WO2022226726A1 - 光学模组及其制作方法、显示装置 - Google Patents

光学模组及其制作方法、显示装置 Download PDF

Info

Publication number
WO2022226726A1
WO2022226726A1 PCT/CN2021/089950 CN2021089950W WO2022226726A1 WO 2022226726 A1 WO2022226726 A1 WO 2022226726A1 CN 2021089950 W CN2021089950 W CN 2021089950W WO 2022226726 A1 WO2022226726 A1 WO 2022226726A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical lens
black matrix
substrate
optical module
Prior art date
Application number
PCT/CN2021/089950
Other languages
English (en)
French (fr)
Inventor
郭康
张锋
黄海涛
顾仁权
宋梦亚
李多辉
刘松
谷新
袁广才
董学
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/089950 priority Critical patent/WO2022226726A1/zh
Priority to CN202180000917.XA priority patent/CN115769107A/zh
Priority to US17/637,667 priority patent/US20240045118A1/en
Publication of WO2022226726A1 publication Critical patent/WO2022226726A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • G02B27/022Viewing apparatus
    • G02B27/024Viewing apparatus comprising a light source, e.g. for viewing photographic slides, X-ray transparancies
    • G02B27/026Viewing apparatus comprising a light source, e.g. for viewing photographic slides, X-ray transparancies and a display device, e.g. CRT, LCD, for adding markings or signs or to enhance the contrast of the viewed object
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an optical module, a manufacturing method thereof, and a display device.
  • Optical lenses usually refer to lenses with apertures ranging from micrometers to millimeters. Optical lenses are formed when a certain number of optical lenses are arranged according to specific rules. Compared with traditional lenses, optical lenses and their arrays have the advantages of small size, light weight, and low power consumption. Optical lenses can realize optical characteristics that traditional optical devices do not have. Using this characteristic, the device can have various special functions. For example, in the display field, using optical lenses, naked-eye 3D can be realized.
  • Embodiments of the present disclosure provide an optical module, including:
  • the black matrix is made of black metal oxide.
  • the optical module further includes:
  • An etch barrier layer is located on the side of the optical lens away from the substrate, the etch barrier layer covers the optical lens, and the black matrix is located on the side of the etch barrier layer away from the substrate.
  • the optical module further includes:
  • the difference between the refractive index of the flat layer and the refractive index of the optical lens is greater than 0.1.
  • the thickness of the flat layer is 5-30um.
  • the etching barrier layer has a thickness of 10-100 nm.
  • the diameter of the optical lens is 10-300 um, the height of the optical lens is 5-30 um, and the distance between adjacent optical lenses is 1.5-5 um.
  • the thickness of the black matrix is less than 500 nm.
  • Embodiments of the present disclosure also provide a display device including the optical module as described above.
  • it also includes a display panel arranged in a box with the optical module, the pixels of the display panel are in one-to-one correspondence with the optical lenses, and the center point of the pixel and the center point of the corresponding optical lens are at the same location.
  • the orthographic projections on the base are coincident.
  • Embodiments of the present disclosure also provide a method for manufacturing an optical module, including:
  • a black matrix is formed on the substrate by using black metal oxide, and the orthographic projection of the gap between the adjacent optical lenses on the substrate is located within the orthographic projection of the black matrix on the substrate.
  • the method further includes:
  • Forming the black matrix includes:
  • a layer of black metal oxide is formed on the etching barrier layer by a sputtering process, and the black metal oxide is etched to form a black matrix.
  • the ferrous metal oxide is etched using dry etching.
  • the method further includes:
  • a flat layer is formed covering the black matrix and the optical lens, and the flat layer has a refractive index smaller than that of the optical lens.
  • FIG. 1 is a schematic flowchart of a prior art manufacturing a display device
  • FIG. 2 is a schematic flow chart of the prior art for making an optical module
  • FIG. 3 is a schematic flowchart of manufacturing a display device according to an embodiment of the present disclosure
  • 4 and 5 are schematic diagrams of naked-eye 3D display.
  • the related technology uses nano-imprinting to form optical lenses, and adds a light-shielding layer (such as a black matrix) between the optical lenses to achieve the effect of a close-contact optical lens. crosstalk.
  • a light-shielding layer such as a black matrix
  • FIG. 1 is a schematic flowchart of a related art manufacturing a display device. As shown in FIG. 1 , when the related art makes a display device, the following steps are included:
  • Step a provide a substrate 1
  • Step b making an alignment mark on the substrate 1, and making a black matrix 21 based on the alignment mark;
  • Step c imprinting the optical lens 3 on the substrate 1 based on the alignment mark
  • Step d forming the flat layer 4 covering the black matrix 21 and the optical lens 3;
  • Step e forming the encapsulation layer 5 covering the flat layer 4;
  • Step f The substrate 1 and the display panel 6 are attached together to form a display device.
  • the alignment device of the nano-imprinting device can be used to align the black matrix 21 and the optical lens 3, and the alignment accuracy is poor, basically above several hundred microns, resulting in the existence of the black matrix 21 and the optical lens 3.
  • the problem of misalignment will affect the light output efficiency of the optical module.
  • a black matrix can be made of black organic polymers, and the fabrication method of the optical module includes the following steps:
  • Step a providing a substrate 1, and making the optical lens 3 on the substrate 1;
  • Step b coating and forming a layer of black organic polymer 2 covering the optical lens 3;
  • step c the black organic polymer 2 is exposed to light, and a black matrix 21 is formed after developing.
  • the coating thickness of the black organic polymer 2 is generally 1-2um, but because the gap between the optical lenses 3 is small, generally within 5um, the black organic polymer 2 will be leveled in the gap between the optical lenses 3, resulting in The actual thickness of the black organic polymer 2 at the gap of the optical lens 3 is close to the arch height of the optical lens 3.
  • the height of the obtained black matrix 21 is relatively high, which is close to the arch of the optical lens 3. It is high and has the shape of an inverted trapezoid, which will greatly affect the light extraction efficiency of the optical lens 3 and the overall light field effect of the optical module.
  • Embodiments of the present disclosure provide an optical module, a manufacturing method thereof, and a display device, which can ensure the light extraction efficiency of the optical module.
