WO2022226725A1 - 光学模组及其制作方法、显示装置 - Google Patents

光学模组及其制作方法、显示装置 Download PDF

Info

Publication number
WO2022226725A1
WO2022226725A1 PCT/CN2021/089948 CN2021089948W WO2022226725A1 WO 2022226725 A1 WO2022226725 A1 WO 2022226725A1 CN 2021089948 W CN2021089948 W CN 2021089948W WO 2022226725 A1 WO2022226725 A1 WO 2022226725A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
black matrix
optical
optical module
optical lens
Prior art date
Application number
PCT/CN2021/089948
Other languages
English (en)
French (fr)
Inventor
李多辉
郭康
宋梦亚
黄海涛
顾仁权
张锋
王美丽
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180000918.4A priority Critical patent/CN115605783A/zh
Priority to US17/635,794 priority patent/US12034088B2/en
Priority to PCT/CN2021/089948 priority patent/WO2022226725A1/zh
Publication of WO2022226725A1 publication Critical patent/WO2022226725A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/32Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers characterised by the geometry of the parallax barriers, e.g. staggered barriers, slanted parallax arrays or parallax arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an optical module, a manufacturing method thereof, and a display device.
  • Optical lenses usually refer to lenses with apertures ranging from micrometers to millimeters. When a certain number of optical lenses are arranged according to a specific rule, an optical lens array is formed. Compared with traditional lenses, optical lenses and their arrays have the advantages of small size, light weight, and low power consumption. Optical lenses can realize optical characteristics that traditional optical devices do not have. Using this characteristic, the device can have various special functions. For example, in the display field, using optical lenses, naked-eye 3D can be realized.
  • Embodiments of the present disclosure provide an optical module, including:
  • the orthographic projection of the black matrix on the substrate does not exceed the area surrounded by the blocking structure
  • the orthographic projection of the gap between adjacent optical lenses on the substrate falls into the black matrix.
  • the blocking structure is a blocking wall disposed on the substrate, and the blocking wall surrounds the black matrix.
  • the thickness of the retaining wall is greater than or equal to the thickness of the black matrix.
  • the blocking structure is a groove penetrating part of the substrate, and the black matrix is located in the groove.
  • the optical module further includes a transparent material layer on the surface of the substrate, and the blocking structure is a groove penetrating at least part of the transparent material layer.
  • the thickness of the black matrix is less than or equal to the depth of the groove.
  • Embodiments of the present disclosure also provide a display device including the optical module as described above.
  • it also includes a display panel arranged in a box with the optical module, the sub-pixels of the display panel are in one-to-one correspondence with the optical lenses, and the center point of the sub-pixel is on the positive side of the substrate.
  • the projection coincides with the orthographic projection of the center point of the corresponding optical lens on the substrate.
  • the optical lens is located on a side of the substrate away from the display panel.
  • the optical lens is located on the side of the substrate facing the display panel, a low refractive index layer is filled between the substrate and the display panel, and the thickness of the low refractive index layer is greater than that of the display panel.
  • the thickness of the optical lens, the refractive index of the low refractive index layer is smaller than the refractive index of the optical lens.
  • Embodiments of the present disclosure also provide a method for manufacturing an optical module, including:
  • the orthographic projection of the black matrix on the substrate does not exceed the area surrounded by the blocking structure
  • Optical lenses are formed by a thermal reflow process, and the orthographic projections of the gaps between adjacent optical lenses on the substrate fall into the black matrix.
  • forming the blocking structure includes:
  • a blocking wall for surrounding the black matrix is formed by using the transparent material layer by an imprinting process or a photolithography process.
  • the blocking structure is a groove penetrating part of the substrate, and forming the blocking structure includes:
  • the surface of the substrate is etched to form the groove penetrating a portion of the substrate.
  • forming the blocking structure includes:
  • the transparent material layer is etched to form a groove through at least part of the transparent material layer as the blocking structure.
  • Fig. 1 is the schematic diagram that the edge part of black matrix melts
  • 2 and 3 are schematic diagrams of naked-eye 3D display
  • FIGS. 4-12 are schematic diagrams of manufacturing an optical module according to an embodiment of the present disclosure.
  • FIG. 13 and 14 are schematic diagrams of a display device according to an embodiment of the present disclosure.
  • an optical lens is fabricated by a thermal reflow process, a photoresist array can be formed on a substrate, and the photoresist array is melted by heating using the thermal reflow process, and a spherical optical lens is formed under the action of surface tension.
  • the optical lens prepared by thermal reflow needs to undergo high temperature. As shown in FIG. 1, the high temperature will melt the edge of the previously prepared black matrix 31 and flow to the area where the optical lens 4 is located, blocking part of the optical lens 4 and affecting the optical lens array. transmittance.
  • Embodiments of the present disclosure provide an optical module, a manufacturing method thereof, and a display device, which can ensure the transmittance of the optical module.
  • Embodiments of the present disclosure provide an optical module, including:
  • the orthographic projection of the black matrix on the substrate does not exceed the area surrounded by the blocking structure
  • the orthographic projection of the gap between adjacent optical lenses on the substrate falls into the black matrix.
  • a barrier structure is provided on the substrate, and the black matrix is located in the area defined by the barrier structure, so that even when the optical lens is formed by a thermal reflow process, the edge portion of the black matrix is melted at high temperature, and the barrier structure can also block the melted The black matrix material flows, so that the black matrix material can be prevented from flowing to the area where the optical lens is located, and the transmittance of the optical module can be prevented from being reduced.
  • a film layer 10 is provided on the light-emitting side of the optical lens 4 .
  • the film layer 10 may be air or a low refractive index layer.
  • the naked eye 3D can be realized through the optical lens 4 array.
  • the light 12 enters the optical lens 4 from the position point 11 , and after reaching the position point 13 , the two sides of the interface of the convex surface have different refractive indices. Since the refractive index of the film layer 10 is smaller than the refractive index of the optical lens 4, the incident angle ⁇ (the angle between the incident ray 12 and the normal) is smaller than the refraction angle ⁇ (the angle between the refracted ray 14 and the normal).
  • the film layer 10 adopts a low refractive index layer
  • air is also provided outside the film layer 10.
  • the incident angle ⁇ the incident light 14 and the The angle between the lines
  • the refraction angle ⁇ the angle between the refracted ray 16 and the normal
  • the optical lens 4 may be a hemispherical lens or a cylindrical lens.
  • the hemispherical lens has a circular cross section in the first direction, and a semicircle or a part of the semicircle in the second direction.
  • the cylindrical lens That is, the cross-section in the first direction is a square, and the cross-section in the third direction is a semicircle or a part of a semicircle, wherein the first direction is parallel to the base, the second direction is perpendicular to the base, and the third direction is perpendicular to the base and the cylindrical lens.
  • the extension direction is vertical.
  • the blocking structure is a blocking wall 21 disposed on the substrate 1 , and the blocking wall 21 surrounds the black matrix 31 .
