1nm~10nm范围内,微透镜的粗糙度Ra在0.1nm~1.0nm范围内,符合微透镜结构应用在光场显示器件的标准。相比而言,一般情况下,采用刻蚀形成的微透镜的粗糙度Ra大于10nm,面 形精度PV大于10nm;采用纳米压印形成的微透镜的粗糙度Ra大于1nm,面形精度PV大于10nm,因此采用本公开实施例提供的非感光树脂通过热回流工艺可以形成性能良好的微透镜结构。
在具体实施时,在本公开实施例提供的上述微透镜结构中,如图3A所示,相邻微透镜2之间的间隙在0μm~2.5μm范围内。
在具体实施时,在将微透镜结构与显示器件结合实现3D光场显示时,由于相邻微透镜之间存在一定的间隙,为了防止显示器件发射的光直接从相邻微透镜之间的间隙出射,从而造成光线串扰的问题,在本公开实施例提供的上述微透镜结构中,如图3A所示,还包括位于衬底基板1和微透镜2之间的遮光层3,遮光层3具有间隔设置的多个子遮光部31,各子遮光部31位于相邻微透镜2之间的间隙处,各子遮光部31可以防止光线串扰的问题。具体地,如图3B所示,图3B为图3A中微透镜2和子遮光部的电子扫描显微镜(SEM)照片,可以看出相邻微透镜2之间设置有子遮光部31。
具体地,如图3A所示,子遮光部31的宽度可以在2μm~4.5μm范围内。
在具体实施时,在本公开实施例提供的上述微透镜结构中,如图3A所示,微透镜2覆盖子遮光部31的边缘。这样可以先在衬底基板1上制作遮光层3,然后在遮光层3背离衬底基板1的一侧形成多个微透镜2,从而实现子遮光部31完全填充各微透镜2之间的间隙,完全阻断光线串扰的问题。
在具体实施时,在将微透镜结构与显示器件结合实现3D光场显示时,为了提高3D显示效果,减少光线串扰,以及减少双眼辐射引起的晕眩问题,在本公开实施例提供的微透镜结构中,如图3A所示,微透镜2的口径D可以在5μm~300μm范围内,微透镜2的拱高H可以在2μm~30μm范围内。
在具体实施时,本公开实施例对微透镜的形状、尺寸不做具体限定,示例地,该微透镜对光线具有汇聚作用,如图5A所示,图5A为图3A中微透镜2的一种俯视示意图,图5A以微透镜为柱透镜为例;如图5B所示,图5B为图3A中微透镜2的另一种俯视示意图,图5B以微透镜为圆透镜为例。当然,微透镜的俯视图也可以为其他形状(如椭圆形或圆角矩形等)。
基于同一发明构思,本公开实施例还提供了一种上述微透镜结构的制作方法,包括:
在衬底基板上制作多个微透镜;其中,微透镜的材料为通过热引发非感光树脂交联后的产物。
本公开实施例提供的微透镜结构的制作方法,通过采用非感光树脂通过热引发形成微透镜结构,可以大大提高微透镜的透过率,避免相关技术中采用感光树脂制作的微透镜出现发黄的问题。
下面对本公开实施例提供的图3A所示的微透镜结构的制作方法进行详细说明:
首先,在衬底基板1上涂覆遮光材料膜层,遮光材料可以是黑矩阵(BM),对遮光材料膜层进行曝光显影刻蚀,形成包括多个子遮光部31遮光层3,如图7A所示。
在具体实施时,在本公开实施例提供的上述制作方法,在衬底基板上制作多个微透镜,如图6所示,具体可以包括:
S601、在衬底基板上形成非感光树脂层;
具体地,如图7B所示,在形成有遮光层3的衬底基板1上形成非感光树脂层2’。具体的,此步骤中的非感光树脂层包括非感光树脂的预聚体,非感光树脂的预聚体是非感光树脂单体预聚合后的产物。
S602、在非感光树脂层背离衬底基板的一侧涂覆光刻胶层;
具体地,如图7C所示,在非感光树脂层2’背离衬底基板1的一侧涂覆光刻胶层4,以光刻胶层4的光刻胶为正性光刻胶为例。
S603、对光刻胶层进行曝光显影,形成光刻胶图形;