  • Embodiments of the present disclosure provide an optical module, including:
  • the black matrix is made of black metal oxide.
  • the black matrix is made of black metal oxide, which has extremely low reflectivity and high light absorption, which can prevent light from exiting from the gap between the optical lenses and avoid crosstalk; in addition, Ferrous metal oxides are generally thinner, and dry etching can be used to form a black matrix. Using ferrous metal oxide to make a black matrix can make the black matrix have a smaller line width and improve the light extraction efficiency of the optical module.
  • a photolithography process can be used to form a photoresist column array, and then a thermal reflow process can be used to melt the photoresist column array by heating, and form a spherical optical lens under the action of surface tension, so that no alignment equipment is required.
  • a thermal reflow process can be used to melt the photoresist column array by heating, and form a spherical optical lens under the action of surface tension, so that no alignment equipment is required.
  • it can avoid the problem of dislocation between the black matrix and the optical lens, and ensure the light output efficiency of the optical module.
  • the black matrix may be fabricated on the substrate first, and then the optical lens may be fabricated, or the optical lens may be fabricated first, and then the black matrix may be fabricated.
  • the optical module further includes:
  • the etching barrier layer 7 is located on the side of the optical lens 3 away from the substrate 1, the etching barrier layer 7 covers the optical lens 3, and the black matrix 81 is located on the etching barrier layer 7 away from the side of substrate 1. In this way, when the black matrix 81 is fabricated by the patterning process, the etching barrier layer 7 can protect the optical lens 3 and avoid damage to the optical lens 3 .
  • the etching barrier layer 7 is made of inorganic materials with high transmittance, such as SiO, SiN, etc., and the film thickness is 10-100 nm.
  • the optical module further includes:
  • the flat layer 4 located on the side of the black matrix 81 and the optical lens 3 away from the substrate 1 has a refractive index smaller than that of the optical lens 3 .
  • a flat layer 4 is provided on the light-emitting side of the optical lens 3 , and the refractive index of the flat layer 4 is smaller than that of the optical lens 3 , and the naked-eye 3D can be realized by the array of the optical lens 3 .
  • the light 12 enters the optical lens 3 from the position point 11 , and after reaching the position point 13 , the two sides of the interface of the convex surface have different refractive indices. Since the refractive index of the flat layer 4 is smaller than that of the optical lens 3, the incident angle ⁇ (the angle between the incident ray 12 and the normal) is smaller than the refraction angle ⁇ (the angle between the refracted ray 14 and the normal).
  • the refractive index of the flat layer 4 is greater than that of the air, in the same way, when the light exits from the flat layer 4 to the air (the refractive index is equal to 1), the incident angle ⁇ (the incident light 14 and the The included angle of the normal line) is smaller than the refraction angle ⁇ (the included angle of the refracted ray 16 and the normal line). Therefore, after the light emitted from the position point 11 passes through the optical lens 3, it generally propagates to the right.
  • the optical lens 3 can be a hemispherical lens or a cylindrical lens.
  • the hemispherical lens has a circular cross section in the first direction, and a semicircle or a part of the semicircle in the second direction.
  • the cylindrical lens That is, the cross-section in the first direction is a square, and the cross-section in the third direction is a semicircle or a part of a semicircle, wherein the first direction is parallel to the base, the second direction is perpendicular to the base, and the third direction is perpendicular to the base and the cylindrical lens.
  • the extension direction is vertical.
  • the difference between the refractive index of the flat layer and the refractive index of the optical lens is greater than 0.1.
  • the thickness of the flat layer 4 can be 5-30um, the refractive index is 1.3-1.6, and specifically, an organic resin can be used.
  • the diameter of the optical lens may be 10-300um
  • the height of the optical lens may be 5-30um
  • the distance between adjacent optical lenses may be 1.5-5um
  • the refractive index may be 1.5 ⁇ 1.8.
  • the thickness of the black matrix is less than 500 nm. Compared with the thickness of the black matrix in the prior art, the thickness of the black matrix is 1-2 ⁇ m, or even more. The impact is also relatively small.
  • Embodiments of the present disclosure also provide a display device including the optical module as described above.
  • the display device includes but is not limited to: a radio frequency unit, a network module, an audio output unit, an input unit, a sensor, a display unit, a user input unit, an interface unit, a memory, a processor, and a power supply and other components.
  • a radio frequency unit a network module
  • an audio output unit an input unit, a sensor, a display unit, a user input unit, an interface unit, a memory, a processor, and a power supply and other components.
  • the structure of the above-mentioned display device does not constitute a limitation on the display device, and the display device may include more or less components described above, or combine some components, or arrange different components.
  • the display device includes, but is not limited to, a display, a mobile phone, a tablet computer, a television, a wearable electronic device, a navigation display device, and the like.
  • the display device can be any product or component with a display function, such as a TV, a monitor, a digital photo frame, a mobile phone, a tablet computer, etc., wherein the display device further includes a flexible circuit board, a printed circuit board and a backplane.
  • the display device further includes a display panel arranged in a box with the optical module, the sub-pixels of the display panel are in one-to-one correspondence with the optical lenses, and the center point of the sub-pixel is on the substrate The orthographic projection of the corresponding optical lens coincides with the orthographic projection of the center point of the optical lens on the substrate.
  • the optical module is disposed on the display surface side of the display panel, and the optical module includes a plurality of optical lenses arranged in an array, each of the optical lenses is disposed corresponding to one of the sub-pixels, and The spacing between adjacent optical lenses is equal to the spacing between adjacent sub-pixels.
  • the distances between the sub-pixels and the optical modules at different positions of the display panel will have different magnitude relationships with the focal length of the optical lens, which is different from the display surface of the display panel in the conventional naked-eye 3D display device.
  • the depth of the 3D picture viewed by the viewer can be greatly enhanced without sacrificing the image resolution, and the layers are different, and the stereoscopic effect is enhanced. .
  • the distance g between the sub-pixels at each position on the display surface of the display panel and the optical center of the corresponding optical lens is equal.
  • the light emitted by the sub-pixels on the display panel is refracted by the optical lens and then focused to form intersections. image.