  • the black matrix When the optical lens 4 is formed by a thermal reflow process, the black matrix The edge part of the matrix 31 is melted at high temperature, and the retaining wall 21 can block the flow of the melted black matrix material, thereby preventing the black matrix material from flowing to the area where the optical lens 4 is located, covering part of the optical lens 4, and preventing the transmittance of the optical module from being reduced. .
  • the retaining wall 21 is made of transparent materials, such as photoresist or nano-imprint glue. If the retaining wall 21 is made of photoresist, the photolithography process can be used to make the retaining wall 21; If the retaining wall 21 is made of nano-imprint glue, the retaining wall 21 can be fabricated by using a nano-imprint process.
  • the area defined by the retaining wall 21 matches the shape of the black matrix 31. If the black matrix 31 is a square ring, the shape of the area defined by the retaining wall 21 is a square ring. If the black matrix 31 is a circular ring, the blocking The shape of the area defined by the wall 21 is also annular.
  • the thickness of the retaining wall 21 may be 1-2 um. In order to ensure that the blocking wall 21 blocks the flow of the black matrix 31 , the thickness of the blocking wall 21 needs to be greater than or equal to the thickness of the black matrix 31 .
  • the blocking structure is a groove 5 penetrating part of the substrate 1 , and the black matrix 31 is located in the groove 5 .
  • the edge portion of the black matrix 31 is melted at a high temperature, and the groove 5 can block the flow of the melted black matrix material, thereby preventing the black matrix material from flowing to the area where the optical lens 4 is located, blocking part of the optical The lens 4 prevents the transmittance of the optical module from decreasing.
  • the shape of the groove 5 is the same as that of the black matrix. If the black matrix 31 is a square ring, the shape of the groove 5 is a square ring. If the black matrix 31 is a circular ring, the shape of the groove 5 is also a ring. .
  • the thickness of the black matrix 31 can be equal to the depth of the groove 5, and the thickness of the black matrix 31 can also be slightly smaller than the depth of the groove, so that the concave The grooves 5 can effectively block the edge portion of the black matrix 31 from diffusing to the optical lens 4 .
  • the optical module further includes a transparent material layer 6 on the surface of the substrate 1 , and the blocking structure is a groove 7 penetrating at least part of the transparent material layer 6 .
  • the depth of 7 may be smaller than the thickness of the transparent material layer 6 , or may be equal to the thickness of the transparent material layer 6 , and the black matrix 31 is located in the groove 7 .
  • the transparent material layer 6 can be made of photoresist or nano-imprint glue.
  • the groove 7 can be made by using a photolithography process; if the transparent material layer 6 is made of nano-imprint glue, it can be The grooves 7 are fabricated by a nanoimprint process.
  • the transparent material layer 6 can also be made of SiO, ITO and other materials, and the thickness of the transparent material layer 6 can be 1-2um.
  • the edge portion of the black matrix 31 is melted at a high temperature, and the groove 7 can block the flow of the melted black matrix material, thereby preventing the black matrix material from flowing to the area where the optical lens 4 is located, blocking part of the optical The lens 4 prevents the transmittance of the optical module from decreasing.
  • the shape of the groove 7 is the same as that of the black matrix. If the black matrix 31 is a square ring, the shape of the groove 7 is a square ring. If the black matrix 31 is a circular ring, the shape of the groove 7 is also a ring. .
  • the thickness of the black matrix 31 can be equal to the depth of the groove 7 , and the thickness of the black matrix 31 can also be slightly smaller than the depth of the groove 7 , so that the groove 7 can effectively prevent the edge portion of the black matrix 31 from diffusing to the optical lens 4 .
  • Embodiments of the present disclosure also provide a display device including the optical module as described above.
  • the display device can realize naked eye 3D display.
  • the display device includes but is not limited to: a radio frequency unit, a network module, an audio output unit, an input unit, a sensor, a display unit, a user input unit, an interface unit, a memory, a processor, and a power supply and other components.
  • a radio frequency unit a network module
  • an audio output unit an input unit, a sensor, a display unit, a user input unit, an interface unit, a memory, a processor, and a power supply and other components.
  • the structure of the above-mentioned display device does not constitute a limitation on the display device, and the display device may include more or less components described above, or combine some components, or arrange different components.
  • the display device includes, but is not limited to, a display, a mobile phone, a tablet computer, a television, a wearable electronic device, a navigation display device, and the like.
  • the display device can be any product or component with a display function, such as a TV, a monitor, a digital photo frame, a mobile phone, a tablet computer, etc., wherein the display device further includes a flexible circuit board, a printed circuit board and a backplane.
  • the display device further includes a display panel arranged in a box with the optical module, the sub-pixels of the display panel are in one-to-one correspondence with the optical lenses, and the center point of the sub-pixel is on the substrate.
  • the orthographic projection of the corresponding optical lens coincides with the orthographic projection of the center point of the optical lens on the substrate.
  • the optical module is arranged on the display surface side of the display panel, and the optical module includes a plurality of optical lenses 4 arranged in an array, and each of the optical lenses 4 is arranged corresponding to one of the sub-pixels. , the spacing between adjacent optical lenses 4 is equal to the spacing between adjacent sub-pixels.
  • the distances between the sub-pixels at different positions on the display surface of the display panel and the optical centers of the corresponding optical lenses 4 will have different magnitude relationships with the focal length of the optical lens 4, which is different from the display surface of the display panel in the conventional naked-eye 3D display device.
  • the depth of the 3D picture viewed by the viewer can be greatly enhanced without sacrificing the image resolution, and the levels are different, and the three-dimensional sense enhanced.
  • the distance g between the sub-pixels at each position on the display surface of the display panel and the optical center of the corresponding optical lens 4 is equal.
  • the light emitted by the sub-pixels on the display panel is refracted by the optical lens 4 and then focused to form intersections.
  • the planes where these intersections are located are called the central depth plane a, and the highest resolution can be displayed on the central depth plane a. Image.
  • the distances between the sub-pixels at different positions of the display surface of the display panel and the optical lens 4 are different, so that the display panels are different.
  • the distance between the sub-pixel at the position and the optical lens 4, that is, the focal length of the optical lens 4 presents a different size relationship, which is different from the sub-pixel at each position of the display surface of the display panel in the traditional naked-eye 3D display device.
  • the depth of the 3D picture viewed by the viewer is greatly enhanced, and the levels are different, and the three-dimensional sense is enhanced.
  • the distance g between at least a part of the sub-pixels on the display surface of the display panel and the optical center of the corresponding optical lens 4 is smaller than the focal length f of the optical lens 4
  • the distance g between at least another part of the sub-pixels on the display surface of the display panel and the corresponding optical center of the optical lens 4 is greater than the focal length f of the optical lens 4 .
  • the distance g between a part of the sub-pixels in the display panel and the optical module is smaller than the focal length f of the optical lens 4, and the 3D image imaging position is behind the optical module, showing a screen-in effect; while another part of the sub-pixels of the display panel
  • the distance g between the optical module and the optical module is greater than the focal length f of the optical lens 4, and the 3D image imaging position is in front of the optical module, showing a screen effect.