在一个具体实施例中,如图7D所示,采用具有遮光区域CC和透光区域DD的掩膜版00对光刻胶层4进行曝光(箭头所示),其中透光区域DD与子遮光部31对应,遮光区域CC与相邻子遮光部31之间对应;如图7E所示,对曝光后的光刻胶层4进行显影,其中透光区域DD对应的光刻胶被显影掉,遮光区域CC对应的光刻胶保留,从而形成光刻胶图形4’。
S604、以光刻胶图形为掩膜,对非感光树脂层进行刻蚀,形成非感光树脂图形;
具体地,如图7F所示,以光刻胶图形4’为掩膜,对非感光树脂层2’进行刻蚀,形成非感光树脂图形2”。
S605、去除光刻胶图形;
具体地,如图7G所示,去除光刻胶图形4’。
S606、对非感光树脂图形进行热回流工艺,形成多个微透镜;
具体地,如图3A所示,对非感光树脂图形2”进行热回流工艺,形成多个微透镜2,其中各子遮光部31位于相邻微透镜2之间的间隙处。
具体地,在热回流工艺中,非感光树脂的预聚体发生热引发交联反应,形成交联产物。
因此通过图7A~图7G的制作步骤可以制作得到本申请图3A所示的微透镜结构。具体地,微透镜结构的相关内容可以参见前述一种微透镜结构的实施例,在此不做赘述。
在具体实施时,为了防止上述步骤S605在去除光刻胶图形时,光刻胶在非感光树脂图形2”上的残留,在本公开实施例提供的上述制作方法中,在步骤S601之后,且在步骤S602之前,还可以包括:在非感光树脂层2’背离衬底基板1的一侧形成钝化层5,如图8A所示。这样,图7C相应地变成图8B所示的结构,图7D相应地变成图8C所示的结构。图7E相应地变成图8D所示的结构。
在具体实施时,由于在步骤S601之后且在步骤S602之前,在非感光树脂层2’背离衬底基板1的一侧形成了钝化层5,因此在本公开实施例提供的上述制作方法中,在步骤S603之后,且在步骤S604以光刻胶图形为掩膜,对非感光树脂层进行刻蚀之前,还包括:以光刻胶图形4’为掩膜,对钝化层5进行刻蚀,形成钝化层图形5’,如图8E所示。
在具体实施时,由于在步骤S603之后,且在步骤S604以光刻胶图形为掩膜,对非感光树脂层进行刻蚀之前,形成了钝化层图形5’,因此在本公开 实施例提供的上述制作方法中,上述步骤S604具体可以为:以光刻胶图形4’和钝化层图形5’同时为掩膜,对非感光树脂层2’进行刻蚀,形成非感光树脂图形2”,如图8F所示。
在具体实施时,在本公开实施例提供的上述制作方法中,在步骤S605去除光刻胶图形时,同时剥离图8F所示的钝化层图形5’和光刻胶图形4’,如图7G所示。
因此通过图7A、图7B、图8A~图8F、图7G可以制作得到本申请图3A所示的微透镜结构。图7A、图7B、图8A~图8F、图7G的制作步骤相比于图7A~图7G可以避免在去除光刻胶时,光刻胶在非感光树脂图形2”上残留的问题。
基于同一发明构思,本公开实施例还提供了一种显示装置,如图9所示,包括:显示面板100,以及位于显示面板100出光侧的如本公开实施例提供的上述微透镜结构200。
具体地,上述显示面板100可以是OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板。通过将微透镜结构应用在显示面板100出光侧,通过微透镜结构200折射显示面板100发射的光线,人能够看到不同景深的物体,这才是人看到真实世界的感觉,即实现3D光场显示效果。
在具体实施时,在本公开实施例提供的上述显示装置中,如图9所示,微透镜结构的衬底基板1可以为间隔层300,显示装置还包括位于微透镜2背离衬底基板1一侧的平坦层400,平坦层400的折射率小于微透镜2的折射率。具体地,高折射率的微透镜2和低折射率的平坦层400形成凸透镜结构,可以增加微透镜2的光取出效果。
具体地,微透镜2为柱透镜。