  • the distances between the sub-pixels and the optical lenses at different positions on the display surface of the display panel are different.
  • the distance between the sub-pixel and the optical lens that is, the focal length of the optical lens will show a different size relationship, which is different from the sub-pixel and optical lens at each position of the display surface of the display panel in the traditional naked-eye 3D display device.
  • the depth of the 3D picture viewed by the viewer is greatly enhanced, and the layers are different, and the three-dimensional sense is enhanced.
  • the distance g between at least a part of the sub-pixels of the display surface of the display panel and the optical center of the corresponding optical lens is smaller than the focal length f of the optical lens, so The distance g between at least another part of the sub-pixels on the display surface of the display panel and the optical center of the corresponding optical lens is greater than the focal length f of the optical lens.
  • the distance g between a part of the sub-pixels in the display panel and the optical module is smaller than the focal length f of the optical lens, and the 3D image imaging position is behind the optical module, showing the effect of entering the screen;
  • the distance g between the optical modules is greater than the focal length f of the optical lens, and the 3D image imaging position is in front of the optical modules, showing a screen effect.
  • the distance g between the sub-pixels at different positions in the display panel and the optical center of the corresponding optical lens may also be smaller than the focal length f of the optical lens, or larger than the focal length of the optical lens f.
  • the display panel can be any display device such as LCD, OLED, etc.
  • the display panel is designed as a curved display panel, and the optical center of each optical lens in the optical module is on a plane , in this way, the distance between the sub-pixels in the edge area and the middle area of the display panel and the optical module will be different, and preferably, the distance between the sub-pixels in the edge area of the display panel and the optical center of the corresponding optical lens is smaller than that of the optical module.
  • the focal length of the lens, the 3D image imaging position is behind the optical module, showing a screen-in effect; while the distance g between the sub-pixels in the middle area of the display panel and the optical module is greater than the focal length f of the optical lens, and the central depth plane of the 3D image imaging The position is in front of the optical lens, showing a screen effect. In this way, the depth of the entire 3D picture viewed by the viewer is greatly enhanced, and the levels are different, and the stereoscopic effect is enhanced.
  • the distance between the sub-pixels of the display surface of the curved display panel and the corresponding optical centers of the optical lenses gradually decreases from the central area of the display panel to the edge area of the display surface.
  • the display panel is a curved display panel
  • the optical module is a structure in which the optical centers of each optical lens are on the same plane.
  • it may also be a
  • the display panel is a curved display panel
  • the optical module can also be a curved optical lens with the optical center of each optical lens on a curved surface, as long as the sub-pixels at different positions of the display panel and the corresponding optical lenses It suffices to have different distances between the optical centers of the lenses.
  • Embodiments of the present disclosure also provide a method for manufacturing an optical module, including:
  • a black matrix is formed on the substrate by using black metal oxide, and the orthographic projection of the gap between the adjacent optical lenses on the substrate is located within the orthographic projection of the black matrix on the substrate.
  • the black matrix is made of black metal oxide, which has extremely low reflectivity and high light absorption, which can prevent light from exiting from the gap between the optical lenses and avoid crosstalk; in addition, Ferrous metal oxides are generally thinner, and dry etching can be used to form a black matrix. Using ferrous metal oxide to make a black matrix can make the black matrix have a smaller line width and improve the light extraction efficiency of the optical module.
  • the black matrix may be fabricated on the substrate first, and then the optical lens may be fabricated, or the optical lens may be fabricated first, and then the black matrix may be fabricated.
  • a photolithography process can be used to form a photoresist column array, and then a thermal reflow process can be used to melt the photoresist column array by heating, and form a spherical optical lens under the action of surface tension, so that no alignment equipment is required.
  • a thermal reflow process can be used to melt the photoresist column array by heating, and form a spherical optical lens under the action of surface tension, so that no alignment equipment is required.
  • it can avoid the problem of dislocation between the black matrix and the optical lens, and ensure the light output efficiency of the optical module.
  • the method further includes:
  • Forming the black matrix includes:
  • a layer of black metal oxide is formed on the etching barrier layer by a sputtering process, and the black metal oxide is etched to form a black matrix.
  • the black metal oxide may be etched by dry etching.
  • the critical dimension deviation (CD Bias) of dry etching is smaller, and the line width of the formed black matrix can be made smaller, which can improve the light efficiency of the overall device.
  • the method further includes:
  • a flat layer is formed covering the black matrix and the optical lens, and the flat layer has a refractive index smaller than that of the optical lens.
  • the manufacturing method of the optical module includes the following steps:
  • Step a provide a substrate 1
  • the substrate 1 may be a hard substrate, such as a quartz substrate or a glass substrate, or a flexible substrate.
  • Step b forming an optical lens 3 on the substrate 1;
  • the optical lens 3 can be formed by imprinting, or the optical lens 3 can be formed by a thermal reflow process.
  • the thermal reflow process is to form a photoresist column array on the substrate 1, and the photoresist column array is melted by heating by using the thermal reflow process. And form spherical optical lens under the action of surface tension;
  • the diameter of the optical lens 3 is 10-300um, the height is 5-30um, the gap between adjacent optical lenses 3 is 1.5-5um, and the refractive index is 1.5-1.8.
  • Step c forming an etching barrier layer 7 covering the optical lens 3;
  • the etching barrier layer 7 is made of inorganic materials with high transmittance, such as SiO, SiN, etc., and the film thickness is 10-100 nm.
  • a PECVD Plasma Enhanced Chemical Vapor Deposition, plasma enhanced chemical
  • an inorganic film layer such as SiO as an etching barrier layer.
  • Step d forming a black metal oxide layer 81
  • the black metal oxide layer 81 can be made of molybdenum oxide MoOx, and a MoOx film layer can be made by a sputtering process.
  • the film layer has extremely low reflectivity and high light absorptivity. 500nm.
  • Step e patterning the black metal oxide layer 81 to form the black matrix 8;
  • the black metal oxide layer 81 is patterned by a photolithography process, the black metal oxide layer 81 can be etched by wet etching, and the black metal oxide layer 81 can also be etched by dry etching. , the CD Bias of dry etching is smaller, and the line width of the finally formed black matrix 8 can be made smaller, which can improve the light efficiency of the overall device.