  • the distance g between the sub-pixels at different positions in the display panel and the optical center of the corresponding optical lens 4 may also be smaller than the focal length f of the optical lens 4, or larger than the optical lens 4 focal length f.
  • the display panel can be any display device such as LCD and OLED, the display panel is designed as a curved display panel, and the optical centers of the optical lenses 4 in the optical module are on a plane
  • the distances between the sub-pixels in the edge area and the middle area of the display panel and the optical modules are different, and preferably, the distance between the sub-pixels in the edge area of the display panel and the optical center of the corresponding optical lens 4 is smaller than the focal length of the optical lens 4, the 3D image imaging position is behind the optical module, showing the effect of entering the screen; and the distance g between the sub-pixels in the middle area of the display panel and the optical module is greater than the focal length f of the optical lens 4, and the 3D image is formed.
  • the center depth plane of the position is in front of the optical lens 4, showing a screen effect. In this way, the depth of the entire 3D picture viewed by the viewer is greatly enhanced, and the levels are different, and the stereoscopic effect is enhanced.
  • the distance between the sub-pixels of the display surface of the curved display panel and the corresponding optical center of the optical lens 4 gradually decreases from the middle area of the display panel to the edge area of the display surface.
  • the display panel is a curved display panel
  • the optical module is a structure in which the optical centers of the optical lenses 4 are on the same plane.
  • the display panel is a curved display panel
  • the optical module can also be a curved optical lens 4 in which the optical center of each of the optical lenses 4 is on a curved surface, as long as the sub-pixels at different positions of the display panel are It suffices that there are different distances between the optical centers of the corresponding optical lenses 4 .
  • the optical lens 4 is located on the side of the substrate 1 facing the display panel 9 , and a low space is filled between the substrate 1 and the display panel 9 .
  • the thickness of the low refractive index layer 8 is greater than the thickness of the optical lens 4, so as to ensure that the optical lens 4 does not contact the display panel 9.
  • the optical lens 4 may also be located on the side of the substrate 1 away from the display panel 9 .
  • the display device further includes a low refractive index layer 8 covering the optical lens 4 , and the thickness of the low refractive index layer 8 is greater than that of the optical lens 4 , so that the low refractive index layer 8 can protect the optical lens 4 .
  • the refractive index of the low refractive index layer 8 should be smaller than the refractive index of the optical lens 4 and greater than the refractive index of air.
  • Embodiments of the present disclosure also provide a method for manufacturing an optical module, including:
  • the orthographic projection of the black matrix on the substrate does not exceed the area surrounded by the blocking structure
  • Optical lenses are formed by a thermal reflow process, and the orthographic projections of the gaps between adjacent optical lenses on the substrate fall into the black matrix.
  • a barrier structure is provided on the substrate, and the black matrix is located in the area defined by the barrier structure, so that even when the optical lens is formed by a thermal reflow process, the edge portion of the black matrix is melted at high temperature, and the barrier structure can also block the melted The black matrix material flows, so that the black matrix material can be prevented from flowing to the area where the optical lens is located, and the transmittance of the optical module can be prevented from being reduced.
  • the manufacturing method of the optical module includes the following steps:
  • Step 1 As shown in FIG. 4, a substrate 1 is provided, and a transparent material layer 2 is formed on the substrate 1;
  • the substrate 1 may be a hard substrate, such as a quartz substrate or a glass substrate, or a flexible substrate.
  • the transparent material layer 2 may be silicon oxide or silicon nitride, or photoresist or nano-imprint glue. If the transparent material layer 2 is made of silicon oxide or silicon nitride, the transparent material layer 2 can be formed by deposition. If the transparent material layer 2 is made of photoresist or nano-imprint glue, the transparent material layer 2 can be formed by coating. . The thickness of the transparent material layer 2 may be 1-2 um.
  • Step 2 As shown in FIG. 5 , a retaining wall 21 is formed by using the transparent material layer 2;
  • the blocking wall 21 can be fabricated by a photolithography process; if the transparent material layer 2 is made of a nano-imprint glue, the retaining wall 21 can be fabricated by a nano-imprint process.
  • the area defined by the retaining wall 21 matches the shape of the black matrix 31. If the black matrix 31 is a square ring, the shape of the area defined by the retaining wall 21 is a square ring. If the black matrix 31 is a circular ring, the blocking The shape of the area defined by the wall 21 is also annular.
  • Step 3 As shown in FIG. 6 , a black matrix material layer 3 is formed on the substrate 1;
  • a black matrix material layer 3 may be coated on the substrate 1 .
  • Step 4 As shown in FIG. 7, the black matrix material layer 3 is exposed, and after development, the black matrix material layer 3 located outside the area defined by the retaining wall 21 is removed to form the black matrix 31;
  • Step 5 As shown in FIG. 8 , the optical lens 4 is prepared by a thermal reflow process, and the gap between the adjacent optical lenses 4 is filled with the blocking wall 21 and the black matrix 31 .
  • the blocking wall 21 surrounds the black matrix 31.
  • the edge portion of the black matrix 31 is melted at a high temperature, and the blocking wall 21 blocks the flow of the melted black matrix material, so that the black matrix can be avoided.
  • the material flows to the area where the optical lens 4 is located to prevent the transmittance of the optical module from decreasing.
  • the thickness of the blocking wall 21 needs to be greater than or equal to the thickness of the black matrix 31 .
  • the melting point of the blocking wall 21 should be greater than the melting point of the black matrix 31 and the melting point of the optical lens 4, so that when the optical lens 4 is formed by the thermal reflow process, the blocking wall 21 will not Affected, the phenomenon of melting occurs.
  • the manufacturing method of the optical module includes the following steps:
  • Step 1 As shown in FIG. 9, a substrate 1 is provided, and the surface of the substrate 1 is etched to form the groove 5 that penetrates part of the substrate 1;
  • the substrate 1 may be a hard substrate, such as a quartz substrate or a glass substrate, or a flexible substrate.
  • a layer of photoresist can be coated on the substrate 1, a photoresist pattern can be formed by a photolithography process, and the substrate 1 can be etched using the photoresist pattern as a mask to form a groove 5 capable of accommodating the black matrix 31 .
  • a layer of nano-imprint glue on the substrate 1, form a pattern of the nano-imprint glue through an imprinting process, and use the pattern of the nano-imprint glue as a mask to etch the substrate 1 to form a black matrix 31. groove 5.
  • Step 2 As shown in FIG. 10 , the black matrix 31 and the optical lens 4 are formed.
  • a black matrix material layer can be coated on the substrate 1, the black matrix material layer is exposed, and after development, the black matrix material layer 3 located outside the groove 5 is removed to form a black matrix 31;
  • the optical lenses 4 can be fabricated by using a thermal reflow process, and the orthographic projection of the gaps between adjacent optical lenses 4 on the substrate 1 falls into the black matrix 31 .
  • the edge portion of the black matrix 31 is melted at a high temperature, and the groove 5 can block the flow of the melted black matrix material, thereby preventing the black matrix material from flowing to where the optical lens 4 is located. area, and block part of the optical lens 4 to prevent the transmittance of the optical module from decreasing.