具体地,在将微透镜结构应用在3D光场显示时,一般微透镜结构的折射率设计成大于或等于显示面板中发光器件以及微透镜结构和发光器件之间的间隔层的折射率,可以保证发光器件发射的光几乎全部出射出去,提高发光效率,相关技术中采用的感光树脂的折射率大于间隔层的折射率,而本申请 采用的非感光树脂的折射率一般高于感光树脂,因此本公开采用高折射率的非感光树脂制作微透镜结构,可以进一步确保微透镜的折射率比间隔层的折射率高,这样还可以降低间隔层的厚度。因此,本公开实施例提供的微透镜结构可以解决现有热回流工艺制作微透镜时温度过高、透过率以及折射率低的问题。
具体地,间隔层300的材料可以为有机透明材料或者无机透明材料中的至少一种,例如,包括玻璃。
具体地,平坦层400的材料可以为树脂。其中,选择的非感光树脂制作微透镜时,非感光树脂的折射率应大于平坦层选择的树脂的折射率。
在具体实施时,在本公开实施例提供的上述显示装置中,如图10A和图10B和图11所示,图10A为显示装置的俯视示意图,图10B为图10A中沿CC’方向的截面示意图,图11为图10B中微透镜结构200和显示面板100的立体示意图,该显示面板100包括:驱动背板BP,以及位于驱动背板BP和衬底基板1之间的多个子像素500,图10B仅示意一个子像素500;每个子像素500包括子像素发光区501,发光区501位于子像素500内部。如图10A所示,显示面板100包括的多个子像素500可以划分为多个像素岛P(例如,图10A中示意出像素岛P1和像素岛P2),一个像素岛P1可以包括m个子像素500,同一像素岛P1内的子像素500显示的颜色相同,例如子像素500包括红色子像素(R)、绿色子像素(G)和蓝色子像素(B),同一像素岛P1内包括的子像素均为红色子像素(R),或同一像素岛P1内包括的子像素均为绿色子像素(G),或同一像素岛P1内包括的子像素均为蓝色子像素(B)。其中,沿垂直于微透镜2的延伸方向(即X方向),一个像素岛P可以与n个微透镜对应,m大于或等于2,并且m大于或等于n(例如n=1)。当然,可以根据实际需要进行设置m和n的值。值得注意的是,对于同一个显示面板上的像素岛,为了3D显示需要,不同位置的像素岛数量可以不同,与不同像素岛对应的微透镜n的数量也可以不同。但对一个像素岛来说,均满足m大于或等于n。需要说明的是,一个像素岛P可以与n个微透镜对应,可以理解为 n个微透镜中的每一个在显示面板100上的正投影与像素岛P中的至少一个子像素500的发光区501至少部分重叠,并且n个微透镜中的2个最边缘透镜(如果n=1则微透镜自身)在显示面板100上的正投影分别(如果n=1则微透镜自身)与像素岛P中最边缘子像素500的发光区501至少部分重叠。
具体地,通过设置微透镜结构与像素岛的对应关系,像素岛中各子像素发出的光经微透镜结构折射,以分散至不同像素区域,使人的双眼观看不同的图像,从而实现3D显示效果。
如图10B所示,驱动背板BP包括依次层叠设置在基底10上的缓冲层20、有源层30、第一栅绝缘层40、第一栅极层50、第二栅绝缘层60、第二栅极层70、层间绝缘层80、第一源漏金属层90、钝化层100、第一平坦层110、第二源漏金属层120、第二平坦层130,每一子像素包括设置在第二平坦层130上的阳极140、发光层160、阴极170,显示面板100还包括限定子像素的像素界定层150以及位于阴极170和间隔层300之间的封装层180;其中,第一源漏金属层90和第二源漏金属层120之间通过贯穿第一平坦层110和钝化层100的第一过孔V1电连接,阳极140通过贯穿第二平坦层130的第二过孔V2与第二源漏金属层120电连接。