  • Step f forming a flat layer 4 covering the optical lens 3;
  • the thickness of the flat layer 4 can be 5-30um, the refractive index is 1.3-1.6, and specifically, an organic resin can be used.
  • a flat layer 4 is provided on the light-emitting side of the optical lens 3 , and the refractive index of the flat layer 4 is smaller than that of the optical lens 3 , and the naked-eye 3D can be realized by the array of the optical lens 3 .
  • the light 12 enters the optical lens 3 from the position point 11 , and after reaching the position point 13 , the two sides of the interface of the convex surface have different refractive indices. Since the refractive index of the flat layer 4 is smaller than that of the optical lens 3, the incident angle ⁇ (the angle between the incident ray 12 and the normal) is smaller than the refraction angle ⁇ (the angle between the refracted ray 14 and the normal).
  • the refractive index of the flat layer 4 is greater than that of the air, in the same way, when the light exits from the flat layer 4 to the air (the refractive index is equal to 1), the incident angle ⁇ (the incident light 14 and the The included angle of the normal line) is smaller than the refraction angle ⁇ (the included angle of the refracted ray 16 and the normal line). Therefore, after the light emitted from the position point 11 passes through the optical lens 3, it generally propagates to the right.
  • the difference between the refractive index of the flat layer and the refractive index of the optical lens is greater than 0.1.
  • Step g bonding the substrate 1 and the display panel 6 together.
  • the method of manufacturing the optical module is described by taking the optical lens first and then the black matrix as an example.
  • the present disclosure does not limit the order of manufacturing the optical lens and the black matrix.
  • the black matrix can also be manufactured first. The matrix recreates the optical lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种光学模组及其制作方法、显示装置,属于显示技术领域。其中,光学模组包括:基底(1);位于基底(1)上的黑矩阵(81)和间隔排布的多个光学透镜(3),相邻光学透镜(3)之间的间隙在基底(1)上的正投影位于黑矩阵(81)在基底(1)上的正投影内;其中,黑矩阵(81)采用黑色金属氧化物制作,能够保证光学模组的出光效率。

Description

光学模组及其制作方法、显示装置 技术领域
本公开涉及显示技术领域,特别是指一种光学模组及其制作方法、显示装置。
背景技术
随着显示技术的发展,对光学元器件微型化的需求不断加大,光学透镜应运而生。光学透镜通常是指孔径从微米尺度到毫米尺度的透镜,当一定数量的光学透镜按照特定的规律排列就组成了光学透镜。相比于传统的透镜,光学透镜及其阵列具有体积小,重量轻,功耗小等优点。光学透镜能够实现传统光学器件不具备的光学特性,利用这种特性可以使器件具有各种特殊的功能,例如在显示领域,利用光学透镜,可以实现裸眼3D。
发明内容
本公开的实施例提供一种光学模组,包括:
基底;
位于所述基底上的黑矩阵和间隔排布的多个光学透镜,相邻所述光学透镜之间的间隙在所述基底上的正投影位于所述黑矩阵在所述基底上的正投影内;
其中,所述黑矩阵采用黑色金属氧化物制作。
一些实施例中,所述光学模组还包括:
位于所述光学透镜远离所述基底一侧的刻蚀阻挡层,所述刻蚀阻挡层覆盖所述光学透镜,所述黑矩阵位于所述刻蚀阻挡层远离所述基底的一侧。
一些实施例中,所述光学模组还包括:
位于所述黑矩阵和所述光学透镜远离所述基底一侧的平坦层,所述平坦层的折射率小于所述光学透镜的折射率。
一些实施例中,所述平坦层的折射率与所述光学透镜的折射率的差值大于0.1。
一些实施例中,所述平坦层的厚度为5-30um。
一些实施例中,所述刻蚀阻挡层的厚度为10~100nm。
一些实施例中,所述光学透镜的直径为10~300um,所述光学透镜的高度为5~30um,相邻所述光学透镜之间的间距为1.5~5um。
一些实施例中,所述黑矩阵的厚度小于500nm。
本公开实施例还提供了一种显示装置,包括如上所述的光学模组。