  • the shape of the groove 5 is the same as that of the black matrix. If the black matrix 31 is a square ring, the shape of the groove 5 is a square ring. If the black matrix 31 is a circular ring, the shape of the groove 5 is also a ring. .
  • the thickness of the black matrix 31 can be equal to the depth of the groove 5, and the thickness of the black matrix 31 can also be slightly smaller than the depth of the groove, so that the concave The grooves 5 can effectively block the edge portion of the black matrix 31 from diffusing to the optical lens 4 .
  • the manufacturing method of the optical module includes the following steps:
  • Step 1 As shown in FIG. 11, a substrate 1 is provided, a transparent material layer 6 is formed on the substrate 1, and the surface of the transparent material layer 6 is etched to form a groove 7 penetrating at least part of the transparent material layer 6, as a blocking structure;
  • the substrate 1 may be a hard substrate, such as a quartz substrate or a glass substrate, or a flexible substrate.
  • the transparent material layer 6 can be made of photoresist or nano-imprint glue. If the transparent material layer 6 is made of photoresist, the groove 7 can be made by photolithography; The embossing process makes the grooves 7 .
  • the transparent material layer 6 can also be made of SiO, ITO and other materials, and the thickness of the transparent material layer 6 can be 1-2um.
  • the transparent material layer 6 is made of SiO, ITO and other materials
  • a layer of photoresist can be coated on the transparent material layer 6, and a photoresist pattern is formed by a photolithography process, and the photoresist pattern is used as a mask for the transparent material.
  • the layer 6 is etched to form grooves 7 capable of accommodating the black matrix 31 .
  • coat a layer of nano-imprint glue on the transparent material layer 6, form a pattern of the nano-imprint glue through an imprinting process, and use the pattern of the nano-imprint glue as a mask to etch the transparent material layer 6 to form a shape that can accommodate The grooves 7 of the black matrix 31 .
  • Step 2 As shown in FIG. 12 , the black matrix 31 and the optical lens 4 are formed.
  • a black matrix material layer can be coated on the transparent material layer 6, the black matrix material layer is exposed, and after development, the black matrix material layer 3 located outside the groove 7 is removed to form a black matrix 31;
  • the optical lenses 4 are fabricated by a thermal reflow process, and the orthographic projection of the gaps between adjacent optical lenses 4 on the substrate 1 falls into the black matrix 31 .
  • the edge portion of the black matrix 31 is melted at a high temperature, and the groove 7 can block the flow of the melted black matrix material, thereby preventing the black matrix material from flowing to where the optical lens 4 is located. area, and block part of the optical lens 4 to prevent the transmittance of the optical module from decreasing.
  • the shape of the groove 7 is the same as that of the black matrix. If the black matrix 31 is a square ring, the shape of the groove 7 is a square ring. If the black matrix 31 is a circular ring, the shape of the groove 7 is also a ring. .
  • the thickness of the black matrix 31 can be equal to the depth of the groove 7 , and the thickness of the black matrix 31 can also be slightly smaller than the depth of the groove 7 , to ensure that the black matrix will not affect the lens during the thermal reflow process.