利用热回流方法在显示面板上制作微透镜时,微透镜结构和显示面板的对位偏差可以小于或等于5μm。在相关技术中,例如使用纳米压印制作微透镜时,由于工艺限制,微透镜结构和显示面板的对位偏差大于或等于10μm。进一步地,利用热回流方法在显示面板上制作微透镜时,微透镜结构和显示面板的角度偏差小于或等于0.2°。因此,利用热回流方法制作的微透镜用于3D显示时,可以减少对位偏差对显示效果的干扰,可以达到更好的出光效果。
在具体实施时,在本公开实施例提供的上述显示装置中,显示面板100具有显示区域AA,AA区边缘以显示最外侧子像素的发光区边缘划定。其中,微透镜结构和显示面板的对位偏差可以用如下方式定义:如图10A所示,以m=4,n=1为例,沿垂直于微透镜2的延伸方向(即X方向),AA区边缘的像素岛P1中最外侧子像素500的发光区501的最外侧边与AA区对侧边缘像 素岛P2中的最外侧子像素500的发光区501的最外侧边之间的距离中点为第一中点A1,P1中最外侧子像素500对应的微透镜2的靠近AA区边缘侧边与P2中最外侧子像素500对应的微透镜2的靠近AA区边缘侧边之间距离的中点为第二中点A2,第一中点A1和第二中点A2的沿垂直于微透镜2的延伸方向的距离d小于或等于5μm。这样,可以使微透镜2与像素岛P1的角度偏差小于或等于0.2°,满足3D显示需要;在实际验证中,利用热回流方法制作微透镜时,微透镜2与像素岛P1的角度偏差甚至可以做到小于或等于0.008°。因此采用本公开实施例提供的热回流工艺在显示面板100的出光侧制作的微透镜结构,可以大大提高微透镜与像素岛的对位精度,降低加工成本,实现微透镜结构直接集成显示面板的厂内加工方式。
可以理解的是,上述具体实施例给出了一种微透镜结构和显示面板对位偏差测量的一种形式。根据显示面板与微透镜结构的自身形态及结合形态不同,可以相应地给出测量方法。一般地,可以测量最靠近AA区边缘的子像素对应的发光区边缘之间距离的中点,与子像素对应的微透镜最靠近AA区边缘的边缘之间距离的中点,计算中点在沿着微透镜排布方向(例如,在上述实施例中,垂直于一个微透镜延伸方向)的水平距离,获得对位偏差。
在具体实施时,在本公开实施例提供的上述显示装置中,如图12所示,显示面板100具有显示区域AA以及围绕显示区域AA设置的周边区域BB,显示区域AA设置有图10A所示的多个像素岛P,周边区域BB包括:沿垂直于一个微透镜2的延伸方向(即X方向)的第一子区B1和第二子区B2,以及沿一个微透镜的延伸方向(即Y方向)的第三子区B3和第四子区B4;其中,
沿垂直于一个微透镜2的延伸方向,第一子区B1和第二子区B2设置的微透镜2的数量大于或等于5,为了避免非显示区过宽,设置5~10个微透镜2为宜,图12以5个为例。
优选地,沿垂直于微透镜2的延伸方向(即X方向),微透镜2的宽度为第一宽度W1,微透镜2之间间距为第二宽度W2,微透镜2延伸至第三子区 B3和第四子区B4的长度(W1+W2)的k倍,或者kW1+(k-1)W2,其中k大于或等于5。这样可以避免显示区域AA边缘光线串扰,提升显示效果。优选地,B1=B2;B3=B4。进一步优选地,B1=B2=B3=B4。
本公开实施例提供的微透镜结构、其制作方法及显示装置,通过采用非感光树脂通过热引发形成微透镜结构,可以大大提高微透镜的透过率,避免相关技术中采用感光树脂制作的微透镜出现发黄的问题。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
需要说明的是,说明书中出现的例如“m1~m2”的范围表述,包括m1和m2端点值。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (18)