一些实施例中,还包括与所述光学模组对盒设置的显示面板,所述显示面板的像素与所述光学透镜一一对应,所述像素的中心点与对应光学透镜的中心点在所述基底上的正投影重合。
本公开实施例还提供了一种光学模组的制作方法,包括:
提供一基底;
在所述基底上形成间隔排布的多个光学透镜;
在所述基底上利用黑色金属氧化物形成黑矩阵,相邻所述光学透镜之间的间隙在所述基底上的正投影位于所述黑矩阵在所述基底上的正投影内。
一些实施例中,形成所述光学透镜后,所述方法还包括:
形成覆盖所述光学透镜的刻蚀阻挡层;
形成所述黑矩阵包括:
在所述刻蚀阻挡层上通过溅射工艺形成一层黑色金属氧化物,对所述黑色金属氧化物进行刻蚀形成黑矩阵。
一些实施例中,利用干法刻蚀对所述黑色金属氧化物进行刻蚀。
一些实施例中,所述方法还包括:
形成覆盖所述黑矩阵和所述光学透镜的平坦层,所述平坦层的折射率小于所述光学透镜的折射率。
附图说明
图1为现有技术制作显示装置的流程示意图;
图2为现有技术制作光学模组的流程示意图;
图3为本公开实施例制作显示装置的流程示意图;
图4和图5为裸眼3D显示的原理图。
附图标记
1 基底
2 黑色有机聚合物
3 光学透镜
4 平坦层
5 封装层
6 显示面板
21 黑矩阵
7 刻蚀阻挡层
81 黑色金属氧化物层
8 黑矩阵
11、13、15 位置点
12、14、16 光线
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
相关技术采用纳米压印形成光学透镜,在光学透镜之间增加遮光层(比如黑矩阵)实现密接型光学透镜的效果,而遮光层主要是防止光直接从光学透镜之间的间隙出射,避免显著串扰。
图1为相关技术制作显示装置的流程示意图,如图1所示,相关技术制作显示装置时,包括以下步骤:
步骤a、提供一基底1;
步骤b、在基底1上制作对位标记,基于该对位标记制作黑矩阵21;
步骤c、基于对位标记在基底1上进行光学透镜3的压印;
步骤d、形成覆盖黑矩阵21和光学透镜3的平坦层4;
步骤e:形成覆盖平坦层4的封装层5;
步骤f:将基底1与显示面板6贴合在一起,形成显示装置。
上述步骤中,可以利用纳米压印设备的对位装置进行黑矩阵21和光学透镜3的对位,对位精度较差,基本上都在几百微米以上,导致黑矩阵21与光学透镜3存在错位的问题,会影响光学模组的出光效率。
或者,如图2所示,可以利用黑色有机聚合物制作黑矩阵,光学模组的制作方法包括以下步骤:
步骤a、提供一基底1,在基底1上制作光学透镜3;
步骤b、涂覆形成一层覆盖光学透镜3的黑色有机聚合物2;
步骤c、对黑色有机聚合物2进行曝光,显影后形成黑矩阵21。
其中,黑色有机聚合物2的涂覆厚度一般在1~2um,但是由于光学透镜3之间的间隙很小,一般在5um以内,黑色有机聚合物2会在光学透镜3间隙进行流平,导致光学透镜3间隙处的黑色有机聚合物2实际厚度接近光学透镜3的拱高,在后续对黑色有机聚合物2进行图形化后,得到的黑矩阵21的高度较高,接近光学透镜3的拱高,且呈倒梯形的形状,这将极大的影响光学透镜3的出光效率,影响光学模组整体的光场效果。
本公开实施例提供一种光学模组及其制作方法、显示装置,能够保证光学模组的出光效率。
本公开的实施例提供一种光学模组,包括:
基底;
位于所述基底上的黑矩阵和间隔排布的多个光学透镜,相邻所述光学透镜之间的间隙在所述基底上的正投影位于所述黑矩阵在所述基底上的正投影内;
其中,所述黑矩阵采用黑色金属氧化物制作。
本实施例中,黑矩阵采用黑色金属氧化物制作,黑色金属氧化物具有极低的反射率,以及较高的光吸收率,可以防止光线从光学透镜之间的间隙出射,避免串扰;另外,黑色金属氧化物一般厚度比较薄,并且可以采用干法刻蚀形成黑矩阵,用黑色金属氧化物制作黑矩阵可以使得黑矩阵具有较小的线宽,提高光学模组的出光效率。
本实施例中,可以采用光刻工艺形成光刻胶柱阵列,再利用热回流工艺通过加热使光刻胶柱阵列熔融,并在表面张力的作用下形成球面光学透镜,这样无需利用对位设备来制作光学透镜,能够避免黑矩阵与光学透镜存在错位的问题,保证光学模组的出光效率。
本实施例中,可以先在基底上制作黑矩阵再制作光学透镜,还可以先制作光学透镜再制作黑矩阵。
如果先制作光学透镜再制作黑矩阵,为了避免利用构图工艺制作黑矩阵时损伤到光学透镜,一些实施例中,如图3所示,所述光学模组还包括:
位于所述光学透镜3远离所述基底1一侧的刻蚀阻挡层7,所述刻蚀阻挡层7覆盖所述光学透镜3,所述黑矩阵81位于所述刻蚀阻挡层7远离所述基底1的一侧。这样在利用构图工艺制作黑矩阵81时,刻蚀阻挡层7可以对光学透镜3进行保护,避免对光学透镜3造成损伤。为了不影响光学透镜3的出光,刻蚀阻挡层7采用具有高透过率的无机材料,比如SiO、SiN等,膜厚在10~100nm。
一些实施例中,如图3所示,所述光学模组还包括:
位于所述黑矩阵81和所述光学透镜3远离所述基底1一侧的平坦层4,所述平坦层4的折射率小于所述光学透镜3的折射率。
如图4所示,在光学透镜3的出光侧设置有平坦层4,平坦层4的折射率小于光学透镜3的折射率,通过光学透镜3阵列可以实现裸眼3D。如图4所示,光线12从位置点11处射入光学透镜3,到达位置点13后,凸面的界面两侧折射率不同。由于平坦层4的折射率小于光学透镜3的折射率,因此入射角α(入射光线12与法线的夹角)小于折射角β(折射光线14与法线的夹角)。
在平坦层4之外还有空气,由于平坦层4的折射率大于空气的折射率,同理,光线从平坦层4出射到空气(折射率等于1)时,入射角β(入射光线14与法线的夹角)小于折射角γ(折射光线16与法线的夹角)。因此,从位置点11发出的光线经过光学透镜3后,总体上是向右传播的。
综上所述,如图4和图5所示,由左侧入射的光线经过光学透镜3后, 光线出射的方向向右,到达左眼;同理,由右侧入射的光线经过光学透镜3后,光线出射的方向向左,到达右眼。因此,左右眼分别只看到左眼图像和右眼图像,经过大脑合成进而形成了3D视觉。
本实施例中,光学透镜3可以为半球状透镜也可以为柱状透镜,半球状透镜即在第一方向上的截面为圆形,在第二方向上的截面为半圆或半圆的一部分,柱状透镜即在第一方向上的截面为方形,在第三方向上的截面为半圆或半圆的一部分,其中,第一方向与基底平行,第二方向与基底垂直,第三方向与基底垂直且与柱状透镜的延伸方向垂直。
为了保证裸眼3D效果,一些实施例中,所述平坦层的折射率与所述光学透镜的折射率的差值大于0.1。平坦层4的厚度可以为5-30um,折射率在1.3~1.6,具体可以采用有机树脂。
一些实施例中,所述光学透镜的直径可以为10~300um,所述光学透镜的高度可以为5~30um,相邻所述光学透镜之间的间距可以为1.5~5um,折射率可以为1.5~1.8。
一些实施例中,所述黑矩阵的厚度小于500nm,相比现有技术中黑矩阵的厚度为1~2um,甚至更多,黑矩阵的厚度较小,这样黑矩阵对光学透镜3的出光效率影响也比较小。
本公开实施例还提供了一种显示装置,包括如上所述的光学模组。