  • the melting point of the transparent material layer 6 should be greater than the melting point of the black matrix 31 and the melting point of the optical lens 4, so that when the optical lens 4 is formed by the thermal reflow process, the transparent material layer 6 also It will not be affected, and the phenomenon of melting will appear.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种光学模组及其制作方法、显示装置,属于显示技术领域。光学模组包括:基底(1);位于基底(1)上的阻挡结构(5,7,21);位于阻挡结构(5,7,21)内的黑矩阵(31),黑矩阵(31)在基底(1)上的正投影不超出阻挡结构(5,7,21)包围的区域;位于黑矩阵(31)远离基底(1)一侧的光学透镜(4),相邻光学透镜(4)之间的间隙在基底(1)上的正投影落入黑矩阵(31)内。

Description

光学模组及其制作方法、显示装置 技术领域
本公开涉及显示技术领域,特别是指一种光学模组及其制作方法、显示装置。
背景技术
随着显示技术的发展,对光学元器件微型化的需求不断加大,光学透镜应运而生。光学透镜通常是指孔径从微米尺度到毫米尺度的透镜,当一定数量的光学透镜按照特定的规律排列就组成了光学透镜阵列。相比于传统的透镜,光学透镜及其阵列具有体积小,重量轻,功耗小等优点。光学透镜能够实现传统光学器件不具备的光学特性,利用这种特性可以使器件具有各种特殊的功能,例如在显示领域,利用光学透镜,可以实现裸眼3D。
发明内容
本公开的实施例提供一种光学模组,包括:
基底;
位于所述基底上的阻挡结构;
位于所述阻挡结构内的黑矩阵,所述黑矩阵在所述基底上的正投影不超出所述阻挡结构包围的区域;
位于所述黑矩阵远离所述基底一侧的光学透镜,相邻所述光学透镜之间的间隙在所述基底上的正投影落入所述黑矩阵内。
一些实施例中,所述阻挡结构为设置在所述基底上的挡墙,所述挡墙包围所述黑矩阵。
一些实施例中,所述挡墙的厚度大于等于所述黑矩阵的厚度。
一些实施例中,所述阻挡结构为贯穿部分所述基底的凹槽,所述黑矩阵位于所述凹槽内。
一些实施例中,所述光学模组还包括位于所述基底表面的透明材料层, 所述阻挡结构为贯穿至少部分所述透明材料层的凹槽。
一些实施例中,所述黑矩阵的厚度小于等于所述凹槽的深度。
本公开实施例还提供了一种显示装置,包括如上所述的光学模组。
一些实施例中,还包括与所述光学模组对盒设置的显示面板,所述显示面板的亚像素与所述光学透镜一一对应,所述亚像素的中心点在所述基底上的正投影与对应的光学透镜的中心点在所述基底上的正投影重合。
一些实施例中,所述光学透镜位于所述基底远离所述显示面板的一侧。
一些实施例中,所述光学透镜位于所述基底朝向所述显示面板的一侧,所述基底与所述显示面板之间填充有低折射率层,所述低折射率层的厚度大于所述光学透镜的厚度,所述低折射率层的折射率小于所述光学透镜的折射率。
本公开实施例还提供了一种光学模组的制作方法,包括:
提供一基底;
在所述基底上形成阻挡结构;
在所述阻挡结构内形成黑矩阵,所述黑矩阵在所述基底上的正投影不超出所述阻挡结构包围的区域;
利用热回流工艺形成光学透镜,相邻所述光学透镜之间的间隙在所述基底上的正投影落入所述黑矩阵内。
一些实施例中,形成所述阻挡结构包括:
在所述基底上形成一层透明材料层;
利用压印工艺或光刻工艺利用所述透明材料层形成用以包围所述黑矩阵的挡墙。
一些实施例中,所述阻挡结构为贯穿部分所述基底的凹槽,形成所述阻挡结构包括:
对所述基底的表面进行刻蚀,形成贯穿部分所述基底的所述凹槽。
一些实施例中,形成所述阻挡结构包括:
在所述基底上形成一层透明材料层;
对所述透明材料层进行刻蚀,形成贯穿至少部分所述透明材料层的凹槽 作为所述阻挡结构。
附图说明
图1为黑矩阵边缘部分熔化的示意图;
图2和图3为裸眼3D显示的示意图;
图4-图12为本公开实施例制作光学模组的示意图;
图13和图14为本公开实施例显示装置的示意图。
附图标记
1 基底
2、6 透明材料层
21 挡墙
3 黑矩阵材料层
31 黑矩阵
4 光学透镜
5、7 凹槽
8 低折射率层
9 显示面板
10 膜层
11、13、15 位置点
12、14、16 光线
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
相关技术通过热回流工艺制作光学透镜,可以在基底上形成光刻胶阵列,利用热回流工艺通过加热使光刻胶阵列熔融,并在表面张力的作用下形成球面光学透镜。但使用热回流制备的光学透镜需要经过高温,如图1所示,高温会使先前制备的黑矩阵31的边缘部分熔化,流动至光学透镜4所在区域, 遮挡部分光学透镜4,影响光学透镜阵列的透过率。
本公开的实施例提供一种光学模组及其制作方法、显示装置,能够保证光学模组的透过率。
本公开的实施例提供一种光学模组,包括:
基底;
位于所述基底上的阻挡结构;
位于所述阻挡结构内的黑矩阵,所述黑矩阵在所述基底上的正投影不超出所述阻挡结构包围的区域;
位于所述黑矩阵远离所述基底一侧的光学透镜,相邻所述光学透镜之间的间隙在所述基底上的正投影落入所述黑矩阵内。
本实施例中,在基底上设置有阻挡结构,黑矩阵位于阻挡结构限定的区域内,这样即使通过热回流工艺形成光学透镜时,黑矩阵边缘部分在高温下融化,阻挡结构也可以阻挡融化的黑矩阵材料流动,从而可以避免黑矩阵材料流动至光学透镜所在区域,防止光学模组的透过率降低。
本实施例中,如图2所示,在光学透镜4的出光侧设置有膜层10,膜层10可以为空气或低折射率层,膜层10的折射率小于光学透镜4的折射率。通过光学透镜4阵列可以实现裸眼3D。如图2所示,光线12从位置点11处射入光学透镜4,到达位置点13后,凸面的界面两侧折射率不同。由于膜层10的折射率小于光学透镜4的折射率,因此入射角α(入射光线12与法线的夹角)小于折射角β(折射光线14与法线的夹角)。
在膜层10采用低折射率层时,在膜层10之外还设置有空气,同理,光线从膜层10出射到空气(折射率等于1)时,入射角β(入射光线14与法线的夹角)小于折射角γ(折射光线16与法线的夹角)。因此,从位置点11发出的光线经过光学透镜4后,总体上是向右传播的。
综上所述,如图2和图3所示,由左侧入射的光线经过光学透镜4后,光线出射的方向向右,到达左眼;同理,由右侧入射的光线经过光学透镜4后,光线出射的方向向左,到达右眼。因此,左右眼分别只看到左眼图像和右眼图像,经过大脑合成进而形成了3D视觉。
本实施例中,光学透镜4可以为半球状透镜也可以为柱状透镜,半球状透镜即在第一方向上的截面为圆形,在第二方向上的截面为半圆或半圆的一部分,柱状透镜即在第一方向上的截面为方形,在第三方向上的截面为半圆或半圆的一部分,其中,第一方向与基底平行,第二方向与基底垂直,第三方向与基底垂直且与柱状透镜的延伸方向垂直。
一些实施例中,如图8所示,所述阻挡结构为设置在基底1上的挡墙21,所述挡墙21包围所述黑矩阵31,在通过热回流工艺形成光学透镜4时,黑矩阵31边缘部分在高温下融化,挡墙21可以阻挡融化的黑矩阵材料流动,从而可以避免黑矩阵材料流动至光学透镜4所在区域,覆盖部分光学透镜4,防止光学模组的透过率降低。
为了不影响光学模组的透过率,挡墙21采用透明材料制作,比如可以采用光刻胶或纳米压印胶制作,若挡墙21采用光刻胶制作,可以利用光刻工艺制作挡墙21;若挡墙21采用纳米压印胶制作,可以采用纳米压印工艺制作挡墙21。挡墙21限定出的区域与黑矩阵31的形状匹配,若黑矩阵31为方形环状,则挡墙21限定出的区域的形状为方形环状,若黑矩阵31为圆环状,则挡墙21限定出的区域的形状也为圆环状。