  1. 一种微透镜结构,其中,包括:
    衬底基板;
    多个微透镜,位于所述衬底基板的一侧;其中,所述微透镜的材料包括通过非感光树脂单体交联后的产物。
  2. 根据权利要求1所述的微透镜结构,其中,在400nm~600nm波段,所述非感光树脂的透过率大于或等于50%。
  3. 根据权利要求1所述的微透镜结构,其中,所述微透镜的材料不具有光敏基团。
  4. 根据权利要求1所述的微透镜结构,其中,所述非感光树脂单体交联后的产物包括聚丙烯酸树脂、聚酰亚胺树脂和酚醛树脂中的至少一种。
  5. 根据权利要求1所述的微透镜结构,其中,所述微透镜的面形精度小于10nm,所述微透镜的粗糙度小于1nm。
  6. 根据权利要求1-5任一项所述的微透镜结构,其中,还包括位于所述衬底基板和所述微透镜之间的遮光层,所述遮光层具有间隔设置的多个子遮光部,各所述子遮光部位于相邻所述微透镜之间的间隙处。
  7. 根据权利要求6所述的微透镜结构,其中,所述微透镜覆盖所述子遮光部的边缘。
  8. 一种显示装置,其中,包括:显示面板,以及位于所述显示面板出光侧的如权利要求1-7任一项所述的微透镜结构。
  9. 根据权利要求8所述的显示装置,其中,所述微透镜结构的衬底基板为间隔层,所述显示装置还包括位于所述微透镜背离所述衬底基板一侧的平坦层,所述平坦层的折射率小于所述微透镜的折射率。
  10. 根据权利要求8所述的显示装置,其中,所述微透镜结构和所述显示面板的对位偏差小于或等于5μm。
  11. 根据权利要求8所述的显示装置,其中,所述显示面板包括:驱动 背板,以及位于所述驱动背板和所述衬底基板之间的多个子像素;所述多个子像素划分为多个像素岛,每一所述像素岛包括多个子像素,同一所述像素岛内的子像素显示的颜色相同;其中,
    沿垂直于一个所述微透镜的延伸方向,一个所述像素岛与至少一个所述微透镜对应,并且每一个所述像素岛包括的子像素数量大于或等于所述像素岛对应的所述微透镜数量。
  12. 根据权利要求10所述的显示装置,其中,所述显示面板具有显示区域以及围绕所述显示区域设置的周边区域,所述周边区域包括:沿垂直于一个所述微透镜的延伸方向的第一子区和第二子区,以及沿一个所述微透镜的延伸方向的第三子区和第四子区;其中,
    沿垂直于一个所述微透镜的延伸方向,所述第一子区和所述第二子区分别设置所述微透镜的数量大于或等于5。
  13. 一种用于制作如权利要求1-7任一项所述的微透镜结构的制作方法,其中,包括:
    在衬底基板上制作多个微透镜;其中,所述微透镜的材料为通过非感光树脂交联后的产物。
  14. 根据权利要求13所述的制作方法,其中,所述在衬底基板上制作多个微透镜,具体包括:
    在所述衬底基板上形成非感光树脂层;
    在所述非感光树脂层背离所述衬底基板的一侧涂覆光刻胶层;
    对所述光刻胶层进行曝光显影,形成光刻胶图形;
    以所述光刻胶图形为掩膜,对所述非感光树脂层进行刻蚀,形成非感光树脂图形;
    去除所述光刻胶图形;
    对所述非感光树脂图形进行热回流工艺,形成多个微透镜。
  15. 根据权利要求14所述的制作方法,其中,在所述衬底基板上形成非感光树脂层之后,且在所述非感光树脂层背离所述衬底基板的一侧涂覆光刻 胶层之前,还包括:
    在所述非感光树脂层背离所述衬底基板的一侧形成钝化层。
  16. 根据权利要求15所述的制作方法,其中,在形成所述光刻胶图形之后,且在以所述光刻胶图形为掩膜,对所述非感光树脂层进行刻蚀之前,还包括:
    以所述光刻胶图形为掩膜,对所述钝化层进行刻蚀,形成钝化层图形。
  17. 根据权利要求16所述的制作方法,其中,以所述光刻胶图形为掩膜,对所述非感光树脂层进行刻蚀,形成非感光树脂图形,具体为:以所述光刻胶图形和所述钝化层图形同时为掩膜,对所述非感光树脂层进行刻蚀,形成所述非感光树脂图形;其中,
    在去除所述光刻胶图形时,同时去除所述钝化层图形。
  18. 根据权利要求13-17任一项所述的制作方法,其中,所述在衬底基板上制作多个微透镜之前,还包括:
    在所述衬底基板上形成遮光层;其中,所述遮光层包括间隔设置的多个子遮光部,各所述子遮光部位于相邻所述微透镜之间的间隙处。
PCT/CN2021/135156 2021-12-02 2021-12-02 一种微透镜结构、其制作方法及显示装置 WO2023097623A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003772.9A CN116547569A (zh) 2021-12-02 2021-12-02 一种微透镜结构、其制作方法及显示装置
PCT/CN2021/135156 WO2023097623A1 (zh) 2021-12-02 2021-12-02 一种微透镜结构、其制作方法及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/135156 WO2023097623A1 (zh) 2021-12-02 2021-12-02 一种微透镜结构、其制作方法及显示装置