该显示装置包括但不限于:射频单元、网络模块、音频输出单元、输入单元、传感器、显示单元、用户输入单元、接口单元、存储器、处理器、以及电源等部件。本领域技术人员可以理解,上述显示装置的结构并不构成对显示装置的限定,显示装置可以包括上述更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,显示装置包括但不限于显示器、手机、平板电脑、电视机、可穿戴电子设备、导航显示设备等。
所述显示装置可以为:电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,所述显示装置还包括柔性电路板、印刷电路板和背板。
一些实施例中,显示装置还包括与所述光学模组对盒设置的显示面板, 所述显示面板的亚像素与所述光学透镜一一对应,所述亚像素的中心点在所述基底上的正投影与对应的光学透镜的中心点在所述基底上的正投影重合。
本实施例的显示装置中,光学模组设置在显示面板的显示面一侧,光学模组包括阵列排布的多个光学透镜,每一个所述光学透镜对应于一个所述亚像素设置,相邻所述光学透镜之间的间距等于相邻所述亚像素之间的间距。
其中,所述显示面板的显示面上不同位置处的亚像素与对应的光学透镜的光心之间具有不同距离。这样,显示面板不同位置处的亚像素与光学模组之间的距离,即会与所述光学透镜的焦距之间呈现不同的大小关系,与传统的裸眼3D显示装置中显示面板的显示面各位置处的亚像素与光学模组之间的距离均相同的方式相比,可以在不折损图像分辨率的同时,使观看者观看到的3D画面深度大大加强,并且层次不同,立体感增强。
传统的裸眼3D显示装置中,显示面板的显示面上各位置处的亚像素与对应的光学透镜的光心之间距离g均相等。显示3D图像时,显示面板上的亚像素发出的光线经过光学透镜折射后聚焦形成一个个交点,这些交点所在的平面称为中心深度平面a,在该中心深度平面a上能显示最高分辨率的图像。
为了在不损失图像分辨率的前提下增加图像深度,本公开所提供的显示装置,将显示面板的显示面在不同位置处的亚像素与光学透镜之间的距离不同,这样,显示面板不同位置处的亚像素与光学透镜之间的距离,即会与所述光学透镜的焦距之间呈现不同的大小关系,与传统的裸眼3D显示装置中显示面板的显示面各位置处的亚像素与光学透镜之间的距离均相同的方式相比,使观看者观看到的3D画面深度大大加强,并且层次不同,立体感增强。
在本公开所提供的实施例中,优选的,所述显示面板的显示面的至少一部分亚像素与对应的所述光学透镜的光心之间的距离g小于所述光学透镜的焦距f,所述显示面板的显示面的至少另一部分亚像素与对应的所述光学透镜的光心之间的距离g大于所述光学透镜的焦距f。
采用上述方案,显示面板中一部分亚像素与光学模组间的距离g小于光学透镜的焦距f,3D图像成像位置在光学模组的后方,呈现入屏效果;而显 示面板的另一部分亚像素与光学模组间的距离g大于光学透镜的焦距f,3D图像成像位置在光学模组的前方,呈现出屏效果。这样,观看者观看到的整幅3D画面深度大大加强,并且层次不同,立体感随之增强。
应当理解的是,对于所述显示面板中不同位置处的亚像素与对应的光学透镜的光心之间的距离g还可以是,均小于光学透镜的焦距f,或者,均大于光学透镜的焦距f。
在本实施例中,所述显示面板可以为LCD、OLED等任意显示器件,将所述显示面板设计为曲面显示面板,而所述光学模组中各所述光学透镜的光心处于一平面上,这样,显示面板的边缘区域和中部区域的亚像素会与光学模组间的距离不同,且优选的,显示面板的边缘区域的亚像素与对应的光学透镜的光心之间的距离小于光学透镜的焦距,3D图像成像位置在光学模组的后方,呈现入屏效果;而显示面板的中部区域的亚像素与光学模组间的距离g大于光学透镜焦距f,3D图像成像的中心深度平面位置在光学透镜的前方,呈现出屏效果。这样,观看者观看到的整幅3D画面深度大大加强,并且层次不同,立体感增强。
优选的,曲面显示面板的显示面的亚像素从所述显示面板的中部区域向所述显示面的边缘区域、与对应的所述光学透镜的光心之间的距离逐渐减小。
采用上述方案,由于显示面板的亚像素与光学模组之间的距离逐渐变化,观看者在观看时看到的画面深度会逐渐变化,更有利于观看画面的层次变化。
需要说明的是,在本实施例中,所述显示面板为曲面显示面板,所述光学模组为各光学透镜的光心处于同一平面上的结构,本公开的其他实施例中,还可以是,所述显示面板为曲面显示面板,而所述光学模组还可以是各所述光学透镜的光心处于一曲面上的曲面光学透镜,只要使得显示面板不同位置处的亚像素与对应的光学透镜光心之间具有不同距离即可。
本公开实施例还提供了一种光学模组的制作方法,包括:
提供一基底;
在所述基底上形成间隔排布的多个光学透镜;
在所述基底上利用黑色金属氧化物形成黑矩阵,相邻所述光学透镜之间 的间隙在所述基底上的正投影位于所述黑矩阵在所述基底上的正投影内。
本实施例中,黑矩阵采用黑色金属氧化物制作,黑色金属氧化物具有极低的反射率,以及较高的光吸收率,可以防止光线从光学透镜之间的间隙出射,避免串扰;另外,黑色金属氧化物一般厚度比较薄,并且可以采用干法刻蚀形成黑矩阵,用黑色金属氧化物制作黑矩阵可以使得黑矩阵具有较小的线宽,提高光学模组的出光效率。
本实施例中,可以先在基底上制作黑矩阵再制作光学透镜,还可以先制作光学透镜再制作黑矩阵。
本实施例中,可以采用光刻工艺形成光刻胶柱阵列,再利用热回流工艺通过加热使光刻胶柱阵列熔融,并在表面张力的作用下形成球面光学透镜,这样无需利用对位设备来制作光学透镜,能够避免黑矩阵与光学透镜存在错位的问题,保证光学模组的出光效率。
如果先制作光学透镜再制作黑矩阵,为了避免利用构图工艺制作黑矩阵时损伤到光学透镜,一些实施例中,形成所述光学透镜后,所述方法还包括:
形成覆盖所述光学透镜的刻蚀阻挡层;
形成所述黑矩阵包括:
在所述刻蚀阻挡层上通过溅射工艺形成一层黑色金属氧化物,对所述黑色金属氧化物进行刻蚀形成黑矩阵。
一些实施例中,可以利用干法刻蚀对所述黑色金属氧化物进行刻蚀。干法刻蚀的关键尺寸偏差(CD Bias)更小,形成的黑矩阵的线宽可以做的更小,能够提高整体器件的光效。
一些实施例中,所述方法还包括:
形成覆盖所述黑矩阵和所述光学透镜的平坦层,所述平坦层的折射率小于所述光学透镜的折射率。
如图3所示,一具体实施例中,光学模组的制作方法包括以下步骤:
步骤a、提供一基底1;
其中,基底1可以为硬质基底,比如石英基底或玻璃基底,还可以为柔性基底。
步骤b、在基底1上形成光学透镜3;
可以采用压印方式形成光学透镜3,也可以通过热回流工艺形成光学透镜3,热回流工艺是在基底1上形成光刻胶柱阵列,利用热回流工艺通过加热使光刻胶柱阵列熔融,并在表面张力的作用下形成球面光学透镜;
光学透镜3的直径在10~300um,高度在5~30um,相邻光学透镜3之间的间隙在1.5~5um,折射率在1.5~1.8。
步骤c、形成覆盖光学透镜3的刻蚀阻挡层7;