挡墙21的厚度可以为1~2um。为了确保挡墙21阻挡黑矩阵31的流动,因此,挡墙21的厚度需要大于等于黑矩阵31的厚度。
一些实施例中,如图9和图10所示,所述阻挡结构为贯穿部分所述基底1的凹槽5,所述黑矩阵31位于所述凹槽5内。在通过热回流工艺形成光学透镜4时,黑矩阵31边缘部分在高温下融化,凹槽5可以阻挡融化的黑矩阵材料流动,从而可以避免黑矩阵材料流动至光学透镜4所在区域,遮挡部分光学透镜4,防止光学模组的透过率降低。
凹槽5的形状与黑矩阵相同,若黑矩阵31为方形环状,则凹槽5的形状为方形环状,若黑矩阵31为圆环状,则凹槽5的形状也为圆环状。
为了保证基底1表面的平坦,为后续形成光学透镜4提供平坦的表面,黑矩阵31的厚度可以等于凹槽5的深度,另外,黑矩阵31的厚度也可以稍小于凹槽的深度,这样凹槽5能够有效阻挡黑矩阵31的边缘部分扩散至光学 透镜4处。
一些实施例中,如图11和图12所示,光学模组还包括位于基底1表面的透明材料层6,所述阻挡结构为贯穿至少部分所述透明材料层6的凹槽7,凹槽7的深度可以小于透明材料层6的厚度,也可以等于透明材料层6的厚度,黑矩阵31位于凹槽7内。其中,透明材料层6可以采用光刻胶或纳米压印胶,若透明材料层6采用光刻胶制作,可以利用光刻工艺制作凹槽7;若透明材料层6采用纳米压印胶,可以采用纳米压印工艺制作凹槽7。透明材料层6还可以采用SiO,ITO等材料,透明材料层6的厚度可以为1-2um。
在通过热回流工艺形成光学透镜4时,黑矩阵31边缘部分在高温下融化,凹槽7可以阻挡融化的黑矩阵材料流动,从而可以避免黑矩阵材料流动至光学透镜4所在区域,遮挡部分光学透镜4,防止光学模组的透过率降低。
凹槽7的形状与黑矩阵相同,若黑矩阵31为方形环状,则凹槽7的形状为方形环状,若黑矩阵31为圆环状,则凹槽7的形状也为圆环状。
为了保证透明材料层6表面的平坦,为后续形成光学透镜4提供平坦的表面,黑矩阵31的厚度可以等于凹槽7的深度,另外,黑矩阵31的厚度也可以稍小于凹槽7的深度,这样凹槽7能够有效阻挡黑矩阵31的边缘部分扩散至光学透镜4处。
本公开实施例还提供了一种显示装置,包括如上所述的光学模组。该显示装置可以实现裸眼3D显示。
该显示装置包括但不限于:射频单元、网络模块、音频输出单元、输入单元、传感器、显示单元、用户输入单元、接口单元、存储器、处理器、以及电源等部件。本领域技术人员可以理解,上述显示装置的结构并不构成对显示装置的限定,显示装置可以包括上述更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,显示装置包括但不限于显示器、手机、平板电脑、电视机、可穿戴电子设备、导航显示设备等。
所述显示装置可以为:电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件,其中,所述显示装置还包括柔性电路板、印刷电路板和背板。
一些实施例中,显示装置还包括与所述光学模组对盒设置的显示面板,所述显示面板的亚像素与所述光学透镜一一对应,所述亚像素的中心点在所述基底上的正投影与对应的光学透镜的中心点在所述基底上的正投影重合。
本实施例的显示装置中,光学模组设置在显示面板的显示面一侧,光学模组包括阵列排布的多个光学透镜4,每一个所述光学透镜4对应于一个所述亚像素设置,相邻所述光学透镜4之间的间距等于相邻所述亚像素之间的间距。
其中,所述显示面板的显示面上不同位置处的亚像素与对应的光学透镜4的光心之间具有不同距离。这样,显示面板不同位置处的亚像素与光学模组之间的距离,即会与所述光学透镜4的焦距之间呈现不同的大小关系,与传统的裸眼3D显示装置中显示面板的显示面各位置处的亚像素与光学模组之间的距离均相同的方式相比,可以在不折损图像分辨率的同时,使观看者观看到的3D画面深度大大加强,并且层次不同,立体感增强。
传统的裸眼3D显示装置中,显示面板的显示面上各位置处的亚像素与对应的光学透镜4的光心之间距离g均相等。显示3D图像时,显示面板上的亚像素发出的光线经过光学透镜4折射后聚焦形成一个个交点,这些交点所在的平面称为中心深度平面a,在该中心深度平面a上能显示最高分辨率的图像。
为了在不损失图像分辨率的前提下增加图像深度,本公开所提供的显示装置,将显示面板的显示面在不同位置处的亚像素与光学透镜4之间的距离不同,这样,显示面板不同位置处的亚像素与光学透镜4之间的距离,即会与所述光学透镜4的焦距之间呈现不同的大小关系,与传统的裸眼3D显示装置中显示面板的显示面各位置处的亚像素与光学透镜4之间的距离均相同的方式相比,使观看者观看到的3D画面深度大大加强,并且层次不同,立体感增强。
在本公开所提供的实施例中,优选的,所述显示面板的显示面的至少一部分亚像素与对应的所述光学透镜4的光心之间的距离g小于所述光学透镜4的焦距f,所述显示面板的显示面的至少另一部分亚像素与对应的所述光学 透镜4的光心之间的距离g大于所述光学透镜4的焦距f。
采用上述方案,显示面板中一部分亚像素与光学模组间的距离g小于光学透镜4的焦距f,3D图像成像位置在光学模组的后方,呈现入屏效果;而显示面板的另一部分亚像素与光学模组间的距离g大于光学透镜4的焦距f,3D图像成像位置在光学模组的前方,呈现出屏效果。这样,观看者观看到的整幅3D画面深度大大加强,并且层次不同,立体感随之增强。
应当理解的是,对于所述显示面板中不同位置处的亚像素与对应的光学透镜4的光心之间的距离g还可以是,均小于光学透镜4的焦距f,或者,均大于光学透镜4的焦距f。
在本实施例中,所述显示面板可以为LCD、OLED等任意显示器件,将所述显示面板设计为曲面显示面板,而所述光学模组中各所述光学透镜4的光心处于一平面上,这样,显示面板的边缘区域和中部区域的亚像素会与光学模组间的距离不同,且优选的,显示面板的边缘区域的亚像素与对应的光学透镜4的光心之间的距离小于光学透镜4的焦距,3D图像成像位置在光学模组的后方,呈现入屏效果;而显示面板的中部区域的亚像素与光学模组间的距离g大于光学透镜4焦距f,3D图像成像的中心深度平面位置在光学透镜4的前方,呈现出屏效果。这样,观看者观看到的整幅3D画面深度大大加强,并且层次不同,立体感增强。
优选的,曲面显示面板的显示面的亚像素从所述显示面板的中部区域向所述显示面的边缘区域、与对应的所述光学透镜4的光心之间的距离逐渐减小。
采用上述方案,由于显示面板的亚像素与光学模组之间的距离逐渐变化,观看者在观看时看到的画面深度会逐渐变化,更有利于观看画面的层次变化。
需要说明的是,在本实施例中,所述显示面板为曲面显示面板,所述光学模组为各光学透镜4的光心处于同一平面上的结构,本公开的其他实施例中,还可以是,所述显示面板为曲面显示面板,而所述光学模组还可以是各所述光学透镜4的光心处于一曲面上的曲面光学透镜4,只要使得显示面板不同位置处的亚像素与对应的光学透镜4光心之间具有不同距离即可。
一些实施例中,如图13所示,显示装置中,所述光学透镜4位于所述基底1朝向所述显示面板9的一侧,所述基底1与所述显示面板9之间填充有低折射率层8,所述低折射率层8的厚度大于所述光学透镜4的厚度,这样可以保证光学透镜4与显示面板9不接触。
一些实施例中,如图14所示,显示装置中,所述光学透镜4还可以位于所述基底1远离所述显示面板9的一侧。显示装置还包括覆盖光学透镜4的低折射率层8,低折射率层8的厚度大于所述光学透镜4的厚度,这样低折射率层8可以对光学透镜4进行保护。为了保证裸眼3D的效果,低折射率层8的折射率应小于光学透镜4的折射率,大于空气的折射率。
本公开实施例还提供了一种光学模组的制作方法,包括:
提供一基底;
在所述基底上形成阻挡结构;
在所述阻挡结构内形成黑矩阵,所述黑矩阵在所述基底上的正投影不超出所述阻挡结构包围的区域;
利用热回流工艺形成光学透镜,相邻所述光学透镜之间的间隙在所述基底上的正投影落入所述黑矩阵内。