Publications (1)

Publication Number Publication Date
WO2023097623A1 true WO2023097623A1 (zh) 2023-06-08

Family

ID=86611279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135156 WO2023097623A1 (zh) 2021-12-02 2021-12-02 一种微透镜结构、其制作方法及显示装置

Country Status (2)

Country Link
CN (1) CN116547569A (zh)
WO (1) WO2023097623A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117687130A (zh) * 2024-01-30 2024-03-12 汕头超声显示器技术有限公司 一种3d透镜及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198547A (ja) * 2008-02-19 2009-09-03 Toppan Printing Co Ltd 固体撮像素子用マイクロレンズの製造方法及び固体撮像素子用マイクロレンズ
CN104718229A (zh) * 2012-10-23 2015-06-17 日产化学工业株式会社 非感光性树脂组合物
JP2015174877A (ja) * 2014-03-13 2015-10-05 日産化学工業株式会社 特定の硬化促進触媒を含む樹脂組成物
CN105572773A (zh) * 2015-12-23 2016-05-11 福州大学 一种大面积微透镜阵列的丝网印刷制作方法
WO2021090576A1 (ja) * 2019-11-06 2021-05-14 日産化学株式会社 非感光性樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198547A (ja) * 2008-02-19 2009-09-03 Toppan Printing Co Ltd 固体撮像素子用マイクロレンズの製造方法及び固体撮像素子用マイクロレンズ
CN104718229A (zh) * 2012-10-23 2015-06-17 日产化学工业株式会社 非感光性树脂组合物
JP2015174877A (ja) * 2014-03-13 2015-10-05 日産化学工業株式会社 特定の硬化促進触媒を含む樹脂組成物
CN105572773A (zh) * 2015-12-23 2016-05-11 福州大学 一种大面积微透镜阵列的丝网印刷制作方法
WO2021090576A1 (ja) * 2019-11-06 2021-05-14 日産化学株式会社 非感光性樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117687130A (zh) * 2024-01-30 2024-03-12 汕头超声显示器技术有限公司 一种3d透镜及其制造方法
CN117687130B (zh) * 2024-01-30 2024-04-23 汕头超声显示器技术有限公司 一种3d透镜及其制造方法

Also Published As

Publication number Publication date
CN116547569A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
US10509146B2 (en) Substrate and fabrication method thereof, display panel and display device
CN107632453A (zh) 显示面板及制造方法和显示装置
US20150124200A1 (en) Color filter substrate, method for fabricating the same and liquid crystal display screen
WO2024022078A1 (zh) 一种微透镜阵列基板及其制备方法、显示装置
CN110444691A (zh) 彩膜基板、显示面板及其制备方法和显示装置
WO2018219088A1 (zh) 彩膜基板以及显示面板
US20210159465A1 (en) Display apparatus and method for manufacturing the same
WO2014139221A1 (zh) 彩膜基板的制作方法、彩膜基板及显示装置
WO2023097623A1 (zh) 一种微透镜结构、其制作方法及显示装置
TWI274909B (en) Transflective liquid crystal display panel, color filter and fabricating method thereof
TWI286346B (en) Method of fabricating color filter substrate
WO2023097624A1 (zh) 一种微透镜结构、其制作方法及相关应用
US20220163700A1 (en) Lens assembly and fabricating method thereof, and displaying device
JP2010002925A5 (zh)
WO2018201545A1 (zh) 光罩及其应用于主动开关阵列基板的制造方法
JP2013246210A (ja) マイクロレンズの形成方法、マイクロレンズ、液晶デバイス用対向基板、および液晶デバイス
JPH09230379A (ja) 液晶表示装置とその製造方法
JP2000241809A (ja) 反射型液晶表示装置
JP4361979B2 (ja) カラーフィルタ
KR20160050195A (ko) 액정표시장치 및 그의 제조방법
WO2020124705A1 (zh) 显示面板的制备方法、显示面板及显示装置
US11506927B2 (en) Polarizer, manufacturing method thereof, and display panel
WO2022226726A1 (zh) 光学模组及其制作方法、显示装置
WO2024040746A1 (zh) 显示面板及显示装置
JP2002303858A (ja) 液晶装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003772.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966055

Country of ref document: EP

Kind code of ref document: A1