为了不影响光学透镜3的出光,刻蚀阻挡层7采用具有高透过率的无机材料,比如SiO、SiN等,膜厚在10~100nm。
具体地,可以采用PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学)工艺沉积SiO等无机膜层作为刻蚀阻挡层。
步骤d、形成黑色金属氧化物层81;
其中,黑色金属氧化物层81可以采用氧化钼MoOx,可以采用溅射(Sputter)工艺制作MoOx膜层,该膜层具有极低的反射率,以及较高的光吸收率,膜厚在100~500nm。
步骤e、对黑色金属氧化物层81进行图案化形成黑矩阵8;
之后采用光刻工艺对黑色金属氧化物层81进行图案化,可以采用湿法刻蚀对黑色金属氧化物层81进行刻蚀,还可以采用干法刻蚀对黑色金属氧化物层81进行刻蚀,干法刻蚀的CD Bias更小,最终形成的黑矩阵8的线宽可以做的更小,能够提高整体器件的光效。
步骤f:形成覆盖光学透镜3的平坦层4;
平坦层4的厚度可以为5-30um,折射率在1.3~1.6,具体可以采用有机树脂。
如图4所示,在光学透镜3的出光侧设置有平坦层4,平坦层4的折射率小于光学透镜3的折射率,通过光学透镜3阵列可以实现裸眼3D。如图4所示,光线12从位置点11处射入光学透镜3,到达位置点13后,凸面的界面两侧折射率不同。由于平坦层4的折射率小于光学透镜3的折射率,因此入射角α(入射光线12与法线的夹角)小于折射角β(折射光线14与法线的夹 角)。
在平坦层4之外还有空气,由于平坦层4的折射率大于空气的折射率,同理,光线从平坦层4出射到空气(折射率等于1)时,入射角β(入射光线14与法线的夹角)小于折射角γ(折射光线16与法线的夹角)。因此,从位置点11发出的光线经过光学透镜3后,总体上是向右传播的。
综上所述,如图4和图5所示,由左侧入射的光线经过光学透镜3后,光线出射的方向向右,到达左眼;同理,由右侧入射的光线经过光学透镜3后,光线出射的方向向左,到达右眼。因此,左右眼分别只看到左眼图像和右眼图像,经过大脑合成进而形成了3D视觉。
为了保证裸眼3D效果,一些实施例中,所述平坦层的折射率与所述光学透镜的折射率的差值大于0.1。
步骤g:将基底1与显示面板6贴合在一起。
上述步骤a-g以先制作光学透镜再制作黑矩阵为例说明光学模组的制作方法,当然,本公开对制作光学透镜和黑矩阵的顺序不做限定,一些实施例中,还可以是先制作黑矩阵再制作光学透镜。
需要说明,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于实施例而言,由于其基本相似于产品实施例,所以描述得比较简单,相关之处参见产品实施例的部分说明即可。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种光学模组,其特征在于,包括:
    基底;
    位于所述基底上的黑矩阵和间隔排布的多个光学透镜,相邻所述光学透镜之间的间隙在所述基底上的正投影位于所述黑矩阵在所述基底上的正投影内;
    其中,所述黑矩阵采用黑色金属氧化物制作。
  2. 根据权利要求1所述的光学模组,其特征在于,所述光学模组还包括:
    位于所述光学透镜远离所述基底一侧的刻蚀阻挡层,所述刻蚀阻挡层覆盖所述光学透镜,所述黑矩阵位于所述刻蚀阻挡层远离所述基底的一侧。
  3. 根据权利要求1所述的光学模组,其特征在于,所述光学模组还包括:
    位于所述黑矩阵和所述光学透镜远离所述基底一侧的平坦层,所述平坦层的折射率小于所述光学透镜的折射率。
  4. 根据权利要求3所述的光学模组,其特征在于,所述平坦层的折射率与所述光学透镜的折射率的差值大于0.1。
  5. 根据权利要求3所述的光学模组,其特征在于,所述平坦层的厚度为5-30um。
  6. 根据权利要求2所述的光学模组,其特征在于,所述刻蚀阻挡层的厚度为10~100nm。
  7. 根据权利要求1-6中任一项所述的光学模组,其特征在于,所述光学透镜的直径为10~300um,所述光学透镜的高度为5~30um,相邻所述光学透镜之间的间距为1.5~5um。
  8. 根据权利要求1-6中任一项所述的光学模组,其特征在于,所述黑矩阵的厚度小于500nm。
  9. 一种显示装置,其特征在于,包括如权利要求1-8中任一项所述的光学模组。
  10. 根据权利要求9所述的显示装置,其特征在于,还包括与所述光学 模组对盒设置的显示面板,所述显示面板的像素与所述光学透镜一一对应,所述像素的中心点与对应光学透镜的中心点在所述基底上的正投影重合。
  11. 一种光学模组的制作方法,其特征在于,包括:
    提供一基底;
    在所述基底上形成间隔排布的多个光学透镜;
    在所述基底上利用黑色金属氧化物形成黑矩阵,相邻所述光学透镜之间的间隙在所述基底上的正投影位于所述黑矩阵在所述基底上的正投影内。
  12. 根据权利要求11所述的光学模组的制作方法,其特征在于,形成所述光学透镜后,所述方法还包括:
    形成覆盖所述光学透镜的刻蚀阻挡层;
    形成所述黑矩阵包括:
    在所述刻蚀阻挡层上通过溅射工艺形成一层黑色金属氧化物,对所述黑色金属氧化物进行刻蚀形成黑矩阵。
  13. 根据权利要求12所述的光学模组的制作方法,其特征在于,利用干法刻蚀对所述黑色金属氧化物进行刻蚀。
  14. 根据权利要求11所述的光学模组的制作方法,其特征在于,所述方法还包括:
    形成覆盖所述黑矩阵和所述光学透镜的平坦层,所述平坦层的折射率小于所述光学透镜的折射率。
PCT/CN2021/089950 2021-04-26 2021-04-26 光学模组及其制作方法、显示装置 WO2022226726A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/089950 WO2022226726A1 (zh) 2021-04-26 2021-04-26 光学模组及其制作方法、显示装置
CN202180000917.XA CN115769107A (zh) 2021-04-26 2021-04-26 光学模组及其制作方法、显示装置
US17/637,667 US20240045118A1 (en) 2021-04-26 2021-04-26 Optical module, manufacturing method, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/089950 WO2022226726A1 (zh) 2021-04-26 2021-04-26 光学模组及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2022226726A1 true WO2022226726A1 (zh) 2022-11-03

Family