本实施例中,在基底上设置有阻挡结构,黑矩阵位于阻挡结构限定的区域内,这样即使通过热回流工艺形成光学透镜时,黑矩阵边缘部分在高温下融化,阻挡结构也可以阻挡融化的黑矩阵材料流动,从而可以避免黑矩阵材料流动至光学透镜所在区域,防止光学模组的透过率降低。
一些实施例中,如图4-图8所示,光学模组的制作方法包括以下步骤:
步骤1、如图4所示,提供一基底1,在基底1上形成透明材料层2;
其中,基底1可以为硬质基底,比如石英基底或玻璃基底,还可以为柔性基底。透明材料层2可以采用氧化硅或氮化硅,还可以采用光刻胶或纳米压印胶。若透明材料层2采用氧化硅或氮化硅,可以采用沉积的方式形成透明材料层2,若透明材料层2采用光刻胶或纳米压印胶,可以采用涂覆的方式形成透明材料层2。透明材料层2的厚度可以为1~2um。
步骤2、如图5所示,利用透明材料层2形成挡墙21;
若透明材料层2采用光刻胶,可以利用光刻工艺制作挡墙21;若透明材料层2采用纳米压印胶,可以采用纳米压印工艺制作挡墙21。挡墙21限定出的区域与黑矩阵31的形状匹配,若黑矩阵31为方形环状,则挡墙21限定出的区域的形状为方形环状,若黑矩阵31为圆环状,则挡墙21限定出的区域的形状也为圆环状。
步骤3、如图6所示,在基底1上形成黑矩阵材料层3;
具体地,可以在基底1上涂覆一层黑矩阵材料层3。
步骤4、如图7所示,对黑矩阵材料层3进行曝光,显影后去除位于挡墙21限定出的区域外的黑矩阵材料层3,形成黑矩阵31;
步骤5、如图8所示,利用热回流工艺制备光学透镜4,相邻光学透镜4之间的间隙被挡墙21和黑矩阵31填充。
本实施例中,挡墙21包围黑矩阵31,在通过热回流工艺形成光学透镜4时,黑矩阵31边缘部分在高温下融化,挡墙21阻挡融化的黑矩阵材料流动,从而可以避免黑矩阵材料流动至光学透镜4所在区域,防止光学模组的透过率降低。
为了确保挡墙21阻挡黑矩阵31的流动,因此,挡墙21的厚度需要大于等于黑矩阵31的厚度。
本实施例中,值得注意的是,挡墙21的熔点应大于黑矩阵31的熔点,还应大于光学透镜4的熔点,这样在利用热回流工艺形成光学透镜4时,挡墙21也不会受到影响,出现熔化的现象。
一些实施例中,如图9-图10所示,光学模组的制作方法包括以下步骤:
步骤1、如图9所示,提供一基底1,对所述基底1的表面进行刻蚀,形成贯穿部分所述基底1的所述凹槽5;
其中,基底1可以为硬质基底,比如石英基底或玻璃基底,还可以为柔性基底。
在基底1上可以涂覆一层光刻胶,通过光刻工艺形成光刻胶的图形,以光刻胶的图形为掩膜对基底1进行刻蚀,形成能够容纳黑矩阵31的凹槽5。或者在基底1上涂覆一层纳米压印胶,通过压印工艺形成纳米压印胶的图形, 以纳米压印胶的图形为掩膜对基底1进行刻蚀,形成能够容纳黑矩阵31的凹槽5。
步骤2、如图10所示,形成黑矩阵31和光学透镜4。
具体地,可以在基底1上涂覆一层黑矩阵材料层,对黑矩阵材料层进行曝光,显影后去除位于凹槽5外的黑矩阵材料层3,形成黑矩阵31;
之后,可以利用热回流工艺制备光学透镜4,相邻光学透镜4之间的间隙在基底1上的正投影落入黑矩阵31内。
本实施例中,在通过热回流工艺形成光学透镜4时,黑矩阵31边缘部分在高温下融化,凹槽5可以阻挡融化的黑矩阵材料流动,从而可以避免黑矩阵材料流动至光学透镜4所在区域,遮挡部分光学透镜4,防止光学模组的透过率降低。
凹槽5的形状与黑矩阵相同,若黑矩阵31为方形环状,则凹槽5的形状为方形环状,若黑矩阵31为圆环状,则凹槽5的形状也为圆环状。
为了保证基底1表面的平坦,为后续形成光学透镜4提供平坦的表面,黑矩阵31的厚度可以等于凹槽5的深度,另外,黑矩阵31的厚度也可以稍小于凹槽的深度,这样凹槽5能够有效阻挡黑矩阵31的边缘部分扩散至光学透镜4处。
一些实施例中,如图11-图12所示,光学模组的制作方法包括以下步骤:
步骤1、如图11所示,提供一基底1,在基底1上形成透明材料层6,对透明材料层6的表面进行刻蚀,形成贯穿至少部分所述透明材料层6的凹槽7,作为阻挡结构;
其中,基底1可以为硬质基底,比如石英基底或玻璃基底,还可以为柔性基底。
透明材料层6可以采用光刻胶或纳米压印胶,若透明材料层6采用光刻胶制作,可以利用光刻工艺制作凹槽7;若透明材料层6采用纳米压印胶,可以采用纳米压印工艺制作凹槽7。透明材料层6还可以采用SiO,ITO等材料,透明材料层6的厚度可以为1-2um。
若透明材料层6采用SiO,ITO等材料,在透明材料层6上可以涂覆一层 光刻胶,通过光刻工艺形成光刻胶的图形,以光刻胶的图形为掩膜对透明材料层6进行刻蚀,形成能够容纳黑矩阵31的凹槽7。或者在透明材料层6上涂覆一层纳米压印胶,通过压印工艺形成纳米压印胶的图形,以纳米压印胶的图形为掩膜对透明材料层6进行刻蚀,形成能够容纳黑矩阵31的凹槽7。
步骤2、如图12所示,形成黑矩阵31和光学透镜4。
具体地,可以在透明材料层6上涂覆一层黑矩阵材料层,对黑矩阵材料层进行曝光,显影后去除位于凹槽7外的黑矩阵材料层3,形成黑矩阵31;
利用热回流工艺制备光学透镜4,相邻光学透镜4之间的间隙在基底1上的正投影落入黑矩阵31内。
本实施例中,在通过热回流工艺形成光学透镜4时,黑矩阵31边缘部分在高温下融化,凹槽7可以阻挡融化的黑矩阵材料流动,从而可以避免黑矩阵材料流动至光学透镜4所在区域,遮挡部分光学透镜4,防止光学模组的透过率降低。
凹槽7的形状与黑矩阵相同,若黑矩阵31为方形环状,则凹槽7的形状为方形环状,若黑矩阵31为圆环状,则凹槽7的形状也为圆环状。
为了保证透明材料层6表面的平坦,为后续形成光学透镜4提供平坦的表面,黑矩阵31的厚度可以等于凹槽7的深度,另外,黑矩阵31的厚度也可以稍小于凹槽7的深度,保证黑矩阵在热回流工艺过程中,不会对透镜造成影响。
本实施例中,值得注意的是,透明材料层6的熔点应大于黑矩阵31的熔点,还应大于光学透镜4的熔点,这样在利用热回流工艺形成光学透镜4时,透明材料层6也不会受到影响,出现熔化的现象。
需要说明,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于实施例而言,由于其基本相似于产品实施例,所以描述得比较简单,相关之处参见产品实施例的部分说明即可。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第 二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种光学模组,其特征在于,包括:
    基底;
    位于所述基底上的阻挡结构;
    位于所述阻挡结构内的黑矩阵,所述黑矩阵在所述基底上的正投影不超出所述阻挡结构包围的区域;
    位于所述黑矩阵远离所述基底一侧的光学透镜,相邻所述光学透镜之间的间隙在所述基底上的正投影落入所述黑矩阵内。
  2. 根据权利要求1所述的光学模组,其特征在于,所述阻挡结构为设置在所述基底上的挡墙,所述挡墙包围所述黑矩阵。
  3. 根据权利要求2所述的光学模组,其特征在于,所述挡墙的厚度大于等于所述黑矩阵的厚度。
  4. 根据权利要求1所述的光学模组,其特征在于,所述阻挡结构为贯穿部分所述基底的凹槽,所述黑矩阵位于所述凹槽内。
  5. 根据权利要求1所述的光学模组,其特征在于,所述光学模组还包括位于所述基底表面的透明材料层,所述阻挡结构为贯穿至少部分所述透明材料层的凹槽。
  6. 根据权利要求4或5所述的光学模组,其特征在于,所述黑矩阵的厚度小于等于所述凹槽的深度。
  7. 一种显示装置,其特征在于,包括如权利要求1-6中任一项所述的光学模组。
  8. 根据权利要求7所述的显示装置,其特征在于,还包括与所述光学模组对盒设置的显示面板,所述显示面板的亚像素与所述光学透镜一一对应,所述亚像素的中心点在所述基底上的正投影与对应的光学透镜的中心点在所述基底上的正投影重合。
  9. 根据权利要求7所述的显示装置,其特征在于,所述光学透镜位于所述基底远离所述显示面板的一侧。
  10. 根据权利要求7所述的显示装置,其特征在于,所述光学透镜位于所述基底朝向所述显示面板的一侧,所述基底与所述显示面板之间填充有低折射率层,所述低折射率层的厚度大于所述光学透镜的厚度,所述低折射率层的折射率小于所述光学透镜的折射率。
  11. 一种光学模组的制作方法,其特征在于,包括:
    提供一基底;
    在所述基底上形成阻挡结构;
    在所述阻挡结构内形成黑矩阵,所述黑矩阵在所述基底上的正投影不超出所述阻挡结构包围的区域;
    利用热回流工艺形成光学透镜,相邻所述光学透镜之间的间隙在所述基底上的正投影落入所述黑矩阵内。
  12. 根据权利要求11所述的光学模组的制作方法,其特征在于,形成所述阻挡结构包括:
    在所述基底上形成一层透明材料层;
    利用压印工艺或光刻工艺利用所述透明材料层形成用以包围所述黑矩阵的挡墙。
  13. 根据权利要求11所述的光学模组的制作方法,其特征在于,所述阻挡结构为贯穿部分所述基底的凹槽,形成所述阻挡结构包括:
    对所述基底的表面进行刻蚀,形成贯穿部分所述基底的所述凹槽。
  14. 根据权利要求11所述的光学模组的制作方法,其特征在于,形成所述阻挡结构包括:
    在所述基底上形成一层透明材料层;
    对所述透明材料层进行刻蚀,形成贯穿至少部分所述透明材料层的凹槽作为所述阻挡结构。
PCT/CN2021/089948 2021-04-26 2021-04-26 光学模组及其制作方法、显示装置 WO2022226725A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180000918.4A CN115605783A (zh) 2021-04-26 2021-04-26 光学模组及其制作方法、显示装置
US17/635,794 US12034088B2 (en) 2021-04-26 Optical module, manufacturing method, and display device
PCT/CN2021/089948 WO2022226725A1 (zh) 2021-04-26 2021-04-26 光学模组及其制作方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/089948 WO2022226725A1 (zh) 2021-04-26 2021-04-26 光学模组及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2022226725A1 true WO2022226725A1 (zh) 2022-11-03

Family

ID=83847595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089948 WO2022226725A1 (zh) 2021-04-26 2021-04-26 光学模组及其制作方法、显示装置

Country Status (2)

Country Link
CN (1) CN115605783A (zh)
WO (1) WO2022226725A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102289016A (zh) * 2011-09-19 2011-12-21 深圳超多维光电子有限公司 一种显示装置、液晶面板、彩色滤光片及其制造方法
CN104678641A (zh) * 2015-03-17 2015-06-03 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
US20150268478A1 (en) * 2014-03-18 2015-09-24 Samsung Display Co., Ltd. Display device
CN110764169A (zh) * 2019-11-06 2020-02-07 京东方科技集团股份有限公司 透镜结构及制备方法、显示装置
CN111725418A (zh) * 2020-05-21 2020-09-29 合肥维信诺科技有限公司 显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102289016A (zh) * 2011-09-19 2011-12-21 深圳超多维光电子有限公司 一种显示装置、液晶面板、彩色滤光片及其制造方法
US20150268478A1 (en) * 2014-03-18 2015-09-24 Samsung Display Co., Ltd. Display device
CN104678641A (zh) * 2015-03-17 2015-06-03 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
CN110764169A (zh) * 2019-11-06 2020-02-07 京东方科技集团股份有限公司 透镜结构及制备方法、显示装置
CN111725418A (zh) * 2020-05-21 2020-09-29 合肥维信诺科技有限公司 显示面板

Also Published As

Publication number Publication date
US20230343880A1 (en) 2023-10-26
CN115605783A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
TWI382207B (zh) 彩色濾光基板、多視液晶顯示裝置及彩色濾光基板的製作方法
CN108828826B (zh) 曲面显示面板和曲面显示面板的制造方法
JP6852896B2 (ja) 3d表示パネル、それを含む3d表示機器、及びその製造方法
WO2017000433A1 (zh) 3d显示基板及其制作方法、3d显示装置
US8068278B2 (en) Photostructured imaging display panels
US20180224583A1 (en) Optical structure, method for manufacturing optical structure, display substrate and display device
CN103513311B (zh) 一种立体光栅和裸眼3d显示装置
WO2016037433A1 (zh) 立体显示装置
CN110832381A (zh) 具有结构化表面的虚拟和增强现实设备
CN111929936A (zh) 一种显示面板及显示装置
US20220350056A1 (en) System and method for holographic displays
CN114518661A (zh) 一种显示面板及其制作方法、显示装置
CN109164587B (zh) 一种显示装置用立体显示光学膜片
US20100066654A1 (en) Three-dimensional display device
WO2022226725A1 (zh) 光学模组及其制作方法、显示装置
CN104238127A (zh) 一种裸眼立体显示装置
CN113219562B (zh) 光学模组及其制作方法、显示装置
JPH07104271A (ja) 液晶表示装置
US11994696B2 (en) Method for manufacturing naked-eye 3D device, and naked-eye 3D device
WO2022226726A1 (zh) 光学模组及其制作方法、显示装置
US12034088B2 (en) Optical module, manufacturing method, and display device
CN207623627U (zh) 3d显示装置
CN208969350U (zh) 一种显示装置用立体显示光学膜片
JP2005070639A (ja) 視野角調整フィルタおよび表示装置
CN114488564B (zh) 浮空影像产生装置以及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 26/03/2024)