ID=83847600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089950 WO2022226726A1 (zh) 2021-04-26 2021-04-26 光学模组及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US20240045118A1 (zh)
CN (1) CN115769107A (zh)
WO (1) WO2022226726A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128351A (ja) * 2003-10-24 2005-05-19 Seiko Epson Corp 遮光部付きレンズ基板の製造方法、遮光部付きレンズ基板、透過型スクリーンおよびリア型プロジェクタ
CN103413495A (zh) * 2013-07-17 2013-11-27 京东方科技集团股份有限公司 一种显示装置
US20140084141A1 (en) * 2012-09-27 2014-03-27 Toshiba Tec Kabushiki Kaisha Light blocking ink, microlens array unit, image processing apparatus
JP2014102268A (ja) * 2012-11-16 2014-06-05 Seiko Epson Corp マイクロレンズアレイ基板、電気光学装置、および電子機器
US20190312072A1 (en) * 2018-04-04 2019-10-10 Samsung Electronics Co., Ltd. Image sensor and method of manufacturing image sensor
WO2020122032A1 (ja) * 2018-12-13 2020-06-18 凸版印刷株式会社 固体撮像素子及び固体撮像素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128351A (ja) * 2003-10-24 2005-05-19 Seiko Epson Corp 遮光部付きレンズ基板の製造方法、遮光部付きレンズ基板、透過型スクリーンおよびリア型プロジェクタ
US20140084141A1 (en) * 2012-09-27 2014-03-27 Toshiba Tec Kabushiki Kaisha Light blocking ink, microlens array unit, image processing apparatus
JP2014102268A (ja) * 2012-11-16 2014-06-05 Seiko Epson Corp マイクロレンズアレイ基板、電気光学装置、および電子機器
CN103413495A (zh) * 2013-07-17 2013-11-27 京东方科技集团股份有限公司 一种显示装置
US20190312072A1 (en) * 2018-04-04 2019-10-10 Samsung Electronics Co., Ltd. Image sensor and method of manufacturing image sensor
WO2020122032A1 (ja) * 2018-12-13 2020-06-18 凸版印刷株式会社 固体撮像素子及び固体撮像素子の製造方法

Also Published As

Publication number Publication date
US20240045118A1 (en) 2024-02-08
CN115769107A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
US7978413B2 (en) Micro-lens array substrate and method for manufacturing thereof
WO2017202323A1 (zh) 感光像元、图像采集器、指纹采集设备及显示设备
TWI382207B (zh) 彩色濾光基板、多視液晶顯示裝置及彩色濾光基板的製作方法
US20140183334A1 (en) Image sensor for light field device and manufacturing method thereof
JPH10123496A (ja) 液晶表示装置とその製造方法
CN104898292A (zh) 3d显示基板及其制作方法、3d显示装置
CN111929936B (zh) 一种显示面板及显示装置
WO2024022078A1 (zh) 一种微透镜阵列基板及其制备方法、显示装置
JPWO2012140853A1 (ja) レンズアレイシートの製造方法
WO2016009972A1 (ja) 固体撮像装置及びその製造方法
CN114518661A (zh) 一种显示面板及其制作方法、显示装置
CN108169921B (zh) 显示器及其显示面板
US20220163700A1 (en) Lens assembly and fabricating method thereof, and displaying device
JP2014102311A (ja) マイクロレンズアレイ基板、マイクロレンズアレイ基板の製造方法、電気光学装置、電子機器
JP2010002925A5 (zh)
JP2010002925A (ja) マイクロレンズアレイ基板とその製造方法、及び液晶パネル、液晶プロジェクタ、表示装置、照明装置
WO2022226726A1 (zh) 光学模组及其制作方法、显示装置
CN113219562B (zh) 光学模组及其制作方法、显示装置
WO2022226725A1 (zh) 光学模组及其制作方法、显示装置
CN105700163A (zh) 一种柱透镜薄膜及3d显示装置
WO2023097623A1 (zh) 一种微透镜结构、其制作方法及显示装置
US20230172036A1 (en) Display substrate and manufacturing method therefor, and display apparatus
TWI753603B (zh) 指紋感測裝置
CN112864182B (zh) 感光模组和显示装置
CN114815291A (zh) 一种显示面板、显示装置及显示面板的制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17637667

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE